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Abstract. Recently, various types of topological Laplacians have been studied
from the perspective of data analysis. The spectral theory of these Laplacians
has significantly extended the scope of algebraic topology and data analysis.
Inspired by the theory of persistent Laplacians and cellular sheaves, this work
develops the theory of persistent sheaf Laplacians for cellular sheaves and de-
scribes how to construct sheaves for a point cloud where each point is associated
with a quantity that can be devised to embed physical properties. The spectra
of persistent sheaf Laplacians encode both geometrical and non-geometrical in-
formation of the given point cloud. The theory of persistent sheaf Laplacians
provides an elegant method for fusing di!erent types of data and has significant
potential for future development.

1. Introduction. Recent years have witnessed a dramatic growth of research in-
terest in topological data analysis (TDA) [19, 40], driven by its success in science
and technology, particularly in computational biology and computer-aided drug de-
sign, one of the most challenging scientific fronts of the 21st century [27, 28]. The
main workhorse of TDA is persistent homology [6, 12, 45], a new branch of algebraic
topology that is able to capture multiscale topological information of data. Topo-
logical deep learning, coined in 2017, integrates persistent homology and artificial
intelligence (AI) [4]. It has had enormous success in data science [23, 26, 37].

Persistent homology has many limitations. For example, it cannot capture the
shape evolution of data that does not change topologically. Evolutionary de Rham-
Hodge theory, or persistent Hodge Laplacians, was proposed in 2019 to overcome
this limitation [8]. The de Rham-Hodge theory connects algebraic topology with
di!erentiable geometry, partial di!erential equations, harmonic analysis, and alge-
braic geometry [11, 44]. Persistent Hodge Laplacians defined on a family of di!eren-
tiable manifolds o!er a powerful multiscale spectral analysis of volumetric data [8].
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Additionally, persistent spectral graph theory, also called persistent combinatorial
Laplacians (or simply persistent Laplacians), was also introduced in 2019 to over-
come the drawback of persistent homology [38]. Combinatorial Laplacians enable
us to perform spectral analysis for simplicial complexes constructed from a point
cloud [9, 15, 20]. Persistent combinatorial Laplacians have stimulated much inter-
est in the past few years [21, 22, 39] and has had success in various applications
[7, 24, 29]. Both persistent Hodge Laplacians and persistent combinatorial Lapla-
cians are persistent topological Laplacians, an emerging research topic in TDA.
However, these PTLs cannot deal with labeled data, or the local non-geometric
properties at individual data points.

A natural extension of the aforementioned algebraic topology, di!erential geom-
etry, and graph theory approaches for data science is the sheaf theory. A sheaf
is a mathematical tool for systematically tracking data (or states), or extracting
spatial-temporal patterns, or organizing data (or states), or fusing data (or states)
according to certain physical/mathematical rules or structures. It defines a relation-
ship for adjacent data points lying in a topological space, which may be abstracted
from point clouds, manifolds, or spatial-temporal data. Such relationships become
particularly valuable when they are devised to embed certain physical laws gov-
erning the underlying data. A particular class of sheaves, namely cellular sheaves,
has attracted much attention in the past decade for its application potentials. The
notion of a cellular sheaf was first introduced by Shepard in his Ph.D. thesis in
1985 [35]. In the past decade, researchers have revived and expanded the cellular
sheaf theory with applications in science and engineering [10, 17, 32]. Tools from
sheaf theory have also been developed to study persistence modules [2, 3, 10, 16].
Roughly speaking, a cellular sheaf consists of a simplicial complex, an assignment of
vector spaces for each simplex, and a definition of linear maps for each face relation,
satisfying certain rules so that it gives rise to a sheaf cochain complex. Therefore,
one can define sheaf cohomology, which reflects the property of the sheaf. Spec-
tral sheaf theory extends spectral graph theory to cellular sheaves, leading to sheaf
Laplacians [17].

The aim of this paper is to introduce persistent sheaf Laplacians (PSL) as an ex-
tension of persistent Laplacians to the setting of cellular sheaves. This work is also
motivated by the need to elegantly fuse geometric and non-geometric information
as in the persistent cohomology [5]. In this approach, the geometrical shape can be
successfully captured by persistent homology and particularly, by persistent Lapla-
cians, while local non-geometric properties, such as atomic biophysical properties
of a molecule, requires additional treatment. It is beneficial to have mathematical
tools that can distinguish between data that have very similar geometrical shapes
but carrying di!erent non-geometrical information. From a mathematical perspec-
tive, the extension of persistent Laplacians is natural, since the key theorem in the
theory of persistent Laplacians is indeed true for more general (co)chain complexes.
The rest of this paper is organized as follows. In Section 2, we introduce the basics
of cellular sheaf theory and discuss how to define a sheaf on a labeled simplicial
complex (i.e., a simplicial complex with a quantity associated to each vertex). In
Section 3, we define the q-th persistent sheaf Laplacian for a pair of complexes X,Y .
In Section 4 we demonstrate the spectra of persistent sheaf Laplacians for several
examples of applications.
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2. Preliminaries. In this section, we give a very concise introduction to cellular
sheaves and persistent Laplacians. We assume that the reader is familiar with
simplicial homology. We follow the standard notational convention to distinguish
between chain complexes and cochain complexes. Most researchers define cellular
sheaves on regular cell complexes [10, 13, 17, 32]. For the sake of simplicity, we only
discuss celluar sheaves on simplical complexes.

2.1. Cellular sheaves.

Definition 2.1. A cellular sheaf S on a simplicial complex X consists of the
following data:

(1) a simplicial complex X, where the face relation that ω is a face of ε is denoted
by ω ↭ ε , and

(2) an assignment to each simplex ω of X a (finite dimensional) vector space
S (ω) and to each face relation ω ↭ ε a linear morphism of vector spaces denoted
by Sω↭ε or S (ω ↭ ε) : S (ω) → S (ε), satisfying the rule

ϑ ↭ ω ↭ ε ↑ Sϑ↭ε = Sω↭ε ↓ Sϑ↭ω

and Sω↭ω = id is the identity map.
The vector space S (ω) is referred to as the stalk of S over ω, and the linear

morphism Sω↭ε is referred to as the restriction map of the face relation ω ↭ ε .

Example 2.1. Let X be a finite simplicial complex. We attach to every simplex of
X a fixed vector space V and let every restriction map be the identity map. This
sheaf is referred to as the constant sheaf V on X.

Definition 2.2. Suppose that f : X → Y is a simplicial map [25] and S is a
cellular sheaf on Y. The pullback sheaf f→S on X is given by

(f→S )(ω) = S (f(ω)),

and for any face relation ω ↭ ε of X,

(f→S )ω↭ε = Sf(ω)↭f(ε).

Example 2.2. Suppose that X is a subcomplex of Y and S is a sheaf on Y . We
can define a sheaf T on X using the data of Y . For ω ↔ X, let T (ω) = S (ω). For
any face relation ω ↭ ε in X, let T (ω ↭ ε) = S (ω ↭ ε). The sheaf T is a pullback
of S .

Definition 2.3. Suppose that S is a sheaf. A global section s of S is an assignment
to each simplex ω an element sω ↔ S (ω) such that Sω↭ε (sω) = sε for any face
relation ω ↭ ε . The set of global sections is denoted by !(X;S ).

Example 2.3. This example is related to quantum physics. The general form of
the Schrödinger equation for an isolated quantum system is

i⊋ ϖ

ϖt
|ϱ(t)↗ = H|ϱ(t)↗

where t is time, |ϱ(t)↗ = |ϱ(r, t)↗ is the state vector of the quantum system that
belongs to a Hilbert space H, r is the position vector, and H is the Hamilton-
ian consisting of kinetic energy and potential energy operators. In the position
space representation, the kinetic energy operator is given by the Laplacian. In
the Schrödinger representation, H is independent of time (ϖH

ϖt
= 0), and the time

evolution of |ϱ(t)↗ is given by

|ϱ(t)↗ = e
↑iH(t↑t0)/⊋|ϱ(t0)↗,
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where e→iH(t→t0)/⊋ is known as the time-evolution operator. We can define a cellular
sheaf S as follows. First R is seen as a simplicial complex such that its vertices
are integers and its edges are intervals [n, n+1] where n → Z. We attach H to each
simplex. Restriction maps Sn↭[n,n+1] and Sn+1↭[n,n+1] are defined by linear maps

e
→iH

2⊋ and e
iH

2⊋ . The assignment n ↑ |ω(n)↓ for all n is a global section of sheaf S .
Similarly, cellular sheaves can be defined for many other linear (partial) di!erential
equations. Note that in general there is no need to work with Z.
2.2. Sheaf cohomology. For a sheaf S on a finite simplicial complex X, we
can construct the sheaf cochain complex of S as follows. Let the q-th cochain
group C

q(X;S ) be the direct sum of S (ε) over all q-simplices ε. To define the
coboundary map d, we need a signed incidence relation [10].

Definition 2.4. A signed incidence relation is an assignment to every face relation
ε ↭ ϑ an integer [ε : ϑ ] satisfying the following conditions:

(1) if dim ϑ ↔ dimε > 1, then [ε : ϑ ] = 0; and
(2) if ϖ ↭ ϑ and dim ϑ ↔ dim ϖ = 2, the sum

∑
ω
[ϖ : ε][ε : ϑ ] = 0.

If a signed incidence relation is given, we then define the coboundary map dq :
C

q(X;S ) ↑ C
q+1(X;S ) by

d
q
|S (ω) =

∑

ω↭ε

[ε : ϑ ]Sω↭ε .

Since d
q is a linear morphism, its action on each stalk S (ε) determines itself. We

can verify that dqdq→1 = 0 [10, Lemma 6.2.2], so there is the sheaf cochain complex

0 C
0(X;S ) C

1(X;S ) C
2(X;S ) · · · .

d d d

The q-th sheaf cohomology group H
q(X;S ) is defined by ker dq/ im d

q→1.
A natural signed incidence relation exists for every oriented simplicial com-

plex. Recall that the orientation of a simplex is determined by the ordering of
its vertices. For an oriented simplex ϑ = [v0, v1, . . . , vn] and its oriented face
ε = [v0, . . . , v̂i, . . . , vn], we let [ε : ϑ ] = (↔1)i. If ε or ϑ is oriented alternatively, we
let [ε : ϑ ] = (↔1)i+1. This signed incidence relation is used throughout this paper.
In practice we can orient a simplicial complex by a global ordering of vertices. We
remind the reader that we do not need orientation information to define a sheaf.

Example 2.4. We examine the sheaf cochain complex of the constant sheaf R on a
finite simplicial complex X. The dimension of the q-th cochain group C

q(X;S ) is
equal to the number of q-simplices. We use simplices to distinguish di!erent stalks
R over di!erent simplices. The q-th sheaf cochain group has the canonical basis
{ε| dimε = q}, and

d
q
ε =

∑

ω↭ε

[ε : ϑ ]ϑ.

Suppose X is {0, 1, 2, 01, 02, 12, 012},

0 1

2
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Figure 1. Di!erent orderings determine di!erent orientations.
On the left, the ordering is a, b, c, and the oriented simplices are
[a, b], [b, c], [a, c], [a, b, c]. On the right, the ordering is a, c, b, and
the oriented simplices are [a, b], [c, b], [a, c], [a, c, b]. In practice, one
would label vertices by natural numbers, and orient simplices such
that labels are increasing. For example, if we label a, b, c by 0, 1, 2,
then we will get the left orientation. For the sake of simplicity, we
often denote a vertex by its index, so vi is written as i; for edges,
we just write ij instead of [vi, vj ], and adopt similar notations for
higher dimensional simplices.

then the matrix representation of d0 is





0 1 2

01 →1 1 0

12 0 →1 1

02 →1 0 1



.

and the matrix representation of d1 is

( 01 02 12

012 1 →1 1
)
.

In fact for any finite simplicial complex X, the sheaf cochain complex of R coincides
with the dual of the simplicial chain complex of X with coe”cient ring R.

The following fact is well-known and we omit the proof.

Proposition 2.5. [13, Lemma 9.5] H0(X;S ) = #(X;S ).

2.3. Cellular sheaves on a labeled simplicial complex. Suppose that there is a
1-dimensional simplicial complex (i.e., graph) X where each vertex vi is associated
with a quantity qi ↑ R. Denote the edge connecting vi and vj by eij . We can
define a sheaf S on X with qi such that each stalk is R, and for the face relation
vi ↭ eij , the morphism Svi↭eij

is the multiplication by qj/rij where rij is the
length of eij . This sheaf is inspired by molecular biology and chemistry. Given a
molecule, each atom and its atomic partial charge can be seen as a vertex vi and the
associated quantity qi, respectively. Conceptually, one may build a 1-dimensional
Rips or Alpha complex from the point cloud of vertices or just take chemical bonds
as edges. The assignment qi ↓ vi and qiqj/rij ↓ eij is a global section, since
Svi↭eij

(qi) = Svj↭eij
(qj) = qiqj/rij . The quantity qiqj/rij is the potential energy.

The above sheaf can be generalized to high dimensional simplicial complexes
(cf. [42]). Suppose we have the following data: a simplicial complex X, a set
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of nonzero qi → R associated to each vertex vi, and a nowhere zero function
F : X ↑ R. We can define a sheaf where each stalk is R, and for the face re-
lation [v0, . . . , vn] ↭ [v0, . . . , vn, vn+1 . . . , vm], the linear morphism S ([v0, . . . , vn] ↭
[v0, . . . , vn, vn+1 . . . , vm]) is the scalar multiplication by

F ([v0, . . . , vn])qn+1 · · · qm

F ([v0, . . . , vn, vn+1, . . . , vm])
.

This is indeed a sheaf since if we have [v0, . . . , vn] ↭ [v0, . . . , vm] ↭ [v0, . . . , vl], then

F ([v0, . . . , vm])qm+1 · · · ql

F ([v0, . . . , vl])

F ([v0, . . . , vn])qn+1 · · · qm

F ([v0, . . . , vm])
=

F ([v0, . . . , vn])qn+1 . . . ql

F ([v0, . . . , vl])
.

The assignment qi0 · · · qin/F ([vi0 , . . . , vin ]) ↑ [vi0 , . . . , vin ] is a nontrivial global
section.

Example 2.5. Consider the oriented simplicial complex {v0, v1, v2, v0v1, v1v2, v0v2,

v0v1v2}

(v0, q0) (v1, q1)

(v2, q2)

where qi → R is associated to vi. Let r01, r12, r02 be the lengths of e01, e12, e02. We
can define the above sheaf on this complex where F maps every vertex to 1, every
edge eij to its length rij , and the 2-simplex [v0, v1, v2] to r01r12r02. The matrix
representation of d0 is





v0 v1 v2

v0v1 ↓q1/r01 q0/r01 0

v1v2 0 ↓q2/r12 q1/r12

v0v2 ↓q2/r02 0 q0/r02



,

and the matrix representation of d1 is

( v0v1 v1v2 v0v2

v0v1v2
q2

r02r12

q0

r01r02

→q1

r01r12

)
.

Note that many alternative sheaf constructions are available by appropriate
choices of F . For example, F may map a 2-cell to the sum of its edge lengths.
In practical applications, a good choice of F can embed physical information into
spectral representation.

2.4. Sheaf Laplacians. If cochain groups of a cochain complex

· · · A
q→1

A
q

A
q+1

· · ·
d
q→2

d
q→1

d
q

d
q+1

are all finite dimensional inner product spaces, the q-th combinatorial Laplacian
!q : Aq

↑ A
q is defined by

!q = (dq)↑dq + d
q→1(dq→1)↑,

where (dq)↑ is the adjoint of d
q, and it is well-known that the kernel of !q is

isomorphic to the q-th cohomology group H
q. Hansen and Ghrist [17] applied
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this construction to sheaf cochain complexes and the resulting new combinatorial
Laplacian is referred to as the sheaf Laplacian. If every stalk of a sheaf S is a finite
dimensional inner product space, we can equip an inner product structure on every
C

q(X;S ) such that S (ω) and S (ω→) are orthogonal if ω →= ω
→.

Example 2.6. We consider the F defined in the same way as in Example 2.5 to
evaluate the spectra of sheaf Laplacians. Consider the 2-simplex

(v0, q0) (v1, q1)

(v2, q2)

whose edges are all of length 1. The matrix representation of !0 is



q
2
1 + q

2
2 ↑q0q1 ↑q0q2

↑q0q1 q
2
0 + q

2
2 ↑q1q2

↑q0q2 ↑q1q2 q
2
0 + q

2
1





and its eigenvalues are {q20+q
2
1+q

2
2 , q

2
0+q

2
1+q

2
2 , 0} and the corresponding eigenvectors

are (↑q1/q0, 1, 0)T , (↑q2/q0, 0, 1)T , and (q0/q2, q1/q2, 1)T . Moreover, the matrix
representation of !1 is




q
2
0 + q

2
1 + q

2
2 0 0

0 q
2
0 + q

2
1 + q

2
2 0

0 0 q
2
0 + q

2
1 + q

2
2





and its only eigenvalue is q20 + q
2
1 + q

2
2 .

This example shows that the eigenvalues of !0 and !1 are dependent on the am-
plitude of qi, which allows the embedding of non-geometric information in practical
applications. However, they are not sensitive to the sign of qi. Therefore, a (per-
sistent) sheaf Dirac theory as an extension of recent Dirac formulation or quantum
persistent homology [1] may enable us to further eliminate the sign degeneracy.

Furthermore, the eigenvectors of !0 depend on the signs of of qi. As such, it is
advantageous to use sheaf eigenvectors to embed physical properties of a molecule
and utilize them in machine learning.

3. Persistent sheaf Laplacians. We review persistent combinatorial Laplacians
before introducing persistent sheaf Laplacians.

3.1. Persistent Laplacians. Given two chain complexes (V, d) and (W,d), if Vq,
as an inner product space, is a subspace of the finite dimensional inner product
space Wq for all q, and the boundary operator of (V, d) inherits from (W,d), then
we have the following commutative diagram

· · · Vq+1 Vq Vq↑1 · · ·

· · · Wq+1 Wq Wq↑1 · · ·

dq+2 dq+1 dq dq→1

dq+2 dq+1 dq dq→1
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where dashed hooked arrows represent the inclusion map ω : V ε→ W . If we use
superscripts V andW to distinguish among maps and subspaces of (V, d) and (W,d),
then the q-th persistent homology group Hq(V,W ) is defined by

Z
V

q

BW
q

↑ ZV
q

↓= ω
•(Hq(V )),

whose dimension is called the q-th persistent Betti numbers of the pair V,W . Let
!V,W

q+1 = {x ↔ Wq+1 | d
W

q+1x ↔ Vq}. In other words, !V,W

q+1 consists of chains of

Wq+1 whose boundaries are in Vq (actually in Z
V

q
, since d

2 = 0), and we have

im!V,W

q+1 = B
W

q
↑ Z

V

q
. If we denote the adjoint of the inclusion V ε→ W by ϑ

(which is a projection), the q-th persistent Laplacian ”V,W

q
[21, 22, 38] is defined

by

”V,W

q
= (dV

q
)→dV

q
+ ϑd

W

q+1|!V,W

q+1
(ϑdW

q+1|!V,W

q+1
)→.

Since we know that ker”V,W

q
↓= Hq(V,W ) [21, 22, 38], the theory of persistent

Laplacian o#ers an alternative method of computing persistent Betti numbers. Be-
sides that, non-zero eigenvalues and eigenvectors of a persistent Laplacian contain
extra information that can to be utilized.

3.2. Persistent sheaf cohomology and persistent sheaf Laplacians. Persis-
tent sheaf cohomology is known to many researchers [31, 33, 43]. Given two oriented
simplicial complexes X,Y , if X ↗ Y and the orientation of X is identical to Y , we
can let sheaf F on X to be the pullback of the sheaf G on Y , then we have the
following commutative diagram

· · · C
q↑1(X;F ) C

q(X;F ) C
q+1(X;F ) · · ·

· · · C
q↑1(Y ;G ) C

q(Y ;G ) C
q+1(Y ;G ) · · ·

d d d d

d d

ω

d

ω

d

ω

where ϑ : C
q(Y ;G ) → C

q(X;F ) is a projection map such that ϑ |G (ε) is the
identity map if ϖ ↔ X, and ϑ |G (ε)= 0 otherwise. Since ϑ is a cochain map, it
induces a map ϑ

• between sheaf cohomology groups of F and G , and the q-th
persistent sheaf group is defined by

ϑ
•(Hq(Y ;G ))

whose dimension is the q-th persistent sheaf Betti number. Our goal here is to
extend the notion of persistent Laplacian to the setting of cellular sheaves. We
will assume that each stalk of G is a finite dimensional inner product space, and
regard any cochain group as a direct sum of inner product spaces. Note that the
adjoint of ϑ is the inclusion map ω : Cq(X;F ) ε→ C

q(Y ;G ). We can dualize the
above diagram (i.e., reverse all arrows) and define the persistent sheaf Laplacian
by the persistent Laplacian of the dualized diagram. More specifically, we have the
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following diagram

C
q→1(X;F ) C

q(X;F )

!q+1
X,Y

C
q(Y ;G ) C

q+1(Y ;G )

d
q→1
X

(dq→1
X

)↑ d
q

X,Y

(dq

X,Y
)↑

d
q

Y

(dq

Y
)↑

(note that an inner product space is self-dual) where !q+1
X,Y

= {x → C
q+1(Y ;G ) |

(dq
Y
)↑(x) → C

q(X;F )} and d
q

X,Y
is the adjoint of ω(dq

Y
)↑|!q+1

X,Y

: !q+1
X,Y

↑ C
q(X;F ).

We define the q-th persistent sheaf Laplacian ”X,Y

q
by

”X,Y

q
= (dq

X,Y
)↑dq

X,Y
+ d

q→1
X

(dq→1
X

)↑.

The nullity of ”X,Y

q
is equal to the q-th persistent Betti number of the dualized

diagram (since we dualize everything, the two cochain complexes become chain
complexes). By the universal coe#cient theorem for cohomology, ω• and ε

• have
the same rank (here • means the induced map between cohomology or homology
groups). So the q-th persistent Betti number of the dualized diagram is equal to
the q-th persistent sheaf Betti number. In other words, we have

ker”X,Y

q
↓= ω

•(Hq(Y ;G )).

The matrix representation of a persistent sheaf Laplacian can be calculated in the
same way as a persistent Laplacian.

Proposition 3.1 (The matrix representation of a persistent sheaf Laplacian).
Choose a basis {v1, . . . , vn} of !q+1

X,Y
and denote its inner product matrix by P .

Denote the matrix representation of (dq
X,Y

)↑ with respect to the canonical basis of

C
q(X;F ) and {v1, . . . , vn} as D

↑,q
X,Y

and the matrix representation of d
q→1
X

with

respect to the canonical bases of Cq→1(X;F ) and C
q(X;F ) as D

q→1
X

. Then, the
matrix representation of ”X,Y

q
is

D
q→1
X

(Dq→1
X

)T +D
↑,q
X,Y

P
→1(D↑,q

X,Y
)T .

Proof. We only have to determine the matrix representation X of dq
X,Y

. Take two

vectors v → !q+1
X,Y

, w → C
q(X;F ). We abuse the notation a bit and use v, w to

denote their coordinates in the form of column vector as well. We have

↔(dq
X,Y

)↑v, w↗Cq(X;F) = ↔v, d
q

X,Y
w↗!q+1

X,Y

(1)

(D↑,q
X,Y

v)Tw = v
T
PXw (2)

v
T (D↑,q

X,Y
)Tw = v

T
PXw. (3)

As v, w are arbitrarily taken, we conclude that X = P
→1(D↑,q

X,Y
)T .

Proposition 3.2. The spectrum of the q-th persistent sheaf Laplacian does not
depend on the orientation of Y .
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Proof. Fixing a choice of orientation for each simplex of Y , it su!ces to show that
the spectrum of ”X,Y

q
is unchanged if the orientation of one simplex of Y is alter-

nated. We first fix some notations. Suppose we change the orientation of a simplex
ω, then every morphism defined with respect to this new orientation will have a
bar. We also sometimes denote #q

X,Y
by #. We define a linear map Iω,→ such that

Iω,→|G (ω) = →I and Iω,→|G (ω→) = I if ω↑
↑= ω. The adjoint of Iω,→ is itself. Depend-

ing on context, the domain of Iω,→ will be understood as Cq→1(X;F ), Cq(Y ;G ) or
C

q+1(Y ;G ). The proof is divided into cases.

Case I. If ω ↓ C
q→1(X;F ), then d

q

Y
= d

q

Y
and d

q→1
X

= d
q→1
X

Iω,→. So

d
q→1
X

(dq→1
X

)↓ = d
q→1
X

Iω,→Iω,→(d
q→1
X

)↓ = d
q→1
X

(dq→1
X

)↓

Case II. If ω ↓ C
q(Y ;G ), then d

q→1
X

= εIω,→|Cq(X;F)d
q→1
X

and d
q

Y
= d

q

Y
Iω,→. So

(dq
Y
)↓ = Iω,→(d

q

Y
)↓. As

(dq
Y
)↓#q

X,Y
= Iω,→(d

q

Y
)↓#q

X,Y
↔ Iω,→C

q(X;F ) = C
q(X;F ),

we see that #q

X,Y
↔ #q

X,Y
. Similarly

(dq
Y
)↓#q

X,Y
= Iω,→Iω,→(d

q

Y
)↓#q

X,Y
= Iω,→(d

q

Y
)↓#q

X,Y
↔ Iω,→C

q(X;F ) = C
q(X;F ),

we see that #q

X,Y
↗ #q

X,Y
, so #q

X,Y
= #q

X,Y
.

Then

(εdq
Y
)↓|!q

X,Y

= εIω,→|Cq(X;F)(d
q

Y
)↓|!q

X,Y

,

and
(
(εdq

Y
)↓|!q

X,Y

)↓
=

(
(dq

Y
)↓|!q

X,Y

)↓
εIω,→|Cq(X;F).

So

”X,Y

q = d
q→1
X

(dq→1
X

)↓ + (dq
Y
)↓|!q

X,Y

(
(dq

Y
)↓|!q

X,Y

)↓

= εIω,→|Cq(X;F)”
X,Y

q
εIω,→|Cq(X;F).

Case III. If ω ↓ C
q+1(Y ;G ), then d

q→1
X

= d
q→1
X

and d
q

Y
= Iω,→d

q

Y
. So (dq

Y
)↓ =

(dq
Y
)↓Iω,→. As C

q(X;F ) ↗ (dq
Y
)↓# = (dq

Y
)↓Iω,→#, we see that Iω,→# ↔ #.

Similarly C
q(X;F ) ↗ (dq

Y
)↓# = (dq

Y
)↓Iω,→#, implying that Iω,→# ↔ #. So

Iω,→# = #. Denote by I
!
ω,→ : # ↘ # the restriction of Iω,→ on #. We have

ε(dq
Y
)↓|! = ε(dq

Y
)↓Iω,→|! = ε(dq

Y
)↓|!I!ω,→. Then

”X,Y

q = d
q→1
X

(dq→1
X

)↓ + ε(dq
Y
)↓|!

(
ε(dq

Y
)↓|!

)↓

= d
q→1
X

(dq→1
X

)↓ + ε(dq
Y
)↓|!I

!
ω,→(I

!
ω,→)

↓(
ε(dq

Y
)↓|!

)↓

= d
q→1
X

(dq→1
X

)↓ + ε(dq
Y
)↓|!

(
ε(dq

Y
)↓|!

)↓

= ”X,Y

q
.

Example 3.1. Consider the 1-dimensional simplicial complex Y

1 23 4
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and the constant sheaf R over Y . We compute !X,Y

0 when X = {1, 2}. The matrix
representation of (d0

Y
)→ is





13 34 42

1 →1 0 0

2 0 0 1

3 1 →1 0

4 0 1 →1




.

According to the definition of ”0
X,Y

, we want to find all elements of C1(Y ;R) that
are sent to C

0(X;R) = span{1, 2} by (d0
Y
)→. After a few steps of column Gauss

elimination, we get a new matrix representation of (d0
Y
)→





13 13 + 34 13 + 34 + 42

1 →1 →1 →1

2 0 0 1

3 1 0 0

4 0 1 0




.

From this representation, we see that for any vector v = a13 + b(13 + 34) + c(13 +
34+ 42) with a, b, and c being coe#cients, (d0

Y
)→v ↑ span{1, 2} if and only if a and

b are both zero. In other words, ”0
X,Y

= span{13+34+42}, P = 3, and the matrix
representation of (d0

X,Y
)→ is

( 13 + 34 + 42

1 →1

2 1

)
.

Then, the matrix representation of !X,Y

0 is
(

1/3 →1/3
→1/3 1/3

)

and its spectrum is {0, 2/3}.

4. Experiments. Given a labeled point cloud P (i.e., a point cloud with a nonzero
quantity qi associated with each point vi), we can build a Rips or Alpha filtration
out of it and construct a sheaf St on each Xt consistently as described in section 2.3
provided a suitable global F : 2P ↓ R is chosen. If we take Ft to be the restriction
of F : 2P ↓ R on Xt and construct St, then we ensure that the stalks of ω and ε

and the restriction map between ω and ε remain the same for any St containing
ω ↭ ε . Since St is the pullback of St+p for any t and p, we get a persistent
module of sheaf cochain complexes and can compute the spectra of persistent sheaf
Laplacians. In this way, we calculate the spectra of persistent sheaf Laplacians for
a few examples of point clouds in this section. Some examples are the vertices of
simple geometrical shapes and some are the atomic coordinates of molecules. We
assign the quantities qi to simple geometrical shapes, and take the partial charges
as qi for molecules. An Alpha complex filtration {Xr} is built for each labeled point
cloud, parametrized by radius r. We choose F such that F maps every vertex vi to
1, every edge vivj to the length of itself rij , and every 2-cell vivjvk to the product of

lengths of its edges rijrikrjk. The spectra of !
Xr,Xr+p

d
for d = 0, 1 and selected r, p
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will be calculated. The radius r will be a multiple of 0.01 or 0.01Å. The spectrum
can provide information for various analyses, but for simplicity here we only plot
the minimal nonzero eigenvalue and the nullity against the radius r. The minimal
nonzero eigenvalue of the persistent sheaf Laplacian !

Xr,Xr+p

d
is denoted by ω

r,p

d

and the d-th persistent sheaf Betti number of the pair (Xr, Xr+p) (i.e., the nullity

of !
Xr,Xr+p

d
) is denoted by ε

r,p

d
.

4.1. Simple shapes. The examples of simple shapes are the vertex sets of a 2-
dimensional square or a 2-dimensional trapezoid as shown in Figure 2 with di”erent
choices of local property qi. More specifically, we consider four labeled point clouds
and two point clouds in R2. The two point clouds are {(0, 0), (1, 0), (1, 1), (0, 1)} and
{(0, 0), (1, 0), (3/4,

→
15/4), (1/4,

→
15/4)}. For {(0, 0), (1, 0), (1, 1), (0, 1)} we assign

q = ±1 to (0, 1) and q = 1 to the rest. For {(0, 0), (1, 0), (3/4,
→
15/4), (1/4,

→
15/4)}

we assign q = ±1 to (1/4,
→
15/4) and q = 1 to the rest. For the two point clouds

we construct the constant sheaf and compute persistent sheaf Laplacians, whose
spectra coincide with persistent Laplacians. For the four labeled point clouds we
construct filtrations of sheaves in the way described earlier in this section. The
results are shown in Figures 3 and 4. The first thing we can infer is that, the
minimal nonzero eigenvalue and the nullity usually change significantly when the
topology of Xr changes (when p is nonzero, both of them change at r ↑ p rather
than r). When we consider labeled point clouds instead of point clouds, sometimes
the nullity show less change but the minimal nonzero eigenvalue gives more change
(compare (a) and (b) with (c) and (d) in Figure 3 and Figure 4).

If we compare the results of the square and the trapezoid, we see more changes
in the results of the trapezoid. This is due to the fact that the filtration constructed
out of the vertex set of trapezoid contains more di”erent complexes. We also observe
that the change of signs of qi does not a”ect the minimal nonzero eigenvalue and
the nullity, though the eigenvectors of Laplacians will be di”erent.

Figure 2. A square and a trapezoid. Coordinates of vertices are
shown.

4.2. Complex molecules. Next we study the molecule CB8 [34] shown in Figure
5. We associate each atom with the corresponding partial charge (obtained using
[30]). The results for CB8 are shown in Figures 6 and 7. Due to complexity of the
molecule, it is very di#cult to explain the spectral details of the system. However,
this information can be very useful for machine learning analysis.

Finally, to demonstrate our method for practical problems, we study a small
protein called bacteriocin AS-48 (PDB ID: 1E68) [14]. We select the model 1 of
AS-48 and compute the pqr file by PDB2PQR with the Amber force field [18]. For
the sake of faster computation, we only use the coordinates of carbon atoms as the
point cloud. Results are shown in Figures 9 and 10.
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(a) (b) (c)

(d) (e) (f)

Figure 3. The results of persistent sheaf Laplacians for
the square. We consider pairs (Xr, Xr) or (Xr, Xr+0.2)
in a filtration. The results of the labeled point cloud
{((0, 0), 1), ((1, 0), 1), ((1, 1), 1), ((0, 1), 1)} are shown in (a) and
(b). The results of the point cloud {(0, 0), (1, 0), (1, 1), (0, 1)} are
shown in (c) and (d). The results of the labeled point cloud
{((0, 0), 1), ((1, 0), 1), ((1, 1), 1), ((0, 1),→1)} are shown in (e) and
(f).

5. Concluding remarks. The success of persistent homology in data science lies
in its integration of multiscale analysis and topological abstraction in terms of topo-
logical invariants [12, 45]. However, this approach has a significant drawback, i.e.,
its inability to detect homotopic shape evolution of data that involves no topolog-
ical changes. This limitation was addressed by persistent topological Laplacians,
including persistent spectral graph, also called persistent Laplacians [38], and evo-
lutionary de Rahm Hodge theory, also called persistent Hodge Laplacians [8]. The
multiscale geometric analysis in these new approaches has dramatically empowered
classical spectral theory. The harmonic spectra of persistent Laplacians fully retain
the topological invariants of persistent homology, while their non-harmonic spectra
capture the homotopic shape evolution of data that cannot be obtained from per-
sistent homology. Nonetheless, persistent Laplacians cannot handle non-geometric
information of the data, such as the atomic property of a molecule and the node
property of a network. This work proposes persistent sheaf Laplacians (PSL) to
overcome this limitation. The theory of PSLs introduces multiscale analysis to
cellular sheaf Laplacians to further extend their application potential via a filtra-
tion. The proposed PSLs have been demonstrated on various point cloud data with
localized labels.
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(a) (b) (c)

(d) (e) (f)

Figure 4. The results of persistent sheaf Laplacians for
the trapezoid. We consider pairs (Xr, Xr) or (Xr, Xr+0.2)
in a filtration. The results of the labeled point cloud
{((0, 0), 1), ((1, 0), 1), ((3/4,

→
15)/4, 1), ((1/4,

→
15/4), 1)}

are shown in (a) and (b). The results of the point
cloud {(0, 0), (1, 0), (3/4,

→
15/4), (1/4,

→
15/4)} are shown

in (c) and (d). The results of the labeled point cloud
{((0, 0), 1), ((1, 0), 1), ((3/4,

→
15/4), 1), ((1/4,

→
15/4),↑1)} are

shown in (e) and (f).

Figure 5. The structure of CB8.

Potential future development is widely open. First, a fast implementation of
PSLs and a good understanding of the eigenvalues and eigenspaces of PSLs will
dramatically boost the applications of PSLs to complex and big data. Second, the
incorporation of foundational laws of physics, principles of chemistry, and rules of
life into PSLs to study various types of data will be exciting. Third, the application



460 XIAOQI WEI AND GUO-WEI WEI

Figure 6. The results of the CB8 when p = 0.

Figure 7. The results of the CB8 when p = 0.2.

Figure 8. Illustration of the structure of bacteriocin AS-48.

of PSLs for data fusion, i.e., integrating multiple data sources to produce more
consistent, accurate, and useful information than that concatenates individual data
sources, is another direction. Fourth, we need to explore various specific types
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Figure 9. The results of AS-48 when p = 0.

Figure 10. Results of AS-48 when p = 0.4.

of sheaf Laplacians for each specific problem and test their power in applications.
Fifth, a persistent sheaf Dirac theory will extend the Dirac formulation of persistent
homology [1, 36, 41] and provide a potentially more powerful approach for data
science. A Dirac operator can be roughly seen as the square root of combinatorial
Laplacians, and recently the extension of Dirac operators to the setting of persistent
homology has been proposed since it o!ers a new perspective in topological data
analysis. Wee et al. [41] demonstrated that persistent Dirac model discriminates
the 9 types of organic-inorganic halide perovskites clearly. Finally, in the spirit of
evolutionary de Rahm-Hodge theory [8], one can develop evolutionary sheaf Dirac
on manifolds for volumetric data. However, like persistent Hodge Laplacians, this
approach can be computationally demanding to implement.

Code availability. The code for calculating persistent sheaf Laplacians can be
found at https://github.com/weixiaoqimath/persistent_sheaf_Laplacians.
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