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Noise-Tolerant Community Enforcement
and the Strength of Small Stakes’

By DREW FUDENBERG AND ALEXANDER WOLITZKY *

We study community enforcement in a large population with noisy
monitoring. We focus on equilibria in the prisoner’s dilemma that
are coordination proof, meaning that matched partners never play
a Pareto-dominated Nash equilibrium in the one-shot game induced
by the equilibrium continuation payoffs at their current histories. We
show that a noise-tolerant version of contagion strategies is opti-
mal among all coordination-proof equilibria. Welfare under toler-
ant contagion strategies decreases in the noise level and the gain
from defection faster than welfare in a fixed partnership does. Thus,
community enforcement has a comparative advantage in supporting
“low-stakes "relationships. (JEL C72, C73, C78, Z13)

Repeated game models of decentralized cooperation in large societies—“com-
munity enforcement”—have been used to explain cooperation in settings such as
merchant coalitions (Milgrom, North, and Weingast 1990; Greif 1993), credit and
risk-sharing institutions (Klein 1992; Karlan et al. 2009; Bhaskar and Thomas
2019), village economies (Jackson, Rodriguez-Barraquer, and Tan 2012), and
online markets (Friedman and Resnick 2001; Tadelis 2016). In all of these settings,
in reality a partnership has a significant chance of failing even when both partners
act in good faith. However, this feature—which we simply call noise—is largely
absent from canonical community enforcement models: existing models are often
robust to introducing a small amount of noise, but they are typically ill-suited to
studying cooperation when noise is substantial and causes welfare to fall short of the
first best. Consequently, existing models cannot assess how welfare under commu-
nity enforcement compares to that under other social or institutional arrangements
when noise is present or how this comparison depends on the noise level and other
parameters. This is an important shortcoming because these comparisons influence
which kinds of economic transactions are more likely to be mediated by community
enforcement rather than alternatives such as repeated interaction in a fixed partner-
ship or small group.

This paper develops a simple model of community enforcement under noise.
We consider the prisoner’s dilemma with random matching and perfectly com-
plementary actions, where matched partners who cooperate obtain a success with
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probability p < 1, while success is impossible if either partner defects. We adapt
the continuum player model of Clark, Fudenberg, and Wolitzky (2021)—hereafter,
CFW—by specifying that each player observes their partner’s history of successes
and failures and that the population distribution of histories is in a steady state.
Thus, while each partnership is subject to noise, the noise washes out in aggregate.
We also follow CFW in focusing on equilibria that are “coordination proof,” mean-
ing that matched partners never play a Pareto-dominated Nash equilibrium in the
one-shot game induced by the equilibrium continuation payoffs at their current
histories.

Our first result is that a noise-tolerant version of the contagion strategies intro-
duced by Kandori (1992) is optimal among all coordination-proof equilibria. (Our
strategies differ from Kandori’s in that failure leads to punishment only probabilis-
tically, by conditioning on the outcome of a randomization device.) When players’
time horizons are sufficiently long, welfare under these strategies is given by a sim-
ple formula and is decreasing in both the noise level and the gain from defection.
This gives a simple theory of how welfare under community enforcement depends
on noise and the defection gain.

We then compare welfare under community enforcement with welfare when
players interact in fixed partnerships (without rematching). Our second result is that,
as either noise or the defection gain increases, welfare under community enforce-
ment falls faster than welfare in fixed partnerships. Thus, community enforcement
is less robust to noise (or to increases in the defection gain) than is cooperation in
fixed partnerships. Intuitively, noise inevitably causes some players to switch from
cooperation to defection—in either community interactions or fixed partnerships—
but in community interactions, contagion additionally causes defection to spread to
some innocent players.

Our results speak to the classic question of how productive activities should be
divided between small-scale groups, such as fixed partnerships, and larger commu-
nities or markets. The key trade-off between these modes of production is thought to
be that trust is easier to sustain in a fixed partnership, while wider interactions allow
greater specialization and productive efficiency. Thus, a typical conclusion is that
if agents are sufficiently forward looking to sustain trust in community-wide inter-
actions, these interactions are more efficient than interactions in fixed partnerships,
while if agents are more myopic, it is more efficient to retreat into fixed partner-
ships where trust is easier to sustain.! Our results instead imply that if community
interactions have an exogenous productivity advantage over fixed partnerships (e.g.,
due to specialization), then overall social welfare is higher under community inter-
actions if noise is sufficiently low and the defection gain is sufficiently small and is
higher under fixed partnerships otherwise. In particular, if we adopted the “variable
stakes” framework of Ghosh and Ray (1996); Kranton (1996); or Ali and Miller
(2016), where the defection gain is relatively larger in higher-stakes relationships,
then community interactions would have a comparative advantage in supporting

! Arguments along these lines have been made by many scholars, including Putnam, Leonardi, and Nonetti
(1993); Greif (1994); Dixit (2003); Karlan et al. (2009); and Seabright (2010).
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low-stakes relationships.> This finding echoes the classic intuitions of Granovetter
(1973) and Putnam (2000) that “weak ties” or “bridging social capital”—that is,
low-stakes but nonetheless valuable interactions, such as advice or job recommen-
dation networks—are key benefits of community interactions.?

Related Literature—We contribute to the community enforcement literature
by developing a tractable model where maximum equilibrium welfare depends
on the amount of noise. Classic community enforcement models like Kandori
(1992) and Okuno-Fujiwara and Postlewaite (1995) exclude noise altogether, as
do many subsequent papers including Dixit (2003); Karlan et al. (2009); Jackson,
Rodriguez-Barraquer, and Tan (2012); and Wolitzky (2013). Ellison (1994);
Takahashi (2010); Deb, Sugaya, and Wolitzky (2018); Heller and Mohlin (2018);
and CFW establish folk theorems in the limit of vanishingly little noise.* Bhaskar
and Thomas (2019) consider a model with one-sided moral hazard, where there is
no scope for contagion, and efficiency under community enforcement can be as high
as in a fixed partnership. Finally, Clark, Fudenberg, and Wolitzky (2020) analyze the
performance of a class of tolerant trigger strategies that are similar to the tolerant
contagion strategies we consider. However, that paper has a different information
structure (players only observe their current partner’s past actions), under which
tolerant trigger strategies are suboptimal and efficiency is determined by stage game
strategic complementarity (which is irrelevant in the current paper) rather than noise.

I. Cooperation in a Large Community

This section develops our model of cooperation in a large community and char-
acterizes maximum welfare in this setting. Section II will then compare this welfare
level with the maximum attainable welfare in a fixed partnership.

A. Matching and Pairwise Interactions

There is a unit mass of players, each of whom has a geometrically distributed
lifespan with continuation probability v € (O, 1), with exits balanced by an inflow
of new entrants of size 1 — ~. The time horizon is doubly infinite, so there is no fixed
start date.

Each period, the players randomly match in pairs to play the prisoner’s dilemma
stage game, with expected payoffs

C D
(1) C L1 —Ll+g,
D 1+g,—¢ 0,0

2We do not formally introduce variable stakes or a productivity difference between community and partnership
interactions in our model, as this point is straightforward given our results for the standard prisoner’s dilemma.

3 Earlier models such as Dixit (2003); Karlan et al. (2009); Ali and Miller (2013); and Wolitzky (2013) capture
related intuitions, but the logic of these models is very different because they do not involve noise.

“These papers make different population structure and observability assumptions. Our doubly infinite time
model with long player histories is most similar to Heller and Mohlin (2018) and CFW, as well as earlier papers on
learning in games such as Fudenberg and Levine (1993) and Fudenberg and He (2018).
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where g,¢ > 0. The public outcome of each bilateral interaction is either S (a suc-
cess) or F (a failure). We assume that the probability of a success when the partners
take actions a € {C,D}? is given by

0 otherwise

where 0 < p < 1. Thus, the public outcome can only be a success if both partners
cooperate, but success is never assured. As we explain in Section III, our results
extend to the case where Pr(S|a) = ¢ for all a # (C,C), for sufficiently small
g > 0. In addition to generating a public outcome, each bilateral interaction also
generates an independent uniform [0, 1] random variable z, which, like the public
outcome, is publicly observed at the end of the period. These additional random
variables, which we call pairwise randomizations, amount to having a separate pub-
lic randomizing device for each matched pair. We discuss the interpretation and role
of these randomizations in Section IE.

When two players meet, each observes the other’s entire history of past out-
comes and random draws (and no further information), which is an element of
H=9oU U ?§1<{S, F} X [0, 1])’, where a new entrant has the null history & and
an experienced player’s history is the record of their past outcomes along with the
corresponding values of z. Players also recall their own histories. Thus, a pure strat-
egy is a function 0:H x H — {C,D}, with the convention that the first coordi-
nate is a player’s own history and the second is the opponent’s history.> We restrict
attention to symmetric pure-strategy profiles, where each player uses the same pure
strategy.® We henceforth omit the qualifiers “symmetric” and “pure” without further
comment and use the same notation o for an individual strategy and a (symmetric)
strategy profile.

B. Aggregate Behavior and Equilibrium

The state 1 € A(H) of the community describes the share of players with each
possible history.” Since there is a continuum of players, under any strategy profile o,
the state evolves according to a deterministic transition functionf,, : A(H) — A(H).
A steady state under o is a state p such that f,(x) = p.® One can then define the
expected continuation payoff (1 — fy)z,fy’ E [u,] of a player with any history & € H
at a steady state 1, when all other players in the population follow ¢ and the player
under consideration plays an arbitrary strategy o’. An equilibrium is a pair (a, M)

STn principle, a player could condition on their own past actions in addition to their history of successes and
failures, but as we allow public randomization, there is no benefit to doing so. Since H is a continuum due to the ran-
dom variables z, we also formally require that strategies are measurable functions on H x H, where H is endowed
with the weak* topology.

SRestricting to pure equilibria simplifies the analysis and also captures a type of robustness. We could alter-
natively further restrict attention to strict equilibria. This would yield almost the same analysis except for some
technicalities resulting from the fact that the set of strict equilibria is not closed. In contrast, mixed strategies would
allow (C,D) and (D, C) to be played on the equilibrium path, which as discussed below would greatly complicate
the analysis.

7Formally, since H is a continuum, the state describes the measure of players with each measurable set of
histories.

8Section IE discusses the details involved in constructing the transition function and the issue of the existence
of a steady state.
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such that 1 is a steady state under ¢ and, for any history 4, the expected continuation
payoff of a player with history % is maximized by taking o’ = o. Finally, welfare
at an equilibrium (a, ,u) is defined as the average payoff in the population at state w
under strategy o. Note that welfare is equal to the expected lifetime payoff of a new
entrant because the steady-state distribution 4 also describes the fraction of periods
in which an entrant expects to have each history.

A preliminary observation is that in any (pure) equilibrium, only (C ,C) and
(D,D) are played along the equilibrium path. To see this, observe that equation (2)
implies that when the opponent defects, the probability of success is independent of
a player’s own action. Since future opponents will observe only whether the current
outcome is a success or a failure (as well as the uniform variable z), and D is dom-
inant in the stage game, this implies that D is the unique best response of a player
who anticipates that their opponent will play D. Thus, only (C,C) and (D, D) can be
played along the equilibrium path.

The fact that only (C, C) and (D, D) are played on path implies that equilibrium
incentives can be provided only through surplus creation and destruction—switching
from (D,D) to (C, C) or vice versa—rather than surplus transfers between matched
partners, which would occasionally require (C, D) or (D, C) to be played. This fea-
ture greatly simplifies the analysis as well as ensuring that first-best efficiency is
unattainable regardless of the players’ expected lifespans.’

C. Coordination-Proof Equilibria

We say that an equilibrium is coordination proof if matched partners never play
a Pareto-dominated Nash equilibrium in the one-shot game induced by the equilib-
rium continuation payoffs at their current histories.'®

We restrict attention to coordination-proof strategies throughout our analy-
sis. The motivation for imposing this refinement is that an equilibrium that is not
coordination proof would break down if a pair of matched partners could manage
to coordinate on the efficient equilibrium in their interaction (taking behavior in
the rest of the population as given). The following lemma describes the key impli-
cation of coordination-proofness for our analysis (indeed, the only implication of
coordination-proofness that we will use).!!

LEMMA 1: In any coordination-proof equilibrium (a, u), the set of all histories H
can be partitioned into two sets, H € and HP, such that:

(i) Players with histories in HS cooperate against opponents with histories in
HE: O'(h,h/> = Cforallh,h' € HEC.

(ii) Players with histories in H® defect against opponents with histories in H”:
o(h,h') = Dforallh € Hh' € H".

2 Our results would be similar if Pr(S|(C,D)) # Pr(S|(D,D)) but £ is sufficiently large, as then too only (C, C)
and (D, D) are played on path.

10See Definition 4 in CFW for the formal definition of coordination-proofness.

"!'"The lemma relies on our assumption that actions are perfect complements: Pr(S|(C,D)) = Pr(S|(D,D).
Without this assumption, more equilibria can be coordination proof, including ones where (C,D is played on the
equilibrium path.
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(iii) Players with histories in HP defect against all opponents: cr(h,h/) = D for
allh € H?,h' € H.

PROOF:

Fix a coordination-proof equilibrium (o,p), and define H ¢ =
{h € H:3h' € H suchthat o(h,h') = C} and H? = H\HC. By definition,
a(h,h’) — Dforall h € HP,h' € H. Moreover, since C is never a best response
against an opponent who plays D (as Pr(S (C, D)) = Pr(S | (D,D)) and D is domi-
nant in the stage game), we have U(h,h') = Dforallh € H,h' € HP.

It remains to show that O'(h,h/> — C for all h,h' € HE. Fix any h,h' € HE.
Since C is never a best response against an opponent who plays D, the fact that 4,
h' € HCimplies that for a player with history & or &, C is a best response against an
opponent who plays C. Hence, when players with histories /4 and 4" meet each other,
both (C,C) and (D, D) are equilibria in the induced one-shot game. Next, since C is
sometimes a best response for these players even though D is dominant in the stage
game, their expected continuation payoffs must each be higher when the outcome of
their match is S rather than F. This implies that the (C , C) equilibrium yields higher
expected continuation payoffs for both players (since the probability of S is higher)
as well as higher stage game payoffs for both players, relative to the (D, D) equilib-
rium. Therefore, coordination-proofness requires that a(h, h') = a(h', h) =C.1

Given Lemma 1, a coordination-proof equilibrium is entirely described by the
partition {H ¢ HP } Henceforth, given a coordination-proof equilibrium, we simply
refer to players with histories in HC as cooperators and to players with histories in
HP as defectors.

Our first main result is a bound on the payoff of any coordination-proof equi-
librium.'? We will subsequently show that when + is sufficiently large, this bound
is tight and is attained by a version of contagion strategies. Hence, the bound W
derived in the proposition will be key for comparing welfare in communities and
partnerships in Section II.

PROPOSITION 1: For any continuation probability -y, welfare in any
coordination-proof equilibrium is bounded above by W = %, where

_ 48
n = 2 (1 + g)2 >
0 otherwise.

2
ETNN(ET) S

Note that the conditionp > 4g/ (1 + g)2 can only be satisfied if g < 1, regard-

less of p. Thus, no cooperation is possible in a coordination-proof community equi-
librium if g > 1. Moreover, as noise increases, cooperation becomes impossible

12The proof of this result builds on the proof of Lemma 11 of Clark, Fudenberg, and Wolitzky (2020).
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even for smaller values of g: for example, if p = 8/9, then cooperation is impossi-
ble whenever g > 1/2.

PROOF:

Fix a coordination-proof equilibrium with partition {H ¢ HP } Let u¢ = /. pedp
denote the share of cooperators. Suppose that ;1€ > 0.

For any h € H, let V(h) denote the expected continuation payoff of a player
with history /. Note that V(h) > 0 forall h € H since a player’s minmax payoff
is 0. Next, let V = sup,cy V(h). Note that V > 0 since V(h) > 0 for all & and

p€ > 0. We claim that V = supj,cyc V(h). Otherwise, there would exist & € HP

such that V(h) > SupyeyC V(h'), but since all defectors obtain a stage game payoff
of 0, we have V(h) < ysupyepcV(h').

Now consider a cooperator with history & € HC. Let V(h,S) = EZ[V(h, S, Z)]
and V(h, F ) = E, [V(h, F, z)] denote this player’s expected continuation payoftf when
their current-period outcome is a success or a failure, respectively. Since this player
cooperates against opponents in H¢ and defects against opponents in H”, we have

V(h) = (1= 9)u +lpuV(hS) + (1 = puC)V(h.F)].

At the same time, since the player prefers to play C against an opponent who plays
C, we have

w|V(h,S) — V(h,F)] > (1-1~)g.

Combining these inequalities, we have
L(;ﬁ V(h) + —[v (h,S) — V(h)]) > g
1—pu©
This inequality holds forallz € H and V = sup,cyc V(h) > SUPeHC V(h,S), S0
I
1— pu€

2
Moreover, the expected lifetime payoff of a new entrant equals ( C) (the share of
matches that cooperate), so V > ( 7 ) Hence, we have

pu(1 — pC)

1—ppc

(1€ =V) > g

< 0.

o0

2
> g () - (1+ g+
2
This implies that ¢ < 7. Since welfare equals (,uc) , we conclude that welfare is
bounded above by 7% &
D. Tolerant Contagion Strategies

We will show that the following class of coordination-proof strategies attains the
welfare bound W.
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DEFINITION 1: In a tolerant contagion strategy profile, there is a parameter ¢ €
(O, 1) such that:

(i) New entrants are cooperators: & € HE.

(ii) If the outcome of a cooperator’s interaction is (S,z) for any z, they remain a
cooperator: if h € HE, then h x (S,z) € HEC

(iii) If the outcome of a cooperator’s interaction is (F , z), they remain a coopera-
torifz > ¢ and become a defector ifz < ¢:ifh € HE, then h x (F.z) €
HC forz > ¢and h x (F,z) € H” forz < ¢.

(iv) A defector remains a defector forever.

Note that these strategies utilize our assumption that a player’s past values of z are
observed by all of their partners. We refer to ¢ as the transition probability.

The next lemma characterizes the equilibrium conditions and the steady-state
share of cooperators under tolerant contagion strategies.

LEMMA 2: Under a tolerant contagion strategy profile with transition probability
&, an equilibrium with cooperator share 1 and cooperator payoff V. > 0 exists if
and only if

(PK) v = (9,
(IC) WV > (1 — 7)g, and
(SS) pe = 1—y+yu1— ¢+ puce).

Moreover, the steady-state share of cooperators is unique.

PROOF:

(PK) (“promise keeping”) says that the cooperator payoff equals (/f)z. This is
necessary because entrants are cooperators, and an entrant’s payoff equals social
welfare, ( MC) 2 (IC) is the incentive constraint, which is necessary because deviating
to D against a cooperator yields a gain of (1 — y) g but increases the probability of
a failure by p, which implies an expected future loss of Yp@V. (SS) is the steady-
state condition, which is necessary because in a steady state, the share of coopera-
tors 1€ must equal the share of new entrants 1 —  (who are all cooperators) plus
the share of surviving cooperators ¢ who remain cooperators (as all surviving
defectors remain defectors), and this latter share is equal to 1 — ¢ (the share of
surviving cooperators who obtain outcomes with z > @), plus pu° ¢ (the share of
surviving cooperators who obtain outcomes (S,z) with z < ¢). Conversely, when
all three conditions are satisfied, (o, 1) is an equilibrium. Finally, the steady-state
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equation (SS) is quadratic in 1€, and only the smaller solution is in the required [O, 1]
range.'> m

Now we show that tolerant contagion strategies attain the maximum welfare level
W, whenever + is sufficiently large.

PROPOSITION 2: For any ~y > 7, there exists a tolerant contagion equilibrium
that yields welfare W, where 7 = (1 + p/]z/g)_l € (O, 1).

PROOF:
Consider tolerant contagion strategies with transition probability
_ (=
Wi

Note that ¢ < 1 (so the strategy profile is well-defined) if and only if v > 7.
Substituting this value of ¢ into (SS) gives

I1—19)e  (1-1)¢
Mczl_ywc(l_( e _2>Wc>©
Wi WH
c\? c
c- - (:“J) su- _
T N = 0.

Observe that ¢ = [i solves this equation. Thus, 1€ is the steady-state share of
cooperators under tolerant contagion strategies with transition probability ¢.'*
Moreover, steady-state welfare equals W = > by (PK), and (IC) holds with equal-
ity by construction of ¢. Hence, the steady state corresponds to an equilibrium with
the desired properties. B

We henceforth assume that ~ > 4, so that maximum welfare under
coordination-proof community enforcement is W.

E. Interpretation and Technical Details

Here we provide an interpretation of pairwise randomizations and discuss some
technical details that we deferred above.

Interpretation of Pairwise Randomization.—The role of pairwise randomizations
is to introduce some noise tolerance into contagion strategies, by reducing the prob-
ability that failure causes players to switch to defection. A possible interpretation of
tolerant contagion strategies is that these randomizations determine whether a fail-
ure leads to a “dispute,” where society remembers which players have been involved

131n particular, the unique steady-state share of cooperators is

L=y 476 — /(1= 7= 79)* = 41(1 - 2)po
29pd ’
14The steady state is unique by Lemma 2, although the current proof does not require this fact.
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in disputes (but not necessarily the precise values of the associated random z’s). It
is also possible to dispense with randomizing devices altogether, at the cost of some
additional complexity. For example, we could consider strategies with several coop-
erative states, where players become defectors only after experiencing some num-
ber K > 1 of failures. We analyzed such “GrimK” strategies in Clark, Fudenberg,
and Wolitzky (2020). In the current setting, we conjecture that GrimK strategies
are approximately as efficient as tolerant contagion strategies when +y is sufficiently
large. However, they cannot exactly attain efficiency for any fixed ~ due to the con-
straint that K must be an integer, and they are harder to analyze because we have to
keep track of the share of players with each number of failures. Allowing pairwise
randomizations thus considerably simplifies the analysis, and we believe that it does
not substantially affect the results.

Definition of the Update Map, Existence of a Steady State—CFW give the equa-
tion for the update map and establish existence of a steady state in a model without
pairwise randomizations where players observe their partner’s “record,” which can
include additional information such as the past actions and records of the current part-
ner’s past partners. The definition of the update map and the existence proof gener-
alize to pairwise randomizations, but the notation is somewhat complicated and the
existence of a steady state involves some measurability issues. However, in the current
paper, the only behaviorally relevant aspect of the update map is the update rule for the
share of cooperators, and the only relevant aspect of a steady state is the steady-state
share of cooperators. These are both given by the steady-state equation (SS).

Observability of Own Payoffs.—The payoffs given by equation (1) cannot be
written as an expectation over the outcomes S and F with probabilities given by (2)
of a utility function that depends only a player’s own action and the outcome. Thus,
to interpret the model as one where players observe their own payoffs, we must
also let each player privately observe their own payoff. Adding this information
does not affect the analysis in the current section because players can never gain by
conditioning on it. Adding such information to the fixed-partnership repeated game
considered in the next section could expand the set of all Nash equilibria but not the
set of perfect public equilibria (PPE) (Fudenberg, Levine, and Maskin 1994), where
players condition only on public signals. Thus, when players observe their own pay-
offs, the analysis in the next section remains valid for PPE.!>

II. Comparison of Community and Partnership

We now compare W with the maximum welfare that can be attained in a fixed
partnership. Suppose that the prisoner’s dilemma stage game (1) is played repeat-
edly by a fixed pair of players with a fixed start date t = 1, with outcome distribu-
tion as in (2) and public randomization, with discount factor § € (0,1). As in our

151n addition, if we restrict attention to strict equilibria and assume that players’ additional private signals are
independent conditional on actions and the public signal, then focusing on PPE is without loss of generality because
players never have a strict incentive to condition on their private signals. Our analysis is unchanged under a restric-
tion to strict equilibria, except that strict tolerant contagion equilibria can only approximate the maximum welfare
level W rather than exactly attaining it.
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analysis of cooperation in a large community, we restrict attention to pure-strategy
equilibria. In place of tolerant contagion strategies, we now show that the upper
bound on welfare can be achieved using folerant grim trigger strategies.

DEFINITION 2: In a tolerant grim trigger strategy profile, there is a parameter ¢
S (0, 1) such that:

(i) The players cooperate in period 1.

(ii) If the players cooperate in period t and the outcome is (S, z) for any z, they
continue cooperating in period t + 1.

(iii) If the players cooperate in period t and the outcome is (F , z), they continue
cooperating in periodt + 1 if z > ¢ and switch to defecting if z < ¢.

(iv) If the players defect in period t, they continue defecting forever.

The next result (which is standard) characterizes maximum welfare in a fixed
partnership and shows that it is attained by tolerant grim trigger strategies.

PROPOSITION 3: In a fixed partnership, for any discount factor 6, welfare in any
pure-strategy Nash equilibrium is bounded above by

W = max{l — 1%g,O}.

Moreover, whenever W > 0, for any § > 8, there exists a tolerant grim trigger
equilibrium that yields welfare W, where § = g/ [(1 + g)p] € (0,1).

PROOF:

As in the community enforcement game considered above, only (C, C) and (D,D)
are played on path in any pure Nash equilibrium, so every pure Nash equilibrium is
strongly symmetric. By standard arguments, in the optimal strongly symmetric equi-
librium, continuation payoffs at every history are either some V > 0 or 0. When
public randomizations are available, equilibria of this form are precisely tolerant
grim trigger equilibria. It therefore remains to characterize the optimal tolerant grim
trigger equilibria. There is a tolerant grim trigger equilibrium with transition proba-
bility ¢ € [0, 1] and payoff V if and only if

(PK’) V=1-0+01-¢+pp)Vand
i) spov > (1- ).
Taking ¢ to satisfy (IC”) with equality and substituting into (PK’), we have

l—p
V=1--—5"¢g
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Substituting for V in (IC”) shows that the required value of ¢ is less than one (so the
strategy profile is well-defined) if and only if (1 — p)(1 + g) < 1 (i.e., W > 0)and
0 >4.m

With Propositions 1 and 3 in hand, we can now compare maximum welfare under
community interactions and fixed partnerships.

PROPOSITION 4: Assume thatp > 4g/(1 + g) 2, so that W > 0. Then we have:
(i) W< W.
(ii) OW/dp > OW/op.
(iii)y OW/dg < OW/dg.

Thus, welfare is lower in community interactions than in fixed partnerships and
also decreases faster as noise increases (i.e., p decreases) and the defection gain g
increases. The intuition for why W < W is that, since a matched cooperator and
defector take (D,D) in community interactions and some players inevitably become
defectors when their interactions are “hit by noise” (i.e., when a partnership fails
despite mutual effort), there is a certain unavoidable amount of contagion, as even
players whose own interactions are never hit by noise become defectors as a result
of matching with other players who were hit by noise. In contrast, in a fixed part-
nership, the partners only switch to defection when they themselves are hit by noise.
A similar intuition explains why OW/dp > OW/0p and OW/dg < OW/Og. Noise
is more harmful in community interactions because it affects both players whom it
directly hits and players who match with players whom it hits. Finally, the defection
gain g determines how much future cooperation must be lost when noise hits to pre-
serve incentives, so increasing g has a similar effect as increasing noise.

PROOF:
Observe that
OW _op 1+ g g g oW
o = gy T — 15> 5 =75,
p p 5 C+g) g p P P
2 ) P

where the inequality uses p > 4g/(1+ g) 2. Moreover, if p = 1 (contrary to our
assumptions), then i = W = W = 1. Since p € (0, 1), the first two parts of the
proposition follow.

For the third part of the proposition, observe that

1+g¢ 1 —( - 1
_ _ _ 1 (g — 1
%—W:Z/j%:p1+ 2P = ( 1+p>,and
g 8 (1+g>2 g ﬁ_Tg
2 ) TP
oW 1-p
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Hence, 9W/0g < OW/dg if and only if
_ _ l1-p(_ 1+ _ _ 1+
A7) > AT E) e o) > -t

which holds as the left-hand side is positive and the right-hand side is negative. B

Proposition 4 implies that if community interactions have an exogenous produc-
tivity advantage over interactions in fixed partnerships, then society should allocate
activities involving low noise and low defection gains to community interactions,
while allocating activities involving high noise and high defection gains to fixed
partnerships. (Absent a productivity edge for community interactions, all produc-
tion should take place in fixed partnerships.) Intuitively, community interactions
have a comparative advantage in activities with low noise and low defection gains
because the failures that inevitably occur in the presence of noise are more harm-
ful in community interactions than in fixed partnerships, as they necessarily trigger
some degree of community-wide contagion. As a consequence, if we adopt the stan-
dard assumption that the defection gain is relatively higher in high-stakes activities,
we can conclude that community interactions have a comparative advantage in sup-
porting low-stakes activities.'®

III. Discussion
We conclude by discussing some possible variants and extensions.

Non-coordination-Proof Equilibria.—Our comparison of welfare in communi-
ties and partnerships relies on focusing on coordination-proof equilibria in com-
munity interactions. We have argued that this equilibrium refinement is reasonable
since equilibria built on within-match miscoordination are arguably fragile. We have
also shown that tolerant contagion strategies are optimal under this refinement, so
the refinement also supports focusing on this class of strategies, which generalize
the usual contagion strategies that are a centerpiece of the community enforcement
literature.

Nonetheless, it is worth noting that, at least for some parameters p and g, the
maximum partnership welfare level of W can be attained in community interactions
using non-coordination-proof strategies. In particular, consider the following variant
of tolerant contagion strategies.

(i) The set of histories H is partitioned into cooperators and defectors. Entrants
are cooperators.

(ii) Matched partners always cooperate unless they are both defectors, in which
case they both defect. (This is a key difference from coordination-proof strat-
egies, where a matched cooperator and defector both defect.)

16We are not aware of direct empirical evidence on whether the defection gain rises faster than the coopera-
tive payoff in higher-stakes activities, but this is a standard assumption: see, for example, Ghosh and Ray (1996);
Kranton (1996); and Ali and Miller (2013, 2016). Another similar setup is Dixit (2003), which considers a random
matching model where information about high-value interactions spreads more slowly, so that incentive constraints
bind more in higher-value interactions.
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(iii) If the outcome of a cooperator’s interaction is (S, z) for any z, they remain a
cooperator. If the outcome of a cooperator’s interaction is (F , z), they remain
a cooperatorif z > 1 — ¢ and become a defector if z < ¢.

(iv) If the outcome of a defector’s interaction is (F,z) for any z, they remain a
defector. If the outcome of a defector’s interaction is (S, z), they remain a
defectorif z > 1 — ¢ and become a cooperator if z < ¢.

These strategies are not coordination proof because (C, C) is a Pareto-dominant
Nash equilibrium in an interaction between two defectors, but the strategies pre-
scribe (D, D) in these interactions. Nonetheless, it can be shown that if g is suf-
ficiently small, there exists 4 such that, for all v > 7, there exists a value for
¢ such that these strategies form an equilibrium that delivers welfare W.'7 This
shows that coordination-proofness is an essential part of our theory. Intuitively,
coordination-proofness implies that a matched cooperator and defector must take
(D, D), as if they took (C,C) then matched defectors would also take (C,C) (as
(C R C) would be a Pareto-dominant Nash equilibrium in their interaction), which in
turn would destroy incentives. Matched cooperators and defectors taking (D,D) is
the source of contagion discussed following Proposition 4, which accounts for the
gap between welfare in communities and partnerships. If instead matched cooper-
ators and defectors take (C, C) as in the above strategies, there is no contagion and
welfare in communities and partnerships is equal.

Two-Sided Noise—Our assumption that success requires cooperation from both
partners is restrictive. A natural generalization is to assume that

3 prista) = {7 €
q otherwise

where 0 < ¢ < p < 1. Under this assumption, the partners’ actions remain per-
fect complements in delivering a success, in that Pr(S | (C, D)) = Pr(S | (D,D)), but
it is possible to obtain a success even if one or both partners defect. Under (3), the
same argument as in the proof of Proposition 1 gives an upper bound for welfare
that converges to fi> as ¢ — 0. Similarly, the same argument as in the proof of
Proposition 2 implies that, for sufficiently high ~, there exist a sequence of tolerant
contagion equilibria whose welfare converges to fi> as ¢ — 0, but now there is a
gap between the upper bound and the welfare level that can be attained by tolerant
contagion strategies.'® This gap can be shown to be second order in g, so tolerant
contagion strategies are quite robust to a small probability that the players obtain a
success even when one or both of them defects.

71t can also be shown that, as in a fixed partnership, welfare in any pure Nash equilibrium in the community
enforcement game cannot exceed W.
'8 The upper bound and the maximum welfare level attainable by tolerant contagion strategies are, respectively,

1+¢ 1+g)> 1 q 1+ 5258 \/<1+qug>2 1
- L p
7 ° ( 2 ) —p—q8 ad 7 * 3 “pg®
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The intuition for why tolerant contagion strategies are exactly optimal when

= 0, but not when ¢ > 0, is as follows. When g = 0, obtaining a success
proves that both partners cooperated. It is therefore optimal to assign each partner
the highest possible continuation payoff following a success, which is what tolerant
contagion strategies do. Instead, when g > 0, a success may be due to luck. It may
therefore be better to assign a player the highest possible continuation payoff only
after a series of successes. However, the advantage of such strategies over tolerant
contagion strategies is small when ¢ is small.

More General Outcome Distributions.—It is more challenging to general-
ize the outcome structure to allow Pr(S|(C,D)) # Pr(S|(D,D)), so that the part-
ners’ actions are not perfect complements. If Pr(S|(C,D)) # Pr(S|(D,D)) and the
parameter ¢ is sufficiently small, then we conjecture that the asymmetric action
profiles (C,D) and (D, C) can be supported in equilibrium. This enables society to
provide incentives through continuation payoff transfers (as in Fudenberg, Levine,
and Maskin 1994), even though with only two outcomes pairwise full rank cannot
hold. Moreover, because players face a new partner each period, there can be a pos-
itive mass of players whose continuation payoffs are above the highest feasible and
individually rational payoff in a fixed partnership. This in turn raises the question
of what general properties of the outcome structure suffice for the folk theorem in
our steady-state community interaction model, either with or without a restriction
to coordination-proof equilibrium. This is an interesting question for future work.!'®

Avoidance.—A modification of the prisoner’s dilemma stage game that seems
realistic in some contexts is that in every interaction, each player has a third action,
Avoid, which corresponds to refusing to interact with the current partner. Suppose
that Avoid gives both players a payoff of zero regardless of their partner’s action and
that the outcome of an interaction where either partner takes Avoid is recorded as
Avoided or alternatively is not recorded at all. It can be shown that in this modified
game, when ~ is sufficiently high, maximum welfare in (coordination-proof) com-
munity enforcement increases to W2. To see the intuition, note that with avoidance,
we can modify tolerant contagion strategies so that players with histories in H”
play Avoid rather than D, while players still transition from HC to H? only after a
failure. This modification eliminates contagion: now, players only transition from
H€ to H? when they themselves are hit by noise because when they match with
partners in H”, the outcome is now Avoided rather than F. Consequently, the transi-
tion probability from HE to H” can be set at the minimum level required to provide
incentives, which implies that the steady-state share of players with histories in H¢
can be as high as W, exactly as in a fixed partnership. Nonetheless, the maximum
welfare level of W is still less than the welfare level of W that is attainable in a
fixed partnership because, since noise and matching are independent of each other
in community interactions, the share of matches where both partners have histories
in H is only W2

19 Theorem 2 of CFW provides a partial folk theorem under almost-perfect monitoring.
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More General Records.—We have assumed that players observe no information
other than their partner’s history of past outcomes and random draws. It is also
interesting to consider settings where a player gets some information about their
partner’s past partners, such as their identities or past outcomes. In CFW, we showed
that such “interdependent records” provide little advantage beyond observing the
partner’s history of outcomes, when outcomes are observed with very little noise.
However, with nontrivial noise, interdependent records might help reduce contagion
and improve efficiency. This seems an interesting direction for future research.

Richer Social Structure.—Finally, we have only compared two extreme social
structures: random matching in a large population, and a fixed partnership. Reality
lies in between these extremes: we interact with friends and colleagues more than
with strangers, but we do sometimes meet strangers. Incorporating richer social
structures—for example, weighted random matching or networked interactions—
into our analysis is another promising direction for future work.
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