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Abstract

Gromov proved a cube inequality on the bound of distances be-
tween opposite faces of a cube equipped with a positive scalar cur-
vature metric in dimension  8 using a minimal surface method.
He conjectured that the cube inequality also holds in dimension
� 9. In this paper, we prove Gromov’s cube inequality in all di-
mensions with the optimal constant via a Dirac operator method.

1. Introduction

In [12], Gromov proved a cube inequality on scalar curvature in di-
mension  8 using a minimal surface method [14, 15, 16]. The cube
inequality plays an important role in the recent proof of nonexistence
of positive scalar curvature metrics on 5-dimensional aspherical mani-
folds in [11] (cf. another proof of the same result in [4]). By applying
a quantitative relative index theorem, the second author proved Gro-
mov’s cube inequality in all dimensions but with a suboptimal constant
[21]. In this paper, we prove Gromov’s cube inequality with the optimal
constant in all dimensions.

Theorem 1.1. Let g be a Riemannian metric on the cube I
n =

[0, 1]n. Suppose `i = dist(@i�, @i+) is the g-distance between the i-th
pair of opposite faces @i� and @i+ of the cube. If the scalar curvature of
g satisfies Scg � k > 0, then

(1.1)
nX

i=1

1

`2i

� kn

4⇡2(n� 1)
.

Consequently, we have

(1.2) min
1in

dist(@i�, @i+)  2⇡

r
n� 1

k
.
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We remark that the constant 4⇡2 in the inequality (1.1) is optimal.
This can be seen by considering warped product metrics on large flat
(n � 1)-dimensional cubes over an interval (see Remark 2.1 for more
details).

The proof of Theorem 1.1 is based on an explicit index computation
of the Dirac operator with an appropriately chosen potential on Rn.
Our proof also works for a more general version of Gromov’s cube in-
equality in the spin case. More precisely, the following Gromov’s ⇤n�m

inequality holds.

Theorem 1.2. Let X be an n-dimensional compact connected Rie-
mannian spin manifold with corners. Suppose f : X ! [�1, 1]m is a con-
tinuous map that preserves corner structures.1 Let @i±, i = 1, . . . ,m, be
the pullbacks of the pairs of the opposite faces of the cube [�1, 1]m. Sup-
pose Yt is an (n�m)-dimensional closed submanifold (without bound-
ary) in X that satisfies the following conditions:

(1) ⇡1(Yt) ! ⇡1(X) is injective;
(2) Yt is the transversal intersection2 of m orientable hypersurfaces

{Yi}mi=1 of X, where each Yi separates @i� from @i+;
(3) the higher index Ind�(DYt) does not vanish in KOn�m(C⇤

max(�;R)),
where � = ⇡1(Yt) and C

⇤
max(�;R) is the maximal group C

⇤-algebra
of � with real coe�cients.

If Sc(X) � k > 0, then the distances `i = dist(@i�, @i+) satisfy the
following inequality:

(1.3)
mX

i=1

1

`2i

� kn

4⇡2(n� 1)
.

Consequently, we have

(1.4) min
1im

dist(@i�, @i+)  2⇡

r
m(n� 1)

kn
.

We point out that Cecchini [3] and Zeidler [23, 24] proved a special
case of Theorem 1.2 when m = 1, i.e., Gromov’s bandwidth conjecture.

We remark that, by extending the index theory for manifolds with
corners (and more generally for manifolds with polyhedral boundary)
developed by the authors in [19], one can show that the inequalities
(1.1) and (1.3) are in fact strict inequalities for manifolds with corners
whose dihedral angles are < ⇡. The proofs of the strict inequalities will
be given elsewhere in order for the present paper to be self-contained.

We would like to thank Bernhard Hanke, Artem Nepechiy, Rudolf
Zeidler, Xianzhe Dai, Guofang Wei and anonymous referees for very
helpful comments.

1This means f maps codimension k faces to codimension k faces.
2In particular, this implies that the normal bundle of Yt is trivial.
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2. Proof of Gromov’s cube inequality

In this section, we prove Theorem 1.1. Our proof is inspired in part by
Zeidler’s proof for Gromov’s bandwidth conjecture [24, Theorem 1.4].
Throughout this section, we assume the constant k in Theorem 1.1 to
be n(n� 1), while the general case follows by rescaling the metric.

Proof of Theorem 1.1. Assume to the contrary that

(2.1)
nX

i=1

1

`2i

<
n
2

4⇡2
.

Then there exists " > 0 such that

(2.2)
nX

i=1

⇡
2(1 + ")2

(`i � 2")2
<

n
2

4
.

Now we shall extend the metric on the cube I
n to a complete metric

on Rn. We first give a construction of the metric for n = 2, and then
briefly describe the general case.

Figure 1. Extend the metric from [0, 1]2 to X1[X2 and
rescale the metric.

Denote X = [0, 1]2, X2 = R ⇥ [0, 1] and X1 = [0, 1] ⇥ R. Note that
X1 \ X2 = X, and X1 [ X2 has a shape of cross (see Figure 1). By
the Whitney’s extension theorem [20] and a smooth partition of unity,
there is a smooth metric g1 on X1 [ X2 such that g1 = g on X and
g1 = dx

2
1 + dx

2
2 outside a compact set of X1 [X2.

Suppose that  is a smooth positive function on X1 [X2 such that
 (x1, x2) is equal to 1 if (x1, x2) 2 X, and  (x1, x2) is a constant when
x
2
1 + x

2
2 is su�ciently large. Set g2 =  · g1. By choosing  to be large
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enough outside X, we obtain a smooth metric g2 on X1 [X2 with the
following properties (see Figure 1).

(1) The g2-distance distg2(@�X1, @+X1) between the two boundary
components @�X1 = {0}⇥ R and @+X1 = {1}⇥ R is � `1 � "/3,
where " is given in line (2.2).

(2) The g2-distance distg2(@�X2, @+X2) between the two boundary
components @�X2 = R⇥ {0} and @+X2 = R⇥ {1} is � `2 � "/3.

(3) g2 = R
2(dx21 + dx

2
2) on X1 [ X2 outside a compact set for some

R > 0.

Finally, using Whitney’s extension theorem, we extend the metric
g2 on X1 [ X2 to obtain a complete metric g on R2 such that g =
R

2(dx21 + dx
2
2) on R2 outside a compact subset. Since g is flat outside a

compact set, there exists � > 0 such that Scg � �� on R2.
For x = (x1, x2) 2 R2, we define

'1(x) = sgn(x1)·distg(x, {0}⇥R) and '2(x) = sgn(x2)·distg(x,R⇥{0}),
where sgn is the sign function. Set  i = 'i � `i/2. For each i = 1, 2,
let zi be a smooth approximation of  i such that |zi �  i|  "/3 and
krzik  1 + " (cf. [5, Proposition 2.1]). Here r is the gradient with
respect to the metric g.

To summarize, we have constructed a complete metric g and smooth
functions z1 and z2 on R2 with the following properties.

• The metric g restricts to the metric g on [0, 1]2, and coincides
with the Euclidean metric rescaled by R on R2 outside a compact
set. In particular, there exists a positive number � > 0 such that
Scg � �� on R2.

• For each x 2 R2, if both |z1(x)|  `1/2� " and |z2(x)|  `2/2� ",
then x lies in the cube [0, 1]2.

• For each C > 0, the subset {x 2 R2 : z1(x)2 + z2(x)2  C} is
compact.

• krzik  1+", wherer is the gradient with respect to the metric g.

When n > 2, we extend the metric g on I
n = [0, 1]n to a complete

metric g on Rn by a similar induction argument. let us briefly describe
the construction below.

For each k = 0, 1, . . . , n, let ⇤k be the family of all subsets of
{1, 2, · · · , n} with k-elements. For � 2 ⇤k, set

X� =
�
(x1, x2, · · · , xn) 2 Rn : if j /2 �, then 0  xj  1

 
.

In particular, X? = [0, 1]n for � = ? 2 ⇤0. For each � 2 ⇤k, the
boundary of X� has (n� k) pairs of opposite faces, denoted by @j±X�

for each j /2 �.
Now we shall extend the metric g on X? = [0, 1]n smoothly to a

complete metric g on Rn by induction on k so that for each given k 2
{0, 1, · · · , n� 1}, we have
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(2.3) distg(@j�X�, @j+X�) � `j � k"/(n+ 1) for 8� 2 ⇤k and 8j 62 �,

and the metric g coincides with a multiple of the Euclidean metric on
Rn outside a compact set. For k = 0, this is trivial. Now assume that
the metric has been constructed on X� satisfying the condition (2.3),
for each � 2 ⇤k. For each µ 2 ⇤k+1, it su�ces to extend the metric
on the union [�⇢µX� to Xµ, where � runs through all k-element sub-
sets of µ. Note that the condition (2.3) is already satisfied on [�⇢µX�.
Therefore such an extension of metric always exists on Xµ by the Whit-
ney’s extension theorem, a smooth partition of unity, and rescaling. By
induction, we obtain a metric g on Rn with the required properties.

For each i = 1, 2, · · · , n, set
Ei = {(y1, · · · , yn) 2 Rn : yi = 0}.

For each x = (x1, x2, · · · , xn) 2 Rn, we define

(2.4) 'i(x) := sgn(xi) · distg(x,Ei),

where sgn is the sign function. Set  i = 'i � `i/2. For each i =
1, 2, · · · , n, let zi be a smooth approximation of  i such that |zi� i| 
"/(n+1) and krzik  1+ ". Here r is the gradient with respect to the
metric g. To summarize, we have constructed a smooth metric g and
smooth functions {zi}i=1,2,··· ,n on Rn with the following properties.

• The metric g restricts to the metric g on [0, 1]n, and coincides
with a multiple of the Euclidean metric on Rn outside a compact
set. In particular, there exists a positive number � > 0 such that
Scg � �� on Rn.

• For each x 2 Rn, if |zi(x)|  `i/2� " for 1  i  n, then x lies in
the cube [0, 1]n.

• For each C > 0, the subset {x 2 Rn : z1(x)2 + · · · + zn(x)2  C}
is compact.

• krzik  1+", wherer is the gradient with respect to the metric g.

With the constant " > 0 and � > 0 given above, there exist positive
numbers � > 0 and {`i}1in such that for all 1  i  n, we have

0 < `i < `i � 2" < `i,(2.5)

n
2

4
�

nX

i=1

⇡
2(1 + ")2

(`i � 2")2
> �,(2.6)

and for 1  j  n,

�n�

4(n� 1)
+
⇡
2(1 + ")2

(`j � 2")2
tan2

⇡`j

2(`j � 2")
� (1 + ")�

X

i 6=j

⇡
2(1 + ")2

(`i � 2")2
> �.

(2.7)

Set

ri =
⇡(1 + ")

`i � 2"
.
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Fix a positive number ` such that ` > `i/2 + 1 for all 1  i  n. We
choose smooth functions {⇠i}1in on En, the flat Euclidean space, such
that

(1) 0  (1 + ")⇠i(x, y)  y
2 + r

2
i for 8(x, y) 2 E,

(2) 0  ⇠i(x, y)  " for |x| � `i/2, where " is the constant given in
line (2.6),

(3) and

⇠i(x, y) =

8
><

>:

y2+r2i
1+" if |x|  `i/2,

0 if `i/2� "  |x|  `,

1 if |x| � `+ 1.

Let fi be the unique solution to the following di↵erential equation
with initial condition

(2.8)

(
f
0(x) = ⇠i(x, f(x)),

f(0) = 0.

The solution always exists in a small neighborhood of x = 0. By the
comparison theorem, we have

(2.9) fi(x)  ri tan(
rix

1 + "
),

since the function hi(x) = ri tan(
rix
1+") is the unique solution to the

di↵erential equation (
f
0(x) =

f(x)2+r2i
1+" ,

f(0) = 0.

Therefore the solution fi exists at least for |x| < `i/2. On the other
hand, by assumption, ⇠i(x, y) = 0 for all `i/2 � "  |x|  ` and 0 
⇠i(x, y)  1 for |x| � `i/2. It follows that the solution fi exists on the
whole real line (cf. [17, §9, Theorem XIII]). Roughly speaking, fi(x) is
equal to the function hi(x) = ri tan(

rix
1+") when |x| is small, and is equal

to the linear function x± c for some constant c when |x| is large.
Let C`n,0 be the Cli↵ord algebra generated by {ei}1in subject to

the relation e
2
i = �1 and eiej + ejei = 0 for i 6= j. Similarly, we define

C`0,n to be the Cli↵ord algebra generated by {êi}1in subject to the
relation ê

2
i = 1 and êiêj + êj êi = 0 for i 6= j. Let TRn�En be the direct

sum of the tangent bundle of (Rn
, g) and the trivial bundle En, and

E := S(TRn � En)

the spinor bundle of TRn � En. By construction, E is equipped with
the Cli↵ord action of C`n,0(TRn) b⌦ C`0,n(En).

LetD be the twisted Dirac operator on L
2(Rn

, E), where L2(Rn
, E) is

the space of L2 sections of the bundle E. In terms of a local orthonormal
frame {wi}1in of the tangent bundle TRn, the operator D can be
locally expressed by
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D =
nX

i=1

wirwi ,

where wi denotes the Cli↵ord action of C`n,0(TRn) on E.
Consider the following Callias-type operator

B = D b⌦ 1 +
nX

i=1

1 b⌦ fi(zi)êi

where {êi} is the flat orthonormal basis of En. A direct computation
shows that

(2.10) B
2 = D

2 b⌦ 1 +
nX

i=1

fi(zi)
2 +

nX

i=1

[D, fi(zi)] b⌦ êi.

As [D, fi(zi)] b⌦ êi is a bounded operator on L
2(Rn

, E) for all 1  i  n

and
Pn

i=1 fi(zi)
2 is a proper3 function on Rn, it follows that B is

essentially self-adjoint and Fredholm [1].
Alternatively, the essentially self-adjointness and Fredholmness of B

can be seen as follows. Clearly, there is a smooth path of Riemannian
metrics gt on Rn connecting the metric g to a multiple of the standard
Euclidean metric go on Rn. For simplicity, we may assume that the
rescaling factor is equal to 1. Suppose that there exists a compact
set K such that each metric gt coincides with go on Rn outside K.
Furthermore, there is a homotopy4 of functions {✓t,i : 0  t  1}
between fi and the standard coordinate function xi of (Rn

, go) such
that ✓i,t = fi outside the compact set K for all i and t 2 [0, 1]. In
particular, outside a compact set K, the operator B coincides with the
standard Bott-Dirac operator

(2.11) Bo =
nX

i=1

@

@xi
ei b⌦ 1 +

nX

i=1

1 b⌦ xiêi

acting on L
2(Rn

, S(En � En)). Since Bo is essentially self-adjoint and
Fredholm, it follows that B is also essentially self-adjoint and Fredholm.
Moreover, it follows from the homotopy invariance of the Fredholm in-
dex that Ind(B) = Ind(Bo).

We have

B
2
o = �

nX

i=1

@
2

@x2i

+
nX

i=1

x
2
i +

nX

i=1

ei b⌦ êi.

Observe that {ei b⌦ êi}1in is a commuting family of symmetries, i.e.,
(ei b⌦ êi)2 = 1 and

3A function f : Rn ! R is said to be proper if the preimage f�1(K) of each
compact subset K is compact.

4For example, consider the homotopy obtained by the linear combinations between
fi and xi.
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(ei b⌦ êi)(ej b⌦ êj) = (ej b⌦ êj)(ei b⌦ êi)

for i 6= j. Let ⇤ be the set of all maps from {1, 2, · · · , n} to {1,�1}.
The family of symmetries {ei b⌦ êi}1in decomposes S(En � En) into
2n subspaces V� indexed by � 2 ⇤, where

(ei b⌦ êi)f = �(i)f for 8f 2 V�.

As the rank of S(En � En) is equal to 2n, each V� has rank 1.
The operator B2

o also decomposes correspondingly into an orthogonal
direct sum of operators

�
nX

i=1

@
2

@x2i

+
nX

i=1

x
2
i +

nX

i=1

�(i)

each of which acts on L
2(Rn

, V�). It is known that the harmonic oscil-
lator

� d
2

dx2
+ x

2

has a complete system of eigenvectors in L
2(R) with the set of eigenval-

ues O = {1, 3, 5, . . .}. Therefore the operator

�
nX

i=1

@
2

@x2i

+
nX

i=1

x
2
i

has a complete system of eigenvectors in L
2(Rn) with the set of eigen-

values
On := {k1 + k2 + · · ·+ kn : ki 2 O}.

It follows that B2 restricted on L
2(Rn

, V�) is one-to-one and onto unless
� is the constant map with �(i) = �1 for all i 2 {1, 2, · · · , n}. In
particular, when � ⌘ �1, the kernel of B2 is {exp(�(x21+· · ·+x

2
n)/2)·v :

v 2 V�}, which is of dimension 1. As such V� is located in the even
part of S(En � En) with respect to its even-odd grading, the (graded)
Fredholm index of B is equal to 1.

On the other hand, we shall show that B is an invertible operator,
hence has Ind(B) = 0, which will lead to a contradiction. Indeed, by
the Lichnerowicz formula, we have

D
2 = r⇤r+

Scg
4

.

It follows from the Cauchy–Schwarz inequality that

nhrv,rvi = n(
nX

i=1

hreiv,reivi) = n(
nX

i=1

keireivk2)

�
���

nX

i=1

eireiv

���
2
= hDv,Dvi

for all v 2 C
1
c (Rn

, E). Therefore, we have
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(2.12) D
2 � Scg

4
· n

n� 1
on C

1
c (Rn

, E).

By line (2.10), we have

B
2 � D

2 +
nX

i=1

fi(zi)
2 �

nX

i=1

k[D, fi(zi)]k

� Scg
4

· n

n� 1
+

nX

i=1

fi(zi)
2 �

nX

i=1

f
0
i(zi)krzik

� Scg
4

· n

n� 1
+

nX

i=1

fi(zi)
2 �

nX

i=1

f
0
i(zi)(1 + ").

Case (1): inside the cube. By assumption, we have Scg � n(n�1)
inside the cube I

n = [0, 1]n. Hence

B
2 � n

2

4
+

nX

i=1

fi(zi)
2 �

nX

i=1

f
0
i(zi)(1 + ")

=
n
2

4
+

nX

i=1

fi(zi)
2 �

nX

i=1

⇠i(zi, fi(zi))(1 + ")

� n
2

4
�

nX

i=1

r
2
i =

n
2

4
�

nX

i=1

⇡
2(1 + ")2

(`i � 2")2
> �

where the positivity is deduced from line (2.6).

Case (2): outside the cube. In this case, we see that at least one
of the |zi|’s is � `i/2 � ". Without loss of generality, we assume that
|z1| � `1/2 � " > `1/2. Note that f1(x) = r1 tan(

r1x
1+") for |x|  `1/2.

Since f1 is an increasing function, we have

|f1(x)| � r1 tan
r1`1

2(1 + ")
=
⇡(1 + ")

`1 � 2"
tan

⇡`1

2(`1 � 2")
for all |x| � `1/2�".

Furthermore, since |z1| � `1/2� ", we have |f 0
1(z1)|  1. Therefore, we

see that

B
2 � �n�

4(n� 1)
+ f1(z1)

2 � (1 + ")�
nX

i=2

r
2
i

� �n�

4(n� 1)
+
⇡
2(1 + ")2

(`1 � 2")2
tan2

⇡`1

2(`1 � 2")
� (1 + ")�

nX

i=2

r
2
i > �,

where the positivity is deduced from line (2.7).
To summarize, we have proved that B

2
> � for some positive con-

stant � > 0. It follows that B is invertible, hence Ind(B) = 0, which
contradicts the fact that Ind(B) = 1. This finishes the proof. q.e.d.
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Remark 2.1. The constant 4⇡2 in line (1.1) of Theorem 1.1 is op-
timal. In fact, for any " > 0, there is a Riemannian metric g on [0, 1]n

with scalar curvature equal to n(n� 1), and

(2.13)
nX

i=1

1

`2i

 n
2

4⇡2
+ ".

For any l < ⇡/n, consider the warped metric

g = dx
2
1 + '(x1)

2 ·
nX

i=2

R
2
dx

2
i

on [�l, l]⇥ [0, 1]n�1, where R is a positive constant and

'(x1) =
�
cos

nx1

2

�2/n
.

As computed in [7, page 653], the scalar curvature of g is given by

Scg = �2(n� 1)
'
00

'
� (n� 1)(n� 2)

'
0 2

'2
= n(n� 1).

Note that there is Cl > 0 (depending on l) such that
nX

i=1

1

`2i

 1

(2l)2
+

Cl

R2
.

The optimality (2.13) follows by first choosing l to be close to ⇡/n and
then choosing R to be large enough.

3. Proof of Gromov’s ⇤n�m
inequality

In this section, we prove Theorem 1.2. We assume that the constant k
in Theorem 1.2 to be n(n�1), while the general case follows by rescaling
the metric.

Proof of Theorem 1.2. Let us assume to the contrary that
mX

i=1

1

`2i

<
n
2

4⇡2
.

We first show that the general case where ◆ : ⇡1(Yt) ! ⇡1(X) is
injective can be reduced to the case where ◆ : ⇡1(Yt) ! ⇡1(X) is split
injective.5 This reduction step was shown in [21]. We repeat the proof
here for the convenience of the reader. Let Xu be the universal cover
of X. Since by assumption ◆ : ⇡1(Yt) ! ⇡1(X) is injective, we can view
� = ⇡1(Yt) as a subgroup of ⇡1(X). Let X� = Xu/� be the covering
space of X corresponding to the subgroup � ⇢ ⇡1(X). Then the inverse
image of Yt under the projection p : X� ! X is a disjoint union of

5We say ◆ : ⇡1(Yt) ! ⇡1(X) is split injective if there exists a group homomorphism
$ : ⇡1(X) ! ⇡1(Yt) such that $ � ◆ = 1, where 1 is the identity morphism of ⇡1(Yt).
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covering spaces of Yt, at least one of which is a di↵eomorphic copy of
Yt. Fix such a copy of Yt in X� and denote it by bYt. Roughly speaking,
the space X� equipped with the lifted Riemannian metric from X could
serve as a replacement of the original space X, except that X� is not
compact in general. To remedy this, we shall choose a “fundamental
domain” around bYt in X� as follows.

By assumption, Yt ⇢ X is the transversal intersection of m orientable
hypersurfaces Yi ⇢ X. Let ri be the distance function6 from @i�,
that is ri(x) = dist(x, @i�). Without loss of generality, we can assume
Yi = r

�1
i (ai) for some regular value ai 2 [0, `i]. Let Y �

i = p
�1(Yi) be the

inverse image of Yi in X�. Denote by ri the lift of ri from X to X�. Let
rri be the gradient vector field associated to ri. A point x 2 X� said
to be permissible if there exist a number s � 0 and a piecewise smooth
curve c : [0, s] ! X� satisfying the following conditions:

(i) c(0) 2 bYt and c(s) = x;
(ii) there is a subdivision of [0, s] into finitely many subintervals

{[tk, tk+1]} such that, on each subinterval [tk, tk+1], the curve c

is either an integral curve or a reversed integral curve7 of the
gradient vector field rrjk for some 1  jk  m, where we require
jk’s to be all distinct from each other;

(iii) furthermore, when c is an integral curve of the gradient vector
field rrjk on the subinterval [tk, tk+1], we require the length of
c|[tk,tk+1] to be less than or equal to (`jk � ajk � "

4); and when c is
a reversed integral curve of the gradient vector field rrjk on the
subinterval [tk, tk+1], we require the length of c|[tk,tk+1] to be less
than or equal to (ajk � "

4).

Let T be the set of all permissible points. Now T may not be a man-
ifold with corners. To fix this, we choose an open cover U = {U↵}↵2⇤
of T by geodesically convex metric balls of su�ciently small radius
� > 0. Now take the union of members of U = {U↵}↵2⇤ that do
not intersect the boundary @T of T , and denote by Z the closure of
the resulting subset. Then Z is a manifold with corners which, to-
gether with the subspace bYt ⇢ Z, satisfies all the conditions of the
theorem, provided that " and � are chosen to be su�ciently small. In
particular, the intersection Y

�
i \ Z of each hypersurface Y

�
i with Z

gives a hypersurface of Z. The transversal intersection of the result-
ing hypersurfaces is precisely bYt ⇢ Z. Furthermore, note that the

6To be precise, let ri be a smooth approximation of the distance function from
@i�.

7By definition, an integral curve of a vector field is a curve whose tangent vector
coincides with the given vector field at every point of the curve. A reversed integral
curve is an integral curve with the reversed parametrization, that is, the tangent
vector field of a reserved integral curve coincides with the negative of the given
vector field at every point of the curve.
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isomorphism � = ⇡1(Y �
t ) ! ⇡1(X�) = � factors as the composition

⇡1(Y �
t ) ! ⇡1(Z) ! ⇡1(X�), where the morphisms ⇡1(Y �

t ) ! ⇡1(Z)
and ⇡1(Z) ! ⇡1(X�) are induced by the obvious inclusions of spaces.
It follows that ⇡1(Y �

t ) ! ⇡1(Z) is a split injection. Therefore, without
loss of generality, it su�ces to prove the theorem under the additional
assumption that ◆ : ⇡1(Yt) ! ⇡1(X) is a split injection.

From now on, let us assume ◆ : ⇡1(Yt) ! ⇡1(X) is a split injection
with a splitting morphism ! : ⇡1(X) ! ⇡1(Yt) = �. Let eX be the
Galois �-covering space determined by ! : ⇡1(X) ! �. In particular,
the restriction of the covering map eX ! X on Yt gives the universal
covering space of Yt.

For any su�ciently small " > 0 and for each 1  i  m, there exists a
real-valued smooth function 'i on X such that (cf. [5, Proposition 2.1])

1) kr'ik  1 + ",
2) and 'i = 0 on @i� and 'i � `i on @i+.

Set  i = 'i � `i/2. We may assume that Yt = \m
i=1 

�1
i (0). Since Yt

has a trivial normal bundle, there is c > 0 such that \m
i=1 

�1
i ([�c, c])

is di↵eomorphic to Yt ⇥ I
m = Yt ⇥ [0, 1]m. This shows that @X is

cobordant to Yt ⇥ @I
m via a manifold W . Set

Z = X [@X W
op [Yt⇥@Im

�
Yt ⇥ @I

m ⇥ R�0
�
,

where W
op is the manifold W with reversed orientation and R�0 =

[0,1).
Fix a metric gYt on Yt. We shall construct a metric g on Z that

extends g on X and is equal to the product metric gYt +dx
2
1+ · · ·+dx

2
m

on Yt ⇥ Rm outside a compact subset of Z.
Since the construction is similar to the one that appeared in the proof

of Theorem 1.1, we shall be brief. For simplicity, let us describe the
construction of the metric g on Z for the case where m = 2. The general
case of m > 2 is completely similar by iterating the same construction
below. By Sard’s theorem, without loss of generality, we may assume
that

E+ := {x 2 X : '1(x) = '2(x)} and E� := {x 2 X : '1(x) = �'2(x)}

are both submanifolds in X. For each i = 1, 2, the subspaces E+, E�,
Yt⇥ @i±I2 and @i±X together bound a submanifold with corners in W ,
denoted by Wi± (see Figure 2). Let W op

i± be the corresponding copy of
Wi± in W

op. Set W2 to be the following union of subspaces in Z:

W2 =(Yt ⇥ R0 ⇥ [0, 1]) [W
op
1� [X [W

op
1+ [ (Yt ⇥ R�0 ⇥ [0, 1])

Then W2 is a manifold with boundary, whose boundary consists of two
components @�W2 and @+W2. One can extend the metric g on X to a
metric g2 on W2 such that the g2-distance distg2(@�W2, @+W2) of @�W2

and @+W2 is � `2 � "/3. Furthermore, we require that g coincides with
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Figure 2. Extend the metric from X to W2.

the product metric gYt +dx
2
1+dx

2
2 on Yt⇥R⇥ [0, `2] outside a compact

set of W2.
We construct W1 and a metric g1 on W1 with similar properties. By

viewing W1 [X W2 as a submanifold of Z, we finally extend the metric
on W1 [X W2 to obtain a metric g on Z.

For x 2 Z, let 'i(x) be the signed distance from x to @�Wi. Let zi be
an appropriate smooth approximation of 'i � `i/2. To summarize, we
have constructed a complete metric g and real-valued smooth functions
z1 and z2 on Z with the following properties.

• The metric g on Z restricts to the metric g on X, and coincides
with the product metric R

2(gYt + dx
2
1 + dx

2
2) outside a compact

subset of Z for some R > 0. In particular, there exists a positive
number � > 0 such that Scg � �� on Z.

• For each x 2 Z, if both |z1(x)|  `1/2 � " and |z2(x)|  `2/2 � "

for some su�ciently small " > 0, then x lies in X.
• For each C > 0, the subset {x 2 R2 : z1(x)2 + z2(x)2  C} is
compact.

• krzik  1 + " for both i = 1, 2. Here r is the gradient with
respect to the metric g and krzik is measured with respect to the
metric g.

For the general case where m � 2, the same induction argument above
produces a complete metric g on Z and real-valued smooth functions
{zi}1in on Z with similar properties. By the construction of Z, it is

not di�cult to see that the �-covering space eX ! X naturally extends
to a �-covering space eZ of Z. The metric g and the functions zi on Z

lift to eZ, which will be denoted by eg and ezi respectively.
Now let T eZ be the tangent bundle of eZ, and Em the trivial bundle

over eZ. Let
E = S(T eZ � Em)

be the spinor bundle of T eZ � Em. Consider the following Callias-type
operator

B = D b⌦ 1 +
mX

i=1

1 b⌦ fi(ezi)êi
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acting on L
2( eZ,E), where êi denotes the Cli↵ord action of C`0,m(Em).

Note that B is a Z/2Z-graded �-equivariant essentially self-adjoint op-
erator. Since we have assumed to the contrary that

(3.1)
mX

i=1

1

`2i

<
n
2

4⇡2
,

it follows from the same estimates as in the proof of Theorem 1.1 that
B is invertible. In particular, the higher index Ind�(B) of B vanishes
in KOn�m(C⇤

max (�;R)).
On the other hand, let SeYt

be the Cli↵ord bundle over eYt with respect
to the given metric egYt , and DeYt

the associated Cli↵ord-linear Dirac
operator. We consider the following generalized Bott-Dirac operator

Bo = DeYt
b⌦ 1 b⌦ 1 +

mX

i=1

1 b⌦ @

@xi
ei b⌦ 1 +

mX

i=1

1 b⌦ 1 b⌦ xiêi

acting on L
2(eYt ⇥ Em

, SeYt
b⌦ S(Em � Em)). By the product formula of

the higher index, we see that

Ind�(Bo) = Ind�(DeYt
) 2 KOn�m(C⇤

max (�,R)),
where Ind�(DeYt

) is assumed to be non-zero. Furthermore, by applying

the relative higher index theorem [2, 22], we have

Ind�(Bo)� Ind�(B) = Ind�(DD eX)

in KOn�m(C⇤
max (�;R)), where D

D eX is the associated Cli↵ord-linear

Dirac operator on the double D eX of eX. Since Ind�(DD eX) = 0 (cf. [22,
Theorem 5.1]), it follows that

Ind�(Bo) = Ind�(B) + Ind�(DD eX) = 0.

This leads to a contradiction, hence finishes the proof. q.e.d.
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