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ABSTRACT: Data sets with imbalanced class sizes, where one class size is much smaller than that of others, occur 
exceedingly often in many applications, including those with biological foundations, such as disease diagnosis and drug 
discovery. Therefore, it is extremely important to be able to identify data elements of classes of various sizes, as a failure 
to do so can result in heavy costs. Nonetheless, many data classification procedures do not perform well on imbalanced 
data sets as they often fail to detect elements belonging to underrepresented classes. In this work, we propose the BTDT-
MBO algorithm, incorporating Merriman–Bence–Osher (MBO) approaches and a bidirectional transformer, as well as 
distance correlation and decision threshold adjustments, for data classification tasks on highly imbalanced molecular 
data sets, where the sizes of the classes vary greatly. The proposed technique not only integrates adjustments in the clas-
sification threshold for the MBO algorithm in order to help deal with the class imbalance, but also uses a bidirectional 
transformer procedure based on an attention mechanism for self-supervised learning. In addition, the model implements 
distance correlation as a weight function for the similarity graph-based framework on which the adjusted MBO  
algorithm operates. The proposed method is validated using six molecular data sets and compared to other related  
techniques. The computational experiments show that the proposed technique is superior to competing approaches  
even in the case of a high class imbalance ratio.

KEYWORDS: Imbalanced data; molecular data; transformer; graph-based; data classification.

1. INTRODUCTION
In data classification, class imbalanced data is distin-
guished by an underrepresentation of one class (the 
“minority” class) in the data compared to the other 
class or classes (the “majority” class(es)). As a result, 
data classification algorithms trained on imbalanced 
data tend to become biased with regard to the majority 
class(es) and often misclassify data points from the 
minority group, which is frequently the class of most 
interest.1,2 This scenario is quite common in classifica-
tion tasks, and it can be especially problematic if the 
minority class represents an important or critical out-
come, such as in drug discovery, disease diagnosis, 
fraud detection, energy management, and other appli-
cations involving rare events.2 For example, drug dis-
covery is a very exacting problem in science. In drug 
screening, the number of inactive molecules is typically 

thousands of times larger than that of active molecules. 
A successful drug must be highly potent, be free of 
serious side effects or off-target binding, and exhibit 
minimal or no toxicity.1 As a result, the majority of 
drug candidates are either inactive or unqualified, 
leading to highly imbalanced data sets.3,4 Specifically, 
imbalanced data occur during virtual screening: iden-
tifying potential drug candidates from large compound 
libraries. Effective handling of imbalanced data can 
improve the identification of active compounds.5–8 

Another situation in which we deal with imbalanced 
data is quantitative structure–activity relationship 
modeling, which predicts a compound’s activity using 
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the chemical composition.9,10 Balancing the data can 
lead to more reliable predictions.11

Therefore, addressing imbalanced data is crucial 
for effective machine learning in many applications 
such as drug design and discovery. By employing a 
fusion of algorithm-level and data-level strategies, and 
focusing on appropriate evaluation metrics, research-
ers can build models that better identify rare but valu-
able compounds, leading to more successful outcomes 
in drug discovery and development.

Techniques to deal with imbalanced data can be 
categorized into2,12–14 data pre-processing or resam-
pling methods,15,16 model-level techniques,2,17 ensemble 
algorithms18 and cost-sensitive methods.19 Strategies in 
the first group include resampling methods, which 
attempt to make the training set’s class distribution 
more balanced using sampling techniques, and feature 
selection methods, which are carried out in the feature 
space rather than the sample space.2 Examples of resa-
mpling procedures include oversampling,20,21 under-
sampling22,23 and hybrid-sampling algorithms.15,24,25 
Respectively, these procedures attempt to rebalance the 
sample space by creating new samples from the minor-
ity group, discarding representatives from the majority 
group, or a combination of both. Methods belonging to 
the second group, the model-level techniques, attempt 
to make adjustments to steps of the algorithm itself so 
that there is less bias towards classes of larger size. 
Ensemble algorithms use the output of multiple classi-
fiers to make predictions, which can improve the per-
formance of individual classifiers.2,26 Lastly, 
cost-sensitive procedures instead assign a larger mis-
classification cost to classes of smaller size.19

Some cost-sensitive approaches to imbalanced 
data classification involve thresholding, which is 
applied in a post-processing step.27 In particular, 
thresholding algorithms are cost-sensitive techniques 
which assign a probability to each of the test elements. 
For a threshold of 0.5, which is the default probability 
threshold value in most classifiers,28 any test element 
with a probability of at least 0.5 will be assigned to one 
class; otherwise, it will be assigned to another class. In 
the case of highly imbalanced data classification, the 
threshold of 0.5 may not be optimal; thus, threshold 
algorithms attempt to find a more optimal threshold 
boundary for the machine learning task. Usually, a bal-
anced accuracy metric is used; some examples include 
the ROC curve (receiver operating characteristic 
curve),29 the G-Mean,30 F1-score,28 the Matthews corre-
lation coefficient31 and the balanced accuracy.5 In these 
cases, the goal is to maximize the balanced accuracy 
metric. Overall, one approach for image classification 

and feature extraction is detailed in Ref. 32, which pro-
poses a convolution-based efficient transformer image 
feature extraction network. Moreover, Wang et  al.33 
introduce a micro-directional propagation model using 
deep learning, and Zhu34 focus on an adaptive agent 
decision model derived using autonomous learning 
deep reinforcement learning. In addition, Yin et  al.35 
detail feature extraction modules, while Peng et  al.36 
present a systematic review of picture fuzzy decision- 
making methods. Applications to sideband harmonics, 
internet market design, large-scale sliding puzzles are 
found in Refs. 37, 38 and 39.

However, most of the cost-sensitive techniques for 
imbalanced data classification that search for the opti-
mal threshold can be computationally extensive 
because retraining of the classifier is often required. 
Inspired by the work of Esposito et al.,1 in this paper, 
we detail an algorithm for imbalanced data classifica-
tion which does not require any retraining in its proce-
dure. In order to motivate the proposed procedure, we 
turn to the authors’ previous work,40 which demon-
strated the success of their BT-MBO method for 
molecular data classification with very small labeled 
sets; refer Ref. 41 for a survey of machine learning 
techniques for data with limited labeled elements in 
molecular science. The BT-MBO algorithm, which 
admits two-dimensional molecular data in a special 
format called the simplified molecular input line entry 
specification (SMILES)42 format, is composed of a bidi-
rectional transformer43 and a graph-based and modi-
fied Merriman–Bence–Osher (MBO) algorithm44,45 in 
series, utilizing the transformer model to generate 
molecular fingerprints which then serve as features for 
the MBO algorithm. The MBO method used in the 
BT-MBO model40 generates a probability distribution 
over all classes for each data point, and it subsequently 
classifies each data element by choosing the class for 
which that element has the highest probability. 
However, in the case of imbalanced data, this proce-
dure may cause the technique to miscategorize data 
elements in the minority group, since the probability 
distribution may be biased toward the majority classes. 
Thus, in this work, we propose the BTDT-MBO 
method (bidirectional transformer with MBO tech-
niques using a varying decision threshold), which is a 
novel adaptation of the BT-MBO technique for use on 
highly imbalanced molecular data.

In particular, the proposed BTDT-MBO method 
incorporates a decision threshold adjustment in the 
MBO algorithm, which utilizes the probability distri-
bution generated by the algorithm for each data point. 
Instead of following the typical MBO classification 
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procedure, the BTDT-MBO algorithm tests a set of 
thresholds and chooses the threshold that produces the 
highest ROC-AUC score (area under the ROC curve) 
for the unlabeled points. The new thresholding step 
introduced in the BTDT-MBO method does not 
require any additional iterations of the MBO algo-
rithm; rather, at the end of each iteration, we repeat the 
new thresholding step for each threshold. We refer to 
the modified MBO algorithm with decision threshold 
adjustment as the DT-MBO method. Another adapta-
tion introduced in the BTDT-MBO method is the 
inclusion of the distance correlation46,47 as a weight 
function in the DT-MBO algorithm. The default weight 
function used in our BTDT-MBO method is a Gaussian 
kernel; in addition to experiments using a Gaussian 
weight function, we also carried out experiments using 
a distance correlation weight function.

Given our previous BT-MBO method’s predictive 
success for the challenging scenario of scarcely labeled 
data,40 we focus on the difficult task of data classifica-
tion of highly imbalanced molecular data sets in this 
paper. Specifically, all six data sets used for bench-
marking the proposed BTDT-MBO algorithm have an 
imbalance ratio (IR) of 16.5 or greater. We compare our 
results using BTDT-MBO to those of the GHOST pro-
cedure1 applied to four common classification algo-
rithms: random forest, gradient boosting decision 
trees, extreme gradient boosting and logistic regres-
sion. Specifically, the GHOST technique1 is an auto-
mated procedure that can be used in any data 
classification procedure and that adjusts the decision 
threshold of a classifier using the training set’s predic-
tion probabilities (i.e., without needing to retrain the 
classifier); it achieved success in classifying imbalanced 
molecular data, demonstrated on data with varying 
levels of class imbalance. Detailed results on the six 
highly imbalanced data sets, as well as a discussion, are 
given in Sec. 3. The computational experiments indi-
cate that our BTDT-MBO method obtains superior 
results to those of the comparison techniques.
Contributions
We present the main contributions of this work:

• We present a new technique, the BTDT-MBO 
method, for molecular data classification, espe-
cially designed to be very useful even in cases of 
highly imbalanced data sets. This procedure incor-
porates Merriman–Bence–Osher techniques, as 
well as bidirectional transformers, distance correla-
tion and adjustments in the classification 
threshold.

• The proposed BTDT-MBO algorithm is able to 
perform extremely well even in the cases of molec-
ular data that is highly imbalanced and where the 
class sizes vary significantly. This is extremely 
important, since highly imbalanced data sets are 
often found in practice.

• The proposed method utilizes several techniques to 
achieve good performance when using data with 
high class imbalance ratios, including adjustments 
in the classification threshold.

• The proposed technique is evaluated using experiments 
on six data sets. It is shown that the BTDT-MBO method 
performs more accurately than the comparison methods 
in almost all cases. The ROC-AUC score is used as a 
metric.

2. METHODS
In this section, we derive the proposed techniques. In 
particular, in Sec. 2.1, we outline the details of the pro-
posed BTDT-MBO method (bidirectional transformer 
with MBO techniques44,45 using a varying decision 
threshold), which adapts some of the techniques of our 
previous work.40 In Sec. 2.2, we further discuss the dis-
tance correlation46,47 as a potential similarity metric for 
use in the BTDT-MBO method.

2.1. BTDT-MBO algorithm
The authors’ previous work40 demonstrated the suc-
cess of their proposed BT-MBO method in molecular 
classification problems with small sets of labeled 
nodes, with the BT-MBO procedure outperforming 
state-of-the-art techniques on some benchmark data 
sets when only 1% of all data elements are viewed as 
labeled. This work proposes a method, called BTDT-
MBO, that adapts some of the procedures of the 
BT-MBO procedure for the data classification task on 
molecular data sets where the classes of the data set 
vary vastly in size.

Inspired in part by the success of Esposito et al.1 in 
adjusting the classification threshold for machine 
learning classifiers to make predictions about imbal-
anced molecular data, the proposed BTDT-MBO 
method utilizes the aspects of the BT-MBO algorithm 
from Ref. 40 along with a decision threshold adjust-
ment at each iteration of the method. We denote the 
adjusted MBO method with varied decision threshold 
by DT-MBO. The proposed BTDT-MBO algorithm 
consists of a bidirectional transformer (created by 
Chen et  al.43) and a DT-MBO algorithm in series, 
where the fingerprints (BT-FPs) generated by the 
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transformer serve as input features to the DT-MBO 
algorithm. Figure 1 illustrates the steps of the BTDT-
MBO algorithm. The BTDT-MBO algorithm is further 
outlined in Algorithm 2, and details of the DT-MBO 
method are given in Algorithm 1.

2.1.1.  MBO scheme with decision 
threshold adjustment

Here, we establish the similarity graph-based structure 
our BTDT-MBO scheme uses, which adapts tech-
niques outlined in the literature.44,48,49 First, consider a 
graph involving the vertex set V representing the data 
set nodes. We can then define a weight function w : 
V × V → R, whose value represents the degree of simi-
larity between two vertices of the graph. Specifically, 
w(i, j) measures the degree of similarity of data ele-
ments i and j of the data set. While there are many 
choices for the weight function, it should be con-
structed so that the value of w(i, j) corresponds to the 
extent of resemblance or closeness of the data elements 
i and j. A popular weight function is the Gaussian 
weight function:

  
w i j

d i j
, exp

,
,( ) = − ( )









2

2σ
 (1)

where d(i, j) represents the distance between vertices i 
and j (computed using some prespecified metric such 
as the Euclidean distance), and σ > 0.44,49

In this paper, we utilize the Gaussian weight func-
tion for some of our BTDT-MBO experiments, and for 
other experiments, we use the distance correlation46 as 
a weight function. The distance correlation is defined 
and further discussed in Sec. 2.2.

Given a weight function w, let the weight matrix W 
be the matrix Wij = w(i, j). Then let the degree of a ver-
tex i ∈V be defined as di = ∑j ∈V w(i, j). If we let D be a 
diagonal matrix containing diagonal elements {di}, 
then we can define the graph Laplacian as follows:

 L = D − W. (2)

Occasionally, the graph Laplacian is normalized so 
that the diagonal entries of the normalized Laplacian 
are unit values. Of course, the non-diagonal entries are 
scaled accordingly.

For outlining the Merriman–Bence–Osher (MBO) 
framework, formerly introduced in Ref. 45 to generate 
approximations to mean curvature flow and then 
applied using a graph-based setting to various 

applications such as hyperspectral imaging in works 
such as Refs. 44, 48, 50, 51 and 52, we consider a general 
data classification problem with m classes. Overall, the 
MBO algorithm ultimately aims to compute a label 
matrix U = (u1,...,uN)T; a row ui ∈Rm of the label matrix 
contains the probability values of the data element 
i belonging to each of the m classes. For instance, the 
first element of ui represents the probability that node i 
is a member of the first class, the second element of ui 
represents the probability that node i is a member of the 
second class, and so on. Therefore, each vector ui can be 
viewed as a component of the mth Gibbs simplex:

  
: , , [ , ] .= ( ) ∈ =






=

∑∑ y y ym
m

k
k

mm

1
1

0 1 1  such that  (3)

The vertices of mth Gibbs simplex are unit vectors 
{ei}, where the probability of belonging to class i is 1, 
while the probability of belonging to any other class is 
0. Thus, the vertices {ei} correspond to data elements 
that belong exclusively to each of the m classes. In our 
data classification problem with labeled and unlabeled 
data elements, the labeled data elements are assigned to 
their corresponding vertices of the Gibbs simplex.

The process by which the MBO algorithm gener-
ates the optimal label matrix U relies on energy mini-
mization, a time-splitting scheme, and transference to 
a graph-based setting as described above. A general 
graph-based machine learning algorithm for data clas-
sification can be formulated as minimizing the energy 
consisting of the sum of a regularization term that 
incorporates weights in addition to a fidelity part that 
integrates the labeled nodes.49

As Garcia and coauthors demonstrated in Ref. 44, 
one successful choice for the regularization term R is 
the Ginzburg–Landau functional,53,54 often utilized in 
image processing tasks and associated applications due 
to its relation to the total variation functional.48,55 For 
the fidelity term, one can choose an L2 fit to all labeled 
nodes. In the continuous setting, L2 gradient descent 
can then be applied to minimize the energy. This 
results in a modified Allen–Cahn equation containing 
an additional forcing part. Next, a time-splitting 
scheme produces a technique that alternates between 
two steps: a diffusion step, which uses the heat equa-
tion with an addition term, and a thresholding step. 
Finally, one can use the techniques outlined in Refs. 44, 
48 and 56 to transfer the procedure to a graph-based 
setting, in which the thresholding step is replaced by 
projection to the Gibbs simplex (3), followed by dis-
placing to the nearest vertex in the mth Gibbs simplex. 
Additionally, to adapt to the graph setting, one can 
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replace the Laplace operator by the graph Laplacian (2) 
or some normalization of the graph Laplacian.

Thus, each iteration of the MBO algorithm ends 
with the aforementioned displacement step, where 
each row of the label matrix is displaced to its closest 
vertex in the simplex. In the algorithm, the closest ver-
tex is determined by the class for which the data ele-
ment corresponding to that row has the highest 

probability. In this paper, we propose that this proce-
dure can instead be formulated using a decision thresh-
old, which utilizes the probability that a data element 
belongs to the minority class. Given a decision thresh-
old and a row of the label matrix, if the probability 
corresponding to the minority class is greater than that 
threshold, that row will be displaced to the vertex for 
the minority class. Otherwise, the typical displacement 

Fig. 1.  (Color online) Flowchart illustrating the BTDT-MBO method.
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procedure is followed, with the row being displaced to 
the vertex for which it has the highest probability.

To formulate our decision threshold technique, we 
are inspired by Esposito et  al.,1 which demonstrated 
success in classifying imbalanced molecular data by 
developing a procedure that adjusts and optimizes the 
decision threshold of machine learning classifiers. For 

binary data, the default decision threshold is usually 
0.5, where the model assigns a sample to the minority 
class if its probability of belonging to the minority class 
is greater than 0.5 (this is identical to assigning the 
sample to the class for which it has the highest proba-
bility). However, machine learning classifiers are likely 
to misclassify minority points since the probability 

Algorithm 1.  DT-MBO Algorithm (using techniques from Refs. 49 and 56)

Require: Labeled set L = ={( , )} ,x i i i
Ny 1  with fingerprint xi and label yi, N = size of data set, Nn = number of nearest neighbors, Ne = number of 

eigenvectors, dt, C, Nt = maximum number of iterations, Np = number of labeled elements, Nl = number of labeled collections, Ns, 
m = number of classes, τlow = lowest threshold, τhigh = highest threshold, kmin = index of minority group/cluster.

Ensure: Average optimal ROC-AUC score over the Nl labeled sets.
1. Compute the Nn-nearest neighbor graph, unless one is using the Nyström technique61–63 for large data. In the latter case, go to Step 3.
2. Construct the graph Laplacian L.
3. Calculate the smallest Ne eigenvalues Λ and the corresponding eigenvectors Φ of L. One can also approximate them using the 

Nyström method61–63 in case of large data sets.
4. The main procedure of the proposed method:
for l = 1 → Nl do
  Let the N × 1 vector Γ vector be defined so that Γj = 1 for labeled points and 0 for unlabeled points.

  for i = 1 → N do
     Initialize each value of a row of U to a random number in [0,1], except for rows corresponding to labeled nodes, in which case,  

set ui
0 ← ek, where k is the true class.

     ui
0 ← projectToSimplex(ui

0). Here, ui is the ith row of the matrix U0.
  end for
  nτ ← (τhigh − τlow)/0.05 + 1, Uτ ← 0, an N × m × nτ array of zeros.
  A ← Φ′U0, B ← 0, E ← 1 + (dt/Ns)Λ
  for n = 1 → Nt do
    for k = 1 → Ns do
      for j = 1 → m do
        Aj ← (Aj − (dt/Ns)Bj)./E
      end for
      Un ← ΦA
      B ← C(Φ′(Γ ⋅ (Un − U0))), where row-wise multiplication is performed.
    end for
    Un+1 ← projectToSimplex(Un)
    for j = 1 → nτ do
      τj = τlow + 0.05( j − 1)
      for i = 1 → N do
        if uik

n
jmin

+ ≥1 τ  then
          u ei

n
k

+ ←1
min

, where ekmin is the simplex vertex corresponding to the minority class.
        else
          u ei

n
k

+ ←1 , where ek is the closest simplex vertex to ui
n + 1.

        end if
      end for
      Uτj ← Un+1, where Uτj is the jth N × m slice of Uτj.
    end for
  end for
  Compute ROC-AUC score for each threshold, and choose the threshold that yields the highest score.
end for
5. Compute the average of the Nl Optimal ROC-AUC scores.
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distribution over the two classes for a given data point 
may be skewed toward the majority class,57 so Esposito 
et al.1 tested potential decision thresholds from 0.05 to 
0.5 with a spacing of 0.05. Similarly, in this work, we 
augment the MBO method by a process that optimizes 
the decision threshold for the displacement step, result-
ing in our proposed decision-threshold-MBO 
(DT-MBO) algorithm.

Two of the inputs of the DT-MBO algorithm, 
which is integrated into the proposed BTDT-MBO 
procedure, are a minimum threshold and a maximum 
threshold to test. In this study, we test a minimum 
threshold of 0.05 and a maximum threshold of 0.55, 
with thresholds between these two values spaced by 
0.05. This allows us to choose a more optimal thresh-
old than the usual one of 0.5.

Overall, we summarize the main iterative steps of 
the DT-MBO procedure for the data classification task 
used in this work below, with more details given in 
Algorithm 1. The process is adapted from the MBO 
algorithm used in our previous work,40 with an addi-
tional decision threshold step in the displacement 
step. The below steps require a given labeled/unlabe-
led partition of a data set as well as a list of thresholds 
to test.

1. Diffusion step: compute Un+ 1
2  using the heat equa-

tion with an additional term using 

Algorithm 2.  BTDT-MBO Method (using related procedures as in Ref. 40)

Req uire: Unlabeled set U = ={ } ,si i
N

1  where si is a molecular compound’s SMILES string, a chosen pretrained model from the three described 
in Sec. 2.1.2, a dictionary which designates an integer number to each SMILES element.

Ensure: FBT x= ={ } ,i i
N

1  a set of normalized fingerprints.
  1. Binarize the data consisting of SMILES strings.
  2. Loading step: load the chosen model (which is pre-trained).
  3. Extracting step: Extract the hidden information from U via the chosen pretrained model:
  Initialize the empty dictionary Dhidden (of length N) containing hidden features.
  for i = 1 → N do
    Compute tensor ti (of the same dimension as si), containing the dictionary values of the characters in the analogous locations in si.
     Let ti be an input to the bidirectional encoder transformer from the chosen pretrained model. Obtain the inner state from the last 

hidden layer Ti, whose dimensions are (li, 1, 512) (where li is the length of ti).
    Reshape Ti into a tensor Vi with the following dimensions: (li, 512).
    Set Vi as ith element of the matrix Dhidden.
  end for
  4. Generating step: Produce the fingerprints from the hidden information:
  Initialize the list of fingerprints FBT (of length N).
  for i = 1 → N do
    Compute the first row xi from the ith element of the matrix Dhidden.
    Set xi as the ith fingerprint in FBT.
  end for
  5. Scale fingerprints FBT x= ={ }i i

N
1  so that they have unit variance and zero mean.

  6. Send scaled fingerprints FBT x= ={ }i i
N

1  to the DT-MBO algorithm, described in Algorithm 1.

  U U LU U U
n n n n+ +

= − + ⋅ −
1
2

1
2dt labeledµ ( ),

 applied Ns times. Here, dt > 0, and Ulabeled is a matrix 
where a row corresponding to a labeled element is 
an indicator vector ek if the node is of class k, and a 
zero vector for non-labeled points. Moreover, µ is a 
vector whose entries are equal to a constant for 
labeled points, and zero otherwise. We set Ns = 3.

2. Projection step: compute Un+1 via projecting (each 
row) of the matrix Un+ 1

2  onto (3).
3. Displacement step: Replace every row of the result 

from step 2 by its assigned vertex ek in the mth 
Gibbs simplex (3) depending on the decision 
threshold. This procedure is executed for every 
threshold in the list.

 (a)  If the probability that the row belongs to the 
minority class is greater than (or equal to)  
the decision threshold, the row is replaced by 
the vertex corresponding to the minority class.

 (b)  Otherwise, the row is replaced by the vertex for 
which it has the highest probability.

After repeating the above steps for a number of 
iterations, our model generates a predicted label matrix 
for each threshold. To select the optimal decision 
threshold from the set of thresholds for a given labeled/
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unlabeled partition of a data set, our model then com-
putes the ROC-AUC score for each label matrix and 
subsequently chooses the threshold whose predicted 
labels yield the highest ROC-AUC score. Notably, the 
new thresholding procedure only involves alterations 
to the displacement step and does not require addi-
tional iterations of the diffusion or projection to sim-
plex steps, thus saving computational time, in contrast 
to many cost-sensitive methods which require the 
complete retraining of the classifier. Section 3.3 con-
tains discussion regarding this threshold optimization 
and its results.

2.1.2. Bidirectional transformer
As in our previous work,40 the BTDT-MBO algorithm 
utilizes a bidirectional transformer to convert the 
SMILES input for each molecular compound to a vec-
tor in a latent space, which is then obtained as a 
molecular fingerprint, named BT-FP, for that com-
pound. After being normalized, the BT-FPs for the 
compounds in a given data set comprise the features 
passed to the DT-MBO method for that data set. 
Specifically, the BTDT-MBO algorithm uses a par-
ticular bidirectional transformer model introduced 
by Chen et  al.43 involving an attention structure for 
self-supervised learning (SSL). The model, the self- 
supervised learning platform (SSLP), enables the gen-
eration of BT-FPs without the need for data labels. 
Moreover, the model used for BTDT-MBO can be 
chosen out of three SSLP models constructed by Chen 
et al.43 The three SSLP models include one pretrained 
on the ChEMBL data set.58 The other two models 
include one pretrained on the union of the ChEMBL 
and PubMed59 data sets and one model trained on the 
union of the ChEMBL, PubMed and ZINC60 data sets. 
Additionally, there is an option to fine-tune the 
selected self-supervised learning platform for specific 
predictive tasks.

In our prior work,40 we demonstrated the predic-
tive success of the BT-MBO model utilizing the 
self-supervised learning platform trained solely on 
ChEMBL for scarcely labeled molecular data. 
Consequently, the proposed BTDT-MBO model in 
this work uses the same SSLP trained on ChEMBL. 
Similarly, our BT-MBO model in Ref. 40 performed 
well without fine-tuning the SSLP, so we also bypass 
the fine-tuning step for the proposed BTDT-MBO 
model, instead passing our data directly to the pre-
trained SSLP.

2.1.3. Overall procedure
The overall two stages of the BTDT-MBO procedure 
are outlined as follows:

• Molecular data in the form of SMILES strings are 
passed to the self-supervised learning platform pre-
trained on ChEMBL data set.58

• The resulting BT-FPs are the rescaled so that they have 
zero mean as well as unit variance and then served as an 
input to the DT-MBO method, outlined in Algorithm 1.

More details of the stages are given in Algorithm 2. 
Notably, because the SSLP does not require data labels, 
this procedure can be applied to data with any number 
of classes. Paired with our DT-MBO method as out-
lined in Sec. 2.1.1 and Algorithm 1, our BTDT-MBO 
model can thus be used for problems with any number 
of clusters or classes.

2.2. Distance correlation
As discussed in Sec. 2.1.1, the similarity graph-based 
framework on which the DT-MBO scheme operates 
requires a weight function to compute the degree of 
similarity between two data elements. Various weight 
functions can be used, but a suitable weight function is 
defined so that a high degree of similarity between two 
elements is reflected by a large weight function output, 
and a low degree of similarity is reflected by a small 
weight function output.64

As in the authors’ previous work40 using the 
BT-MBO method, our proposed BTDT-MBO method 
utilizes a Gaussian kernel (1) as one of the ways to 
compute weights for the MBO scheme. By construc-
tion, when the distance between two data elements is 0, 
the Gaussian weight function evaluated at those two 
data elements equals 1. As the distance between two 
data elements approaches infinity, the Gaussian weight 
function approaches 0. In other words, the Gaussian 
weight function outputs values close to 0 for dissimilar 
data elements and 1 for identical data elements, with a 
weight function output closer to 1 reflecting greater 
similarity.

In this work, we further propose distance correla-
tion46 as a potential weight function for the DT-MBO 
scheme, motivated in part by the success of Hozumi 
et al.47 in applying distance correlation to feature clus-
tering. Also, as will be illustrated below, the distance 
correlation weight function scales similarly to the 
Gaussian weight function, with potential outputs 
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between 0 and 1, and higher weight function values 
corresponding to greater similarity, supporting our 
substitution. We hope to provide a new interpretation 
of the MBO method by incorporating the distance cor-
relation as a weight function.

Distance correlation46 is a measure of dependence 
between random vectors that generalizes of the idea of 
correlation. In particular, distance correlation is 
defined for pairs of vectors in arbitrary dimension, and 
the distance correlation of two vectors is 0 if and only 
if the two vectors are independent. We use the distance 
correlation between two vectors as defined in Ref. 46 
and use the same notation below as in Ref. 47. First, 
given a vector zi, i = 1,2,...,I, we can compute a distance 
matrix with entries defined by

 a z z m k Mjk
i

m
i

k
i= − =, , , , , .1 2  (4)

Here, || ⋅ || represents the Euclidean norm. Also, the 
doubly centered distance for zi is given by

 A a a a ajk
i

jk j k: . . .,= − − +  (5)

where āj· represents the jth row mean. In addition, ā.k 
represents the kth column mean, and ā··represents the 
grand mean of the distance matrix for zi.

Given zi and zj, we can define the squared distance 
covariance as follows:

 
dCov2

2
1( , ) : .z zi j

jk
i

jk
j

kjM
A A= ∑∑  (6)

Now, the distance correlation between zi and zj is 
defined as follows:

 
dCor dCov

dCov dCov
( , ) : ( , )

( , ) ( , )
.z z z z

z z z z
i j

i j

i i j j=
2

 (7)

Note that the distance correlation dCor(zi, zj) can 
take on values in the range [0,1] (see a complete proof 
of this fact in Ref. 46). We have dCor(zi, zj) = 0 when 
vectors zi and zj are independent (or dCov2(zi, zj) = 0), 
and we have dCor(zi, zj) = 1 when zi and zj are linearly 
dependent. Additionally, a higher squared distance 
covariance between two vectors corresponds to a dis-
tance correlation closer to 1 for those vectors.

Thus, the distance correlation (7) satisfies the con-
ditions for a similarity weight function for the MBO 
scheme. As discussed above, the range of the distance 
correlation is identical to that of the Gaussian kernel, 

so computationally implementing the distance correla-
tion as a weight function in our DT-MBO method is 
straightforward. Specifically, only the construction of 
the graph Laplacian L in Step 2 of Algorithm 1 differs 
when using the distance correlation to compute the 
graph weights. Furthermore, Székely et  al.46 proved 
relationships between the distance correlation and the 
standard bivariate normal distribution which support 
this substitution in our algorithm. Namely, if X and Y 
have standard normal distributions with correlation ρ, 
then dCor(X,Y) ≤ |ρ|.

3. RESULTS AND DISCUSSION
In this section, we discuss the computational experi-
ments and results. The code used for the DT-MBO 
algorithm was written in MATLAB. To carry out com-
putational experiments and optimize parameters, we 
utilized the High Performance Computing Center 
(HPCC) at Michigan State University. For all jobs sub-
mitted through HPCC, we specified two CPUs per 
task. Distance correlation weights were computed 
using the distance_correlation function from 
the dcor library in Python.

3.1. Data sets
The data sets used in this work are characterized by a 
high level of imbalance in class sizes, measured by the 
imbalance ratio (IR). The IR of a data set with two 
classes is defined as the ratio of the number of points in 
the majority class to the number of points in the 
minority class.1 Out of the public data sets Esposito 
et  al.1 used for benchmarking their proposed thresh-
olding models, we selected data sets from each of the 
following classes to benchmark our methods:

• DS1 Data Sets (obtained from Ref. 1, introduced in 
Ref. 65 and refined in Ref. 66): Each of the DS1 data 
sets corresponds to a particular ChEMBL target 
and contains 100 associated diverse active com-
pounds against that target. For each data set, we 
randomly chose 2,000 inactives from a set of 10,000 
assumed inactives drawn from ZINC,67,68 reproduc-
ing the data set construction procedure from Ref. 1. 
These 10,000 compounds were selected in Ref. 66 
to have similar property distributions to the set of 
actives, with similarity measured by an atom-count 
fingerprint. Every DS1 data set has an IR of 20.0 by 
construction.
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mistakenly appear to be suitable for the highly imbal-
anced classification task. Thus, to better quantify the 
performance of our proposed method, we use another 
evaluation metric, which computes the area under the 
receiver operating characteristic curve (the ROC 
curve). This is also known as the ROC-AUC score.

For the data classification problem, the ROC curve 
plots the true positive rate versus the false positive rate 
of the classifier for various thresholds. The ROC curve 
captures useful information about the classifier, par-
ticularly on highly imbalanced data — because the 
minority (or positive, in our case) class can be easily 
misclassified, both the true positive rate (TPR) and the 
false positive rate (FPR) need to be considered. Recall 
that a classification threshold is used to predict a given 
data point’s class using its probability distribution over 
all classes. If the probability that the data point is affil-
iated with the minority class is greater than the thresh-
old, then that point is allotted to the minority class. For 
a threshold equal to 0, the model would predict that 
every data point belonged to the minority class. In this 
case, the model would successfully classify all of the 
true positive data points (i.e., a TPR of 1), but it would 
also incorrectly classify all of the negative data points 
as positive (i.e., an FPR of 1). As the threshold increased, 
fewer data points would be classified as positive. For a 
threshold equal to 1, the model would classify all data 
points as negative, producing a TPR and an FPR of 0.

The ROC-AUC score quantifies the relationship 
between the TPR and FPR by computing the area 
under the ROC curve. For an area close to 1, it is theo-
retically possible to choose an “optimal” threshold that 
yields a high TPR and a low FPR (i.e., produces a point 
close to the upper-left corner of the ROC plot). In gen-
eral, an AUC of 0.5 suggests that algorithm has no 
ability to distinguish between the classes, 0.7 to 0.8 
indicates an acceptable technique, 0.8 to 0.9 describes 
an excellent technique, and greater than 0.9 designates 

• DrugMatrix Assays (obtained from Ref. 1): Each of the 
44 DrugMatrix assays benchmarked in Ref. 1 contains 
results for 842 compounds tested in a particular assay, 
with each data set labeled by the assay tested. Each mol-
ecule was labeled as active or inactive based on its “activ-
ity comment” value in the source data. In this paper, we 
evaluate our proposed procedure on four of these data 
sets, with IRs ranging from 16.5 to 20.0. The source data 
was retrieved from ChEMBL and was originally recorded 
in the DrugMatrix database.69

A brief summary of the data sets used for testing 
the BTDT-MBO model is given in Table 1.

The authors’ BT-MBO method from Ref. 40 per-
formed better than the state-of-the-art techniques for 
scarcely labeled molecular data. Inspired by this suc-
cess, in this work, we focus on the challenging task of 
making predictions on highly imbalanced data sets. All 
data sets used for benchmarking the proposed BTDT-
MBO method have an IR of 16.5 or greater.

3.2. Evaluation metrics
There are various existing evaluation metrics for data 
classification tasks. One such metric is model accuracy, 
which computes the fraction of data points correctly 
classified by the model. However, this metric does not 
capture many nuances of model performance. 
Particularly when dealing with imbalanced data, as 
Esposito et  al. discussed in Ref. 1, the minority class 
may be the class of most interest, but points from the 
minority class are more likely to be misclassified by the 
model than points from the majority class(es).  
In highly imbalanced data sets, such as the ones used in 
this work, there are comparatively very few points in 
the minority class. Even if the model misclassifies all of 
the points in the minority class, the performance of the 
technique could still be very high, and the model could 

Table 1.  Information about the data used for benchmarking the model (results are shown in  
Figs. 3 and 7). All data sets group molecules into two classes. The first four data sets are from Refs. 1 and 69 
and the last two data sets are from Refs. 1, 65 and 66.

Data Set Data Set Grouping # Compounds Imbalance Ratio (IR) Labels

CHEMBL1909150 DrugMatrix 842 16.9 Active, Inactive

CHEMBL1909157 DrugMatrix 842 18.6 Active, Inactive

CHEMBL1909132 DrugMatrix 842 20.0 Active, Inactive

CHEMBL1909134 DrugMatrix 842 16.5 Active, Inactive

CHEMBL100 DS1 2100 20.0 Active, Inactive

CHEMBL8 DS1 2100 20.0 Active, Inactive
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an outstanding technique. To calculate the ROC- 
AUC score in our experiments for the proposed BTDT-
MBO method, we used the perfcurve function in 
MATLAB. There also exist functions that calculate  
the ROC-AUC score for the multiclass case, so our 
evaluation procedure can be applied for any number of 
classes.

To further illustrate the construction of the ROC 
curves as well as their reflection of the classification 
performance of models, we have included example 
ROC curves in Fig. 2 for two data sets used in bench-
marking the proposed BTDT-MBO model. These plots 
were generated using a random labeled/unlabeled split 
of each data set, and the thresholds used to construct 
each plot ranged from 0 to 1, with each threshold 
increasing by 0.05. The ROC curve on the right for the 
CHEMBL1909150 data set demonstrates near-ideal 
performance on this data partition, with a point very 
close to the upper-left corner of the plot, corresponding 
to an FPR close to 0 and a TPR close to 1. Indeed, as 
displayed in Fig. 3 and discussed in Sec. 3.3, our model’s 
average ROC-AUC score for 50 random partitions of 
the CHEMBL1909150 data set was 0.978, displaying 
outstanding classification performance. The ROC curve 
on the left for the CHEMBL1909134 data set clearly has 
a lower ROC-AUC value than the curve for the 
CHEMBL1909150 data set, but the model still shows 
some ability to discriminate between the two classes. As 
shown in Fig. 3, our model’s average ROC-AUC score 
over all partitions on the CHEMBL1909134 data set 

was 0.792, which is not surprising given its example 
ROC curve. Do note, however, that our proposed 
model performed superior to the comparison methods 
on this data set, which is further discussed in Sec. 3.3.

3.3. Model performance and discussion
To evaluate the performance of our BTDT-MBO 
method for highly imbalanced molecular data sets, we 
compare our models against the GHOST algorithm 
from Ref. 1. The GHOST algorithm is designed to be 
paired with any machine learning classifier, and the 
code used in Ref. 1 ran experiments using GHOST 
with random forest (RF), extreme gradient boosting 
(XGB), logistic regression (LR) and gradient boosting 
(GB) classifiers. In this work, all models used 80% of 
the data as training (or labeled, in the MBO case) to 
mirror the experiments by Esposito et al.1

Figures 3 and 4 display the results of the BTDT-
MBO procedure compared with the GHOST method 
from Ref. 1. We generated results using GHOST paired 
with LR, RF, GB and XGB. The GHOST model allows 
the user to select the desired classification metric to use 
for optimization from two options: the Cohen’s kappa, 
which is a balanced classification metric that was used 
as the default metric in Ref. 1, or the ROC-AUC score. 
All of the experiments in this paper were evaluated 
using the ROC-AUC score.

Overall, the experimental results indicate that the 
BTDT-MBO algorithm obtains higher ROC-AUC 

Fig. 2.  Example ROC curves for two of the data sets (CHEMBL1909134 and CHEMBL1909150) used for benchmarking the proposed 
method. Curves were constructed in MATLAB for a random labeled/unlabeled split of each data set using a set of increasing thresholds from 
0 to 1, with each successive threshold increasing by 0.05. The average ROC-AUC scores for both data sets over all 50 random partitions can 
be seen in Fig. 3.
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scores than the comparison methods for all data, 
except CHEMBL8, for which the result of the proposed 
algorithm is second best, but almost the same as the 
best. We first outline the details of the experiments in 
this work, after which we provide a summary as well as 
a further discussion of results.

To create labeled and unlabeled partitions in the 
data input to our DT-MBO method, we randomly 
selected 80% of the points to be labeled and denoted 
the rest as unlabeled. Then, we applied the DT-MBO 
method, which propagates the known labels to the 
unlabeled nodes for a prescribed number of iterations 

as detailed in Sec. 2.1.1. We used the resulting pre-
dicted labels to calculate the optimal ROC-AUC score 
for this partition (over all thresholds). In highly imbal-
anced data sets, which often contain very few points in 
the minority class, results can vary widely depending 
on the particular training/testing or labeled/unlabeled 
partition. To account for this variability, as in Ref. 1, we 
repeated each experiment 50 times, with a new random 
partition for each experiment, and averaged the ROC-
AUC scores over the 50 trials. We used a similar split-
ting and averaging procedure to generate the GHOST 
comparison results; however, Esposito et al.1 recorded 

Fig. 3.  (Color online) Comparison to other techniques on DrugMatrix data sets. The results of our proposed method are in red, while those 
of other algorithms are in blue. The imbalance ratios for the pictured data sets vary from 16.5 to 20.0. Detailed information about the overall 
size and composition of the comparison data sets is described in Sec. 3.1. The performance metric is the ROC-AUC score averaged over 50 
random training-testing (or labeled/unlabeled) splits of the given data, with 80% of the data being labeled in each case. The BTDT-MBO 
result for each data set is the highest of the BTDT-MBO model using a Gaussian weight function and the BTDT-MBO model using a distance 
correlation weight function. Some comparison results were generated using the GHOST algorithm1 via random forests (RF), extreme gradi-
ent boosting (XGB), logistic regression (LR) and gradient boosting (GB). Additional comparison results were generated using the BT-MBO 
algorithm40 as well as BT-GB, BT-RF and BT-SVM models (consisting of the BT-FPs passed to gradient boosting, random forest and support 
vector machine algorithms, respectively).
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the random seeds used for each training/testing data 
split in their experiments, and we used the same 50 
random seeds when running the GHOST tests. Results 
in Figs. 3 and 4 indicate the average ROC-AUC score 
over 50 different splits of the data.

Regarding parameters, the proposed BTDT-MBO 
model requires specification of various parameters, 
whose functions can be seen in Algorithms 2 and 1. 
The bidirectional transformer43 requires the user to 
choose one of the three pretraining data sets as out-
lined in Sec. 2.1.2. In this work, all BTDT-MBO exper-
iments use the transformer model trained only on the 
ChEMBL data set,58 based on its success in predicting 
scarcely labeled molecular data in experiments from 
the authors’ previous work40 using the BT-MBO 
method. The transformer model does not require any 
additional parameter specifications, as all other param-
eters are implicit in the pretrained models.43,70

The DT-MBO algorithm relies on several parame-
ters, many of which are discussed in our previous 
work,40 but some of which have been added in this 
work to implement the decision threshold adjustment. 
Some parameters were defined manually prior to run-
ning all experiments, and other parameters were tuned 
in our experiments. Here, we provide a brief descrip-
tion of all parameters and their settings or tuning. 
First, to create the framework in which the DT-MBO 

algorithm operates, we construct a Nn-neighbor graph. 
After, the graph Laplacian L (2) is constructed, and the 
first (smallest) Ne eigenvalues and corresponding 
eigenvectors of L are computed. Overall, both Nn and 
Ne were designated as hyperparameters and tuned in 
our experiments. Other hyperparameters for the 
DT-MBO method that were tuned are the C and dt 
parameters in the diffusion step, as well as the number 
of iterations, Nt.

Regarding other parameters, we let Ns = 3 and 
Nl = 50. Additionally, the number of labeled points Np 
was set at 80% of each data set for all tasks. Finally, the 
decision threshold adjustment steps in our algorithm 
require the specification of a minimum threshold and 
a maximum threshold to test. For all BTDT-MBO 
experiments, we used a minimum threshold of 0.05 
and a maximum threshold of 0.55.

As previously stated, the proposed BTDT-MBO 
algorithm obtained higher ROC-AUC scores than the 
compared methods in all but one of the six highly 
imbalanced data sets included in this work. Figure 3 
displays our model’s results (using the best-performing 
of the BTDT-MBO with Gaussian weight function and 
BTDT-MBO with distance correlation weight func-
tion) compared with the GHOST algorithm’s results on 
four highly imbalanced DrugMatrix data sets. The 
BTDT-MBO procedure obtained a higher ROC-AUC 

Fig. 4.  (Color online) Comparison to other techniques on two DS1 data sets. The results of our proposed method are in red, while those 
of other algorithms are in blue. The imbalance ratios for the pictured data sets are both 20.0. Detailed information about the overall size and 
composition of the comparison data sets is described in Sec. 3.1. The metric is the ROC-AUC score averaged over 50 splits of the data, with 
80% of the data being labeled in each case. The BTDT-MBO result for each data set is the highest of the BTDTMBO model using a Gaussian 
weight function and the BTDT-MBO model using a distance correlation weight function. Some comparison results were generated using the 
GHOST algorithm1 via random forests (RF), extreme gradient boosting (XGB), logistic regression (LR) and gradient boosting (GB). 
Additional comparison results were generated using the BT-MBO algorithm40 as well as BT-GB, BT-RF and BT-SVM models (consisting of 
the BT-FPs passed to gradient boosting, random forest and support vector machine algorithms, respectively).
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score than all GHOST models for all four of the 
DrugMatrix data sets. As indicated in Table 1, each of 
the four DrugMatrix data sets contained 842 com-
pounds and had IRs of at least 16.5. Our model 
achieved its best predictive performance on the 
CHEMBL1909150 data set with an average ROC-AUC 
score of 0.978, indicating an outstanding ability to dis-
criminate between the active and inactive classes. 
Furthermore, our model outperformed all GHOST 
models, which also demonstrated very high ROC-AUC 
scores on this data set. For CHEMBL1909157, our pro-
cedure obtained excellent results, with an ROC-AUC 
score of 0.866. Some of the GHOST models also 
achieved ROC-AUC scores greater than 0.8, but the 
GHOST model using GB performed significantly 
worse. Our model similarly outperformed all four 
GHOST comparison models on the CHEMBL1909132 
and CHEMBL1909134 data sets.

Figure 4 shows our model’s results on two highly 
imbalanced DS1 data sets, again compared with the 
GHOST algorithm paired with LR, RF, XGB and GB. 
Recall from Sec. 3.1 that all DS1 data sets have an IR of 
20.0 by construction. For CHEMBL100, our method 
achieved an outstanding ROC-AUC score of 0.974, 
while the highest-performing GHOST model (using 
LR) earned an ROC-AUC score of 0.959. While our 
BTDT-MBO method did not achieve the highest ROC-
AUC score of comparison algorithms on CHEMBL8, it 
obtained the second-best ROC-AUC score, performing 
almost as well as the top-performing GHOST model 
using LR. All models in this case demonstrated ROC-
AUC scores of at least 0.9, with the highest method 
earning a score of 0.979 and BTDT-MBO scoring 
0.978.

As outlined in Sec. 2.2, in addition to the default 
Gaussian kernel used in our BTDT-MBO method, we 
also conducted experiments that instead used the dis-
tance correlation to compute the weights between data 
elements. In our experiments, the BTDO-MBO method 
using a Gaussian weight function yielded higher ROC-
AUC scores than the BTDT-MBO method using dis-
tance correlation for five out of the six data sets 
included in this work, with the BTDT-MBO algorithm 
using distance correlation achieving the best results on 
the CHEMBL1909157 DrugMatrix data set. However, 
the BTDT-MBO algorithm using a distance correlation 
weight function performed similarly to (and frequently 
almost as well as) the BTDT-MBO method using a 
Gaussian kernel on all six data sets, particularly on the 
DS1 data sets used for benchmarking. For the 
CHEMBL100 DS1 data set, the BTDT-MBO model 
using distance correlation yielded an ROC-AUC score 

of 0.970, slightly lower than BTDT-MBO using 
Gaussian weights (ROC-AUC = 0.974) but still higher 
than all comparison methods. Similarly, for the 
CHEMBL8 DS1 data set, BTDT-MBO using distance 
correlation scored 0.973, which was again lower than 
BTDT-MBO using a Gaussian weight function (ROC-
AUC = 0.978) but higher than two comparison meth-
ods. All tested models scored very highly on this  
data set.

Our model using distance correlation saw similar 
results on the DrugMatrix data sets. In fact, as men-
tioned above, BTDT-MBO using distance correlation 
achieved the best overall result of all tested models on 
the CHEMBL1909157 DrugMatrix data set, earning an 
ROC-AUC score of 0.878. BTDT-MBO using a Gaussian 
kernel scored an ROC-AUC value of 0.866; thus, both 
BTDT-MBO methods beat all tested GHOST models. 
For the CHEMBL1909150 data set, BTDT-MBO using 
distance correlation scored an ROC-AUC value of 
0.975, higher than all comparison methods and only 
lower than our BTDT-MBO model using a Gaussian, 
which scored 0.978. On the CHEMBL1909132 
DrugMatrix data set, BTDT-MBO using distance cor-
relation earned an ROC-AUC score of 0.743, which 
places it below BTDT-MBO using Gaussian weights 
(ROC-AUC = 0.785) and GHOST using LR, but above 
the three other GHOST comparison methods. Our 
model using distance correlation saw similar relative 
results for the CHEMBL1909134 DrugMatrix data set, 
with an average ROC-AUC score of 0.766. The model 
earned the third-highest score of all methods tested for 
this data set, lower than our BTDT-MBO method 
using Gaussian weights (ROC-AUC = 0.792) and very 
close to GHOST paired with LR, which scored a 0.769. 
Overall, these results suggest that the distance correla-
tion can be useful for quantifying similarity in molec-
ular data sets, including those that are highly 
imbalanced. Furthermore, the distance correlation 
may be considered as a potential alternative weight 
function to the Gaussian function in similarity graph-
based settings, particularly when the data is not close 
to a normal distribution.

To further visualize our proposed model’s perfor-
mance on the benchmark data sets, we additionally 
utilized the residue-similarity (R-S) scores and associ-
ated R-S plots introduced by Hozumi et al.47 For a given 
data point in a particular class, its residue score is 
defined as the sum of the distances from that point to 
points in other classes. The point’s similarity score is 
defined as the average distance from that point to 
points in its own class. In other words, the residue 
score measures how well data points in a given class are 
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separated from other classes, and the similarity score 
measures how well data points in a given class are clus-
tered together. Given a training/testing (or labeled/
unlabeled) split of a data set, one can construct R-S 
score plots visualizing the elements of each class sepa-
rately. In Figs. 5 and 6, we plot R-S scores for a random 
labeled/unlabeled split of the six data sets used in our 

work. Points are separated into panels by their true 
class label, and the color of each point corresponds to 
its predicted class using our proposed BTDT-MBO 
model. We use the optimal weight function for each 
data set as discussed above.

Another novel addition to the proposed BTDT-
MBO method is its threshold optimization step, the 
details of which are given in Sec. 2.1.1. This step chose 
the decision threshold that yielded the highest ROC-
AUC score for a given partition of a particular data set. 
Because the partitions were created randomly, the class 
distribution of the unlabeled and labeled portions of a 
data set could vary. Additionally, due to the high level 
of class imbalance in the data, there may be very few 
data points from the minority class in the labeled or 
unlabeled set for a particular partition. Therefore, it is 
not surprising that in our experiments, the optimal 
thresholds for the splits varied considerably. However, 
the optimal thresholds often tended to be lower than 
the typical threshold of 0.5. For example, in one exper-
iment on the CHEMBL1909157 data set (i.e., testing 
over 50 random labeled/unlabeled partitions), the low-
est optimal threshold for the 50 random splits was 0.05, 
and the highest optimal threshold was 0.45. The 
median optimal threshold over all 50 splits was 0.15. 

Fig. 5.  (Color online) R-S score plots for the four DrugMatrix data 
sets. The plots display R-S scores of unlabeled points from a random 
labeled/unlabeled partition of each data set. The x- and y-axes of the 
plots represent residue and similarity scores, respectively. From left 
to right, the panels plot points in class 1 (i.e., inactive compounds) 
and class 2 (i.e., active compounds). Each point is colored based on 
its class predicted by the proposed BTDT-MBO model.

Fig. 6.  (Color online) R-S score plots for the two DS1 data sets. 
The plots display R-S scores of unlabeled points from a random 
labeled/unlabeled partition of each data set. The x- and y-axes of the 
plots represent residue and similarity scores, respectively. From left 
to right, the panels plot points in class 1 (i.e., inactive compounds) 
and class 2 (i.e., active compounds). Each point is colored based on 
its class predicted by the proposed BTDT-MBO model.
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These results reinforce the impact and the advantage of 
adjusting the decision threshold on classifier perfor-
mance for highly imbalanced data.

3.4. Statistical testing
In this paper, we perform statistical analysis using the 
experimental results; we perform the Friedman and the 
post-hoc Nemenyi test in order to achieve a more thor-
ough evaluation. The results are shown in Table 2 and 
Fig. 7, including the mean rank values, where smaller 
ranks demonstrate more competitive techniques. The 
critical distance was around 4.29, with the significance 
level being 0.05. Overall, the Friedman test’s null 
hypothesis is that all algorithms have the same 

performance. If the p-value is less than 0.05, the null 
hypothesis is rejected, which it was in our testing. 
Moreover, the Nemenyi post-hoc test is utilized to 
identify which procedures are significantly different 
from each other. Overall, it is shown that the proposed 
algorithm is ranked consistently the best among com-
parison methods.

3.5. Future work and limitations
While the proposed method has many advantages, 
such as the ability to perform accurately with highly 
imbalanced data, it has certain limitations similarly to 
any other algorithm. For example, the proposed proce-
dure requires the calculation of a small number of the 

Table 2.  Results for statistical testing.

(a) Reference for (b) and (c)

Method

‘1’ BTDT-MBO (Proposed)
‘2’ LR-GHOST
‘3’ RF-GHOST
‘4’ XGB-GHOST
‘5’ BT-MBO
‘6’ GB-GHOST
‘7’ BT-SVM
‘8’ BT-GB
‘9’ BT-RF

(c) Mean rank values of the Friedman/Nemenyi test

‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

1.16667 2.16667 3.16667 3.66667 4.83333 6.33333 6.66667 8.00000 9.00000

(b) Results of Friedman’s Test

Chi-sq statistic p-value

112.39130 2.4237e-07

Fig. 7.  The average rank diagram of the Friedman/Nemenyi test.
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graph Laplacian’s eigenvectors and corresponding 
eigenvalues. This can obviously be computationally 
expensive for certain data sets. One possible direction 
in such a scenario is to construct an approximation of 
the full graph using other techniques, e.g., sampling- 
based procedures, in particular the Nyström Extension 
technique, detailed in sources such as Refs. 61, 62  
and 63. Such a technique can be utilized to very effi-
ciently compute approximations of the eigenvalues and 
eigenvectors for the proposed procedure even for large 
data sets.

Future work regarding this study includes explor-
ing imposing class size constraints into the technique. 
Moreover, we would like to explore integrating other 
correlation techniques, as well as incorporating extended- 
connectivity fingerprints or autoencoders into the 
algorithm structure.

4. CONCLUSION
Given the prevalence of molecular data where the class 
sizes vary vastly, the ability of an algorithm to accu-
rately predict the class of data elements in imbalanced 
data sets is extremely important. However, many clas-
sification techniques are not accurate on highly imbal-
anced data as they tend to overestimate majority 
classes. This paper presents a BTDT-MBO method for 
molecular data classification in case of imbalanced 
data sets with highly varied class sizes. The method, 
which integrates Merriman–Bence–Osher procedures 
as well as a bidirectional transformer, incorporates 
adjustments in the data classification threshold for 
machine learning classifiers to handle the high class 
imbalance. To illustrate the advantages of the proposed 
technique, particular attention is given to highly imbal-
anced data sets.

Numerical experiments indicate that the BTDT-
MBO procedure performs very well even with high 
class imbalance ratios; in particular, the computational 
experiments on DS1 data sets and DrugMatrix data 
sets demonstrate that the results of the proposed proce-
dure are almost always more accurate than the compar-
ison algorithms such as Ref. 1, as indicated by Figs. 2 
and 3. The ROC-AUC score was used as a metric. 
Overall, the new model serves as a powerful machine 
learning tool for data sets with a high class imbalance.

This work additionally investigates the distance 
correlation as a choice for a weight function in the 
proposed BTDT-MBO algorithm, serving as an alter-
native to the Gaussian kernel often used to compute 
graph weights. Overall, the results for the BTDT-MBO 
technique using a distance correlation weight function 

are similar to those using Gaussian weights, with the 
distance correlation model performing better for one 
data set; these results suggest further utility of the dis-
tance correlation in imbalanced molecular data classi-
fication and similarity graph-based methods. In 
particular, data that is far from a normal distribution 
may benefit from the use of a distance correlation 
weight function rather than a Gaussian weight 
function.
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