
AER: Insights 2024, 6(4): 509–525 
https://doi.org/10.1257/aeri.20230617

509

Noise-Tolerant Community Enforcement 
and the Strength of Small Stakes†

By Drew Fudenberg and Alexander Wolitzky*

We study community enforcement in a large population with noisy 
monitoring. We focus on equilibria in the prisoner’s dilemma that 
are coordination proof, meaning that matched partners never play 
a Pareto-dominated Nash equilibrium in the one-shot game induced 
by the equilibrium continuation payoffs at their current histories. We 
show that a noise-tolerant version of contagion strategies is opti-
mal among all coordination-proof equilibria. Welfare under toler-
ant contagion strategies decreases in the noise level and the gain 
from defection faster than welfare in a fixed partnership does. Thus, 
community enforcement has a comparative advantage in supporting 
“low-stakes”relationships. (JEL C72, C73, C78, Z13)

Repeated game models of decentralized cooperation in large societies—“com-
munity enforcement”—have been used to explain cooperation in settings such as 
merchant coalitions (Milgrom, North, and Weingast 1990; Greif 1993), credit and 
risk-sharing institutions (Klein 1992; Karlan et  al. 2009; Bhaskar and  Thomas 
2019), village economies (Jackson, Rodriguez-Barraquer, and  Tan 2012), and 
online markets (Friedman and Resnick 2001; Tadelis 2016). In all of these settings, 
in reality a partnership has a significant chance of failing even when both partners 
act in good faith. However, this feature—which we simply call noise—is largely 
absent from canonical community enforcement models: existing models are often 
robust to introducing a small amount of noise, but they are typically ill-suited to 
studying cooperation when noise is substantial and causes welfare to fall short of the 
first best. Consequently, existing models cannot assess how welfare under commu-
nity enforcement compares to that under other social or institutional arrangements 
when noise is present or how this comparison depends on the noise level and other 
parameters. This is an important shortcoming because these comparisons influence 
which kinds of economic transactions are more likely to be mediated by community 
enforcement rather than alternatives such as repeated interaction in a fixed partner-
ship or small group.

This paper develops a simple model of community enforcement under noise. 
We consider the prisoner’s dilemma with random matching and perfectly com-
plementary actions, where matched partners who cooperate obtain a success with 
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probability ​p  <  1​, while success is impossible if either partner defects. We adapt 
the continuum player model of Clark, Fudenberg, and Wolitzky (2021)—hereafter, 
CFW—by specifying that each player observes their partner’s history of successes 
and failures and that the population distribution of histories is in a steady state. 
Thus, while each partnership is subject to noise, the noise washes out in aggregate. 
We also follow CFW in focusing on equilibria that are “coordination proof,” mean-
ing that matched partners never play a Pareto-dominated Nash equilibrium in the 
one-shot game induced by the equilibrium continuation payoffs at their current 
histories.

Our first result is that a noise-tolerant version of the contagion strategies intro-
duced by Kandori (1992) is optimal among all coordination-proof equilibria. (Our 
strategies differ from Kandori’s in that failure leads to punishment only probabilis-
tically, by conditioning on the outcome of a randomization device.) When players’ 
time horizons are sufficiently long, welfare under these strategies is given by a sim-
ple formula and is decreasing in both the noise level and the gain from defection. 
This gives a simple theory of how welfare under community enforcement depends 
on noise and the defection gain.

We then compare welfare under community enforcement with welfare when 
players interact in fixed partnerships (without rematching). Our second result is that, 
as either noise or the defection gain increases, welfare under community enforce-
ment falls faster than welfare in fixed partnerships. Thus, community enforcement 
is less robust to noise (or to increases in the defection gain) than is cooperation in 
fixed partnerships. Intuitively, noise inevitably causes some players to switch from 
cooperation to defection—in either community interactions or fixed partnerships—
but in community interactions, contagion additionally causes defection to spread to 
some innocent players.

Our results speak to the classic question of how productive activities should be 
divided between small-scale groups, such as fixed partnerships, and larger commu-
nities or markets. The key trade-off between these modes of production is thought to 
be that trust is easier to sustain in a fixed partnership, while wider interactions allow 
greater specialization and productive efficiency. Thus, a typical conclusion is that 
if agents are sufficiently forward looking to sustain trust in community-wide inter-
actions, these interactions are more efficient than interactions in fixed partnerships, 
while if agents are more myopic, it is more efficient to retreat into fixed partner-
ships where trust is easier to sustain.1 Our results instead imply that if community 
interactions have an exogenous productivity advantage over fixed partnerships (e.g., 
due to specialization), then overall social welfare is higher under community inter-
actions if noise is sufficiently low and the defection gain is sufficiently small and is 
higher under fixed partnerships otherwise. In particular, if we adopted the “variable 
stakes”  framework of Ghosh and Ray (1996); Kranton (1996); or Ali and Miller 
(2016), where the defection gain is relatively larger in higher-stakes relationships, 
then community interactions would have a comparative advantage in supporting 

1 Arguments along these lines have been made by many scholars, including Putnam, Leonardi, and Nonetti 
(1993); Greif (1994); Dixit (2003); Karlan et al. (2009); and Seabright (2010).
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low-stakes relationships.2 This finding echoes the classic intuitions of Granovetter 
(1973) and Putnam (2000) that “weak ties” or “bridging social capital”—that is, 
low-stakes but nonetheless valuable interactions, such as advice or job recommen-
dation networks—are key benefits of community interactions.3

Related Literature.—We contribute to the community enforcement literature 
by developing a tractable model where maximum equilibrium welfare depends 
on the amount of noise. Classic community enforcement models like Kandori 
(1992) and Okuno-Fujiwara and  Postlewaite (1995) exclude noise altogether, as 
do many subsequent papers including Dixit (2003); Karlan et al. (2009); Jackson, 
Rodriguez-Barraquer, and  Tan (2012); and Wolitzky (2013). Ellison (1994); 
Takahashi (2010); Deb, Sugaya, and Wolitzky (2018); Heller and Mohlin (2018); 
and CFW establish folk theorems in the limit of vanishingly little noise.4 Bhaskar 
and Thomas (2019) consider a model with one-sided moral hazard, where there is 
no scope for contagion, and efficiency under community enforcement can be as high 
as in a fixed partnership. Finally, Clark, Fudenberg, and Wolitzky (2020) analyze the 
performance of a class of tolerant trigger strategies that are similar to the tolerant 
contagion strategies we consider. However, that paper has a different information 
structure (players only observe their current partner’s past actions), under which 
tolerant trigger strategies are suboptimal and efficiency is determined by stage game 
strategic complementarity (which is irrelevant in the current paper) rather than noise.

I.  Cooperation in a Large Community

This section develops our model of cooperation in a large community and char-
acterizes maximum welfare in this setting. Section II will then compare this welfare 
level with the maximum attainable welfare in a fixed partnership.

A. Matching and Pairwise Interactions

There is a unit mass of players, each of whom has a geometrically distributed 
lifespan with continuation probability ​γ  ∈ ​ (0, 1)​​, with exits balanced by an inflow 
of new entrants of size ​1 − γ​. The time horizon is doubly infinite, so there is no fixed 
start date.

Each period, the players randomly match in pairs to play the prisoner’s dilemma 
stage game, with expected payoffs

(1)	​​ 

 

​ 

C

​ 

D

​   C​  1, 1​  −ℓ, 1 + g​   
D

​ 
1 + g, −ℓ

​ 
0, 0

 ​​   ,

2 We do not formally introduce variable stakes or a productivity difference between community and partnership 
interactions in our model, as this point is straightforward given our results for the standard prisoner’s dilemma.

3 Earlier models such as Dixit (2003); Karlan et al. (2009); Ali and Miller (2013); and Wolitzky (2013) capture 
related intuitions, but the logic of these models is very different because they do not involve noise.

4 These papers make different population structure and observability assumptions. Our doubly infinite time 
model with long player histories is most similar to Heller and Mohlin (2018) and CFW, as well as earlier papers on 
learning in games such as Fudenberg and Levine (1993) and Fudenberg and He (2018).
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where ​g, ℓ  >  0​. The public outcome of each bilateral interaction is either ​S​ (a suc-
cess) or ​F​ (a failure). We assume that the probability of a success when the partners 
take actions ​a  ∈ ​​ {C, D}​​​ 2​​ is given by

(2)	​ Pr​(S | a)​  = ​​ {​​​p​  if a  = ​ (C, C)​​  
0
​ 

otherwise
 ​ ,​​

where ​0  <  p  <  1​. Thus, the public outcome can only be a success if both partners 
cooperate, but success is never assured. As we explain in Section  III, our results 
extend to the case where ​Pr​(S | a)​  =  q​ for all ​a  ≠ ​ (C, C)​​, for sufficiently small ​
q  >  0​. In addition to generating a public outcome, each bilateral interaction also 
generates an independent uniform ​​[0, 1]​​ random variable ​z​, which, like the public 
outcome, is publicly observed at the end of the period. These additional random 
variables, which we call pairwise randomizations, amount to having a separate pub-
lic randomizing device for each matched pair. We discuss the interpretation and role 
of these randomizations in Section IE.

When two players meet, each observes the other’s entire history of past out-
comes and random draws (and no further information), which is an element of ​ 
H  =  ∅  ∪ ​ ⋃ t=1​ ∞ ​​​​(​{S, F}​ × ​[0, 1]​)​​​ t​​, where a new entrant has the null history ​∅​ and 
an experienced player’s history is the record of their past outcomes along with the 
corresponding values of ​z​. Players also recall their own histories. Thus, a pure strat-
egy is a function ​σ : H × H  → ​ {C, D}​​, with the convention that the first coordi-
nate is a player’s own history and the second is the opponent’s history.5 We restrict 
attention to symmetric pure-strategy profiles, where each player uses the same pure 
strategy.6 We henceforth omit the qualifiers “symmetric” and “pure” without further 
comment and use the same notation ​σ​ for an individual strategy and a (symmetric) 
strategy profile.

B. Aggregate Behavior and Equilibrium

The state ​μ  ∈  Δ​(H)​​ of the community describes the share of players with each 
possible history.7 Since there is a continuum of players, under any strategy profile ​σ​, 
the state evolves according to a deterministic transition function ​​f​σ​​ : Δ​(H)​  →  Δ​(H)​​ . 
A steady state under ​σ​ is a state ​μ​ such that ​​f​σ​​​(μ)​  =  μ​.8 One can then define the 
expected continuation payoff ​​(1 − γ)​​∑ t​   ​​ ​γ​​ t​ E​[​u​t​​]​​ of a player with any history ​h  ∈  H​ 
at a steady state ​μ​, when all other players in the population follow ​σ​ and the player 
under consideration plays an arbitrary strategy ​​σ ′ ​​. An equilibrium is a pair ​​(σ, μ)​​ 

5 In principle, a player could condition on their own past actions in addition to their history of successes and 
failures, but as we allow public randomization, there is no benefit to doing so. Since ​H​ is a continuum due to the ran-
dom variables ​z​, we also formally require that strategies are measurable functions on ​H × H​, where ​H​ is endowed 
with the weak* topology.

6 Restricting to pure equilibria simplifies the analysis and also captures a type of robustness. We could alter-
natively further restrict attention to strict equilibria. This would yield almost the same analysis except for some 
technicalities resulting from the fact that the set of strict equilibria is not closed. In contrast, mixed strategies would 
allow ​​(C, D)​​ and ​​(D, C)​​ to be played on the equilibrium path, which as discussed below would greatly complicate 
the analysis.

7 Formally, since ​H​ is a continuum, the state describes the measure of players with each measurable set of 
histories.

8 Section IE discusses the details involved in constructing the transition function and the issue of the existence 
of a steady state. 
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such that ​μ​ is a steady state under ​σ​ and, for any history ​h​, the expected continuation 
payoff of a player with history ​h​ is maximized by taking ​​σ ′ ​  =  σ​. Finally, welfare 
at an equilibrium ​​(σ, μ)​​ is defined as the average payoff in the population at state ​μ​ 
under strategy ​σ​. Note that welfare is equal to the expected lifetime payoff of a new 
entrant because the steady-state distribution ​μ​ also describes the fraction of periods 
in which an entrant expects to have each history.

A preliminary observation is that in any (pure) equilibrium, only ​​(C, C)​​ and ​​
(D, D)​​ are played along the equilibrium path. To see this, observe that equation (2) 
implies that when the opponent defects, the probability of success is independent of 
a player’s own action. Since future opponents will observe only whether the current 
outcome is a success or a failure (as well as the uniform variable ​z​), and ​D​ is dom-
inant in the stage game, this implies that ​D​ is the unique best response of a player 
who anticipates that their opponent will play ​D​. Thus, only ​​(C, C)​​ and ​​(D, D)​​ can be 
played along the equilibrium path.

The fact that only ​​(C, C)​​ and ​​(D, D)​​ are played on path implies that equilibrium 
incentives can be provided only through surplus creation and destruction—switching 
from ​​(D, D)​​ to ​​(C, C)​​ or vice versa—rather than surplus transfers between matched 
partners, which would occasionally require ​​(C, D)​​ or ​​(D, C)​​ to be played. This fea-
ture greatly simplifies the analysis as well as ensuring that first-best efficiency is 
unattainable regardless of the players’ expected lifespans.9

C. Coordination-Proof Equilibria

We say that an equilibrium is coordination proof if matched partners never play 
a Pareto-dominated Nash equilibrium in the one-shot game induced by the equilib-
rium continuation payoffs at their current histories.10

We restrict attention to coordination-proof strategies throughout our analy-
sis. The motivation for imposing this refinement is that an equilibrium that is not 
coordination proof would break down if a pair of matched partners could manage 
to coordinate on the efficient equilibrium in their interaction (taking behavior in 
the rest of the population as given). The following lemma describes the key impli-
cation of coordination-proofness for our analysis (indeed, the only implication of 
coordination-proofness that we will use).11

LEMMA 1: In any coordination-proof equilibrium ​​(σ, μ)​​, the set of all histories ​H​ 
can be partitioned into two sets, ​​H​​ C​​ and ​​H​​ D​​, such that:

	 (i)	 Players with histories in ​​H​​ C​​ cooperate against opponents with histories in ​​
H​​ C​​: ​σ​(h, ​h ′ ​)​  =  C​ for all ​h, ​h ′ ​  ∈ ​ H​​ C​​.

	 (ii)	 Players with histories in ​​H​​ C​​ defect against opponents with histories in ​​H​​ D​​:  
​σ​(h, ​h ′ ​)​  =  D​ for all ​h  ∈ ​ H​​ C​, ​h ′ ​  ∈ ​ H​​ D​​.

9 Our results would be similar if ​Pr(S | (C, D))  ≠  Pr(S | (D, D))​ but ​ℓ​ is sufficiently large, as then too only ​(C, C)​ 
and ​(D, D)​ are played on path.

10 See Definition 4 in CFW for the formal definition of coordination-proofness.
11 The lemma relies on our assumption that actions are perfect complements: ​Pr​(S | ​(C, D)​)​  =  Pr (S | ​(D, D)​​. 

Without this assumption, more equilibria can be coordination proof, including ones where ​​(C, D)​​ is played on the 
equilibrium path.
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	 (iii)	 Players with histories in ​​H​​ D​​ defect against all opponents: ​σ​(h, ​h ′ ​)​  =  D​ for 
all ​h  ∈ ​ H​​ D​, ​h ′ ​  ∈  H​.

PROOF:
Fix a coordination-proof equilibrium ​​(σ, μ)​​, and define ​​H​​ C​  =  

​{h  ∈  H : ∃ ​h ′ ​  ∈  H  such that  σ​(h, ​h ′ ​)​  =  C}​​ and ​​H​​ D​  =  H \ ​H​​ C​​. By definition,  
​σ​(h, ​h ′ ​)​  =  D​ for all ​h  ∈ ​ H​​ D​, ​h ′ ​  ∈  H​. Moreover, since ​C​ is never a best response 
against an opponent who plays ​D​ (as ​Pr​(S | ​(C, D)​)​  =  Pr​(S | ​(D, D)​)​​ and ​D​ is domi-
nant in the stage game), we have ​σ​(h, ​h ′ ​)​  =  D​ for all ​h  ∈ ​ H​​ C​, ​h ′ ​  ∈ ​ H​​ D​​.

It remains to show that ​σ​(h, ​h ′ ​)​  =  C​ for all ​h, ​h ′ ​  ∈ ​ H​​ C​​. Fix any ​h, ​h ′ ​  ∈ ​ H​​ C​​. 
Since ​C​ is never a best response against an opponent who plays ​D​, the fact that ​h, ​
h ′ ​  ∈ ​ H​​ C​​ implies that for a player with history ​h​ or ​​h ′ ​​, ​C​ is a best response against an 
opponent who plays ​C​. Hence, when players with histories ​h​ and ​​h ′ ​​ meet each other, 
both ​​(C, C)​​ and ​​(D, D)​​ are equilibria in the induced one-shot game. Next, since ​C​ is 
sometimes a best response for these players even though ​D​ is dominant in the stage 
game, their expected continuation payoffs must each be higher when the outcome of 
their match is ​S​ rather than ​F​. This implies that the ​​(C, C)​​ equilibrium yields higher 
expected continuation payoffs for both players (since the probability of ​S​ is higher) 
as well as higher stage game payoffs for both players, relative to the ​​(D, D)​​ equilib-
rium. Therefore, coordination-proofness requires that ​σ​(h, ​h ′ ​)​  =  σ​(​h ′ ​, h)​  =  C​. ∎

Given Lemma 1, a coordination-proof equilibrium is entirely described by the 
partition ​​{​H​​ C​, ​H​​ D​}​​. Henceforth, given a coordination-proof equilibrium, we simply 
refer to players with histories in ​​H​​ C​​ as cooperators and to players with histories in ​​
H​​ D​​ as defectors.

Our first main result is a bound on the payoff of any coordination-proof equi-
librium.12 We will subsequently show that when ​γ​ is sufficiently large, this bound 
is tight and is attained by a version of contagion strategies. Hence, the bound ​​W 

–
 ​​ 

derived in the proposition will be key for comparing welfare in communities and 
partnerships in Section II.

PROPOSITION 1: For any continuation probability ​γ​, welfare in any 
coordination-proof equilibrium is bounded above by ​​W 

–
 ​  = ​​ μ – ​​​ 2​​, where

	​​ μ – ​  = ​​
⎧
 

⎪

 ⎨ 
⎪
 

⎩
​​​​ 
1 + g

 _ 
2
  ​ + ​√ 

___________

  ​​(​ 1 + g
 _ 

2
  ​)​​​ 

2

​ − ​ g _ p ​ ​​  if  p  ≥ ​   4g
 _ 

​​(1 + g)​​​ 2​
 ​ ,​     

0

​ 

otherwise.

 ​ ​​

Note that the condition ​p  ≥  4g/​​(1 + g)​​​ 2​​ can only be satisfied if ​g  ≤  1​, regard-
less of ​p​. Thus, no cooperation is possible in a coordination-proof community equi-
librium if ​g  >  1​. Moreover, as noise increases, cooperation becomes impossible 

12 The proof of this result builds on the proof of Lemma 11 of Clark, Fudenberg, and Wolitzky (2020).
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even for smaller values of ​g​: for example, if ​p  =  8/9​, then cooperation is impossi-
ble whenever ​g  ≥  1/2​.

PROOF:
Fix a coordination-proof equilibrium with partition ​​{​H​​ C​, ​H​​ D​}​​. Let ​​μ​​ C​  = ​ ∫ ​H​​ C​​ 

 
 ​​  𝑑μ​ 

denote the share of cooperators. Suppose that ​​μ​​ C​  >  0​.
For any ​h  ∈  H​, let ​V​(h)​​ denote the expected continuation payoff of a player 

with history ​h​. Note that ​V​(h)​  ≥  0​ for all ​h  ∈  H​ since a player’s minmax payoff 
is ​0​. Next, let ​​V 

–
​  = ​ sup​h∈H​​ V​(h)​​. Note that ​​V 

–
​  >  0​ since ​V​(h)​  ≥  0​ for all ​h​ and ​​

μ​​ C​  >  0​ . We claim that ​​V 
–
​  = ​ sup​h∈​H​​ C​​​ V​(h)​​. Otherwise, there would exist ​h  ∈ ​ H​​ D​​ 

such that ​V​(h)​  > ​ sup​​h ′ ​∈​H​​ C​​​ V​(​h ′ ​)​​, but since all defectors obtain a stage game payoff 
of ​0​, we have ​V​(h)​  ≤  γ​ sup​​h ′ ​∈​H​​ C​​​ V​(​h ′ ​)​​.

Now consider a cooperator with history ​h  ∈ ​ H​​ C​​. Let ​V​(h, S)​ = ​ E​z​​​[V​(h, S, z)​]​​  
and ​V​(h, F)​ = ​ E​z​​​[V​(h, F, z)​]​​ denote this player’s expected continuation payoff when 
their current-period outcome is a success or a failure, respectively. Since this player 
cooperates against opponents in ​​H​​ C​​ and defects against opponents in ​​H​​ D​​, we have

	​ V​(h)​  = ​ (1 − γ)​​μ​​ C​ + γ​[p​μ​​ C​ V​(h, S)​ + ​(1 − p​μ​​ C​)​V​(h, F)​]​.​

At the same time, since the player prefers to play ​C​ against an opponent who plays ​
C​, we have

	​ γp​[V​(h, S)​ − V​(h, F)​]​  ≥ ​ (1 − γ)​g.​

Combining these inequalities, we have

	​ ​  p
 _ 

1 − p​μ​​ C​
 ​​(​μ​​ C​ − V​(h)​ + ​  γ _ 

1 − γ ​​[V​(h, S)​ − V​(h)​]​)​  ≥  g.​

This inequality holds for all ​h  ∈ ​ H​​ C​​ and ​​V 
–
​  = ​ sup​h∈​H​​ C​​​ V​(h)​  ≥ ​ sup​h∈​H​​ C​​​ V​(h, S)​​, so

	​ ​  p
 _ 

1 − p​μ​​ C​
 ​​(​μ​​ C​ − ​V 

–
​)​  ≥  g.​

Moreover, the expected lifetime payoff of a new entrant equals ​​​(​μ​​ C​)​​​ 2​​ (the share of 
matches that cooperate), so ​​V 

–
​  ≥ ​​ (​μ​​ C​)​​​ 2​​. Hence, we have

	​ ​ 
p​μ​​ C​​(1 − ​μ​​ C​)​

  _ 
1 − p​μ​​ C​

 ​   ≥  g  ⇔  ​​​​(​μ​​ C​)​​​ 2​ − ​(1 + g)​​μ​​ C​ + ​ g _ p ​  ≤  0.​

This implies that ​​μ​​ C​  ≤ ​ μ – ​​. Since welfare equals ​​​(​μ​​ C​)​​​ 2​​, we conclude that welfare is 
bounded above by ​​μ – ​ ​​​​ 2​​. ∎

D. Tolerant Contagion Strategies

We will show that the following class of coordination-proof strategies attains the 
welfare bound ​​W 

–
 ​​.
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DEFINITION 1: In a tolerant contagion strategy profile, there is a parameter ​ϕ  ∈ ​
(0, 1)​​ such that:

	 (i)	 New entrants are cooperators: ​∅  ∈ ​ H​​ C​​.

	 (ii)	 If the outcome of a cooperator’s interaction is ​​(S, z)​​ for any ​z​, they remain a 
cooperator: if ​h  ∈ ​ H​​ C​​, then ​h × ​(S, z)​  ∈ ​ H​​ C​​.

	 (iii)	 If the outcome of a cooperator’s interaction is ​​(F, z)​​, they remain a coopera-
tor if ​z  ≥  ϕ​ and become a defector if ​z  <  ϕ​: if ​h  ∈ ​ H​​ C​​, then ​h × ​(F, z)​  ∈ ​
H​​ C​​ for ​z  ≥  ϕ​ and ​h × ​(F, z)​  ∈ ​ H​​ D​​ for ​z  <  ϕ.​

	 (iv)	 A defector remains a defector forever.

Note that these strategies utilize our assumption that a player’s past values of ​z​ are 
observed by all of their partners. We refer to ​ϕ​ as the transition probability.

The next lemma characterizes the equilibrium conditions and the steady-state 
share of cooperators under tolerant contagion strategies.

LEMMA 2: Under a tolerant contagion strategy profile with transition probability ​
ϕ​, an equilibrium with cooperator share ​​μ​​ C​​ and cooperator payoff ​V >  0​ exists if 
and only if

(PK)	​ V  = ​​ (​μ​​ C​)​​​ 2​,​

(IC)	​ γpϕV  ≥ ​ (1 − γ)​g, and​

(SS)	​ ​μ​​ C​  =  1 − γ + γ​μ​​ C​​(1 − ϕ + p​μ​​ C​ ϕ)​.​

Moreover, the steady-state share of cooperators is unique.

PROOF:
(PK) (“promise keeping”) says that the cooperator payoff equals ​​​(​μ​​ C​)​​​ 2​​. This is 

necessary because entrants are cooperators, and an entrant’s payoff equals social 
welfare, ​​​(​μ​​ C​)​​​ 2​​. (IC) is the incentive constraint, which is necessary because deviating 
to ​D​ against a cooperator yields a gain of ​​(1 − γ)​g​ but increases the probability of 
a failure by ​p​, which implies an expected future loss of ​γpϕV​. (SS) is the steady-
state condition, which is necessary because in a steady state, the share of coopera-
tors ​​μ​​ C​​ must equal the share of new entrants ​1 − γ​ (who are all cooperators) plus 
the share of surviving cooperators ​γ​μ​​ C​​ who remain cooperators (as all surviving 
defectors remain defectors), and this latter share is equal to ​1 − ϕ​ (the share of 
surviving cooperators who obtain outcomes with ​z  >  ϕ​), plus ​p​μ​​ C​ ϕ​ (the share of 
surviving cooperators who obtain outcomes ​​(S, z)​​ with ​z  <  ϕ​). Conversely, when 
all three conditions are satisfied, ​​(σ, μ)​​ is an equilibrium. Finally, the steady-state 
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equation (SS) is quadratic in ​​μ​​ C​​, and only the smaller solution is in the required ​​[0, 1]​​  
range.13 ∎

Now we show that tolerant contagion strategies attain the maximum welfare level ​​
W 
–
 ​​, whenever ​γ​ is sufficiently large.

PROPOSITION 2: For any ​γ  ≥ ​ γ – ​​, there exists a tolerant contagion equilibrium 
that yields welfare ​​W 

–
 ​​, where ​​γ – ​  = ​​ (1 + p ​​μ – ​​​ 2​/g)​​​ −1​  ∈ ​ (0, 1)​​.

PROOF:
Consider tolerant contagion strategies with transition probability

	​ ϕ  = ​ 
​(1 − γ)​g

 _______ 
γp ​​μ – ​​​ 2​

 ​ .​

Note that ​ϕ  ≤  1​ (so the strategy profile is well-defined) if and only if ​γ  ≥ ​ γ – ​​. 
Substituting this value of ​ϕ​ into (SS) gives

	​ ​μ​​ C​  =  1 − γ + γ​μ​​ C​​(1 − ​ 
​(1 − γ)​g

 _______ 
γp​​μ – ​​​ 2​

 ​  + ​ 
​(1 − γ)​g

 _______ 
γp​​μ – ​​​ 2​

 ​ p​μ​​ C​)​⇔​

	​ ​μ​​ C​​μ – ​ − ​μ – ​ − g​ 
​​(​μ​​ C​)​​​ 2​
 ____ ​μ – ​ ​  + ​ g _ p ​ ​ 

​μ​​ C​ ___ ​μ – ​ ​  =  0.​

Observe that ​​μ​​ C​  = ​ μ – ​​ solves this equation. Thus, ​​μ​​ C​​ is the steady-state share of 
cooperators under tolerant contagion strategies with transition probability ​ϕ​.14 
Moreover, steady-state welfare equals ​​W 

–
 ​  = ​​ μ – ​​​ 2​​ by (PK), and (IC) holds with equal-

ity by construction of ​ϕ​. Hence, the steady state corresponds to an equilibrium with 
the desired properties. ∎

We henceforth assume that ​γ  ≥ ​ γ – ​​, so that maximum welfare under 
coordination-proof community enforcement is ​​W 

–
 ​​.

E. Interpretation and Technical Details

Here we provide an interpretation of pairwise randomizations and discuss some 
technical details that we deferred above.

Interpretation of Pairwise Randomization.—The role of pairwise randomizations 
is to introduce some noise tolerance into contagion strategies, by reducing the prob-
ability that failure causes players to switch to defection. A possible interpretation of 
tolerant contagion strategies is that these randomizations determine whether a fail-
ure leads to a “dispute,” where society remembers which players have been involved 

13 In particular, the unique steady-state share of cooperators is

	​ ​ 
1 − γ + γϕ − ​√ 

_____________________
   ​​(1 − γ − γϕ)​​​ 2​ − 4γ​(1 − γ)​pϕ ​
    _________________________________   

2γpϕ  ​.​
14 The steady state is unique by Lemma 2, although the current proof does not require this fact.
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in disputes (but not necessarily the precise values of the associated random ​z​’s). It 
is also possible to dispense with randomizing devices altogether, at the cost of some 
additional complexity. For example, we could consider strategies with several coop-
erative states, where players become defectors only after experiencing some num-
ber ​K  >  1​ of failures. We analyzed such “GrimK” strategies in Clark, Fudenberg, 
and Wolitzky (2020). In the current setting, we conjecture that GrimK strategies 
are approximately as efficient as tolerant contagion strategies when ​γ​ is sufficiently 
large. However, they cannot exactly attain efficiency for any fixed ​γ​ due to the con-
straint that ​K​ must be an integer, and they are harder to analyze because we have to 
keep track of the share of players with each number of failures. Allowing pairwise 
randomizations thus considerably simplifies the analysis, and we believe that it does 
not substantially affect the results.

Definition of the Update Map; Existence of a Steady State.—CFW give the equa-
tion for the update map and establish existence of a steady state in a model without 
pairwise randomizations where players observe their partner’s “record,” which can 
include additional information such as the past actions and records of the current part-
ner’s past partners. The definition of the update map and the existence proof gener-
alize to pairwise randomizations, but the notation is somewhat complicated and the 
existence of a steady state involves some measurability issues. However, in the current 
paper, the only behaviorally relevant aspect of the update map is the update rule for the 
share of cooperators, and the only relevant aspect of a steady state is the steady-state 
share of cooperators. These are both given by the steady-state equation (SS).

Observability of Own Payoffs.—The payoffs given by equation (1) cannot be 
written as an expectation over the outcomes ​S​ and ​F​ with probabilities given by (2) 
of a utility function that depends only a player’s own action and the outcome. Thus, 
to interpret the model as one where players observe their own payoffs, we must 
also let each player privately observe their own payoff. Adding this information 
does not affect the analysis in the current section because players can never gain by 
conditioning on it. Adding such information to the fixed-partnership repeated game 
considered in the next section could expand the set of all Nash equilibria but not the 
set of perfect public equilibria (PPE) (Fudenberg, Levine, and Maskin 1994), where 
players condition only on public signals. Thus, when players observe their own pay-
offs, the analysis in the next section remains valid for PPE.15

II.  Comparison of Community and Partnership

We now compare ​​W 
–
 ​​ with the maximum welfare that can be attained in a fixed 

partnership. Suppose that the prisoner’s dilemma stage game (1) is played repeat-
edly by a fixed pair of players with a fixed start date ​t  =  1​, with outcome distribu-
tion as in (2) and public randomization, with discount factor ​δ  ∈ ​ (0, 1)​​. As in our 

15 In addition, if we restrict attention to strict equilibria and assume that players’ additional private signals are 
independent conditional on actions and the public signal, then focusing on PPE is without loss of generality because 
players never have a strict incentive to condition on their private signals. Our analysis is unchanged under a restric-
tion to strict equilibria, except that strict tolerant contagion equilibria can only approximate the maximum welfare 
level ​​W 

–
 ​​ rather than exactly attaining it.
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analysis of cooperation in a large community, we restrict attention to pure-strategy 
equilibria. In place of tolerant contagion strategies, we now show that the upper 
bound on welfare can be achieved using tolerant grim trigger strategies.

DEFINITION 2: In a tolerant grim trigger strategy profile, there is a parameter ​ϕ  
∈ ​ (0, 1)​​ such that:

	 (i)	 The players cooperate in period 1.

	 (ii)	 If the players cooperate in period ​t​ and the outcome is ​​(S, z)​​ for any ​z​, they 
continue cooperating in period ​t + 1​.

	 (iii)	 If the players cooperate in period ​t​ and the outcome is ​​(F, z)​​, they continue 
cooperating in period ​t + 1​ if ​z  ≥  ϕ​ and switch to defecting if ​z  <  ϕ​.

	 (iv)	 If the players defect in period ​t​, they continue defecting forever.

The next result (which is standard) characterizes maximum welfare in a fixed 
partnership and shows that it is attained by tolerant grim trigger strategies.

PROPOSITION 3: In a fixed partnership, for any discount factor ​δ​, welfare in any 
pure-strategy Nash equilibrium is bounded above by

	​ ​W ˆ ​  =  max​{1 − ​ 1 − p
 _ p  ​ g, 0}​.​

Moreover, whenever ​​W ˆ ​  >  0​, for any ​δ  ≥ ​ δ ˆ ​​, there exists a tolerant grim trigger 
equilibrium that yields welfare ​​W ˆ ​​, where ​​δ ˆ ​ =  g/​[​(1 + g)​p]​  ∈ ​ (0, 1)​​.

PROOF:
As in the community enforcement game considered above, only ​​(C, C)​​ and ​​(D, D)​​ 

are played on path in any pure Nash equilibrium, so every pure Nash equilibrium is 
strongly symmetric. By standard arguments, in the optimal strongly symmetric equi-
librium, continuation payoffs at every history are either some ​V  ≥  0​ or ​0​. When 
public randomizations are available, equilibria of this form are precisely tolerant 
grim trigger equilibria. It therefore remains to characterize the optimal tolerant grim 
trigger equilibria. There is a tolerant grim trigger equilibrium with transition proba-
bility ​ϕ  ∈ ​ [0, 1]​​ and payoff ​V​ if and only if

(PK’)	​ V  =  1 − δ + δ​(1 − ϕ + pϕ)​V and​

(IC’)	​ δpϕV  ≥ ​ (1 − δ)​g.​

Taking ​ϕ​ to satisfy (IC’) with equality and substituting into (PK’), we have

	​ V  =  1 − ​ 1 − p
 _ p  ​ g.​
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Substituting for ​V​ in (IC’) shows that the required value of ​ϕ​ is less than one (so the 
strategy profile is well-defined) if and only if ​​(1 − p)​​(1 + g)​  ≤  1​ (i.e., ​​W ˆ ​  >  0​) and  
​δ  ≥ ​ δ ˆ ​​. ∎

With Propositions 1 and 3 in hand, we can now compare maximum welfare under 
community interactions and fixed partnerships.

PROPOSITION 4: Assume that ​p  >  4g/​​(1 + g)​​​ 2​​, so that ​​W 
–
 ​  >  0​. Then we have:

	 (i)	​​ W 
–
 ​  < ​ W ˆ ​​.

	 (ii)	​ ∂ ​W 
–
 ​/∂ p  >  ∂ ​W ˆ ​/∂ p​.

	 (iii)	​ ∂ ​W 
–
 ​/∂ g  <  ∂ ​W ˆ ​/∂ g​.

Thus, welfare is lower in community interactions than in fixed partnerships and 
also decreases faster as noise increases (i.e., ​p​ decreases) and the defection gain ​g​ 
increases. The intuition for why ​​W 

–
 ​  < ​ W ˆ ​​ is that, since a matched cooperator and 

defector take ​​(D, D)​​ in community interactions and some players inevitably become 
defectors when their interactions are “hit by noise” (i.e., when a partnership fails 
despite mutual effort), there is a certain unavoidable amount of contagion, as even 
players whose own interactions are never hit by noise become defectors as a result 
of matching with other players who were hit by noise. In contrast, in a fixed part-
nership, the partners only switch to defection when they themselves are hit by noise. 
A similar intuition explains why ​∂ ​W 

–
 ​/∂ p  >  ∂ ​W ˆ ​/∂ p​ and ​∂ ​W 

–
 ​/∂ g  <  ∂ ​W ˆ ​/∂ g​. Noise 

is more harmful in community interactions because it affects both players whom it 
directly hits and players who match with players whom it hits. Finally, the defection 
gain ​g​ determines how much future cooperation must be lost when noise hits to pre-
serve incentives, so increasing ​g​ has a similar effect as increasing noise.

PROOF:
Observe that

	​​  ∂ ​W 
–
 ​ ___ ∂ p ​  =  2​μ – ​ ​ ∂ ​μ – ​

 __ ∂ p ​  = ​
(

​  1 + g
 ____________  

2 ​√ 
_

  ​​(​ 1 + g
 _ 2  ​)​​​ 

2
​ − ​ g _ p ​ ​

 ​ + 1
)

​ ​ g _ 
​p​​ 2​

 ​  > ​  g _ 
​p​​ 2​

 ​  = ​  ∂ ​W ˆ ​ _ ∂ p ​,​

where the inequality uses ​p  >  4g/​​(1 + g)​​​ 2​​. Moreover, if ​p  =  1​ (contrary to our 
assumptions), then ​​μ – ​  = ​ W 

–
 ​  = ​ W ˆ ​  =  1​. Since ​p  ∈ ​ (0, 1)​​, the first two parts of the 

proposition follow.
For the third part of the proposition, observe that

	​​  ∂ ​W 
–
 ​ ___ ∂ g ​  =  2​μ – ​​ 

∂ ​μ – ​
 __ ∂ g ​  = ​ μ – ​​

⎛
 ⎜ 
⎝

1 + ​ 
​ 1 + g

 _ 2  ​ − ​ 1 _ p ​
  ___________  

​√ 
_

  ​​(​ 1 + g
 _ 2  ​)​​​ 

2
​ − ​ g _ p ​ ​

 ​
⎞
 ⎟ 
⎠

​  = ​ 
​μ – ​​(​μ – ​ − ​ 1 _ p ​)​
 ________ 

​μ – ​ − ​ 1 + g
 _ 2  ​
 ​, and​

	​ ​ ∂ ​W ˆ ​ _ ∂ g ​  =  −​ 1 − p
 _ p  ​.​
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Hence, ​∂ ​W 
–
 ​/∂ g  <  ∂ ​W ˆ ​/∂ g​ if and only if

	​​ μ – ​​(​ 1 _ p ​ − ​μ – ​)​  > ​  1 − p
 _ p  ​​(​μ – ​ − ​ 1 + g

 _ 
2
  ​)​  ⇔​ ​ p​μ – ​​(1 − ​μ – ​)​  >  −​(1 − p)​​ 1 + g

 _ 
2
  ​,​

which holds as the left-hand side is positive and the right-hand side is negative. ∎
Proposition 4 implies that if community interactions have an exogenous produc-

tivity advantage over interactions in fixed partnerships, then society should allocate 
activities involving low noise and low defection gains to community interactions, 
while allocating activities involving high noise and high defection gains to fixed 
partnerships. (Absent a productivity edge for community interactions, all produc-
tion should take place in fixed partnerships.) Intuitively, community interactions 
have a comparative advantage in activities with low noise and low defection gains 
because the failures that inevitably occur in the presence of noise are more harm-
ful in community interactions than in fixed partnerships, as they necessarily trigger 
some degree of community-wide contagion. As a consequence, if we adopt the stan-
dard assumption that the defection gain is relatively higher in high-stakes activities, 
we can conclude that community interactions have a comparative advantage in sup-
porting low-stakes activities.16

III.  Discussion

We conclude by discussing some possible variants and extensions.

Non-coordination-Proof Equilibria.—Our comparison of welfare in communi-
ties and partnerships relies on focusing on coordination-proof equilibria in com-
munity interactions. We have argued that this equilibrium refinement is reasonable 
since equilibria built on within-match miscoordination are arguably fragile. We have 
also shown that tolerant contagion strategies are optimal under this refinement, so 
the refinement also supports focusing on this class of strategies, which generalize 
the usual contagion strategies that are a centerpiece of the community enforcement 
literature.

Nonetheless, it is worth noting that, at least for some parameters ​p​ and ​g​, the 
maximum partnership welfare level of ​​W ˆ ​​ can be attained in community interactions 
using non-coordination-proof strategies. In particular, consider the following variant 
of tolerant contagion strategies.

	 (i)	 The set of histories ​H​ is partitioned into cooperators and defectors. Entrants 
are cooperators.

	 (ii)	 Matched partners always cooperate unless they are both defectors, in which 
case they both defect. (This is a key difference from coordination-proof strat-
egies, where a matched cooperator and defector both defect.)

16 We are not aware of direct empirical evidence on whether the defection gain rises faster than the coopera-
tive payoff in higher-stakes activities, but this is a standard assumption: see, for example, Ghosh and Ray (1996); 
Kranton (1996); and Ali and Miller (2013, 2016). Another similar setup is Dixit (2003), which considers a random 
matching model where information about high-value interactions spreads more slowly, so that incentive constraints 
bind more in higher-value interactions.
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	 (iii)	 If the outcome of a cooperator’s interaction is ​​(S, z)​​ for any ​z​, they remain a 
cooperator. If the outcome of a cooperator’s interaction is ​​(F, z)​​, they remain 
a cooperator if ​z  ≥  1 − ϕ​ and become a defector if ​z  <  ϕ​.

	 (iv)	 If the outcome of a defector’s interaction is ​​(F, z)​​ for any ​z​, they remain a 
defector. If the outcome of a defector’s interaction is ​​(S, z)​​, they remain a 
defector if ​z  ≥  1 − ϕ​ and become a cooperator if ​z  <  ϕ​.

These strategies are not coordination proof because ​​(C, C)​​ is a Pareto-dominant 
Nash equilibrium in an interaction between two defectors, but the strategies pre-
scribe ​​(D, D)​​ in these interactions. Nonetheless, it can be shown that if ​g​ is suf-
ficiently small, there exists ​​γ ̃ ​​ such that, for all ​γ  > ​ γ ̃ ​​, there exists a value for ​
ϕ​ such that these strategies form an equilibrium that delivers welfare ​​W ˆ ​​.17 This 
shows that coordination-proofness is an essential part of our theory. Intuitively, 
coordination-proofness implies that a matched cooperator and defector must take ​​
(D, D)​​, as if they took ​​(C, C)​​ then matched defectors would also take ​​(C, C)​​ (as ​​
(C, C)​​ would be a Pareto-dominant Nash equilibrium in their interaction), which in 
turn would destroy incentives. Matched cooperators and defectors taking ​​(D, D)​​ is 
the source of contagion discussed following Proposition 4, which accounts for the 
gap between welfare in communities and partnerships. If instead matched cooper-
ators and defectors take ​​(C, C)​​ as in the above strategies, there is no contagion and 
welfare in communities and partnerships is equal.

Two-Sided Noise.—Our assumption that success requires cooperation from both 
partners is restrictive. A natural generalization is to assume that

(3)	​ Pr​(S | a)​  = ​  ​​{​p​  if a  = ​ (C, C)​​  
q
​ 

otherwise
 ​ ,​​

where ​0  <  q  <  p  <  1​. Under this assumption, the partners’ actions remain per-
fect complements in delivering a success, in that ​Pr​(S | ​(C, D)​)​  =  Pr​(S | ​(D, D)​)​​, but 
it is possible to obtain a success even if one or both partners defect. Under (3), the 
same argument as in the proof of Proposition 1 gives an upper bound for welfare 
that converges to ​​​μ – ​​​ 2​​ as ​q  →  0​. Similarly, the same argument as in the proof of 
Proposition 2 implies that, for sufficiently high ​γ​, there exist a sequence of tolerant 
contagion equilibria whose welfare converges to ​​​μ – ​​​ 2​​ as ​q  →  0​, but now there is a 
gap between the upper bound and the welfare level that can be attained by tolerant 
contagion strategies.18 This gap can be shown to be second order in ​q​, so tolerant 
contagion strategies are quite robust to a small probability that the players obtain a 
success even when one or both of them defects.

17 It can also be shown that, as in a fixed partnership, welfare in any pure Nash equilibrium in the community 
enforcement game cannot exceed ​​W ˆ ​​.

18 The upper bound and the maximum welfare level attainable by tolerant contagion strategies are, respectively,

	​ ​ 1 + g
 _ 

2
  ​ + ​√ 

______________

  ​​(​ 1 + g
 _ 

2
  ​)​​​ 

2

​ − ​ 1 − q
 _ p − q ​ g ​  and  ​ 

1 + ​  p _ p − q ​ g _ 
2
  ​ + ​√ 

__________________

   ​​(​ 
1 + ​  p _ p − q ​ g

 _ 
2
  ​)​​​ 

2

​ − ​  1 _ p − q ​ g ​.​
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The intuition for why tolerant contagion strategies are exactly optimal when ​
q  =  0​, but not when ​q  >  0​, is as follows. When ​q  =  0​, obtaining a success 
proves that both partners cooperated. It is therefore optimal to assign each partner 
the highest possible continuation payoff following a success, which is what tolerant 
contagion strategies do. Instead, when ​q  >  0​, a success may be due to luck. It may 
therefore be better to assign a player the highest possible continuation payoff only 
after a series of successes. However, the advantage of such strategies over tolerant 
contagion strategies is small when ​q​ is small.

More General Outcome Distributions.—It is more challenging to general-
ize the outcome structure to allow ​Pr(S | (C, D))  ≠  Pr(S | (D, D))​, so that the part-
ners’ actions are not perfect complements. If ​Pr(S | (C, D))  ≠  Pr(S | (D, D))​ and the 
parameter ​ℓ​ is sufficiently small, then we conjecture that the asymmetric action 
profiles ​(C, D)​ and ​(D, C)​ can be supported in equilibrium. This enables society to 
provide incentives through continuation payoff transfers (as in Fudenberg, Levine, 
and Maskin 1994), even though with only two outcomes pairwise full rank cannot 
hold. Moreover, because players face a new partner each period, there can be a pos-
itive mass of players whose continuation payoffs are above the highest feasible and 
individually rational payoff in a fixed partnership. This in turn raises the question 
of what general properties of the outcome structure suffice for the folk theorem in 
our steady-state community interaction model, either with or without a restriction 
to coordination-proof equilibrium. This is an interesting question for future work.19

Avoidance.—A modification of the prisoner’s dilemma stage game that seems 
realistic in some contexts is that in every interaction, each player has a third action, ​
Avoid​, which corresponds to refusing to interact with the current partner. Suppose 
that ​Avoid​ gives both players a payoff of zero regardless of their partner’s action and 
that the outcome of an interaction where either partner takes ​Avoid​ is recorded as ​
Avoided​ or alternatively is not recorded at all. It can be shown that in this modified 
game, when ​γ​ is sufficiently high, maximum welfare in (coordination-proof) com-
munity enforcement increases to ​​​W ˆ ​​​ 2​.​ To see the intuition, note that with avoidance, 
we can modify tolerant contagion strategies so that players with histories in ​​H​​ D​​ 
play ​Avoid​ rather than ​D​, while players still transition from ​​H​​ C​​ to ​​H​​ D​​ only after a 
failure. This modification eliminates contagion: now, players only transition from ​​
H​​ C​​ to ​​H​​ D​​ when they themselves are hit by noise because when they match with 
partners in ​​H​​ D​​, the outcome is now ​Avoided​ rather than ​F​. Consequently, the transi-
tion probability from ​​H​​ C​​ to ​​H​​ D​​ can be set at the minimum level required to provide 
incentives, which implies that the steady-state share of players with histories in ​​H​​ C​​ 
can be as high as ​​W ˆ ​​ , exactly as in a fixed partnership. Nonetheless, the maximum 
welfare level of ​​​W ˆ ​​​ 2​​ is still less than the welfare level of ​​W ˆ ​​ that is attainable in a 
fixed partnership because, since noise and matching are independent of each other 
in community interactions, the share of matches where both partners have histories 
in ​​H​​ C​​ is only ​​​W ˆ ​​​ 2​​.

19 Theorem 2 of CFW provides a partial folk theorem under almost-perfect monitoring.
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More General Records.—We have assumed that players observe no information 
other than their partner’s history of past outcomes and random draws. It is also 
interesting to consider settings where a player gets some information about their 
partner’s past partners, such as their identities or past outcomes. In CFW, we showed 
that such “interdependent records” provide little advantage beyond observing the 
partner’s history of outcomes, when outcomes are observed with very little noise. 
However, with nontrivial noise, interdependent records might help reduce contagion 
and improve efficiency. This seems an interesting direction for future research.

Richer Social Structure.—Finally, we have only compared two extreme social 
structures: random matching in a large population, and a fixed partnership. Reality 
lies in between these extremes: we interact with friends and colleagues more than 
with strangers, but we do sometimes meet strangers. Incorporating richer social 
structures—for example, weighted random matching or networked interactions—
into our analysis is another promising direction for future work.
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