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Abstract: Persistent topological Laplacians constitute a new class of tools in topological
data analysis (TDA). They are motivated by the necessity to address challenges encoun-
tered in persistent homology when handling complex data. These Laplacians combine
multiscale analysis with topological techniques to characterize the topological and geomet-
rical features of functions and data. Their kernels fully retrieve the topological invariants
of corresponding persistent homology, while their non-harmonic spectra provide sup-
plementary information. Persistent topological Laplacians have demonstrated superior
performance over persistent homology in the analysis of large-scale protein engineering
datasets. In this survey, we offer a pedagogical review of persistent topological Lapla-
cians formulated in various mathematical settings, including simplicial complexes, path
complexes, flag complexes, digraphs, hypergraphs, hyperdigraphs, cellular sheaves, and
N-chain complexes.
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1. Introduction

In recent years, there has been exponential growth in research on topological data
analysis (TDA) in data science. TDA provides a set of mathematical and computational
techniques for extracting insightful information from complex, high-dimensional datasets.
The primary goal of TDA is to uncover and understand the underlying spatial features of
data that might be difficult to capture using traditional methods from statistics, physics, and
other mathematical disciplines. The main tools of TDA are adapted from homology theory.
In homology theory, algebraic objects, such as groups, rings, or modules, are associated
with geometrical objects to infer topological features from these algebraic representations.
The most basic geometrical objects in homology theory are simplicial complexes, consisting
of simplices that model various interactions in complex data. When the input is a point
cloud, traditional (simplicial) homology theory only captures trivial topological information.
Hence, it is impossible to deduce the shape of a point cloud solely through the calculation of
simplicial homology. A major breakthrough in overcoming this limitation was the invention
of persistent homology [1,2]. The basic idea is to construct a multiscale family of simplicial
complexes, called a filtration, from the input point cloud and examine the evolution of
these simplicial complexes and their associated homology groups across scales. The output
of persistent homology consists of arrays of topological invariants computed on various
scales, often visualized or represented by persistence diagrams, persistence barcodes [3],
persistence images [4,5], or persistence landscapes [6]. Persistent homology has proven to
be the most important technique in TDA.
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Persistent homology has been applied in a wide variety of disciplines, includ-
ing image processing [7,8], neuroscience [9], computational chemistry [10], computa-
tional biology [11–14], nanomaterials [15,16], crystalline materials [17], and complex net-
works [18], among others. One of the most remarkable applications of persistent homology
is the dominant success of topological deep learning (TDL) models in the D3R Grand
Challenges, a global competition series in computer-aided drug design [19,20]. Another
notable achievement is the TDL-facilitated discovery of the evolutionary mechanism of
SARS-CoV-2 [21]. The term “topological deep learning” was coined in 2017 [11] and has
since become a trending topic in data science and machine learning [22]. The success of
TDL, along with other topology-based machine learning algorithms, has made topological
data analysis (TDA) a prominent subject in applied mathematics and data science.

However, since homology theory can only characterize topological spaces up to homo-
topy equivalence, persistent homology has many limitations when dealing with complex
data. It neglects certain aspects of shape evolution in a filtration that might be important
in applications. For example, in a filtration, the zeroth Betti number stops changing once
all points are connected, even though the connectivity of simplicial complexes evolves.
Additionally, for a heterogeneous 1-dimensional (1D) cycle, persistent homology does not
account for the cycle’s composition or the number of points in the cycle. These features
are particularly important for complex data, such as those encountered in biological sci-
ences. Persistent Laplacians [23,24] address some of these challenges by introducing a
multiscale version of combinatorial Laplacians. Roughly speaking, Laplacians are matrices
whose spectra encapsulate both topological and non-topological information. A persis-
tent Laplacian is defined on a pair of simplicial complexes, and its kernel is isomorphic
to the corresponding persistent homology group. This means the harmonic spectra of
persistent Laplacians can fully recover the barcodes output by persistent homology, while
non-harmonic spectra capture additional information about the input filtration.

In spectral graph theory, the graph Laplacian, or Kirchhoff matrix, is extensively stud-
ied [25]. Given a graph, the number of zero eigenvalues of its graph Laplacian equals the
number of connected components of the graph [26]. Beyond the number of connected com-
ponents, many graph properties are related to the graph Laplacian, such as the relationship
between the Fiedler value and graph connectivity [27]. However, the graph Laplacian only
accounts for pairwise interactions. Indeed, the graph Laplacian can be seen as a special
case, i.e., the first one, of a series of combinatorial Laplacians introduced by Eckmann in
1944 [28], which are defined for each dimension on a simplicial complex. It is well known
that the kernel of a combinatorial Laplacian is isomorphic to the corresponding simplicial
homology group [28].

The relationship between Laplacians and homology has been explored in many differ-
ent contexts and domains. On a differentiable manifold, the de Rham–Hodge theory states
that the kernel of a Hodge Laplacian is isomorphic to the corresponding de Rham cohomol-
ogy group. The discretization of Hodge Laplacians can be achieved by the discrete exterior
calculus [29,30] and the finite element exterior calculus [31]. The associated Helmholtz–
Hodge decomposition has widespread applications in various fields [32]. Hodge Laplacians
on graphs were discussed in [33]. The similarities and differences between combinatorial
Laplacians on simplicial complexes and Hodge Laplacians on differentiable manifolds have
been carefully examined [34]. These Laplacians have found applications in science and
engineering, including ranking [35–37], graphics and imaging [36,38,39], games and traffic
flows [40], deep learning [41], data representations [42], dimension reduction [43], denois-
ing [44], object synchronization [45], link prediction [46], sensor network coverage [47],
generalizing effective resistance to simplicial complexes [48], cryo-electron microscopy [49],
brain networks [50], and biological interactions [51].
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A persistent formulation of Hodge Laplacians on manifolds was introduced in
2019 [52]. The resulting evolutionary de Rham-Hodge theory can be viewed as persistent
Hodge Laplacians [53]. Both persistent Hodge Laplacians and persistent (combinato-
rial) Laplacians are persistent topological Laplacians (PTLs) that extend the scope and
capabilities of TDA. In the most general sense, any method that utilizes multiscale topo-
logical Laplacians to quantitatively characterize the topological/geometrical shapes of
point cloud data or differentiable manifolds can be thought of as a persistent topological
Laplacian approach.

Persistent Laplacians have been extensively studied in the past few years [54–56]. In ad-
dition to differential manifolds and simplicial complexes, persistent topological Laplacians
have been formulated in many other mathematical settings, such as flag complexes [57],
digraphs [58], cellular sheaves [59], hypergraphs [60], and hyperdigraphs [61]. Compu-
tational algorithms [56,62], including a software package [63], have been developed to
compute persistent Laplacians. Persistent Laplacian approaches have been applied to
protein–ligand binding prediction [64], interactomic network modeling [65], gene expres-
sion analysis [66], deep mutational scan [67], phylogenetic analysis[68], and SARS-CoV-2
variant analysis [69]. The advantage of persistent Laplacians over persistent homology was
demonstrated with a collection of 34 datasets in protein engineering [70]. The power of
persistent Laplacians has been exemplified by their successful prediction of the emerging
dominant SARS-CoV-2 variants [71].

Both persistent homology and persistent topological Laplacians are constructed on
the basis of the properties of chain complexes. It is possible to define a Mayer homology
for the more general N-chain complexes [72], where N is an integer. Recently, Shen et al.
introduced persistent Mayer homology and persistent Mayer Laplacians [73] to further
extend persistent homology and persistent topological Laplacians to N-chain complexes,
offering a new development in TDA.

Although there are numerous reviews and monographs on persistent homology [1,74–76],
there is no review on persistent topological Laplacians. The primary goal of this survey is to
introduce the notion of persistent topological Laplacians to a wider audience and facilitate
further developments on the subject. In this survey, we will first introduce the basics of
persistent homology and then discuss the theory of persistent Laplacians and some of their
recent advances. The presentation of mathematics in this article is pedagogical, and we
hope that the survey is accessible to researchers from diverse backgrounds.

2. Mathematical Preliminaries

2.1. Simplicial Complexes and Homology

Given a finite set V, a simplicial complex X is a collection of subsets of V, such that if
a set σ is in X, then any subset of σ is also in X. A set σ that consists of q + 1 elements is
referred to as a q-simplex. If σ is a subset of τ, then we say that σ is a face of τ and denote
it by σ ↭ τ. The definition of a simplicial complex may seem abstract, but it is closely
related to geometry. A q-simplex can be realized as the convex hull of q + 1 points in a real
coordinate space, so it is possible to construct a polyhedron from a simplicial complex if the
simplices are glued properly. For example, supposing X is the power set of {0, 1, 2}, we can
identify X with a triangle whose vertices are labeled {0, 1, 2} (Figure 1a). However, many
geometrical objects can be sliced properly so as to give rise to a simplicial complex. We
always designate a fixed order of vertices in a simplicial complex (the choice of ordering will
not affect the resulting homology groups [77]) and require that the vertices of any simplices
should be ordered according to the fixed ordering. For example, suppose that we use the
natural ordering 0 < 1 < 2 for the simplicial complex {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}}
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(Figure 1b), then we must not write the simplex {0, 1} as {1, 0}. To emphasize that a simplex
{v0, . . . , vq} is ordered, we will use the notation [v0, . . . , vq] or v0 . . . vq.

0 1

2

(a)

0 1

2

(b)

0 1

2

(c)

Figure 1. (a) The simplicial complex {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}}. (b) The simplicial
complex {0, 1, 2, 01, 02, 12}. Arrows emphasize that vertices are ordered. (c) The simplicial complex
{0, 1, 2, 01, 12}.

We now introduce a more abstract definition. A simplicial complex X gives rise
to a sequence of vector spaces and linear maps, collectively referred to as a simplicial
chain complex

· · · C2(X) C1(X) C0(X) 0.
εX

3 εX
2 εX

1

The chain group Cq(X) is the real vector space generated by q-simplices, and the boundary
operator εq is a linear map such that

εq[va0 , . . . , vaq ] = ∑
i
(→1)i[va0 , . . . , v̂ai , . . . , vaq ].

where the symbol v̂ai means that v̂ai is deleted. An element of Cq(X) is called a q-chain and,
by definition, is a linear combination of q-simplices. Sometimes, it is intuitive to regard a
q-chain as a function mapping a q-simplex to its coefficient. The coefficients (→1)i ensure
that εqεq+1 = 0, so the q-th homology group Hq = kerεq/imεq+1 is well-defined. The
dimension of the homology group Hq is referred to as the q-th Betti number, which is often
described as counting the number of q-dimensional “holes” in a simplicial complex. It is not
always clear what a high-dimensional hole represents in a simplicial complex; nevertheless,
the main idea is that homology groups extract quantitative topological information about a
simplicial complex.

Example 1. The simplicial complex X = {0, 1, 2, 01, 02, 12} (Figure 1b) has only two chain groups,
C0 and C1, and one boundary map ε1, represented by the matrix





01 12 02

0 →1 0 →1

1 1 →1 0

2 0 1 1





if we identify any real-valued function f1 : {01, 12, 02} ↑ R with the column vector
( f1(01), f1(12), f1(02))T, and any real valued function f0 : {0, 1, 2} ↑ R with the column
vector ( f0(0), f0(1), f0(2))T. We can see that ε1 f1 = f0 if and only if f0(0) = → f1(01)→ f1(02),
f0(1) = f1(01)→ f1(12), and f0(2) = f1(12) + f1(02). Since C2 = 0, the homology group H1 is
ker ε1 and f1 ↓ H1 implies f1(01) = → f1(02) = f1(12).
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For the simplicial complex Y = {0, 1, 2, 01, 12} (Figure 1c), the matrix representation of ε1 is





01 12

0 →1 0

1 1 →1

2 0 1





and we can verify that the only f1 that satisfies ε1 f1 = 0 is the zero function. The intuition behind
the difference between H1(X) and H1(Y) is that in X the edges {01, 12, 02} constitute a close path,
while in Y there are no close paths.

A simplicial chain complex is an example of a chain complex. The reader only needs
to konw that a chain complex (V, d) is a sequence of vector spaces and linear morphisms

· · · V2 V1 V0 0
d3 d2 d1

where dqdq+1 = 0. We often assume that each Vq is a finite-dimensional inner product space.

2.2. Combinatorial Laplacians

Many simplicial complexes share the same Betti numbers. In this case, we can resort to
a class of finer descriptors called combinatorial Laplacians to distinguish among different
simplicial complexes. Before we define combinatorial Laplacians, we first need to equip a
chain group with an inner product. The canonical approach is to let the set of q-simplices
be an orthonormal basis for the q-th chain group Cq. Now we can discuss the adjoint of
the boundary operator εq, denoted by ε↔q , and the q-th combinatorial Laplacian ∆q [28] is
defined by

εq+1ε↔q+1 + ε↔q εq.

When q = 0, since ε0 = 0, the 0-th combinatorial Laplacian is just ε1ε↔1. The q-th com-
binatorial Laplacian is a positive semi-definite symmetric operator and only has non-
negative eigenvalues. One fact of linear algebra is that, if U, V, and W are inner product
spaces and f : U ↑ V, g : V ↑ W are two linear morphisms such that g f = 0, then
ker(g↔g + f f ↔) ↗= kerg/im f . Therefore, the kernel of the q-th combinatorial Laplacian ∆q

is isomorphic to the q-th homology group Hq [28]. This property guarantees that we can
calculate Betti numbers from the spectra of combinatorial Laplacians. We can further show
that Cq admits a Hodge decomposition (a detailed exposition can be found in [33])

Cq = imε↔q ↘ ker∆q ↘ imεq+1.

Example 2. For a simple graph (V, E), let f0 be a function that maps every vertex to a real number.
If we view the simple graph as a simplicial complex, then ε↔1 maps f0 to a real valued function whose
domain is E. The Dirichlet energy of f0

∑
vivj↓E

| f0(vi)→ f0(vj)|2 = ≃ε↔1 f0, ε↔1 f0⇐ = ≃ f0, ε1ε↔1 f0⇐

measures how f0 varies over V. Any f0 ↓ ker ∆0 = ker ε1ε↔1 is a function with zero Dirichlet
energy. In a connected graph, if f0 has zero Dirichlet energy, then f0(a) = f0(b) for any two
vertices a and b ( f0 is a constant function), because there is always a path that starts from a and
ends at b. If a graph has more than one connected components, f0 only needs to be constant on
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any connected components. In other words, the dimension of ker ∆0 is equal to the number of
connected subgraphs.

The operator ∆0 is more commonly known as the graph Laplacian, and there is extensive
research studying the relationship between the spectrum of a graph Laplacian and properties of a
graph [25]. For a connected graph, it is well known that the minimal nonzero eigenvalue of its graph
Laplacian reflects the graph’s connectivity [78]. Graphs that share the same homology groups may
have different graph Laplacians (Figure 2).

(a) (b) (c)

Figure 2. Homology can distinguish (a) from (b,c), but cannot distinguish between (b,c). Laplacians
can distinguish among all of them. For a cycle graph with n vertices, the spectrum of the graph
Laplacian is {2 → 2 cos(2kϱ/n) | k = 1, . . . , n}.

2.3. Filtration and Persistent Homology

So far we have introduced the elementary theory of simplicial complexes, but we have
not explained how it is related to point-cloud data. A point cloud is a set of finitely many
points P = {v0, . . . , vn} in a Euclidean space. Usually the geometrical structure of a point
cloud is related to some non-geometrical properties of the object the point cloud represents,
and a good understanding of the “geometry” of the point cloud is important. Here, the first
problem is what we mean by “geometry”. A naive notion of “geometry” is the pairwise
distances between each pair of points, and we can represent this information by a filtration,
such that we obtain a nested sequence of simplicial complexes. One commonly used
filtration is Vietoris–Rips filtration: given a point cloud P = {v0, . . . , vn} and a parameter
d ↓ R, Xd is a simplicial complex such that the simplex {va0 , . . . , vaq} ↓ Xd if and only if
the Euclidean distance between vai and vaj is at most d for any 0 ⇒ i < j ⇒ q. Using d, we
obtain finitely many distinct simplicial complexes, each of which characterizes the shape of
the point cloud on a different scale. The homology groups or combinatorial Laplacians of
each Xd will change as d varies, providing a characterization of the point cloud.

Example 3. Now we build a Vietoris-Rips filtration from the point cloud {x = (1, 0), y =

(0, 1), z = (→1, 0), w = (0,→1)} ⇑ R2 shown in Figure 3a. When d = 0, there are no edges in
Xd. When d =

⇓
2, Xd changes for the first time and becomes {x, y, z, w, xy, yz, zw, xw}. If d

goes from
⇓

2 to 2, X2 = X⇓
2 ⇔ {xz, yw, yzw, xzw, xyw, xyz, xyzw}. As d becomes bigger, Xd

contains more and more simplices. Let us examine H1 for d = 0,
⇓

2, 2. H1(X0) = 0 as there is no
close path, and H1(X⇓

2) = 1 because of four newly born edges. When d = 2, H1 = 0 since the
close path is filled by high-dimensional simplices.

(a) (b) (c)
Figure 3. (a) X0 = {x, y, z, w}. (b) X⇓

2 = {x, y, z, w, xy, yz, zw, xw}. (c) X2 = X⇓
2 ⇔

{xz, yw, yzw, xzw, xyw, xyz, xyzw}.
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In addition to calculating homology groups or combinatorial Laplacians for each Xt

in a filtration, we can also calculate the persistent homology to quantify how topological
features of a smaller complex Xs persist in Xt. Suppose X and Y are two simplicial
complexes and X ⇑ Y, then we have the following diagram (dashed arrows indicates
inclusion maps ι):

Cq+1(X) Cq(X) Cq→1(X)

Cq+1(Y) Cq(Y) Cq→1(Y).

εX
q+1 εX

q

εY
q+1 εY

q

Since im εY
q+1 is larger than im εX

q+1, some q-dimensional “holes” in X might be filled
because of im εY

q+1. The q-dimensional “holes” in X that persists in Y are ker εX
q /im εY

q+1,
but since im εY

q+1 is not necessarily a subspace of ker εX
q , the proper expression should be

ker εX
q /(im εY

q+1 ↖ ker εX
q ) = ker εX

q /(im εY
q+1 ↖ Cq(X)).

This quotient space is called the q-th persistent homology group of the pair X ⇑ Y, the
dimension of which is referred to as the q-th persistent Betti number.

A more formal understanding of persistent homology is helpful. We notice that
εY

q ι = ιεX
q . In plain words, this means that the boundary of a simplex σ ↓ X is unchanged if

we view it as a simplex in Y. In general, for two chain complexes (V, dV) and (W, dW), the
collection of maps fq such that fq+1dV

q = dW
q fq for all q is called a chain map. A chain map

f induces a homomorphism f• : Hq(V) ↑ Hq(W), and sometimes the image f•(Hq(V)) is
called the persistent homology group of the chain map f : (V, dV) ↑ (W, dW).

3. Persistent (Combinatorial) Laplacians

3.1. Persistent Laplacians

We have shown that the kernel of the q-th combinatorial Laplacian is isomorphic to
the q-th homology group. This result has been generalized for persistent homology groups.

Cq+1(X) Cq(X) Cq→1(X)

CX,Y
q+1

Cq+1(Y) Cq(Y)

εX
q+1

(εX,Y
q+1)

↔

εX
q

(εX
q )

↔εX,Y
q+1

εY
q+1

Given two complexes X ⇑ Y, let CX,Y
q+1 be the subspace

{c ↓ Cq+1(Y) | εY
q+1(c) ↓ Cq(X)}

of Cq+1(Y) and εX,Y
q+1 : CX,Y

q+1 ↑ Cq(X) the restriction of εY
q+1 onto CX,Y

q+1, then the persistent

homology group ker εX
q /(im εY

q+1 ↖ Cq(X)) is equal to ker εX
q /im εX,Y

q+1. Since CX,Y
q+1 inherits

the inner product structure from Cq+1(Y), and εX
q εX,Y

q+1 = 0, if we define the q-th persistent

Laplacian ∆X,Y
q : Cq(X) ↑ Cq(X) [23,24] by

εX,Y
q+1(ε

X,Y
q+1)

↔ + (εX
q )

↔εX
q (1)
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(where εX,Y
q+1(ε

X,Y
q+1)

↔ is called the upper persistent Laplacian, denoted by ∆X,Y
q,+ , and

(εX
q )

↔εX
q the down persistent Laplacian, denoted by ∆X,Y

q,→ ), we can prove the persistent
Hodge theorem

ker ∆X,Y
q

↗=
ker εX

q

im εY
q+1 ↖ Cq(X)

and the persistent Hodge decomposition

Cq(X) = im εX,Y
q+1 ↘ ker ∆X,Y

q ↘ im (εX
q )

↔

or equivalently

Cq(X) = im ∆X,Y
q,+ ↘ ker ∆X,Y

q ↘ im ∆X,Y
q,→ .

and the proofs are the same as those for combinatorial Laplacians. When X = Y, ∆X,Y
q is

just a combinatorial Laplacian. The persistent Hodge theorem implies that information of
persistent Betti numbers is included in the spectra of persistent Laplacians, and additional
information can be extracted from nonzero eigenvalues of persistent Laplacians. Given a
point cloud and a filtration {Xd, d ↓ R} constructed from it, we can calculate persistent
Laplacians for Xs ⇒ Xt for a set of preselected s and t. Employing the information captured
in non-harmonic spectra of persistent Laplacians can boost performance of persistent
homology-based machine learning models. In fact, even the minimal nonzero eigenvalue
of ∆Xd ,Xd already provides a lot of extra information about the point cloud.

Example 4. We illustrate the Vietoris–Rips filtration of a point cloud in Figure 4. Some results
of Laplacian calculation are shown in Figure 4h, where d is the diameter (stepsize is 0.02), λd

q is
the minimal nonzero eigenvalue of the q-th combinatorial Laplacian of Xd, and red bars represent
homology classes that persist over d. The minimal nonzero eigenvalues change at different d,
indicating the formation of new simplices.

Example 5. We consider the Vietoris–Rips filtration of the 12 vertices of the regular 12-gon
(Figure 5). We see that λd

2 goes up before any homology class is born, which means that 2-simplices
form but no 2-dimensional holes are born yet. This phenomenon can be observed in many results
of [63].

(a) (b) (c)

(d) (e) (f)

Figure 4. Cont.



Mathematics 2025, 13, 208 9 of 29

(g)

(h)

Figure 4. The Vietoris-Rips filtration of a point cloud, and some results of Laplacian calculation.
(a) d = 0; (b) d = 0.99; (c) d = 1.04; (d) d = 1.40; (e) d = 1.97; (f) d = 2.00; (g) d = 2.83; (h) The
horizontal axis represents the diameter d (stepsize is 0.02). λd

q (shown in blue lines) is the minimal
nonzero eigenvalue of the q-th combinatorial Laplacian of Xd, and red bars represent homology
classes that persist over d.

(a) (b) (c)

(d) (e) (f)

(g)

(h)
Figure 5. The Vietoris-Rips filtration of the vertices of a regular 12-gon, and some results of Laplacian
calculation. (a) d = 0; (b) d = 0.52; (c) d = 1.00; (d) d = 1.42; (e) d = 1.74; (f) d = 1.94; (g) d = 2.00;



Mathematics 2025, 13, 208 10 of 29

(h) The horizontal axis represents the diameter d (stepsize is 0.02). λd
q (shown in blue lines) is

the minimal nonzero eigenvalue of the q-th combinatorial Laplacian of Xd, and red bars represent
homology classes that persist over d.

3.2. Matrix Representations of a (Persistent) Laplacian

Since Cq has a canonical orthonormal basis, the matrix representation of ε↔q is the
transpose of the matrix representation of εq. In the computation of persistent Laplacians,
the difficult part is the calculation of the upper persistent Laplacian, because we need to
determine CX,Y

q+1, which may not have a canonical orthonormal basis. We can obtain a basis

of CX,Y
q+1 by performing a column reduction for εY

q+1 or by directly calculating the matrix
representation of the upper persistent Laplacian by Schur complement [56]. We give two
examples in the following.

Example 6. When CX,Y
q+1 is generated by some (q + 1)-simplices in Y, the calculation of εX,Y

q is

relatively easy. For X and Y shown in Figure 6, we compute εX,Y
2 . The matrix representation of εY

2 is





012 023

01 1 0

12 1 0

02 →1 1

23 0 1

03 0 →1





,

so CX,Y
2 is generated by 012; then, the matrix representation of εX,Y

2 is





012

01 1

12 1

02 →1



.

0

1

2

3

(a)

0

1

2

3

(b)

Figure 6. (a) X = {0, 1, 2, 3, 01, 12, 02} and (b) Y = {0, 1, 2, 3, 01, 12, 23, 03, 02, 012, 023}.

Example 7. We compute ∆X,Y
1 for X and Y shown in Figure 7.
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The matrix representation of εY
2 is





012 023

01 1 0

12 1 0

23 0 1

03 0 →1

02 →1 1





.

Our goal is to make the submatrix

( 012 023

02 →1 1
)

in column echelon form. We apply one column reduction and obtain





012 023 + 012

01 1 1

12 1 1

23 0 1

03 0 →1

02 →1 0





.

Therefore, CX,Y
2 = span(023 + 012) and one matrix representation of εX,Y

2 is





023 + 012

01 1

12 1

23 1

03 →1




.

For any two spaces V and W and f : V ↑ W, if we choose arbitrary bases of V and W and
take a matrix representation Mf of f , then the matrix representation Mf ↔ of f ↔ is P→1MT

f Q, where
P and Q are inner product matrices of V and W, respectively. If we use {023 + 012} as the basis
of CX,Y

2 , then the inner product matrix of CX,Y
2 is 2 (the norm of 023 + 012). The corresponding

matrix representation of (εX,Y
2 )↔ is

1
2

(
1 1 1 →1

)

and the matrix representation of the upper persistent Laplacian is

1
2





01 12 23 03

01 1 1 1 →1

12 1 1 1 →1

23 1 1 1 →1

03 →1 →1 →1 1




.
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Another way to compute the upper persistent Laplacian is as follows. We first compute the upper
Laplacian ∆1(Y)





01 12 23 03 02

01 1 1 0 0 →1

12 1 1 0 0 →1

23 0 0 1 →1 1

03 0 0 →1 1 →1

02 →1 →1 1 →1 2





,

then treat this matrix as a block matrix





C1(X) 02

C1(X) A B

02 C D



,

and compute the Schur complement A → BD→1C.

0

1

2

3

(a)

0

1

2

3

(b)

Figure 7. (a) X = {0, 1, 2, 3, 01, 12, 23, 03} and (b) Y = {0, 1, 2, 3, 01, 12, 23, 03, 02, 012, 023}.

3.3. Eigenvectors of a Laplacian

There are some results concerning the relationship between the spectra of Laplacians
and the shape of a simplicial complex [26,79]. How do we interpret the eigenvectors of a
Laplacian? For an eigenvector of a q-th combinatorial Laplacian, we can look at the shape
of q-simplices where the eigenvector has support (signs are arbitrary because they are af-
fected by the fixed ordering of vertices). Empirical observations [80–82] suggest that
(a) harmonic eigenvectors (eigenvectors of zero eigenvalues) have support near q-
dimensional “holes” (or vertices in a connected component when q = 0) or (b) non-
harmonic eigenvectors (eigenvectors of nonzero eigenvalues) have support near “clusters”
of q-simplices. In terms of persistent Laplacians, very little is known about the topological
interpretation of eigenvalues and eigenvectors.

4. Generalizations of (Persistent) Laplacians

From a theoretical point of view, it is natural to ask whether a persistent Laplacian
can be defined in other settings such that the persistent Hodge theorem still holds. From
a practical point of view, generalizations of persistent Laplacians are motivated by the
need to integrate non-geometrical data that are important for specific problems. In the
next few sections, we will introduce structures such as cellular (co)sheaves, digraphs, and
hyper(di)graphs, and then review some recent advances in their homology and Laplacians.
We will also discuss Dirac operators and N-chain complexes at the end of this section.
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4.1. Differential Graded Inner Product Spaces

It has been noted earlier that persistent Laplacians can be defined analogously for
differential graded inner product spaces and the persistent Hodge theorem can be proved.
A differential graded inner product space (V, d) is just a chain complex

· · · Vq+1 Vq Vq→1 · · ·
dq+2 dq+1 dq dq→1

whose chain groups are inner product spaces. When we say (V, dV) is a subspace of
(W, dW), we mean that the inner space structure and boundary operator dV of (V, dV)

are inherited from (W, dW). For a pair of differential graded inner product spaces
(V, dV) ⇑ (W, dW), the q-th persistent homology group is defined analogously by

ι•(Hq(V)) ↗=
ker dV

q

ker dV
q ↖ im dW

q+1
.

Observe that ker dV
q ↖ im dW

q+1 = Vq ↖ im dW
q+1. The preimage of Vq ↖ im dW

q+1 under dW
q+1

is just (dW
q+1)

→1(Vq) = {w ↓ Wq+1 | dW
q+1w ↓ Vq}. Hence, ker dV

q ↖ im dW
q+1 is the image of

ϱdW
q+1|(dW

q+1)
→1(Vq)

: (dW
q+1)

→1(Vq) ↑ Vq, where ϱ = ι† is the projection map from W to V.

We denote ϱdW
q+1|(dW

q+1)
→1(Vq)

by dV,W
q+1 , and (dW

q+1)
→1(Vq) by ΘV,W

q+1 . These maps are shown

in the following diagram:

Vq+1 Vq Vq→1

ΘV,W
q+1

Wq+1 Wq

dV
q+1

(dV,W
q+1 )

↔

dV
q

(dq)↔dV,W
q+1

dW
q+1

where hooked dashed arrows represent inclusion maps. We define the q-th persistent
Laplacian ∆V,W

q : Vq ↑ Vq by

(dV
q )

↔dV
q + dV,W

q+1 (d
V,W
q+1 )

↔.

Since dV
q dV,W

q+1 = 0, we can prove the persistent Hodge theorem

ker ∆V,W
q

↗=
ker dV

q

ker dV
q ↖ im dW

q+1

in a similar manner. Many generalizations of persistent Laplacians implicitly use this
formulation. Liu et al. [55] first defined persistent Laplacians in the setting of differential
graded inner product spaces and showed how to construct a persistent Laplacian for an
inner product preserving chain map.

4.2. Persistent Laplacians for Simplicial Maps

The classical filtration of simplicial complexes only represents one type of shape evo-
lution. We also need tools to study more general shape evolution, such as the sparsification
of a simplicial complex. This requires us to consider general simplicial maps rather than
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inclusion maps. Gülen et al. [54] developed a theory of persistent Laplacians for a simplicial
map. Suppose f : X ↑ Y is a simplicial map

· · · Cq+1(X) Cq(X) Cq→1(X) · · ·

· · · Cq+1(Y) Cq(Y) Cq→1(Y) · · ·

εX
q+1

fq+1

εX
q

fq fq→1
εY

q+1 εY
q

where fq : Cq(X) ↑ Cq(Y) is induced by f . Different from the original q-th persistent
Laplacian for an inclusion map, we need to define two subspaces

Cq+1(Y) ↙ CY∝X
q+1 = {c ↓ Cq+1(Y) | εY

q+1(c) ↓ fq(ker εX
q )}

and

Cq→1(X) ↙ CX↑Y
q→1 = {c ↓ CX

q→1 | (εX
q )

↔(c) ↓ (ker fq)
′}

and then apply the restrictions of εY
q+1 and (εX

q )
↔ to them to construct the q-th persistent

Laplacian for f . The q-th persistent Laplacian for a simplicial map has a more symmetric
expression, and the proof of persistent Hodge theorem is more complicated.

4.3. Weighted Simplicial Complexes

A simplicial complex whose simplices have weights is generally called a weighted
simplicial complex. The weights can be geometrical, such as angles between simplices,
volumes of simplices, or non-geometrical such as numbers of scientific papers coauthored
by groups of people. Many theories and models involving weighted simplicial complexes
exist (e.g., [83–88]). Here, we focus on the theory of weighted simplicial complexes pro-
posed by Dawson [89] and later developed in [90–96]. A weighted simplicial complex is
a simplicial complex where each simplex σ has a weight w(σ) valued in a commutative
ring R, such that if σ ↭ τ, then w(τ) is divisible by w(σ). The weighted chain complex of
a weighted simplicial complex X is defined as follows. Let Cq(X, w) be the set of formal
sums of q-simplices with coefficients in R (if w(σ) is zero, then we do not include σ in any
formal sum). For σ = [va0 , . . . , vaq ], we denote the face [va0 , . . . , v̂ai , . . . , vaq ] by diσ. The
weighted boundary operator ε is given by

ε(σ) =
q

∑
i=0

w(σ)
w(diσ)

(→1)idiσ.

As w(σ) is divisible by w(diσ), the weighted boundary operator is well defined. We still
have ε2 = 0, because for 0 ⇒ i < j ⇒ q,

w(σ)
w(diσ)

w(diσ)
w(dj→1diσ)

=
w(σ)

w(djσ)

w(djσ)

w(didjσ)
=

w(σ)
w(didjσ)

.

Therefore, weighted homology groups can be defined analogously. Wu et al. [95] pointed
out that in the proof of ε2 = 0, what really matters is the quotient of weights. If we write
w(τ)/w(σ) as φ(τ, σ), then the equality

w(σ)
w(diσ)

w(diσ)
w(dj→1diσ)

=
w(σ)

w(djσ)

w(djσ)

w(didjσ)
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becomes

φ(diσ, dj→1diσ)φ(σ, diσ) = φ(djσ, didjσ)φ(σ, djσ),

which means that any φ : X ∞ X ↑ R satisfying this equality induces a (φ-weighted)
boundary operator

εq(σ) =
q

∑
i=0

(→1)iφ(σ, diσ)diσ.

A simplicial complex paired with a generalized weight function φ is called a φ-weighted
simplicial complex.

Example 8 ([95]). A weighted polygon is a polygon with φ({vi, vj}, vi) = αi ↓ Z (Figure 8).
The matrix representation of ε1 is





v0v1 v0v4 v1v2 v2v3 v3v4

v0 →α0 →α0 0 0 0

v1 α1 0 →α1 0 0

v2 0 0 α2 →α2 0

v3 0 0 0 α3 →α3

v4 0 α4 0 0 α4





and the resulting weighted H0 is dependent on αi. The weighted homology of weighted polygons
might be useful for analyzing ring structures in biomolecules.

α0

α1

α2

α3

α4

Figure 8. A weighted polygon.

We have emphasized that a point cloud can be studied by building a filtration of
simplicial complexes. If we want to distinguish some points from other points, we can
assign weights and building a filtration of weighted simplicial complexes [94]. We may
also consider weighted versions of (persistent) Laplacians [95].

Example 9. Suppose each point v in a point cloud has weight w(v). We can associate any simplex
{va0 , . . . , vaq} as the product weight [94]

q

∏
i=0

w(vai ).
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Since the weighted boundary map can be given by

ε(σ) =
q

∑
i=0

w(vai )(→1)idiσ.

We can just define the q-th chain group as the space generated by q-simplices without worrying
about zero weights.

Example 10. Suppose a point cloud contains two types of points A and B. We can assign
weights {0, 1} to {A, B}, and compute weighted homology and Laplacians using product weight-
ing. At least when a point cloud is simple, weighted combinatorial Laplacians can be used to
differentiate among different patterns of distribution of A and B. For a point cloud of four points
{(0, 0), (1, 0), (1, 1), (0, 1)} there are five configurations (shown in Figure 9) that include at least
one point whose weight is 1. Results of weighted Laplacians are shown in Figure 10.

(a) BBBB (b) ABBB (c) AABB (d) ABAB (e) AAAB

Figure 9. Five configurations of A and B.

(a) BBBB (b) ABBB (c) AABB

(d) ABAB (e) AAAB
d

Figure 10. λd
q is the minimal nonzero eigenvalue of the q-th weighted combinatorial Laplacian for Xd

in a Rips filtration. βd
q is the q-th Betti number of Xd.

4.4. Cellular (Co)Sheaves

In a φ-weighted simplicial complex, we can imagine that a copy of R resides on each
simplex and φ(τ, σ) is a scalar multiplication from the copy on τ to the copy on σ [97]. If
we associate each simplex with a vector space and designate a linear morphism for every
face relation, we will obtain cellular (co)sheaf. The theory of cellular (co)sheaves was first
introduced in [98] and later gained attention for its application potential (e.g., [99–103]).
In recent years, the study of sheaf neural networks has become a trending topic [104–107].
Like a weighted simplicial complex, a cellular (co)sheaf is a candidate for modeling complex
objects such as molecules.

A cellular cosheaf F is a simplicial complex X with additional data (for ease of exposi-
tion, we have simplified the definition of a cellular (co)sheaf). Each simplex σ is assigned
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a vector space F(σ) (or denoted by Fσ), called the stalk over σ, and for any face relation
σ ↭ τ, there is an extension map F(σ ↭ τ) : F(τ) ↑ F(σ) (or denoted by Fσ↭τ). The
q-th chain group of a cellular cosheaf is the direct sum of stalks over q-simplices and the
boundary map ε is given by

εq|F(σ) = ∑
i
(→1)iF(diσ ↭ σ).

The square of this boundary map is 0, if for any face relation ρ ↭ σ ↭ τ we have

F(ρ ↭ τ) = F(ρ ↭ σ) ∈ F(σ ↭ τ).

A dual concept is a cellular sheaf. For a cellular sheaf F, F(σ ↭ τ) is a map from F(σ)

to F(τ) (called a restriction map). An analogous sheaf cochain complex can be defined. If
stalks are inner product spaces, one can equip inner product structures for (co)chain groups.
Applying the construction of combinatorial Laplacians to a cosheaf chain complex or a
sheaf cochain complex, we obtain (co)sheaf Laplacians [97]. It is noted that many sheaves
over a digraph only have trivial 0-dimensional cohomology groups [108], but we can still
extract some information from sheaf Laplacians.

Example 11. Suppose there is a sheaf F over the simplicial complex {0, 1, 2, 01, 02, 12}, then the
sheaf coboundary map δ0 is represented by the block matrix





F0 F1 F2

F01 →F0↭01 F1↭01 0

F02 →F0↭02 0 F2↭02

F12 0 →F1↭12 F2↭12



.

Suppose all stalks are inner product spaces and they are orthogonal to each other, then the 0-th sheaf
Laplacian δ0↔δ0 is represented by the block matrix





F0 F1 F2

F0 F↔
0↭01F0↭01 + F↔

0↭02F0↭02 →F↔
0↭01F1↭01 →F↔

0↭02F2↭02

F1 →F↔
1↭01F0↭01 F↔

1↭01F1↭01 + F↔
1↭12F1↭12 →F↔

1↭12F2↭12

F2 →F↔
2↭02F0↭02 →F↔

2↭12F1↭12 F↔
2↭02F2↭02 + F↔

2↭12F2↭12



.

Persistent (co)sheaf (co)homology is known by experts [109,110], and a systematic
treatment can be found in [111]. One type of filtration of sheaves is as follows. A sheaf
F on X is a “subsheaf” of G over Y if X ⇑ Y and the stalks and restriction maps of F are
the same as those of G. To define the q-th persistent sheaf Laplacian [59] for F ⇑ G, we can
first endow chain groups with inner product structures and dualize everything to make
F and G cosheaves, such that there is an inclusion chain map between their cosheaf chain
complexes. Then, we can define the q-th persistent sheaf Laplacian as the q-th persistent
Laplacian of the cosheaf chain complexes.

4.5. Path Homology, Flag Homology, and Digraphs

The motivation behind path homology is to construct a homology theory of digraphs
such that directional information of edges is encoded and higher-dimensional homol-
ogy groups are non-trivial. Path homology (there are other (co)homology theories of
digraphs [112–115]) was proposed by Grigor’yan, Lin, Muranov, and Yau [116] and de-
veloped in various papers [117–121]. A summary of recent advances in path homology
of digraphs can be found in [122]. Recall that a digraph (without self-loops) is a pair
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G = (V, E) where E is a set of ordered pairs of vertices. An allowed q-path is an ordered
finite sequence of vertices {x0, . . . , xq} such that (xi, xi+1) ↓ E for all 0 ⇒ i ⇒ q → 1. If we
take the space generated by allowed p-paths (denoted by Aq) as the q-th chain group, and
define the boundary map εq by

εq{x0, . . . , xq} =
q

∑
i=0

(→1)i{x0, . . . , x̂i, . . . , xq}

then formally we can show that ε2 = 0. However, εq{x0, . . . , xq} may include paths that
are not allowed. To solve this problem, we first need to introduce some general concepts.

Definition 1. Suppose X is a finite set. An elementary p-path is a sequence [x0, . . . , xp] of p + 1
elements of X. The space generated by all elementary p-paths with coefficient in R is denoted by
Λp(X). The q-th non-regular boundary map is given by

εnr
q [x0, . . . , xq] =

p

∑
i=0

[x0, . . . , x̂i, . . . , xq].

We can prove that this is a chain complex. Among all paths, a path that lingers at a
vertex (for some i, xi = xi+1) is considered a degenerate path, since we are not interested
in self-loops.

Definition 2. A path [x0, . . . , xq] over X where xi ∋= xi+1 for each i is called regular. The space
generated by all regular q-paths is denoted by Rq.

We define a new boundary operator εq between regular paths. When computing
εq([x0, . . . , xq]), we first compute εnr

q ([x0, . . . , xq]) and treat all irregular paths arising from
it as zeros. We can still verify that ε2 = 0 [123].

Now, given a digraph G = (V, E), every Aq is a subspace of Rq.

. . . Rq+1 Rq Rq→1 . . .

Aq+1 Aq Aq→1

εq+2 εq+1 εq εq→1

One way to make εq : Aq ↑ Aq→1 well-defined is to restrict εq to the subspace
Aq ↖ ε→1

q Aq→1. We have to verify that εq(Aq ↖ ε→1
q Aq→1) ⇑ Aq→1 ↖ ε→1

q→1Aq→2. εq(Aq ↖
ε→1

q Aq→1) ⇑ Aq→1↖ is true by definition and εq(Aq ↖ ε→1
q Aq→1) ⇑ ε→1

q→1Aq→2 is true since
ε2 = 0. Therefore, we have the chain complex

. . . Aq+1 ↖ ε→1
q+1Aq Aq ↖ ε→1

q Aq→1 Aq ↖ ε→1
q Aq→1 . . .

εq+1 εq

and the definition of a path homology group is straightforward. The q-th chain group
Aq ↖ ε→1

q Aq→1 is called the space of ε-invariant q-paths on G, denoted by Ωq (if a digraph
is not simple, there will be two choices of εq [116] that might be suitable for different
problems [124]). Regarding the geometrical interpretation of path homology, we only know
that non-reduced H0 is the number of connected components of the underlying undirected
graph. Chowdhury et al. [125] obtained some characterizations of path homologies of
certain families of small digraphs. Since edge direction information is encoded in path
homology, path homology can be used to distinguish network motifs [126] and isomers in
molecular and materials sciences [127]. We can also quantify the importance of a node in a
network by observing changes in path homology when the node is removed [127].
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Since Ωq inherits the inner product structure from Aq, the so-called path Laplacians
(another type of path Laplacians was proposed by Estrada [128] and applied in molecular
biology [129]) can be defined. We can use path Laplacians [58,122,130] to distinguish
among digraphs that have the same path homology. For example, according to ([116],
Theorem 5.4), the following two digraphs GL and GR (see Figure 11) have the same path
homology. However, the spectrum of the 0-th path Laplacian of GL is {0, 3, 3} and that of
GR is {0, 2, 4, 4}.

(a) GL (b) GR
Figure 11. Two digraphs that have the same path homology.

Persistent path homology was proposed by Chowdhury and Mémoli [126] to study a
digraph where each edge e has a weight w(e). A filtration of digraphs {Gd} is constructed
so that e ↓ Gd if and only if w(e) ⇒ d. Wang and Wei [58] introduced persistent path
Laplacians and demonstrated that persistent path Laplacians can be applied to the study of
molecules, since much information about molecules can be encoded in digraphs.

Flag complexes, also known as clique complexes, are another way to construct homol-
ogy for digraphs, and they arise naturally in many situations [113]. Jones and Wei [57]
introduced persistent directed flag Laplacians as a distinct way of analyzing flag complexes
and applied them to analyze protein–ligand binding data.

Example 12. For a weighted digraph, we can build a filtration {Gd} such that e ↓ Gd iff w(e) ⇒ d.
Two weighted graphs whose path Betti numbers are the same for every Gd may have different path
Laplacians (Figure 12).

0

1

2

3

1

2

0

0

0

(a)

0

1

2

1

2

0

(b)

(c) Results of the left graph (d) Results of the right graph

Figure 12. In (a,b), numbers on edges are weights. In (c,d), the x axis represents the weight. As usual,
λ and β represent the minimal nonzero eigenvalues and Betti numbers.
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4.6. Hypergraphs and Hyperdigraphs

A hypergraph H is a pair (V, E) where E is a subset of the power set of V. An element
e ↓ E consisting of q + 1 elements is called a q-hyperedge. To define a chain complex for
hypergraphs, the problem is identical to what we encounter in path homology. If we define
the q-th chain group as the vector space generated by q-hyperedges, the boundary map
is not well defined. One solution is to consider associated simplicial complex (simplicial
closure) of a hypergraph [131], that is, the minimal simplicial complex that contains a
hypergraph. Another solution inspired by path homology is embedded homology [132]. If
we examine the chain complex of the associated simplicial complex, each simplicial chain
group Cq contains Dq, the vector space generated by q-hyperedges. We only need to restrict
the domain of the simplicial boundary operator to

Infq = Dq ↖ ε→1
q (Dq),

and then the boundary operator is well-defined (Figure 13).

. . . Cq+1 Cq Cq→1 . . .

Dq+1 Dq Dq→1

Dq+1 ↖ ε→1
q+1(Dq) Dq ↖ ε→1

q (Dq→1) Dq→1 ↖ ε→1
q→1(Dq→2)

εq+2 εq+1 εq εq→1

Figure 13. How to costruct embedded homology.

A hyperdigraph is a hypergraph in which each hyperedge is ordered (there are other
definitions of a hyperdigraph [133,134]), and its embedded homology can be defined anal-
ogously [61]. The persistent homology of hypergraphs and hyperdigraphs was studied
in [132,135,136]. Persistent hypergraph Laplacians were proposed by Liu et al. [60] and per-
sistent hyperdigraph Laplacians were introduced by Chen et al. [61] Alternative approaches
to the homology and Laplacians of hypergraphs include [137–142].

4.7. Persistent Dirac Operators

In addition to Laplacians, Dirac operators on chain complexes have also been stud-
ied [143–148]. Given a chain complex (V, d)

· · · V2 V1 V0 0
d3 d2 d1

where each chain group Vq is a finite-dimensional inner product space, the q-th Dirac
operator Dq is represented by the block matrix





V0 V1 V2 · · · Vq Vq+1

V0 0 [d1] 0 · · · 0 0

V1 [d↔1 ] 0 [d2] · · · 0 0

V2 0 [d↔2 ] 0 · · · 0 0
...

...
...

...
. . .

...
...

Vq 0 0 0 · · · 0 [dq+1]

Vq+1 0 0 0 · · · [d↔q+1] 0




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where [ ] denotes a matrix representation of a linear morphism. Dirac operators are closely
related to combinatorial Laplacians. If we think of all combinatorial Laplacians as a single
operator dd↔ + d↔d = (d + d↔)2 on V, then the q-th Dirac operator is the restriction of the
square root d + d↔ on V0 ↘ · · ·↘ Vq+1. We can also see this by direct computation. The
square of Dq is





V0 V1 V2 · · · Vq Vq+1

V0 [∆0] 0 0 · · · 0 0

V1 0 [∆1] 0 · · · 0 0

V2 0 0 [∆2] · · · 0 0
...

...
...

...
. . .

...
...

Vq 0 0 0 · · · [∆q] 0

Vq+1 0 0 0 · · · 0 [∆q+1,→]





where ∆q is the q-th combinatorial Laplacian. Hence, the square of any eigenvalue λ of a
Dirac operator must be an eigenvalue of a combinatorial Laplacian.

Recall that when we define persistent Laplacians, we construct an auxiliary subspace
CX,Y

q+1 of Cq+1(Y) and a map εX,Y
q+1 : CX,Y

q+1 ↑ Cq(X). Since Cq(X) is actually a subspace of

CX,Y
q , all CX,Y

q and εX,Y
q constitute an auxiliary chain complex

· · · CX,Y
2 CX,Y

1 CX,Y
0 0.

εX,Y
3 εX,Y

2 εX,Y
1

The q-th persistent Dirac operator of simplicial complexes X ⇑ Y is just the q-th Dirac oper-
ator in this auxiliary complex. The square of a persistent Dirac operator is not necessarily
a block matrix consisting of persistent Laplacians. It is also possible to extend persistent
Dirac operators to other settings, such as path complexes and hypergraphs [146].

4.8. Mayer Homology

In classical homology theory, the square of the boundary operator d of a chain complex
must be zero (d2 = 0). However, this constraint can be relaxed in the so-called Mayer
homology theory using an N-chain complex [72]. An N-chain complex is a sequence of
abelian groups and group morphisms (V, d) where dN = 0. In fact, a simplicial complex
can give rise to an N-chain complex. Recall that in a simplicial chain complex, the boundary
operator is given by

ε[va0 , . . . , vaq ] = ∑
i
(→1)i[va0 , . . . , v̂ai , . . . , vaq ].

For a prime number N, let ξ = e2ϱ
⇓
→1/N , and we can define a generalized boundary

operator d by

d[va0 , . . . , vaq ] = ∑
i

ξ i[va0 , . . . , v̂ai , . . . , vaq ]

and prove that dN = 0. Although the N-chain complex is not a chain complex in general,
observe that for any positive integer n < N

Cq+N→n(X;C) Cq(X;C) Cq→n(X;C)dN→n dn
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resembles a part of chain complex. We can define the Mayer homology group Hq,n(X) =

ker dn/im dN→n [72] and Mayer Laplacians (which can be thought of as (dn +(dN→n)↔)((dn)↔+

dN→n)) analogously [73]. When N = 2, an N-chain complex reduces to a chain complex,
and a Mayer homology group reduces to a normal homology group. Shen et al. [73]
also introduced persistent Mayer homology and persistent Mayer Laplacians on N-chain
complexes. Suppose X ⇑ Y, then we have the following commutative diagram

Cq+N→n(X;C) Cq(X;C) Cq→n(X;C)

Cq+N→n(Y;C) Cq(Y;C) Cq→n(Y;C)

(dX)N→n (dX)n

(dY)N→n (dY)n

and persistent Mayer Laplacians can be defined analogously. Compared to simplicial
homology, Mayer homology and Mayer Laplacians provide more features since we can
vary parameters N and n. Mayer homology and the Mayer Laplacians also concern a
general relationship between different dimensions. Persistent Mayer homology has been
applied to protein–ligand binding affinity predictions [149].

5. Conclusions and Outlook

5.1. Persistent Topological Laplacians Versus Topological Data Analysis

The development of persistent topological Laplacians (PTLs) was driven by the need
to address the limitations of persistent homology in the modeling of complex biomolecular
data [24,52]. The kernels of persistent Laplacians have been shown to be isomorphic to
their corresponding persistent homology groups, indicating that the information encoded
in barcodes is also reflected in the spectra of persistent Laplacians [24,55,56]. Similar
theoretical results apply to various PTLs designed for specific data types. The techniques
outlined in this survey provide a framework for transforming point clouds or networks
into algebraic features that capture both spatial and non-spatial information. These low-
dimensional features have proven to be effective in supervised and unsupervised machine
learning, uncovering hidden patterns, and demonstrating advantages over classical TDA
methods in practical applications [70,71].

Broadly, while traditional TDA has focused predominantly on homology theory, PTLs
mark a significant expansion of TDA into spectral theory. Moreover, recent advances,
such as the introduction of persistent Dirac operators for flag complexes, digraphs, and
hyperdigraphs, open new avenues of exploration [143–148].

The continued extension of TDA into areas such as spectral theory, geometric topology
(e.g., persistent Jones polynomial [150] and persistent Khovanov homology [151]), and
differential geometry (e.g., persistent de Rham–Hodge theory [52] and persistent Hodge
Laplacians [53]) highlights its growing versatility. These developments promise to drive
transformative progress in both theoretical research and real-world applications, enhancing
the utility of TDA across a wide range of disciplines.

5.2. Limitations of Persistent Topological Laplacians

Although persistent topological Laplacians (PTLs) offer significant potential, it is im-
portant for researchers to recognize their limitations. The diversity of PTLs, when applied
to point clouds [24], differentiable manifolds [52], or 1D curves embedded in higher dimen-
sions [151,152], presents challenges in understanding the intricate relationship between
the geometry and topology of the data and the PLT spectra. A deeper understanding of
these relationships is essential for the successful and meaningful application of PTLs to
real-world problems.
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Despite advances in computational algorithms and software development [56,62,63],
the computation of PTLs remains computationally intensive, especially for large datasets.
Given that the primary strength of topological data analysis (TDA) lies in addressing
complex challenges in data science, the development of efficient and robust PTL software
packages is among the most pressing needs for advancing the field. Furthermore, the
creation of finite field PTLs holds great promise for broadening the applicability of PTLs in
data science and beyond.

5.3. Future Works

The field of PTLs is dynamic and rapidly evolving. The future development of PTLs is
wide open, and we envision the exploration of the following topics:

(1) To some extent, the success of TDA can be attributed to its integration with machine
learning, particularly with the first introduction of topological deep learning in 2017 [11].
Sheaf neural networks [107], sheaf attention [104], and neural sheaf diffusion [105] are
popular topics. Similarly, the development of efficient PTL representations for machine
learning, including deep learning, is also an important topic. The featurization of Laplacians
typically requires domain knowledge and experience. Since self-learning representations of
persistent diagrams have been proposed [153], we wonder if self-learning representations
of (persistent) Laplacians are possible. As the eigenvectors of the PTLs were found to have
better descriptive power than eigenvalues [57], featurization of the PTL eigenvectors is also
an interesting future topic.

(2) PTLs have been formulated on a variety of mathematical objects, including simpli-
cial complexes, directed flag complexes, path complexes, cellular sheaves, digraphs, hyper-
graphs, and hyperdigraphs. One can also extend PTLs to settings such as the Hochschild
complex [154], quantum homology [155], multiparameter persistent homology [156], and in-
teraction homotopy and interaction homology [157,158]. We expect that these developments
will further extend the scope and capability of the current TDA for real-world applications.

(3) It is possible that persistent sheaf Dirac operators can be devised to distinguish
certain geometric shapes. Additionally, persistent Dirac operators defined on a spinor
bundle may extend persistence to index theory, such as multiscale index theory.

(4) The PTLs on manifolds, such as the evolutionary de Rham–Hodge theory, pose
implementation challenges compared to their discrete counterparts on point clouds [34].
Recently, the persistent de Rham–Hodge Laplacian in Eulerian representation has been
proposed for manifold topological learning (MTL) [53]. Persistent de Rham–Hodge Lapla-
cians extend earlier persistent homology in the cubical setting [159–161]. From a theoretical
point of view, it will be interesting to extend various PTLs to the setting of manifolds
(with boundaries).

(5) In addition to point cloud data and data in manifolds, there are knot-type data,
such as DNA packaging in Hi-C data and entangled brain neurons. Knots are traditionally
studied with invariants, such as the Alexander polynomial, the Jones polynomial, and the
Kauffman polynomial [162]. Song et al. proposed the multiscale Jones polynomial and the
persistent Jones polynomial [150]. Khovanov homology [163] is a major breakthrough in
knot theory. Shen et al. [151] proposed an evolutionary Khovanov homology for weighted
links. Jones and Wei [152] proposed Khovanov Laplacians and showed that, at least for
chiral prime knots up to 10 crossings, they can distinguish chiral knots from their mirrors.
Based on these developments, PTLs on knot- or curve-type data, i.e., persistent Khovanov
Laplacians, can be formulated, and future research on computational geometric topology is
widely open.

(6) Finally, ChatGPT ushers in a new era of artificial intelligence (AI), offering wide-
ranging opportunities in all disciplines. ChatGPT and other chatbots effectively transform
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pure mathematical theories into practical computational tools, including PTLs [164]. Both
AI-enabled topology and topology-enabled AI will have a growing impact on research [165].
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