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Abstract. Topological data analysis, as a tool for extracting topological fea-
tures and characterizing geometric shapes, has had tremendous success across
diverse fields. Its key mathematical techniques include persistent homology
and the recently developed persistent Laplacians. However, classic mathe-
matical models like simplicial complexes often struggle to provide a localized
topological description for interactions or individual elements within a complex
system involving a specific set of elements. In this work, we introduce persis-
tent interaction homology and persistent interaction Laplacian that emphasize
individual interacting elements in the system. We demonstrate the stability
of persistent interaction homology as a persistent module. Furthermore, for a
finite discrete set of points in the Euclidean space, we provide the construction
of persistent interaction Vietoris-Rips complexes and compute their interaction
homology and interaction Laplacians. The proposed methods hold significant
promise for analyzing heterogeneously interactive data and emphasizing spe-
cific elements in data. Their utility for data science is demonstrated with
applications to molecules.

1. Introduction. In the past decade, topological data analysis (TDA), as a tool
capable of capturing the overall and topological features of data, has been widely
applied in various fields, including biology, materials science, physics, and computer
science. Its key idea is to grasp the various topological invariants of data across
di!erent scales. Persistent homology [8, 13, 31], as a major tool in TDA, can iden-
tify persistent topological structures in a dataset, providing insights into important
features that cannot be obtained from traditional data analytic tools. It not only
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discovers voids and loops in the data but also quantitatively describes the persis-
tence of these topological features and formalizes them into mathematical concepts,
thus providing a powerful tool and framework for data science. However, persis-
tent homology has many limitations, such as its indi!erence to homotopic changes
during the filtration and the specific elements and the number of nodes in a loop,
which are crucial for complex data. These challenges were addressed in part by
persistent Hodge Laplacians (or evolutionary de Rham-Hodge theory [12]) and per-
sistent combinatorial Laplacian (or persistent Laplacian [24]) in 2019. The kernel
space of the persistent Laplacian is referred to as the persistent harmonic space,
which is isomorphic to persistent homology, implying that the persistent Laplacian
encapsulates more information than persistent homology due to its non-harmonic
spectrum. Moreover, the stability of the persistent Laplacian ensures its robustness
as features [18]. Furthermore, researchers have investigated persistent Laplacians
on di!erent topological objects [10, 21, 25, 29], computational algorithms [19], and
applications [20, 27, 28]. Recently, persistent Dirac operators have also been devel-
oped to achieve similar goals [2, 22, 26]. While these new topological formulations
provide new perspectives on topological invariants and geometric features of the
data, the element-specific formulation proposed in an early work [7] is still required
in practical applications [20, 23, 27, 28].

To further advance TDA, it is imperative to explore alternative topological formu-
lations beyond homology, Laplacian, and Dirac and extract element-specific topolog-
ical information in contrast to the usual global topological information. Interaction
refers to the dynamic exchange and mutual influence between various components
within a system. It encompasses the ways in which these components a!ect each
other’s behaviors, properties, and functions, often resulting in emergent phenomena
or system-level outcomes that cannot be fully explained by considering individual
components in isolation. Interactions can occur at di!erent scales, from interac-
tions between fundamental particles in physics to complex molecular interactions in
chemistry, and even to interactions between organisms in biological systems. Un-
derstanding interactions is essential for comprehending the dynamics and behavior
of systems across various disciplines.

There are numerous methods to describe interactions within systems, with topol-
ogy being considered particularly adept at capturing the essence of these interac-
tions. Among these, Čech cohomology [5, 30] stands out as a prominent invari-
ant, focusing on the intersections between open sets in an open cover. A related
concept is the nerve complex [1, 15], which provides a topological representation
of the relationships between various components within a system. However, both
Čech cohomology and nerve complexes primarily address a form of binary judgment
regarding the interactions between di!erent parts of the system: whether they in-
tersect or have some form of association. This characterization, to some extent, is
somewhat crude. In this work, we aim to study the interactions between topological
spaces and characterize these interactions using topological invariants. Specifically,
we seek to use topological invariants to capture the structure and dynamics of inter-
acting systems, and to gain insights into their underlying geometric and topological
properties for specific elements. One potential approach is the interaction topol-
ogy developed in [17]. The notion of interaction cohomology, initially proposed by
Oliver Knill as a method for decoding the Wu characteristic [16], stands as a pivotal
concept in this endeavor. As the word “interaction” suggests, interaction homology
reflects the interaction or intersection relationship between simplicial complexes.
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Interaction (co)homology is derived from the interaction chain complex, which is
constructed from a family of tuples of intersection simplices, or “intersection cells”.
Each interaction simplex indicates a interaction among some simplices. By em-
ploying interaction topology, one can obtain a di!erent topological description of
a cover, which better characterizes the behavior of interactions or the elements of
interest. Hence, studying the interaction homotopy and homology of datasets pro-
vides us with a topological intuition about the interactions between systems or the
points of interest.

In this work, we introduce two new methods, namely persistent interaction ho-
mology (PIH) and persistent interaction Laplacian (PIL), built upon the theoretical
framework of interaction topology. PIH and PILs provide new topological charac-
teristics, emphasizing spatial interaction relationships or a specific set of elements.
Unlike traditional methods such as persistent homology and persistent Laplacians,
which view the space or point set as a whole and calculate Betti numbers and Lapla-
cian matrices accordingly, PIH and PILs focus on describing the interactions and
relationships among various elements of the space or point set. PIH and PILs are
better than traditional topological methods at capturing the interactions between
di!erent parts, leading to an emphasis of certain elements of interest in complex
systems. Additionally, we demonstrate the stability of persistent interaction homol-
ogy as a persistent invariant. Furthermore, we introduce interaction Vietoris-Rips
complexes, outlining their construction and computation on point sets. Through
concrete examples, we illustrate how this new approach provides information on
Betti numbers and spectral gaps of Laplacians.

The rest of the paper is organized as follows. In the next section, we review in-
teraction topology, including concepts such as interaction homology and interaction
Laplacian. Section 3 introduces persistent interaction homology and investigates
its stability. Additionally, we discuss interaction Vietoris-Rips complexes and per-
sistent interaction Laplacians. Section 4 presents the applications of persistent
interaction homology and persistent interaction Laplacian. Finally, we conclude
the paper with a summary.

2. Interaction topology. Interaction spaces are introduced to describe the inter-
actions among di!erent spaces within a complex system. The interactions between
spaces play crucial roles in diverse fields. Our method is built on the topology of the
category of interaction spaces [17]. In this section, we will consider the interaction
homology and the interaction Laplacians for interaction simplicial complexes. To
enhance the readability of the paper, this section provides several specific examples
of computing interaction homology and interaction Laplacian. From now on, the
ground ring is assumed to be a field K. For K-modules A,B, we write the tensor
product of A and B over K by A→B = A→K B for convenience.

2.1. Interaction homology. An n-interaction simplicial complex (K, {Ki}1↑i↑n)
consists of a simplicial complexK equipped with a family of sub complexesK1, . . . ,Kn

such that K =
n⋃

i=1
Ki. A morphism (f, {fi}1↑i↑j) : (K, {Ki}1↑i↑n) → (L, {Li}1↑i↑n)

of n-interaction simplicial complexes consists of a family of simplicial maps fi : Ki ↑

Li such that for any 1 ↓ i, j ↓ n, fi(ωi) = fj(ωj) if and only if ωi = ωj , where
ωi ↔ Ki,ωj ↔ Kj . For convenience, we always refer to the interaction simplicial com-
plex as {Ki}1↑i↑n and denote interaction morphism as {fi}1↑i↑n : {Ki}1↑i↑n ↑

{Li}1↑i↑n.
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Given an interaction simplicial complex {Ki}1↑i↑n, we have a family of chain

complexes C→(Ki) for i = 1, 2, . . . , n. The tensor product
n⊗

i=1
C→(Ki) is naturally a

chain complex with the di!erential given by

d(ω1 → ω2 → · · ·→ ωn) =
n∑

i=1

(↗1)p1+···+pi→1ω1 → · · ·→ dωi → · · ·→ ωn.

Here, ωi ↔ Kpi for i = 1, 2, . . . , n. Let D→({Ki}1↑i↑n) denote the sub K-linear

space of
n⊗

i=1
C→(Ki) with generators ω1 → ω2 → · · ·→ ωn satisfying

n⋂
i=1

ωi = ↘. It can

be verified that D→({Ki}1↑i↑n) is the subcomplex of
n⊗

i=1
C→(Ki) with the inherited

di!erential. The interaction chain complex on {Ki}1↑i↑n is defined by

IC→({Ki}1↑i↑n) :=

(
n⊗

i=1

C→(Ki)

)
/D→({Ki}1↑i↑n).

Thus the interaction homology of {Ki}1↑i↑n is given by

Hp({Ki}1↑i↑n) := Hp(IC→({Ki}1↑i↑n)), p ≃ 0.

The rank of Hp({Ki}1↑i↑n) is the interaction Betti number, and we denote it by
εp = rankHp({Ki}1↑i↑n).

Example 2.1. Consider the interaction complex {X1, X2} (see Fig. 1(a)), where

X1 = {{v0}, {v1}, {v2}, {v3}, {v0, v1}, {v0, v2}, {v0, v3}}, X2 = {{v0}}.

The interaction chain complex IC→({X1, X2}) is generated by the following ele-
ments

{v0}→ {v0}, {v0, v1}→ {v0}, {v0, v2}→ {v0}, {v0, v3}→ {v0}.

The di!erential is given by d0 = 0 and

d1




{v0, v1}→ {v0}
{v0, v2}→ {v0}
{v0, v3}→ {v0}



 =




↗1
↗1
↗1



(
{v0}→ {v0}

)
.

Thus the space of cycles of IC→({X1, X2}) is generated by

{v0}→ {v0}, {v0, v2}→ {v0}↗ {v0, v1}→ {v0}, {v0, v3}→ {v0}↗ {v0, v1}→ {v0},

while the space of boundaries of IC→({X1, X2}) is generated by {v0}→{v0}. Hence,
we have

H→(IC→({X1, X2})) = spanK⇐{v0, v2}→ {v0}↗ {v0, v1}→ {v0},

{v0, v3}→ {v0}↗ {v0, v1}→ {v0}⇒.

So the interaction homology of {X1, X2} is

Hp({X1, X2}) ⇑=

{
K⇓K, p = 1;
0, otherwise.

The corresponding Betti number for {X1, X2} is ε1 = 2 and εp = 0 for p ⇔= 1.
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Figure 1. The visual representation of interaction complexes pre-
sented in examples. The black parts signify the intersection compo-
nents, while the red and black areas delineateX1, and similarly, the
blue and black regions illustrate X2. (a) The interaction complex
showcased in Example 2.1; (b) The interaction complex {X1, X2}

with X1 = X2 = ”[2], as discussed in Example 2.2; (c) The in-
teraction complex considered in Example 2.4; (d) The interaction
complex that appeared in Example 2.5.

Example 2.2. Let ”[n] be the simplicial complex of the standard n-simplex. Con-
sider the interaction complex {X1, X2} such that X1 = X2 = ”[n], see Fig. 1(b) for
n = 2. For the case n = 1, the complex ”[1] has the non-degenerate element {0},
{1}, and {0, 1}. Then the interaction chain complex IC→({X1, X2}) is generated by
the following elements

{0}→{0}, {1}→{1}, {0}→{0, 1}, {1}→{0, 1}, {0, 1}→{0}, {0, 1}→{1}, {0, 1}→{0, 1}.

Besides, the di!erential of IC→({X1, X2}) is given by d0 = 0,

d1





{0}→ {0, 1}
{1}→ {0, 1}
{0, 1}→ {0}
{0, 1}→ {1}



 =





↗1 0
0 1
↗1 0
0 1






{0}→ {0}
{1}→ {1}


.

and

d2
(
{0, 1}→ {0, 1}

)
=

(
↗1 1 1 ↗1

)





{0}→ {0, 1}
{1}→ {0, 1}
{0, 1}→ {0}
{0, 1}→ {1}



 .

Let Bp be the representation matrix of the di!erential dp with respect to the
chosen basis. Recall that

εp = dim ICp ↗ rankBp ↗ rankBp+1.
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Thus we have ε1 = 4 ↗ 2 ↗ 1 = 1 and εp = 0 for p ⇔= 1. It follows that

Hp({X1, X2}) =

{
K, p = 1;
0, otherwise.

It is quite di!erent from the usual simplicial

homology.
For the case n = 2, one can verify that the interaction homology of the interaction

complex {X1, X2} is Hp({X1, X2}) =

{
K, p = 2;
0, otherwise.

Indeed, the cycle

x = {0}↑ {0, 1, 2}↓ {0, 1}↑ {0, 2}+ {0, 2}↑ {0, 1}+ {0, 1, 2}↑ {0}

gives the homology generator [x]. It is impossible for the element x to be a boundary.
If x is a boundary of the form ϑy, we can write y = a{0, 1} → {0, 1, 2} + b{0, 2} →
{0, 1, 2}+c{1, 2}→{0, 1, 2}+y↓. Here, y↓ is the sum of other terms. Note that dy↓ does
not contribute to the term of forms {0}→ {0, 1, 2}, {1}→ {0, 1, 2} or {2}→ {0, 1, 2}.
We have that

a({1}↓{0})↑{0, 1, 2}+ b({2}↓{0})↑{0, 1, 2}+ c({2}↓{1})↑{0, 1, 2} = {0}↑ {0, 1, 2}.

It follows that






a+ b = ↗1
a↗ c = 0
b+ c = 0

, which has no solution. Thus x is not a boundary,

and [x] is indeed a homology generator.

In general, for any n ≃ 0, we can obtain thatHp({X1, X2}) =

{
K, p = n;
0, otherwise.

Consider the case n = 2 and K1 = K2 = K. The Wu characteristic of K is
defined by ϖ(K) :=


ω↔ε

(↗1)dimω+dim ε . Here, ω ⇑ ϱ means ω ↖ ϱ ⇔= ↘ for ω, ϱ ↔ K.

The Euler theorem asserts that for a simplicial complex K, one has

X (K) =
∑

i↗0

(↗1)iεi(K).

Here, X (K) is the Euler characteristic of K. Similarly, we have the theorem for
Wu characteristic

ϖ(K) =
∑

i↗0

(↗1)iε2,i(K),

where ε2,i(K) is the interaction Betti number for {K1,K2} with K1 = K2 = K. It
is shown that the interaction homology decodes the Wu characteristic in topology.

Example 2.3. Let ϑ”[2] be the boundary of a triangle. The elements of ϑ”[2]
can be listed as

{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}.

On can prove that the interaction Betti number is ε2,i(ϑ”[2]) =

{
1, i = 1, 2;
0, otherwise.

Let us count the interaction pairs. The 0-dimensional pairs are ({0}, {0}),
({1}, {1}), and ({2}, {2}). The 1-dimensional pairs are listed as

({0}, {0, 1}), ({0}, {0, 2}), ({1}, {0, 1}), ({1}, {1, 2}), ({2}, {0, 2}), ({2}, {1, 2}),

({0, 1}, {0}), ({0, 1}, {1}), ({0, 2}, {0}), ({0, 2}, {2}), ({1, 2}, {1}), ({1, 2}, {2}).

The 2-dimensional pairs are represented as

({0, 1}, {0, 1}), ({0, 1}, {0, 2}), ({0, 1}, {1, 2}), ({0, 2}, {0, 1}), ({0, 2}, {0, 2}),

({0, 2}, {1, 2}), ({1, 2}, {0, 1}), ({1, 2}, {0, 2}), ({1, 2}, {1, 2}).
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There is no interaction pairs of dimension ≃ 3. It follows that the Wu charac-
teristic is

ϖ(ϑ”[2]) =
∑

ω↔ε

(↗1)dimω+dim ε = 3↗ 12 + 9 = 0.

This is the same as the alternating sum of the interaction Betti numbers

ϖ(ϑ”[2]) =
∑

i↗0

(↗1)iε2,i(ϑ”[2]) = 0↗ 1 + 1 = 0.

For the example of ”[2], one can verify the presence of three 0-dimensional inter-
action pairs, twelve 1-dimensional interaction pairs, fifteen 2-dimensional interaction
pairs, six 3-dimensional interaction pairs, and one 4-dimensional interaction pair.
The corresponding Wu characteristic is

ϖ(”[2]) =
∑

ω↔ε

(↗1)dimω+dim ε = 3↗ 12 + 15↗ 6 + 1 = 1.

This aligns with the calculations in Example 2.2, showing that

ϖ(”[2]) =
∑

i↗0

(↗1)iε2,i(”[2]) = 1.

Consider the category ICn of interaction simplicial complexes. The objects in
ICn are the n-interaction simplicial complexes, and the morphisms are the mor-
phisms of n-interaction simplicial complexes.

For each morphism {fi}1↑i↑n : {Ki}1↑i↑n ↑ {Li}1↑i↑n, we have a morphism
of chain complexes

n⊗

i=1

C→(fi) :
n⊗

i=1

C→(Ki) ↑
n⊗

i=1

C→(Li).

Composite with the quotient map, we obtain a morphism of chain complexes

ς :
n⊗

i=1

C→(Ki) ↑ IC→({Li}1↑i↑n).

Note that D→({Ki}1↑i↑n) ↙ kerς. The morphism of chain complex ς induces a
morphism of chain complexes

φf : IC→({Ki}1↑i↑n) ↑ IC→({Li}1↑i↑n)

given by φf (


ω1,...,ωn

aω1,...,ωnω1 → · · · → ωn) =


ω1,...,ωn

aω1,...,ωnf1(ω1) → · · · → fn(ωn).

The morphism φf induces a map of homology

H→(φf ) : H→({Ki}1↑i↑n) ↑ H→({Li}1↑i↑n), [z] ∝↑ [φf (z)].

The following result shows that the interaction homology from the category of
interaction complexes to the category of vector spaces is a functor.

Proposition 2.1. The interaction homology H→ : ICn ↑ VecK is functorial.

Proof. Let {fi}1↑i↑n : {Ki}1↑i↑n ↑ {Li}1↑i↑n and {gi}1↑i↑n : {Li}1↑i↑n ↑

{Mi}1↑i↑n be morphisms of interaction simplicial complexes. Then for any cycle
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z =


ω1,...,ωn

aω1,...,ωnω1 → · · ·→ ωn ↔ IC→({Ki}1↑i↑n), one has

H→(φg) ′H→(φf )([z]) =H→(φg)

(
[

∑

ω1,...,ωn

aω1,...,ωnf1(ω1)→ · · ·→ fn(ωn)]

)

=[
∑

ω1,...,ωn

aω1,...,ωng1f1(ω1)→ · · ·→ gnfn(ωn)]

=H→(φgf )([z]).

By verifying the definition, we obtain that H→ is functorial.

2.2. Interaction Laplacian. On the chain complex of simplicial complexes, there
exists a combinatorial Laplacian, and its kernel space is commonly referred to as
the harmonic space, which is isomorphic to the simplicial homology of the simpli-
cial complex. In addition to this, researchers have explored Laplacians on path
complexes, hypergraphs, and hyperdigraphs. These Laplacians serve to reflect the
topological and geometric characteristics of various objects, holding significant po-
tential in data analysis applications such as molecular structure analysis and ma-
terial structure analysis. In this section, we will explore the Laplacian operator
on interaction complexes from now on. The ground field K is taken to be the real
number field R.

Let {Ki}1↑i↑n be an interaction simplicial complex. One can obtain an interac-

tion chain complex IC→({Ki}1↑i↑n). We endow
n⊗

i=1
C→(Ki) with the inner product

⇐ω1 → · · ·→ ωn, ϱ1 → · · ·→ ϱn⇒ =
n

i=1

⇐ωi, ϱi⇒,

where ω1 → · · · → ωn, ϱ1 → · · · → ϱn ↔

n⊗
i=1

C→(Ki) and ⇐ω, ϱ⇒ =

{
1, ω = ϱ ;
0, otherwise.

It

induces the quotient inner product structure on IC→({Ki}1↑i↑n), also denoted by
⇐·, ·⇒. Note that ICp({Ki}1↑i↑n) and ICq({Ki}1↑i↑n) are orthogonal for p ⇔= q. Let
dp : ICp({Ki}1↑i↑n) ↑ ICp↘1({Ki}1↑i↑n) be the di!erential at degree p. We have
the adjoint operator (dp)→, which is given by

⇐dpx, y⇒ = ⇐x, (dp)
→y⇒

for all x ↔ ICp({Ki}1↑i↑n), y ↔ ICp↘1({Ki}1↑i↑n). The p-th interaction Laplacian

”p : ICp({Ki}1↑i↑n) ↑ ICp({Ki}1↑i↑n) is defined by

”p := (dp)
→
′ dp + dp+1 ′ (dp+1)

→, p ≃ 0.

In particular, ”0 = d1 ′ (d1)→. Let Bp be the representation matrix of Bp with
respect to the standard orthogonal basis. Then the representation matrix of ”p is
given by

Lp = BpB
T
p +BT

p+1Bp+1.

The zero eigenvalues of the Laplacian reflect information about its harmonic
components, while the non-zero eigenvalues indicate information about its non-
harmonic components. Among these, the smallest positive eigenvalue of Lp, known
as the spectral gap, is the most commonly used non-harmonic feature.

Proposition 2.2. The Laplacian ”p on ICp({Ki}1↑i↑n) is self-adjoint and non-

negative definite.
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The non-negative definiteness ensures that the eigenvalues of the operator ”p are
non-negative. Moreover, we have the algebraic Hodge decomposition on
ICp({Ki}1↑i↑n).

Proposition 2.3. ICp({Ki}1↑i↑n) = ker”p ⇓ imdp+1 ⇓ im(dp)→. Here, ker”p is

isomorphic to the interaction homology Hp({Ki}1↑i↑n).

The proofs of the above results are standard and can be found in detail in [18].

Example 2.4. Consider the interaction complex {K1,K2} (see Fig. 1 (c)), where

K1 = {{v0}, {v1}, {v2}, {v0, v1}, {v1, v2}},

K2 = {{v1}, {v2}, {v3}, {v1, v2}, {v2, v3}}.

The interaction chain complex IC→({K1,K2}) of {K1,K2} is generated by

{v1}→ {v1}, {v2}→ {v2},

{v1}→ {v1, v2}, {v2}→ {v1, v2}, {v2}→ {v2, v3},

{v0, v1}→ {v1}, {v1, v2}→ {v1}, {v1, v2}→ {v2},

{v0, v1}→ {v1, v2}, {v1, v2}→ {v1, v2}, {v1, v2}→ {v2, v3}.

The corresponding di!erential is given by d0 = 0,

d1





{v1}→ {v1, v2}
{v2}→ {v1, v2}
{v2}→ {v2, v3}
{v0, v1}→ {v1}
{v1, v2}→ {v1}
{v1, v2}→ {v2}




=





↗1 0
0 1
0 ↗1
1 0
↗1 0
0 1






{v1}→ {v1}
{v2}→ {v2}


,

and

d2




{v0, v1}→ {v1, v2}
{v1, v2}→ {v1, v2}
{v1, v2}→ {v2, v3}



 =




1 0 0 1 0 0
↗1 1 0 0 1 ↗1
0 0 1 0 0 1









{v1}→ {v1, v2}
{v2}→ {v1, v2}
{v2}→ {v2, v3}
{v0, v1}→ {v1}
{v1, v2}→ {v1}
{v1, v2}→ {v2}




.

We denote the representation matrix of dp by Bp. The Laplacian matrices are

L0 = BT
1 B1 =


3 0
0 3


,

L1 = B1B
T
1 +BT

2 B2 =





3 ↗1 0 0 0 1
↗1 2 ↗1 0 1 0
0 ↗1 2 0 0 0
0 0 0 2 ↗1 0
0 1 0 ↗1 2 ↗1
1 0 0 0 ↗1 3




,

and

L2 = B2B
T
2 =




2 ↗1 0
↗1 4 ↗1
0 ↗1 2



 .

The spectra of Laplacians are Spec(L0) = {3, 3}, Spec(L1) = {0, 3↗
∞
3, 2, 3, 3, 3

+
∞
3}, and Spec(L2) = {3↗

∞
3, 2, 3 +

∞
3}.
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Example 2.5. Consider the interaction complex {X1, X2} (see Fig. 1 (d)), where

X1 = {{0}, {1}, {2}, {3}, {0, 1}, {0, 2}, {1, 3}, {2, 3}}

and
X2 = {{2}, {3}, {4}, {5}, {2, 3}, {2, 4}, {3, 5}, {4, 5}}.

Then the interaction chain complex IC→({X1, X2}) has the generators

0-dim: {2}↑ {2}, {3}↑ {3},
1-dim: {2}↑ {2, 3}, {2}↑ {2, 4}, {3}↑ {2, 3}, {3}↑ {3, 5}, {0, 2}↑ {2}, {2, 3}↑ {2},
{2, 3}↑ {3}, {3, 5}↑ {3},
2-dim: {0, 2}↑ {2, 3}, {0, 2}↑ {2, 4}, {1, 3}↑ {2, 3}, {1, 3}↑ {3, 5}, {2, 3}↑ {2, 3},
{2, 3}↑ {2, 4}, {2, 3}↑ {3, 5}.

Choose the interaction simplices as orthogonal basis. Then the interaction ho-
mology is

Hp({X1, X2}) =

{
K, p = 2;
0, otherwise.

Moreover, the calculation of Laplacians are shown in Table 1.

Table 1. Illustration of interaction Laplacians in Example 2.5.

p Lp ωp Spec(Lp)

0

(
4 0
0 4

)
0 {4, 4}

1





3 1 0 0 0 0 0 0
1 3 →1 0 0 0 →1 0
0 →1 3 →1 0 →1 0 0
0 0 →1 3 0 0 0 0
0 0 0 0 3 0 1 0
0 0 →1 0 0 3 →1 →1
0 →1 0 0 1 →1 3 0
0 0 0 0 0 →1 0 3





0 {2→
↑
2, 2, 2, 4→

↑
2, 2 +

↑
2, 4, 4, 4 +

↑
2}

2





2 →1 0 1 0 0 0
→1 2 0 0 1 0 0
0 0 2 1 0 →1 0
1 0 1 4 →1 0 →1
0 1 0 →1 2 0 0
0 0 →1 0 0 2 1
0 0 0 →1 0 1 2





1 {0, 2→
↑
2, 2, 2, 4→

↑
2, 2 +

↑
2, 4 +

↑
2}

3. Persistence on interaction complexes.

3.1. Persistent interaction homology. While persistent homology captures the
topological features and geometric shapes of spaces, persistent interaction homology
provides a topological description of the interactions between spaces. By analyzing
the interactions between spaces, we can gain insights into how the topology of the
spaces a!ects their behavior and dynamics. This can have applications in a variety
of fields, including biology, physics, and social sciences. In this section, the ground
field is assumed to be the field K. If we consider the Laplacian, the ground field K
is taken to be the real number field R.

Let (X,↓) be a poset with the partial order ↓. Then we can regard (X,↓) as a
category with objects given by the elements in X and morphisms of the form a ↑ b
for any a ↓ b. A persistence object on a category C is a functor F : (X,↓) ↑ C.
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A persistence n-interaction (simplicial) complex is a functor F = {Fi}1↑i↑n :
(X,↓) ↑ ICn. By Proposition 2.1, we have a persistence module

H→F : (X,↓) ↑ VecK.

For any elements a ↓ b in X, the (a, b)-persistent interaction homology is defined
by

Ha,b
→ (F ;K) := im(H→(F(a);K) ↑ H→(F(a);K)).

The (a, b)-persistent interaction Betti number is εa,b
p = dimHa,b

p (F ;K). Just like
the traditional persistent homology, the corresponding persistent Betti numbers of
persistent interaction homology can also be represented using persistence diagrams
and barcodes. The persistence diagrams and barcodes provide a concise and intu-
itive way to capture the topological information that is persistent across a range of
distance or interaction scales.

Typically, the poset (X,↓) is taken to be the ordered set of integers (Z,↓)
with the usual order. Classical theorems in persistent homology theory, such as
the decomposition theorem of persistence modules and the interval theorem for
barcodes, can also be applied to persistent interaction homology. These theorems
provide fundamental mathematical tools for analyzing the structure and properties
of persistent homology, and can be used to gain deeper insights into the topological
features of interacting systems.

3.2. Stability for persistent interaction homology. In [9], the authors intro-
duced the interleaving distance to describe the algebraic stability theorem for per-
sistence diagrams. Interleaving distance has been shown to be a generalization of
the bottleneck distance [6] and has become a fundamental tool for analyzing the
stability of persistence objects [3, 14, 18]. In this section, we will provide a brief
overview of the definition of interleaving distance and present the stability theorem
for persistent interaction homology.

Let C be a category, and let CR be the category of functors from (R,↓) to C.
Then for any functor F : (R,↓) ↑ C, we have a functor #ϑ

F : (R,↓) ↑ C given by
(#ϑ

F)(a) = F(a+ ↼). Obviously, #ϑ
|F : F ∈ #ϑ

F is a natural transformation.

Definition 3.1. Let F ,G : (R,↓) ↑ C be two persistence objects. An ↼-interleaving
between F and G consists of two natural transformations ↽ : F ∈ #ϑ

G and
⇀ : G ∈ #ϑ

F such that (#ϑ⇀)↽ = #2ϑ
|F and (#ϑ↽)⇀ = #2ϑ

|G . We say that F

and G are ↼-interleaved.

#ϑ
G

!ωϖ

!!
F

ϱ
""

!2ω|F ## #2ϑ
F

#ϑ
F

!ωϱ

!!
G

ϖ
""

!2ω|G ## #2ϑ
G

The interleaving distance between F and G is defined by

dI(F ,G) := inf{↼ ≃ 0|F and G are ↼-interleaved}.

Theorem 3.2. Let F ,G : (R,↓) ↑ ICn be two persistence interaction complexes.

We have

dI(H→F , H→G) ↓ dI(F ,G).

Proof. The proof is completed by Proposition 2.1 and [6, Proposition 3.6].
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Consider an interaction complex {Ki}1↑i↑n equipped with a non-decreasing real-
valued function

f = (f1, . . . , fn) : {Ki}1↑i↑n ↑ R,
that is, fi(ω) ↓ fi(ϱ) whenever ω is a face of ϱ in Ki for any i = 1, . . . , n. For each
real number a, we have an interaction complex

F
f (a) = f↘1((↗∋, a]) = {(ω1, . . . ,ωn) ↔ {Ki}1↑i↑n|fi(ωi) ↓ a, △1 ↓ i ↓ n}.

This construction gives us a persistence interaction complex F
f : (R,↓) ↑ ICn.

Now, given two non-decreasing real-valued functions f, g : {Ki}1↑i↑n ↑ R, we
define the distance between f and g on {Ki}1↑i↑n as

▽f ↗ g▽≃ = sup
x⇐{Ki}1↑i↑n

▽f(x)↗ g(x)▽.

Here, ▽f(ω1, . . . ,ωn)↗ g(ω1, . . . ,ωn)▽ = max
1↑i↑n

|fi(ωi)↗ gi(ωi)|.

Theorem 3.3. Let {Ki}1↑i↑n be an interaction complex equipped with two non-

decreasing real-valued functions f, g : {Ki}1↑i↑n ↑ R. We have

dI(H→F
f , H→F

g) ↓ ▽f ↗ g▽≃.

Proof. Let ↼ = ▽f ↗ g▽≃. Then there are inclusion morphisms Ff (a) ⇁↑ F
g(a+ ↼)

and F
g(a) ⇁↑ F

f (a + ↼) for any real number a ↔ R. The inclusions induce the
natural transformations ↽ : F

f (a) ∈ #ϑ
F

g(a) and ⇀ : F
g(a) ∈ #ϑ

F
f (a). It

follows that

(#ϑ⇀)↽ : Ff
∈ F

f

is an inclusion. So we have (#ϑ⇀)↽ = #2ϑ
|Ff . Similarly, one has (#ϑ↽)⇀ = #2ϑ

|Fg .
Hence, the persistence interaction complex F

f and F
g are ↼-interleaved. By Theo-

rem 3.2, one has

dI(H→F
f , H→F

g) ↓ dI(F
f ,Fg) ↓ ↼ = ▽f ↗ g▽≃.

The desired result follows.

3.3. Interaction Vietoris-Rips complexes. The Vietoris-Rips complex is a com-
monly used geometric object that can be constructed from a set of points in a metric
space. It is a simplicial complex that captures the topological features of the point
cloud data, such as its connected components, loops, voids, and higher-dimensional
holes. To study the interactions between a family of sets of points, one can con-
struct the corresponding interaction Vietoris-Rips complex. This complex is formed
by taking the Vietoris-Rips complexes of each set of points separately and then form-
ing their intersection. The interaction Vietoris-Rips complex is a powerful tool in
the study of complex systems where multiple interacting components are present.

Let X1, X2, . . . , Xn be a family of sets of points in Euclidean space. Here, the
point sets X1, X2, . . . , Xn do not require to be disjoint. We can obtain a family
of Vietoris-Rips complexes R1(↼),R2(↼), . . . ,Rn(↼). Thus one has an interaction
Vietoris-Rips complex IR(↼) = {Ri(↼)}1↑i↑n.

Lemma 3.4. Let (M,d) be a metric space, and let X ↙ Y ↙ M be two finite

subsets. For any ↼ ≃ 0, let Rϑ(Z) denote the Vietoris–Rips complex on Z, defined

by

Rϑ(Z) := {ω ↙ Z | d(x, y) ↓ ↼ for all x, y ↔ ω} .
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Let ⇐X⇒ denote the full simplex on X, i.e., the collection of all nonempty subsets

of X. Then,

Rϑ(X) = Rϑ(Y ) ↖ ⇐X⇒.

Proof. We prove the equality by showing inclusion in both directions.
Suppose ω ↔ Rϑ(X). Then ω ↙ X ↙ Y , and for all x, y ↔ ω, we have d(x, y) ↓ ↼.

Hence ω ↔ Rϑ(Y ) and ω ↔ ⇐X⇒, so ω ↔ Rϑ(Y ) ↖ ⇐X⇒.
Conversely, suppose ω ↔ Rϑ(Y )↖ ⇐X⇒. Then ω ↙ Y and all pairwise distances in

ω are at most ↼. Since ω ↔ ⇐X⇒, we also have ω ↙ X, and hence ω ↔ Rϑ(X).
This proves the desired equality.

Let Rϑ(
⋃
i
Xi) denote the Vietoris-Rips complex of the union

⋃
i
Xi at scale ↼. The

following proposition describes how the interaction complexes grow with respect to
↼.

Theorem 3.5. For any real numbers ↼ ↓ ↼↓, we have IR(↼) ↙ IR(↼↓). Moreover,

if

Rϑ


i
Xi


= Rϑ↓


i
Xi


,

then IR(↼) = IR(↼↓).

Proof. For each 1 ↓ i ↓ n, since Ri(↼) = Rϑ(Xi) is a Vietoris–Rips complex, we
have a natural inclusion

Rϑ(Xi) ↙ Rϑ↓(Xi).

This induces an inclusion of interaction Vietoris–Rips complexes

IR(↼) ↙ IR(↼↓).

Now suppose that

Rϑ


i
Xi


= Rϑ↓


i
Xi


.

For each i, we then have

Rϑ(Xi) = Rϑ


i
Xi


↖ ⇐Xi⇒ = Rϑ↓


i
Xi


↖ ⇐Xi⇒ = Rϑ↓(Xi),

where the equalities follow from Lemma 3.4. Hence, IR(↼) = IR(↼↓).

Hence, we have a persistence interaction complex

IR : (R,↓) ↑ IC
ς⇒
n , ↼ ∝↑ {R1(↼), . . . ,Rn(↼)}.

For real numbers ↼0 ↓ ↼1 ↓ · · · ↓ ↼n, we have a filtration of interaction complexes

IR(↼0) ⇁↑ IR(↼1) ⇁↑ · · · ⇁↑ IR(↼n).

It induces a filtration of interaction homology

H→(IR(↼0)) ↑ H→(IR(↼1)) ↑ · · · ↑ H→(IR(↼n)).

For ↼ ↓ ↼↓, the (↼, ↼↓)-persistent interaction homology for X1, X2, . . . , Xn is given
by

Hϑ,ϑ↓

p = im(Hp({Ri(↼)}1↑i↑n) ↑ Hp({Ri(↼
↓)}1↑i↑n)

for p ≃ 0.
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Example 3.1. Consider two point sets embedded in Euclidean space

X1 = {(0, 0), (1, 0), (1, 1)}, X2 = {(1, 0), (1, 1), (2, 1)}.

As the filtration parameter ↼ grows from 0 to +∋. One has the interaction
complex {R1(↼),R2(↼)} changes at the parameters ↼ = 0, 1,

∞
2. The filtration of

interaction complexes is shown in Figure 2(a). Point set X1 consists of red and
black points, while point set X2 is composed of blue and black points. The black
points represent the intersection of point sets X1 and X2.

The persistent interaction homology of X1, X2 provides multiscale topological
features of the interaction between the point sets X1 and X2. Figure 2(d) illustrates
the barcode for the filtration of interaction complexes derived from the interaction
of X1 and X2. On the other hand, we also examine the Vietoris-Rips complexes on
the union of X1 and X2, as well as the Vietoris-Rips complexes on the intersection
of X1 and X2. The corresponding barcodes are depicted in Figure 2(b) and 2(c).
In this particular example, we observe that the interaction Vietoris-Rips complexes
can capture changes in the filtration parameter at 1 and

∞
2, whereas the Vietoris-

Rips complexes on X1 ̸ X2 and X1 ↖ X2 only reveal variations at the value of 1.
Certainly, this example does not conclusively demonstrate that the interaction Betti
numbers contain more information than the Betti numbers of ordinary simplicial
homology. However, it does highlight a key point: interaction Betti numbers can
capture distinct topological features when multiple point sets are intertwined. Even
in cases where the complexes may be contractible, interaction Betti numbers can
still exist. In fact, when it comes to one-dimensional features like persistent Betti
numbers, it is challenging to definitively determine superiority. The significance of
interaction Betti numbers lies in their ability to reflect the interactive relationships
within a system, a task not easily achieved with conventional persistent homology
alone. In other words, interaction Betti numbers, while reducing computational
complexity, focus specifically on the topological properties of relationships between
di!erent systems rather than the local topological properties of each individual
system.

For other complexes constructed on point set, such as alpha complexes, we can
also consider their corresponding interaction complexes and compute the interaction
persistent homology.

3.4. Persistent interaction Laplacians. Numerous studies have been conducted
on the persistent Laplacian [12, 18, 19]. In recent years, the persistent Laplacian
has also found extensive applications in the fields of biomolecules, drug design, and
materials science [11, 20, 24, 27]. Besides, persistent Laplacians on di!erent objects
are also studied [10, 25, 29]. From now on, we will study the persistent interaction
Laplacian and provide some basic calculation examples.

Let K1 ⇁↑ K2 ⇁↑ · · · ⇁↑ Kn be a filtration of interaction complexes. We endow
IC→(Kn) with the basis as given in Section 2.2 and regard IC→(Kn) as an inner
product space. By Lemma 3.6, each interaction complex IC→(Ki) inherits the inner
product structure as the subspace of IC→(Kn).

Lemma 3.6. Let {Ki}1↑i↑n and {Li}1↑i↑n be interaction complexes. Suppose

{Ki}1↑i↑n is a sub interaction space of {Li}1↑i↑n. Then there is a natural inclusion

IC→({Ki}1↑i↑n) ⇁↑ IC→({Li}1↑i↑n) of chain complexes.
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Figure 2. (a) The filtration of interaction complexes. The black
part represents the intersection component. The red and black
points generate the Vietoris-Rips complexes on X1, while the fil-
tration of the blue and black points illustrates the Vietoris-Rips
complexes on X2. The combination of the two interacting filtra-
tions results in the filtration of Vietoris-Rips complexes. (b) The
barcode of the Vietoris-Rips complexes on the union of X1 and X2.
(c) The barcode of the Vietoris-Rips complexes on the insection of
X1 and X2. (d) The barcode of the interaction Vietoris-Rips com-
plexes on {X1, X2}.

Proof. By construction, we have the following commutative diagram.

0 ## D→({Ki}1↑i↑n)
! " φ ##

" #

j|D↔({Ki}1↑i↑n)

$$

⊗
C→({Ki}1↑i↑n)

↼ ##
" #

j

$$

IC→({Ki}1↑i↑n) ##

j̄

$$

0

0 ## D→({Li}1↑i↑n)
! " φ̃ ##

⊗
C→({Li}1↑i↑n)

↼̃ ## IC→({Li}1↑i↑n) ## 0

Here, the map j̄ : IC→({Ki}1↑i↑n) ↑ IC→({Li}1↑i↑n) is given by j̄(x̄) = j(x).
We will first prove j̄ is injective. Suppose j̄(x) = 0 for some x ↔ IC→({Ki}1↑i↑n).
There exists an element x ↔

⊗
C→({Ki}1↑i↑n) such that π(x) = x. Consequently,

πj(x) = j̄π(x) = 0. This implies j(x) ↔ ker π = imι. Therefore, we have j(x) = ι(y)
for some y ↔ D→({Li}1↑i↑n). Note that the maps j and ι are inclusions. Thus we
have

x = y ↔

⊗
C→({Ki}1↑i↑n)


↖D→({Li}1↑i↑n) = D→({Ki}1↑i↑n).
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Consequently, we obtain x = π(x) = π(ι(x)) = 0. It follows that j̄ is injective.
The naturality follows from the definition.

Let ICς⇒
n denote the subcategory of ICn whose objects are interaction complexes

and whose morphisms are inclusion maps between interaction complexes. Let F :
(R,↓) ↑ IC

ς⇒
n be a persistence interaction complex. For real numbers a ↓ b, we

have an induced morphism of interaction chain complexes

φa,b : IC→(F(a)) ↑ IC→(F(b)).

Lemma 3.6 ensures that the morphism φa,b establishes IC→(F(a)) as an inner
product subspace of IC→(F(b)). Let ICa,b

p+1 = {x ↓ ICp+1(F(b))|dx ↓ εa,b(ICp(F(a)))}.

Then we have an inclusion ιa,bp+1 : ICa,b
p+1 ⇁↑ ICp+1(F(b)). Let da,bp+1 : ICa,b

p+1 ↑

ICp(F(a)) be the composition of the following morphisms

ICa,b
p+1

φa,b
p+1 ## ICp+1(F(b))

db
p+1 ## ICp(F(b))

(↽a,b
p )↔
## ICp(F(a)).

Then we have a commutative diagram

ICp+1(F(a))
da
p+1 ##

" #

↽a,b
p+1

$$

ICp(F(a))
da
p ##

" #

↽a,b
p

$$

(da,b
p+1)

↔
%%

ICp↘1(F(a))
(da

p)
↔

&& " #

↽a,b
p→1

$$

ICa,b
p+1

da,b
p+1

''

$
%φa,b

p+1

%%
ICp+1(F(b))

db
p+1 ## ICp(F(b))

db
p ## ICp↘1(F(b)).

The p-th (a, b)-persistent interaction Laplacian ”a,b
p : ICp(F(a)) ↑ ICp(F(a))

is defined by
”a,b

p := da,bp+1 ′ (d
a,b
p+1)

→ + (dap)
→
′ dap.

In particular, when a = b, the persistent interaction Laplacian”a,b
p coincides with

the interaction Laplacian ”a
p on ICp(F(a)). Similarly, the persistent interaction

Laplacian operator ”a,b
p is self-adjoint and non-negative definite. The eigenvalues

for ”a,b
p consist of the spectral of the operator. The smallest positive eigenvalue is

the spectral gap, while the second smallest eigenvalue is called the Fiedler vector.
The kernel of ”a,b

p is a subspace of ICp(F(a)), referred to as the (a, b)-persistent
interaction harmonic space. It is worth noting that the complex ICp(F(a)) has the
combinatorial Hodge decomposition with the persistent interaction harmonic space
as a direct sum component. More precisely, we have the following proposition.

Proposition 3.7. For any real numbers a ↓ b, we have ICp(F(a)) = H
a,b
p ⇓

imda,bp+1⇓ im(dap)
→
. Here, the persistent interaction harmonic space H

a,b
p = ker”a,b

p .

Proof. For any x ↔ ICa,b
p+1, we have dbp+1x = φa,bp (y) for some y ↔ ICp(F(a)). It

follows that

dapd
a,b
p+1x = dap(φ

a,b
p )→dbp+1ι

a,b
p+1(x) = dap(φ

a,b
p )→φa,bp (y).

Since the injection φa,b gives IC→(F(a)) the inner product structure inherited
from IC→(F(b)), we have

⇐(φa,bp )→φa,bp (y), z⇒ = ⇐φa,bp (y), φa,bp (z)⇒ = ⇐y, z⇒
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for any z ↔ IC→(F(a)). It follows that (φa,bp )→φa,bp (y) = y. Thus we have

φa,bp↘1(d
a
pd

a,b
p+1x) = φa,bp↘1(d

a
py) = dbpφ

a,b
p (y) = dbpd

b
p+1x = 0.

This shows that dapd
a,b
p+1 = 0. By the algebraic Hodge decomposition theorem,

one has the decomposition

ICp(F(a)) = H
a,b
p ⇓ imda,bp+1 ⇓ im(dap)

→,

where H
a,b
p = ker(da,bp+1)

→
↖ ker dap.

For the simplicial case, the kernel of the persistent Laplacian is isomorphic to
the corresponding persistent homology. In the interaction case, the persistent har-
monic space associated to ”a,b

p is also isomorphic to the corresponding persistent
interaction homology. By [18, Theorem 3.6], one has the following result.

Proposition 3.8. For any real numbers a ↓ b, we have a natural isomorphism

H
a,b
p

⇑= Ha,b
p (F ;R).

The spectrum of the persistent interaction Laplacian ”a,b
p comprises the eigen-

values of ”a,b
p . The harmonic part of the spectrum corresponds to the zero eigen-

values. The non-zero eigenvalues of ”a,b
p , referred to as the non-harmonic spectrum

of ”a,b
p , capture the geometric information of interaction complexes. Compared to

the spectral description of simplicial complexes, which captures the connectivity
information between individual simplices, the spectrum of the interaction complex
describes the connectivity between interaction pairs. Among these eigenvalues, the
smallest positive eigenvalue, denoted by ▷̃a,b

p , holds crucial significance for various
applications. Here, we make the convention that if the smallest positive eigenvalue
does not exist, we set ▷̃a,b

p = 0.

Example 3.2. Example 3.1 continued. In this example, we will compute the inter-
action Laplacians of interaction Vietoris-Rips complexes. The smallest eigenvalues
of the interaction Laplacians provide us with crucial features for datesets. By a
straightforward calculation, we have that

▷̃0(↼) =






0, 0 ↓ ↼ < 1;
3, 1 ↓ ↼ <

∞
2;

4,
∞
2 ↓ ↼.

▷̃1(↼) =






0, 0 ↓ ↼ < 1;
3↗

∞
3, 1 ↓ ↼ <

∞
2;

2,
∞
2 ↓ ↼.

Figure 3 shows that curves of smallest positive eigenvalues of interaction Lapla-
cians. As the filtration parameter ↼ increases, the smallest positive eigenvalues of
interaction Laplacians undergo gradual changes. Specifically, notable variations in
the curve are observed at ↼ = 1 and ↼ =

∞
2. This indicates that the eigenvalues of

Laplacians can capture essential information about the key filtration parameters.

▷̃1(↼) =






0, 0 ↓ ↼ < 1;
2↗

∞
2, 1 ↓ ↼ <

∞
2;

2,
∞
2 ↓ ↼ <

∞
5.

4,
∞
5 ↓ ↼.

Figure 4 shows that curves of smallest positive eigenvalues of usual Laplacians of
X1̸X2 and X1↖X2. The 0-dimensional eigenvalue curve ▷̃0 and the 1-dimensional
eigenvalue curve ▷̃1 coincide for the point sets X1 ̸X2 and X1 ↖X2, respectively.
For the case of the point set X1 ̸X2, Figures 4(a) and (b) do not clearly convey
the variation of eigenvalues for the filtration parameter ↼ = 1. Similarly, for the
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Figure 3. (a) The curve of smallest positive eigenvalues of inter-
action Laplacian at dimension 0; (b) The curve of smallest positive
eigenvalues of interaction Laplacian at dimension 1.

point set X1 ↖X2, Figures 4(c) and (d) do not adequately capture the changes in
eigenvalues for the filtration parameter ↼ =

∞
2.

Figure 4. (a) The curve of smallest positive eigenvalues of the
usual Laplacian of X1̸X2 at dimension 0; (b) The curve of small-
est positive eigenvalues of the usual Laplacian of X1̸X2 at dimen-
sion 1; (c) The curve of smallest positive eigenvalues of the usual
Laplacian of X1 ↖ X2 at dimension 0; (d) The curve of smallest
positive eigenvalues of the usual Laplacian of X1↖X2 at dimension
1.

This example highlights the distinctive nature of the interaction Laplacian com-
pared to the conventional Laplacians on simplicial complexes. The interaction
Laplacian can o!er typical topological and geometric insights into the interaction
space, making it a promising tool for various applications.
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4. Applications. In this section, we apply persistent interaction homology (PIH)
and persistent interaction Laplacians (PILs) to analyze molecular structures. Typ-
ically, a molecule comprises various elements, each playing a distinct role in its
composition. Moreover, interactions and collaborations exist among di!erent types
of atoms within a molecule, implying the presence of internal interactions. Building
upon this understanding, we attempt to employ PIH and PILs for element-specific
molecular structure analysis. Specifically, interaction Betti numbers and interaction
spectral gaps are utilized as topological features to characterize internal interactions
within the molecule. We consider two examples: one involving the structural anal-
ysis of closo-carboranes. In closo-carboranes, which contain carbon, nitrogen, and
hydrogen atoms, the position of carbon atoms is crucial. This prompts us to fo-
cus on carbon elements as the interaction components. Through the computation
of interaction features, we find that interaction spectral gaps indeed reflect struc-
tural information of closo-carboranes molecules. Another application we consider
is chlorophyll. In chlorophyll molecules, nitrogen and magnesium atoms are core
components responsible for absorbing light energy and converting it into chemical
energy. Here, we focus on nitrogen elements as the interaction components and com-
pute their interaction Betti numbers and interaction spectral gaps features. These
calculations and applications underscore the vast potential of PIH and PILs.

4.1. Structural analysis of closo-carboranes. In this work, we will analyze the
structure of closo-carboranes, specifically C2Bn↘2Hn, where n ranges from 5 to 20.
Each closo-carborane molecule consists of atoms of three elements: C, B, and H.
Typically, the atomic coordinates of these C, B, and H atoms are treated as points,
which can be transform into a filtration of Vietoris-Rips complexes. Subsequently,
the persistent homology and persistent Laplacian are computed. For each dimension
n, two curves are obtained: one representing the Betti numbers as a function of the
filtration parameter, denoted as εn(t), and the other depicting the smallest positive
eigenvalue of the Laplacian, also known as the spectral gap, with respect to the
filtration parameter, expressed as ▷n(t). These curves provide insights into the
essential topological features and geometric properties of the data points.

One closo-carborane, C2Bn↘2Hn, can be considered as the union of point sets
X1 and X2 corresponding to {C2Bn↘2} and {C2Hn}, respectively. Additionally, the
intersection of X1 and X2 consists of points formed by two carbon atoms. As illus-
trated in Figure 7(b), C2B18H20 can be viewed as an interaction between {C2B18}

and {C2H20}. This interaction reflects the relationships and interactions among
atoms of di!erent elements, providing a more nuanced representation than treating
all elements as equivalent points. Furthermore, we obtain information from the per-
sistent homology and persistent Laplacians of these distinct sets. In our approach,
we treat closo-carboranes as interaction systems, constructing their corresponding
interaction Vietoris-Rips complexes. We then compute the interaction homology
and interaction Laplacian, resulting in the corresponding interaction Betti curves
and interaction spectral gap curves.

Figure 5 illustrates the interaction feature curves of the most stable configurations
of C2B3H5 and C2B13H15. The molecule C2B3H5 can be regarded as the interaction
between the subsystems {C2B3} and {C2H5}, while C2B13H15 can be seen as the
interaction between {C2B13} and {C2H15}. In our dataset, C2B3H5 exhibits six pos-
sible configurations, while C2B13H15 has 135 configurations. Figures 5 (b) and (c)
depict the bond-stick representations of the most stable configurations for C2B3H5

and C2B13H15, respectively. Figures 5 (d) and (e) correspond to the 0-dimensional
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Figure 5. (a) The ball representation of the most stability config-
uration of C2B3H5. (b) The ball-stick representation of the most
stability configuration of C2B3H5. (c) The ball-stick representation
of the most stability configuration of C2B13H15. (d) The interac-
tion Betti curve of the most stability configuration of C2B3H5 in
dimension 0. (e) The interaction Betti curve of the most stabil-
ity configuration of C2B3H5 in dimension 1. (f) The interaction
spectral gap curve of the most stability configuration of C2B3H5 in
dimension 0. (g) The interaction spectral gap curve of the most sta-
bility configuration of C2B3H5 in dimension 1. (h) The interaction
spectral gap curve of the most stability configuration of C2B13H15

in dimension 0. (i) The interaction spectral gap curve of the most
stability configuration of C2B13H15 in dimension 1.

and 1-dimensional interaction Betti curves for C2B3H5, revealing limited informa-
tion due to the challenging formation of interaction cycles between {C2B3} and
{C2H5}. Figures 5 (f) and (g) showcase the 0-dimensional and 1-dimensional in-
teraction spectral gaps of C2B3H5, providing more enriched information compared
to interaction homology. Meanwhile, the 0-dimensional and 1-dimensional spectral
gaps for C2B13H15 are illustrated in Figures 5 (h) and (i). This example high-
lights the rich geometric information inherent in interaction Laplacians, suggesting
potential applications.

Figure 6 illustrates the six distinct configurations of C2B3H5 and provides the
interaction spectral gap curves in dimension 0 for each configuration. In our com-
putations, we treat C2B3H5 as arising from the interaction between the subsystems
{C2B3} and {C2H5}. Upon careful visual inspection in Figure 6(a) and (b), we
observe subtle di!erences in the C-H bonds, C-B bonds, B-H bond lengths, and
overall shapes between configurations C2B3H5-1 and C2B3H5-2 compared to the
other configurations. However, distinctions are harder to discern in Figures 6(c),
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Figure 6. (a)-(f) Representation of the six distinct configura-
tions of C2B3H5. These configurations are individually denoted
as C2B3H5-1, C2B3H5-2, ... , C2B3H5-6. (g)-(l) Illustration of the
interaction spectral gap curves ▷̃0(t) for the six di!erent configu-
rations of C2B3H5 in dimension 0. (m) Compilation of interaction
spectral gap curves for the configurations C2B3H5-3, C2B3H5-4,
C2B3H5-5, and C2B3H5-6. (n) Comparison of the interaction spec-
tral gap curves of the configurations C2B3H5-1, C2B3H5-2, and
C2B3H5-3.
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(d), (e), (f). The interaction spectral gap curves displayed in Figures 6(g)-(l) re-
veal significant di!erences, particularly for configurations C2B3H5-1 and C2B3H5-2
when compared to the other configurations. As shown in Figure 6(m), configura-
tions C2B3H5-3, C2B3H5-4, C2B3H5-5, and C2B3H5-6 appear nearly identical. In
contrast, Figure 6(n) indicates significant di!erences among configurations C2B3H5-
1, C2B3H5-2, and C2B3H5-3. Note that C2B3H5-5 and C2B3H5-6 are enantiomers
of each other, both possessing an identical enthalpy of formation of -153.810980788
eV [4]. For each configuration X of C2B3H5, we calculate the relative enthalpy of
formation using the equation

”E = E(X)↗ E(C2B3H5-5) = E(X)↗ 153.810980788.

The resulting relative enthalpies of formation are summarized in Table 2. From

Table 2. The relative enthalpy of formation of the configurations
of C2B3H5.

C2B3H5 C2B3H5-1 C2B3H5-2 C2B3H5-3 C2B3H5-4 C2B3H5-5 C2B3H5-6

!E 0.078485 0.033149 0.000178 0.000026 0.0 0.0

Table 2, it is evident that the enthalpies of formation for the configurations C2B3H5-
3, C2B3H5-4, C2B3H5-5, and C2B3H5-6 are quite close. However, the enthalpies of
formation for the configurations C2B3H5-1 and C2B3H5-2 di!er significantly from
those of the other configurations. Therefore, the information from interaction Lapla-
cians indeed reflects the similarities and di!erences among various configuration
forms of C2B3H5.

Figure 7(c) highlights the low-dimensional interaction features of C2B18H20,
while Figure 7(d) provides a more global view of the higher-dimensional interac-
tion structure. Around ↼ = 1.1Å, we begin to observe the emergence of dense
0-dimensional interaction features. More significant changes in 1-dimensional inter-
action features appear near ↼ = 1.1Å and ↼ = 5.0Å.

Compared to classical persistent homology and persistent Laplacian, interaction
persistent homology and persistent Laplacian are more capable of reflecting the
interactive relationships among di!erent components within a system. Therefore,
the information provided by interaction topological features may not necessarily
be more comprehensive than that of classical persistent homology and persistent
Laplacian. Examining Figure 3, when comparing Laplacian information generated
by the classic Vietoris-Rips complex with that of the interaction Vietoris-Rips com-
plex, we observe that interaction topological information tends to be simpler. This
is because interactions primarily reflect specific interactive information, which is
often less globally informative but distinct from overall information. This under-
scores the potential applications of interaction topology. Particularly, in the case of
multi-component systems, where the focus is often on relationships between di!er-
ent parts, the advantages of interaction homology and interaction Laplacian become
evident. Furthermore, in our example, the computational e$ciency of interaction
spectral gaps is notable. We considered closo-carboranes C2B13H15 and C2B18H20,
running the computations on our laptop (CPU: AMD Ryzen 5 5600H). As shown
in Table 3, when comparing the computation time of spectral gap curves between
Vietoris-Rips complex and interaction Vietoris-Rips complex, based on the same
code design and operating environment, we found that the computational e$ciency
of interaction spectral gap curves was significantly superior to classic persistent
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Figure 7. (a) The ball-stick representation of C2B18H20. (b) The
representation of interaction between {C2B18} and {C2H20} within
C2B18H20. (c) The interaction spectral gap curve of C2B18H20 in
dimension 0. (d) The interaction spectral gap curve of C2B18H20

in dimension 1.

spectral gap curves based on Vietoris-Rips complexes. For a Vietoris-Rips complex
built on a point set with n vertices, the 0-dimensional combinatorial Laplacian is
an n×n matrix, and computing its full spectrum via standard methods such as the
QR algorithm incurs a complexity of O(n3). In contrast, when the point set is de-
composed into two subsets with an intersection of size k, the associated interaction
Laplacian is a k × k matrix, whose eigenvalues can be computed in O(k3) time. A
small intersection size k thus leads to a significant reduction in computational cost.
For example, in the molecular dataset involving C2B13H15, we model the structure
as the interaction between C2B13 and C2H15, which intersect at only k = 2 atoms.
As a result, computing the 0-dimensional spectral gap ▷̃0 becomes much more ef-
ficient than computing the corresponding eigenvalue of the full 30 × 30 Laplacian
matrix. In practice, the dominant cost in our pipeline arises from constructing in-
teraction complexes and sweeping over the persistence parameter, rather than from
eigendecomposition itself.

Table 3. The runtime of the curves for the smallest positive eigen-
values of the Laplacians for C2B13H15 and C2B18H20 in dimensions
0 and 1.

Spectral gaps ω̃0-C2B13H15 ω̃1-C2B13H15 ω̃0-C2B18H20 ω̃1-C2B18H20

VR complexes 132.41s 130.05s 2866.85s 30850.31s

Interation VR complexes 48.23s 47.99s 131.27s 131.94s
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4.2. Interaction within chlorophyll. Chlorophyll is a green pigment found in
plants, algae, and some bacteria, and it plays a vital role in photosynthesis, the
process by which plants convert light energy into chemical energy. Chlorophyll
molecules contain elements such as C, H, O, N, and Mg, with nitrogen (N) and
magnesium (Mg) being crucial for photosynthesis. The magnesium atom sits at
the core of the chlorophyll molecule, forming its central structure, aiding in the
absorption of light energy to excite electron states. Meanwhile, nitrogen primarily
stabilizes the molecular structure and plays a vital role in the propagation of elec-
trons and energy. The combined action of nitrogen and magnesium in chlorophyll
facilitates the absorption of light energy and its conversion into chemical energy.

Considering chlorophyll-a C55H72O5N4Mg and chlorophyll-b
C55H70O6N4Mg within our mathematical model, we treat the magnesium and ni-
trogen atoms as a cohesive unit responsible for energy absorption and generation.
On the other hand, we regard nitrogen atoms and other chlorophyll structures as
a cohesive unit responsible for the complex propagation and utilization of energy.
Thus, we delineate two interacting components: {C,H,O,N} and {N,Mg}, and
compute their persistent interaction homology and persistent interaction Lapla-
cian. Chlorophyll-a and chlorophyll-b are both large molecules, composed of 137
and 136 atoms respectively. Computing their topological properties using the tradi-
tional Vietoris-Rips complex and persistent homology would be highly demanding
and time-consuming. By employing the interaction persistent homology with persis-
tence parameters ranging from 0Å to 6Å. On our laptop setup (CPU: AMD Ryzen
5 5600H), the computational time is estimated to range from approximately 4000
to 8000 seconds.

As illustrated in Figure 8(a) and (b), chlorophyll-b closely resembles chlorophyll-
a, distinguished by the presence of an additional carbonyl group on one of its rings.
The disparities between chlorophyll-a and chlorophyll-b can be discerned through
their interaction Laplacians. Specifically, the interaction spectral gap curves of
chlorophyll-a and chlorophyll-b exhibit distinct behaviors, as depicted in Figure
8(c) and (d). In Figure 8(e) and (f), we observe the evolution of the interaction
Vietoris-Rips complexes corresponding to chlorophyll-a and chlorophyll-b molecules.
We find that the interaction Laplacian proves to be more e$cient and practical in
studying large molecules with multiple elements at certain times. Of course, for
a detailed investigation of the interaction topology of molecules, it is necessary
to di!erentiate the coordinates of di!erent elements within large molecules and to
select appropriate interaction objects. Under such conditions, we can then compute
the interaction topological features.

5. Conclusion. While having achieved enormous success in the past decade, tra-
ditional topological data analysis (TDA) methods su!er from the lack of element
specificity, being qualitative, and inability of capturing non-topological changes dur-
ing the filtration. Interaction provides insights into the mutual influence among
various elements within a system. Understanding interactions helps elucidate how
these components a!ect each other’s behaviors, properties, and functions, often
resulting in emergent phenomena or system-level outcomes that cannot be fully
explained by considering individual elements in isolation or the point cloud as a
whole. However, studying interactions within systems and spaces is often a highly
complex task, involving numerous intricate details and sources of interference. From
a topological perspective, investigating interaction behaviors is highly worthwhile
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Figure 8. (a) The molecular structure representations of
chlorophyll-a. (b) The molecular structure representations of
chlorophyll-b. (c) The interaction spectral gap curves of
chlorophyll-a in dimension 0 and dimension 1. (d) The interaction
spectral gap curves of chlorophyll-b in dimension 0 and dimen-
sion 1. (e) The filtration of interaction Vietoris-Rips complexes of
chlorophyll-a. (f) The filtration of interaction Vietoris-Rips com-
plexes of chlorophyll-b.

for two main reasons: topology can grasp the essential elements and holistic fea-
tures of data; and secondly, element-specific topological features are conveniently
computable and possess strong robustness. For these reasons, we focus on applying
theories related to interaction topology in data science.

In this work, we present the concepts of persistent interaction homology (PIH)
and persistent interaction Laplacian (PIL). The interaction topology focuses on the
homotopy types of intersections between subspaces within a space, along with their
corresponding homology invariants. We begin by establishing the concept of the
interaction Laplacian, wherein its kernel space is isomorphic to the interaction ho-
mology. Building upon the foundation of interaction topology, we introduce PIH
and PILs as innovative methods within the field of topological data analysis. Fur-
thermore, we also demonstrate the stability of persistent interaction homology as a
persistent module. For finite point sets in Euclidean spaces, we provide the construc-
tion of interaction Vietoris-Rips complexes, enabling the computation of persistent
interaction homology and persistent interaction Laplacians for finite point sets. The
proposed persistent interaction topology can be utilized to extract element-specific
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topological information, which is essential to the success of TDA [7]. In practical
applications, we utilize PIH and PILs for extracting topological features from closo-
carboranes and chlorophyll molecules, demonstrating the utility of the proposed
methods.

In the future, we envision further advancements in the methodology of PIH and
PILs. On a theoretical part, PIH and PILs currently reside at a conceptual stage,
awaiting deeper exploration of the underlying mathematical principles and ideas.
In applications, we aspire to see the use of PIH and PILs in data science, tackling
specific challenges in physics, materials science, molecular biology, and beyond. We
believe that PIH and PILs will play a significant role in a wide range of data analysis
fields.

Data and code availability. The data and source code used in this work is pub-
licly available in the Github repository: https://github.com/WeilabMSU
/InteractionTop.
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