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A PROOF OF GROMOV’S CUBE INEQUALITY ON
SCALAR CURVATURE
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Abstract

Gromov proved a cube inequality on the bound of distances be-
tween opposite faces of a cube equipped with a positive scalar cur-
vature metric in dimension < 8 using a minimal surface method.
He conjectured that the cube inequality also holds in dimension
> 9. In this paper, we prove Gromov’s cube inequality in all di-
mensions with the optimal constant via a Dirac operator method.

1. Introduction

In [12], Gromov proved a cube inequality on scalar curvature in di-
mension < 8 using a minimal surface method [14, 15, 16]. The cube
inequality plays an important role in the recent proof of nonexistence
of positive scalar curvature metrics on 5-dimensional aspherical mani-
folds in [11] (cf. another proof of the same result in [4]). By applying
a quantitative relative index theorem, the second author proved Gro-
mov’s cube inequality in all dimensions but with a suboptimal constant
[21]. In this paper, we prove Gromov’s cube inequality with the optimal
constant in all dimensions.

Theorem 1.1. Let g be a Riemannian metric on the cube I™ =
[0,1]™. Suppose ¢; = dist(0;i—, 0;+) is the g-distance between the i-th
pair of opposite faces 0;— and O;1 of the cube. If the scalar curvature of
g satisfies Scg > k > 0, then

1 kn
(1.1) ;&2 > preT—

Consequently, we have

n—1
1.2 min dist(9;_, 0;1) < 2w
( ) 1<i<n (Z=H-)— L
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We remark that the constant 472 in the inequality (1.1) is optimal.
This can be seen by considering warped product metrics on large flat
(n — 1)-dimensional cubes over an interval (see Remark 2.1 for more
details).

The proof of Theorem 1.1 is based on an explicit index computation
of the Dirac operator with an appropriately chosen potential on R".
Our proof also works for a more general version of Gromov’s cube in-
equality in the spin case. More precisely, the following Gromov’s I~
inequality holds.

Theorem 1.2. Let X be an n-dimensional compact connected Rie-
mannian spin manifold with corners. Suppose f: X — [—=1,1]™ is a con-
tinuous map that preserves corner structures.! Let Oj+,i=1,...,m, be
the pullbacks of the pairs of the opposite faces of the cube [—1,1]™. Sup-
pose Yy, is an (n — m)-dimensional closed submanifold (without bound-
ary) in X that satisfies the following conditions:

(1) m(Yy) — m1(X) is injective;

(2) Yy is the transversal intersection® of m orientable hypersurfaces

{Y;}™, of X, where each'Y; separates 0;— from 0y ;

(3) the higher index Indr(Dy;) does not vanish in KO, _p(Cr . (T3 R)),
where I' = w1 (Yy) and G, (I';R) is the mazimal group C*-algebra
of T with real coefficients.

If Sc(X) > k > 0, then the distances ¢; = dist(0;—,0i4+) satisfy the
following inequality:

m

1 kn
1.3 E B n—
(13) pot 2~ 4x%(n —1)
Consequently, we have
o m(n —1)
(1.4) in dist(0;—, 0i+) < 2w R

We point out that Cecchini [3] and Zeidler [23, 24| proved a special
case of Theorem 1.2 when m = 1, i.e., Gromov’s bandwidth conjecture.

We remark that, by extending the index theory for manifolds with
corners (and more generally for manifolds with polyhedral boundary)
developed by the authors in [19], one can show that the inequalities
(1.1) and (1.3) are in fact strict inequalities for manifolds with corners
whose dihedral angles are < w. The proofs of the strict inequalities will
be given elsewhere in order for the present paper to be self-contained.

We would like to thank Bernhard Hanke, Artem Nepechiy, Rudolf
Zeidler, Xianzhe Dai, Guofang Wei and anonymous referees for very
helpful comments.

!This means f maps codimension k faces to codimension k faces.
2In particular, this implies that the normal bundle of Yj, is trivial.
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2. Proof of Gromov’s cube inequality

In this section, we prove Theorem 1.1. Our proof is inspired in part by
Zeidler’s proof for Gromov’s bandwidth conjecture [24, Theorem 1.4].
Throughout this section, we assume the constant k in Theorem 1.1 to
be n(n — 1), while the general case follows by rescaling the metric.

Proof of Theorem 1.1. Assume to the contrary that
"1 n?
(2.1) Z 2 <13
=1 7
Then there exists € > 0 such that

n

721 +¢)? n?
(2.2) Z;(ﬁ(—%e))? <=

Now we shall extend the metric on the cube I™ to a complete metric
on R™. We first give a construction of the metric for n = 2, and then
briefly describe the general case.

X1

Figure 1. Extend the metric from [0, 1]? to X;U X5 and
rescale the metric.

Denote X = [0,1]?, Xo = R x [0,1] and X; = [0,1] x R. Note that
X1 N Xy = X, and X7 U X5 has a shape of cross (see Figure 1). By
the Whitney’s extension theorem [20] and a smooth partition of unity,
there is a smooth metric g; on X; U Xs such that g; = g on X and
g1 = de‘% + dl’% outside a compact set of X7 U Xo.

Suppose that ¥ is a smooth positive function on X; U X5 such that
U(xq,z2) is equal to 1 if (z1,22) € X, and ¥(z1,x2) is a constant when
22 + 22 is sufficiently large. Set go = U - g1. By choosing ¥ to be large
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enough outside X, we obtain a smooth metric go on X; U X5 with the
following properties (see Figure 1).

(1) The go-distance distg,(0-X1,0+X1) between the two boundary
components 0_X; = {0} x R and 04 X; = {1} xRis > ¢, —¢/3,
where ¢ is given in line (2.2).

(2) The go-distance distg,(0—X2,0+X2) between the two boundary
components 0_Xs =R x {0} and 0, Xo =R x {1} is > o — /3.

(3) g2 = R*(dx? + dz) on X1 U X5 outside a compact set for some
R>0.

Finally, using Whitney’s extension theorem, we extend the metric
g2 on X1 U X, to obtain a complete metric § on R? such that § =
R%(dx? + dz3) on R? outside a compact subset. Since g is flat outside a
compact set, there exists o > 0 such that Sc; > —o on R2.

For z = (x1,72) € R?, we define

p1(x) = sgn(z)-distg(x, {0} xR) and @o(x) = sgn(xq)-distz(z, Rx{0}),

where sgn is the sign function. Set ¢; = ¢; — ¢;/2. For each i = 1,2,
let z; be a smooth approximation of 1; such that |z; — ¢;| < /3 and
|Vzi| <14 ¢ (cf. [5, Proposition 2.1]). Here V is the gradient with
respect to the metric g.

To summarize, we have constructed a complete metric g and smooth
functions z; and zo on R? with the following properties.

e The metric g restricts to the metric g on [0,1]?, and coincides
with the Euclidean metric rescaled by R on R? outside a compact
set. In particular, there exists a positive number ¢ > 0 such that
Scg > —o on R2.

e For each z € R, if both |21 ()| < £1/2 — € and |29(x)| < €2/2 — &,
then x lies in the cube [0, 1]2.

e For each C > 0, the subset {x € R? : z1(2)? + 22(2)? < C} is
compact.

e ||Vz|| < 1+, where V is the gradient with respect to the metric g.

When n > 2, we extend the metric g on I" = [0,1]" to a complete
metric g on R™ by a similar induction argument. let us briefly describe
the construction below.

For each k& = 0,1,...,n, let Ay be the family of all subsets of
{1,2,--- ,n} with k-elements. For A € Ay, set

X, = {($1,$2,"' ) €R™1if j & A, then 0 < 25 < 1}.

In particular, Xz = [0,1]" for A = @ € Ag. For each A € Ay, the
boundary of X has (n — k) pairs of opposite faces, denoted by 0+ X
for each j ¢ .

Now we shall extend the metric g on Xz = [0,1]” smoothly to a
complete metric g on R™ by induction on k so that for each given k €
{0,1,--- ,n — 1}, we have
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(2.3) distg(0;—Xx,0j+ X)) > ¥; —ke/(n+1) for VA € Ay and Vj & A,

and the metric g coincides with a multiple of the Euclidean metric on
R™ outside a compact set. For k = 0, this is trivial. Now assume that
the metric has been constructed on X satisfying the condition (2.3),
for each A € Ai. For each pu € Apyq, it suffices to extend the metric
on the union Uy, Xy to X, where A runs through all k-element sub-
sets of . Note that the condition (2.3) is already satisfied on Uyc,X).
Therefore such an extension of metric always exists on X, by the Whit-
ney’s extension theorem, a smooth partition of unity, and rescaling. By
induction, we obtain a metric g on R™ with the required properties.
For eachi=1,2,--- ,n, set

E?,:{(ylv 7yn) ERn:inO}-

For each = = (1,22, - ,2,) € R™, we define

(2.4) @i(x) = sgn(x;) - distg(x, E;),

where sgn is the sign function. Set ¢; = ¢; — ¢;/2. For each i =
1,2,--- ,n, let z; be a smooth approximation of v; such that |z; — ;| <

e/(n+1) and ||Vz|| < 14¢. Here V is the gradient with respect to the
metric g. To summarize, we have constructed a smooth metric g and
smooth functions {2;}i=12... , on R™ with the following properties.

e The metric g restricts to the metric g on [0,1]", and coincides
with a multiple of the Euclidean metric on R™ outside a compact
set. In particular, there exists a positive number ¢ > 0 such that
Scg > —o on R™.

e For each z € R", if |z;(x)| < ¢;/2 — € for 1 <14 < n, then z lies in
the cube [0, 1]™.

e For each C > 0, the subset {z € R" : z1(2)? + - -- + z,(7)% < C}
is compact.

o [|[Vz;]| < 1+¢, where V is the gradient with respect to the metric g.

With the constant € > 0 and o > 0 given above, there exist positive
numbers 0 > 0 and {/;}1<i<, such that for all 1 <i < n, we have

(2,5) 0< Zz < tl; —2e < ¥;,

00 . (E

4 i1 (fz - 26)2
and for 1 < j < mn,
(2.7)
—no (1 +¢e)? 5 7wl (1 +¢)?
- N Te)
n—1) " (G —292 ™ 3, —2e (1T 2 G —257 > °

i#]
Set
m(l+e¢)
T — —/—————.
Ei — 2
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Fix a positive number ¢ such that ¢ > ¢;/2+ 1 for all 1 < i < n. We
choose smooth functions {&; }1<i<n on E", the flat Euclidean space, such
that
(1) 0< (1 +e)&(a,y) <y +rf for V(z,y) € E,
(2) 0 < &(x,y) < e for |x| > ¢;/2, where € is the constant given in
line (2.6),
(3) and

24 2 . _
yl+? if |x| < 4;/2,
&i(z,y) =40 if £;/2 —e <|z| < ¢,

1 if |z| > ¢4 1.
Let f; be the unique solution to the following differential equation
with initial condition

f(@) =& (=, f(2)),
(2.8) {f o =0

The solution always exists in a small neighborhood of x = 0. By the
comparison theorem, we have

i
(29 filw) < ritan(;"0),
since the function h;(z) = r;tan({%%) is the unique solution to the
differential equation
f@)24r?
f’(x) — ($1)+€r ’
f(0)=0.

Therefore the solution f; exists at least for |z| < ¢;/2. On the other
hand, by assumption, & (z,y) = 0 for all £;/2 —¢ < |z| < £ and 0 <
&i(z,y) < 1for |x| > ¢;/2. Tt follows that the solution f; exists on the
whole real line (cf. [17, §9, Theorem XIII]). Roughly speaking, f;(z) is
equal to the function h;(x) = r; tan({3%) when |z[ is small, and is equal
to the linear function x + ¢ for some constant ¢ when |z| is large.

Let C/, be the Clifford algebra generated by {e;}1<i<n subject to
the relation e? = —1 and e;e; + eje; = 0 for ¢ # j. Similarly, we define
Clo,n, to be the Clifford algebra generated by {é;}i1<i<n subject to the
relation é? =1land é;¢;+¢;¢; = 0 for i # j. Let TR" @E" be the direct
sum of the tangent bundle of (R™, g) and the trivial bundle E", and

E = S(TR" & E")

the spinor bundle of TR™ ¢ E". By construction, E is equipped with
the Clifford action of Cf,, o(TR"™) & Cly,,(E™).

Let D be the twisted Dirac operator on L?(R", E), where L?(R", E) is
the space of L? sections of the bundle E. In terms of a local orthonormal
frame {w;}1<i<n of the tangent bundle TR", the operator D can be
locally expressed by
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D= i w; Vi,
i=1

where w; denotes the Clifford action of C/, o(TR") on E.
Consider the following Callias-type operator

n
B:D®1+Zl®fi(zi)éi
i=1
where {é;} is the flat orthonormal basis of E". A direct computation
shows that

n
(2.10) B2=D*®@1+> fi(z)*+ > _[D, fi(z)] & é;.

i=1 i=1
As [D, fi(2)] ® é; is a bounded operator on L>(R™, E) forall 1 <i < n
and > I, fi(z:)? is a proper® function on R", it follows that B is
essentially self-adjoint and Fredholm [1].

Alternatively, the essentially self-adjointness and Fredholmness of B
can be seen as follows. Clearly, there is a smooth path of Riemannian
metrics g; on R™ connecting the metric g to a multiple of the standard
Euclidean metric g, on R™. For simplicity, we may assume that the
rescaling factor is equal to 1. Suppose that there exists a compact
set K such that each metric g; coincides with g, on R" outside K.
Furthermore, there is a homotopy? of functions {6;; : 0 < t < 1}
between f; and the standard coordinate function z; of (R",g,) such
that 6;; = f; outside the compact set K for all ¢ and ¢ € [0,1]. In
particular, outside a compact set K, the operator B coincides with the
standard Bott-Dirac operator

n n
0 ~ ~
i=1 " i=1

acting on L?(R", S(E" @ E")). Since B, is essentially self-adjoint and
Fredholm, it follows that B is also essentially self-adjoint and Fredholm.

Moreover, it follows from the homotopy invariance of the Fredholm in-
dex that Ind(B) = Ind(B,).

We have
n 92 n n N
BZ= —Z@—I—Zx?ﬁ-zei@éi.
=1 ? =1 =1

Observe that {e; ® éih<i<n is a commuting family of symmetries, i.e.,
(e; ®é;)? =1 and

3A function f: R™ — R is said to be proper if the preimage f '(K) of each
compact subset K is compact.

4For example, consider the homotopy obtained by the linear combinations between
fi and x;.
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(€ ® &) (ej © &) = (e ® &5)(e; © &)
for i # j. Let A be the set of all maps from {1,2,--- ,n} to {1,—1}.
The family of symmetries {e; ® é;}1<i<n, decomposes S(E™ & E") into
2™ subspaces V), indexed by A € A, where

(ei ® &) f = A(i)f for Vf € Vy.

As the rank of S(E™ @ E") is equal to 2", each V) has rank 1.
The operator B2 also decomposes correspondingly into an orthogonal
direct sum of operators

Za : +Zx§+ZA(¢)
=1 i=1

each of which acts on L?(R™,V}). It is known that the harmonic oscil-
lator

—ﬁ + ac
has a complete system of eigenvectors in L?(R) with the set of eigenval-
ues 0 = {1,3,5,...}. Therefore the operator

Za 2+Zx

has a complete system of eigenvectors in L2 (R™) with the set of eigen-
values

On={ki+ke+ - +k,: ki €0}
It follows that B? restricted on L?(R", V) is one-to-one and onto unless
A is the constant map with A\(i) = —1 for all i € {1 2.+ ,n}.
particular, when A = —1, the kernel of B? is {exp(—(z3+---+x )/2)
v € Vi}, which is of dimension 1. As such V) is located in the even
part of S(E™ & E™) with respect to its even-odd grading, the (graded)
Fredholm index of B is equal to 1.

On the other hand, we shall show that B is an invertible operator,
hence has Ind(B) = 0, which will lead to a contradiction. Indeed, by
the Lichnerowicz formula, we have
SC@

1
It follows from the Cauchy—Schwarz inequality that

D* =V*V +

n

n{Vv, Vou) = n(z<v€iv7 veiv>) = n(z HeiveivHQ)
=1 i=1

> HZQV vH (Dv, Dv)

for all v € C°(R"™, E'). Therefore, we have



A PROOF OF GROMOV’S CUBE INEQUALITY 1293

Scg |

(2.12) D? > on C°(R"™, E).

n—1
By line (2.10), we have
B> D2+ fi()? — SO, fil)]
i=1 i=1
> 5¢,
— 4

()" = > fi(z)| Vil
i=1

=1
S _ n n n
> 20 T Y film) = Y A=) +e)
=1 =1

Case (1): inside the cube. By assumption, we have Scz > n(n—1)
inside the cube I"™ = [0, 1]". Hence

2 n n
B> -+ Y fil=) = Y flz)(1+e)
=1 =1
2 n n
= T+ Y fim)? = Y e filz)) (L +e)
1=1 i=1
n? =, nt = mi(l+e)?
DL e St

where the positivity is deduced from line (2.6).

Vv

Case (2): outside the cube. In this case, we see that at least one
of the |2|’s is > £;/2 — . Without loss of generality, we assume that
|z1] > €1/2 — e > £1/2. Note that fi(z) = r1tan({1%) for [z] < 61/2.
Since fi is an increasing function, we have

r1l m(l+¢) w0
= an
204+¢) 6 —2¢ 2(0; — 2¢)
Furthermore, since |z1] > ¢1/2 — e, we have |f{(z1)| < 1. Therefore, we
see that

|[f1(2)| = 71 tan

for all |x| > £1/2—¢.

B2 > L + f1 Zl —(1+ 8 7"3
—no (1+¢)? o, w4
> t (1 d,
2 1) T (6 —2e ™ g — ey (1 FE) Zr ”

where the positivity is deduced from line (2.7).

To summarize, we have proved that B> > § for some positive con-
stant § > 0. It follows that B is invertible, hence Ind(B) = 0, which
contradicts the fact that Ind(B) = 1. This finishes the proof. q.e.d.
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Remark 2.1. The constant 472 in line (1.1) of Theorem 1.1 is op-
timal. In fact, for any € > 0, there is a Riemannian metric g on [0, 1]"
with scalar curvature equal to n(n — 1), and

n

1 n?
(2.13) Zﬁ < iste

=1

For any [ < m/n, consider the warped metric
n
g =dz? + o(x1)*- Z R?dx?
i=2

on [—1,1] x [0,1]"71, where R is a positive constant and
( nri )2/n

o(z1) = (cos TN
As computed in [7, page 653], the scalar curvature of g is given by
" /2
Sey=—2n— 1) —(n—=1)(n—2)%5 = n(n—1).
¥ ¥

Note that there is C; > 0 (depending on [) such that

i1 G

pat 2 = (212 R¥
The optimality (2.13) follows by first choosing I to be close to m/n and
then choosing R to be large enough.

3. Proof of Gromov’s (1"~ inequality

In this section, we prove Theorem 1.2. We assume that the constant &
in Theorem 1.2 to be n(n—1), while the general case follows by rescaling
the metric.

Proof of Theorem 1.2. Let us assume to the contrary that
S
pat 2 " 42
We first show that the general case where ¢: m1(Yy) — m(X) is
injective can be reduced to the case where ¢: m(Yy) — m1(X) is split
injective.® This reduction step was shown in [21]. We repeat the proof
here for the convenience of the reader. Let X, be the universal cover
of X. Since by assumption ¢: m1(Y) — 7m1(X) is injective, we can view
I' = m1(Yy) as a subgroup of m(X). Let Xr = X,,/T" be the covering
space of X corresponding to the subgroup I' C 71 (X). Then the inverse
image of Yy under the projection p: Xr — X is a disjoint union of

"We say ¢: m1(Ya) — m1(X) is split injective if there exists a group homomorphism
w: m(X) = 71 (Yh) such that wor = 1, where 1 is the identity morphism of m1 (Ys).
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covering spaces of Y, at least one of which is a diffeomorphic copy of
Y. Fix such a copy of Yy in Xr and denote it by ffm. Roughly speaking,
the space X1 equipped with the lifted Riemannian metric from X could
serve as a replacement of the original space X, except that Xr is not
compact in general. To remedy this, we shall choose a “fundamental
domain” around Y in X1 as follows.

By assumption, Y C X is the transversal intersection of m orientable
hypersurfaces Y; C X. Let 7; be the distance function® from 8;_,
that is r;(z) = dist(x,9;—). Without loss of generality, we can assume
Y; = ri_l(ai) for some regular value a; € [0,/;]. Let Y} = p~1(Y;) be the
inverse image of Y; in Xp. Denote by 7; the lift of r; from X to Xp. Let
VT7; be the gradient vector field associated to 7;. A point x € X said
to be permissible if there exist a number s > 0 and a piecewise smooth
curve c: [0, s] — Xr satisfying the following conditions:

(i) ¢(0) € Yy and c(s) = =

(ii) there is a subdivision of [0,s] into finitely many subintervals
{[tk,tk+1]} such that, on each subinterval [tg,tx+1], the curve ¢
is either an integral curve or a reversed integral curve’ of the
gradient vector field V7, for some 1 < j, < m, where we require
Ji’s to be all distinct from each other;

(iii) furthermore, when ¢ is an integral curve of the gradient vector
field V7;, on the subinterval [ty,ty+1], we require the length of
clty.trsa) to be less than or equal to (¢, — aj, — 7); and when c is
a reversed integral curve of the gradient vector field V7, on the
subinterval [ty,tx11], we require the length of c|;, 4, ,] to be less
than or equal to (aj, — 7).

Let T be the set of all permissible points. Now 7" may not be a man-
ifold with corners. To fix this, we choose an open cover Z = {Uq}aca
of T' by geodesically convex metric balls of sufficiently small radius
d > 0. Now take the union of members of % = {Us}aen that do
not intersect the boundary 0T of T, and denote by Z the closure of
the resulting subset. Then Z is a manifold with corners which, to-
gether with the subspace Yj C Z, satisfies all the conditions of the
theorem, provided that € and § are chosen to be sufficiently small. In
particular, the intersection YiF N Z of each hypersurface YiF with 72
gives a hypersurface of Z. The transversal intersection of the result-
ing hypersurfaces is precisely Yy C Z. Furthermore, note that the

5To be precise, let r; be a smooth approximation of the distance function from
Oi—.
"By definition, an integral curve of a vector field is a curve whose tangent vector
coincides with the given vector field at every point of the curve. A reversed integral
curve is an integral curve with the reversed parametrization, that is, the tangent
vector field of a reserved integral curve coincides with the negative of the given
vector field at every point of the curve.



1296 J. WANG, Z. XIE & G. YU

isomorphism I' = 71(Y]) — m(X") = T factors as the composition
m(Y]) = m(Z) — m(X"), where the morphisms m1(Y]) — m1(2)
and m(Z) — m1(XT) are induced by the obvious inclusions of spaces.
It follows that 71 (Y1) — m1(Z) is a split injection. Therefore, without
loss of generality, it suffices to prove the theorem under the additional
assumption that ¢: m1(Yy) — m(X) is a split injection.

From now on, let us assume ¢: m(Yy) — m1(X) is a split injection
with a splitting morphism @ : m(X) — m(Y4) = I. Let X be the
Galois I'-covering space determined by @ : m1(X) — I'. In particular,
the restriction of the covering map X — X on Y4 gives the universal
covering space of Y.

For any sufficiently small £ > 0 and for each 1 <14 < m, there exists a
real-valued smooth function ¢; on X such that (cf. [5, Proposition 2.1])

1) [[Veil <1+e,

2) and ¢; = 0 on 0;— and ¢; > ¢; on ;4.
Set ¥; = ¢; — £;/2. We may assume that Y = N4, (0). Since Yy,
has a trivial normal bundle, there is ¢ > 0 such that N2 ,4; " ([—c, c])
is diffeomorphic to Y x I™ = Y x [0,1]™. This shows that 0X is
cobordant to Yi x 0™ via a manifold W. Set

Z =X Ugx WP Uy, xarm (Ym x OI™ x Rzo),

where WP is the manifold W with reversed orientation and R>o =
[0, 00).

Fix a metric gy, on Y. We shall construct a metric g on Z that
extends g on X and is equal to the product metric gy, +da?+- -+ da?,
on Yi x R™ outside a compact subset of Z.

Since the construction is similar to the one that appeared in the proof
of Theorem 1.1, we shall be brief. For simplicity, let us describe the
construction of the metric g on Z for the case where m = 2. The general
case of m > 2 is completely similar by iterating the same construction
below. By Sard’s theorem, without loss of generality, we may assume
that

Ei ={zeX:pi(x)=px)}and E_ ={z € X : p1(x) = —pa(x)}

are both submanifolds in X. For each ¢ = 1,2, the subspaces F;, E_,
Yy, x 0;+ 12 and 0;+ X together bound a submanifold with corners in W,
denoted by W;x (see Figure 2). Let W;¥ be the corresponding copy of
Wi+ in WP, Set W5 to be the following union of subspaces in Z:

W :(Ym X RSO X [0, 1]) @) Wlo_p UuXxXu W{)E U (Ym X RZO X [0, 1])

Then W5 is a manifold with boundary, whose boundary consists of two
components 0_Ws and 01 Ws. One can extend the metric g on X to a
metric go on Wy such that the go-distance distgy, (0_Wa, 01 W2) of 0_W>
and 0;Ws is > l9 — £/3. Furthermore, we require that g coincides with



A PROOF OF GROMOV’S CUBE INEQUALITY 1297

Yi x (—o00,0] x [0,1] | WP WP " Y x [0, +00) x [0,1]

Figure 2. Extend the metric from X to Wa.

the product metric gy, + dz? +dx2 on Yy x R x [0, £2] outside a compact
set of Ws.

We construct Wy and a metric g1 on W; with similar properties. By
viewing W7 Ux W5 as a submanifold of Z, we finally extend the metric
on W7 Ux W5 to obtain a metric g on Z.

For x € Z, let @;(x) be the signed distance from = to 0_Wj. Let z; be
an appropriate smooth approximation of @; — ¢;/2. To summarize, we
have constructed a complete metric g and real-valued smooth functions
z1 and 29 on Z with the following properties.

e The metric g on Z restricts to the metric g on X, and coincides
with the product metric R?(gy, + dz? + dx3) outside a compact
subset of Z for some R > 0. In particular, there exists a positive
number ¢ > 0 such that Sc; > —o on Z.

e For each z € Z, if both |z1(x)| < ¢1/2 — ¢ and |z2(x)| < l2/2 — ¢
for some sufficiently small € > 0, then «x lies in X.

e For each C > 0, the subset {x € R? : z(2)? + 22(x)? < C} is
compact.

o ||[Vz|| <1+ ¢ for both i = 1,2. Here V is the gradient with
respect to the metric g and ||Vz;|| is measured with respect to the
metric g.

For the general case where m > 2, the same induction argument above
produces a complete metric g on Z and real-valued smooth functions
{zi}1<i<n on Z with similar properties. By the construction of Z, it is
not difficult to see that the I'-covering space XX naturally extends
to a I'-covering space Z of Z. The metric g and the functions z; on Z
lift to Z, which will be denoted by g and z; respectively.

Now let T'Z be the tangent bundle of Z, and E™ the trivial bundle
over Z. Let

E=S(TZ&E™)

be the spinor bundle of TZ & E™. Consider the following Callias-type
operator

B=D®&1+> 1® fi(%)é
i=1
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acting on L2(Z, E), where é; denotes the Clifford action of Cly m (E™).
Note that B is a Z/27Z-graded T'-equivariant essentially self-adjoint op-
erator. Since we have assumed to the contrary that

1 n?
1 — < —
(3.1) ;eg <13

it follows from the same estimates as in the proof of Theorem 1.1 that
B is invertible. In particular, the higher index Indp(B) of B vanishes
in KOp—m(Cf i (T R)). N

On the other hand, let Sf/m be the Clifford bundle over Yy with respect
to the given metric gy, , and D?m the associated Clifford-linear Dirac
operator. We consider the following generalized Bott-Dirac operator

PN o0 A A~ a
Bozng®1®1+;1®6mei®1+;1®1®méi

acting on L2(Yj, x E™, Sy, ® S(E™ @ E™)). By the product formula of
the higher index, we see that

IndF(BO) = IndF(D?m) S KOn_m(C*

max (F7 R))’
where Indp(Df/m) is assumed to be non-zero. Furthermore, by applying

the relative higher index theorem [2, 22|, we have

Indp(BO) - Indp(B) = IndF(D@;()
in KOp—m(Chax (IsR)), where D, 5 is the associated Clifford-linear

Dirac operator on the double 2X of X. Since Indr(D, ) = 0 (cf. [22,
Theorem 5.1]), it follows that

Indp(B,) = Indr(B) + Indp (D, 5) = 0.

This leads to a contradiction, hence finishes the proof. q.e.d.
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