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ABSTRACT: Data sets with imbalanced class sizes, where one class size is much smaller than that of others, occur
exceedingly often in many applications, including those with biological foundations, such as disease diagnosis and drug
discovery. Therefore, it is extremely important to be able to identify data elements of classes of various sizes, as a failure
to do so can result in heavy costs. Nonetheless, many data classification procedures do not perform well on imbalanced
data sets as they often fail to detect elements belonging to underrepresented classes. In this work, we propose the BTDT-
MBO algorithm, incorporating Merriman-Bence-Osher (MBO) approaches and a bidirectional transformer, as well as
distance correlation and decision threshold adjustments, for data classification tasks on highly imbalanced molecular
data sets, where the sizes of the classes vary greatly. The proposed technique not only integrates adjustments in the clas-
sification threshold for the MBO algorithm in order to help deal with the class imbalance, but also uses a bidirectional
transformer procedure based on an attention mechanism for self-supervised learning. In addition, the model implements
distance correlation as a weight function for the similarity graph-based framework on which the adjusted MBO
algorithm operates. The proposed method is validated using six molecular data sets and compared to other related
techniques. The computational experiments show that the proposed technique is superior to competing approaches

even in the case of a high class imbalance ratio.
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1. INTRODUCTION

In data classification, class imbalanced data is distin-
guished by an underrepresentation of one class (the
“minority” class) in the data compared to the other
class or classes (the “majority” class(es)). As a result,
data classification algorithms trained on imbalanced
data tend to become biased with regard to the majority
class(es) and often misclassify data points from the
minority group, which is frequently the class of most
interest."” This scenario is quite common in classifica-
tion tasks, and it can be especially problematic if the
minority class represents an important or critical out-
come, such as in drug discovery, disease diagnosis,
fraud detection, energy management, and other appli-
cations involving rare events.”? For example, drug dis-
covery is a very exacting problem in science. In drug
screening, the number of inactive molecules is typically
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thousands of times larger than that of active molecules.
A successful drug must be highly potent, be free of
serious side effects or off-target binding, and exhibit
minimal or no toxicity."! As a result, the majority of
drug candidates are either inactive or unqualified,
leading to highly imbalanced data sets.** Specifically,
imbalanced data occur during virtual screening: iden-
tifying potential drug candidates from large compound
libraries. Effective handling of imbalanced data can
improve the identification of active compounds.”
Another situation in which we deal with imbalanced
data is quantitative structure-activity relationship
modeling, which predicts a compound’s activity using
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the chemical composition.”"” Balancing the data can
lead to more reliable predictions."

Therefore, addressing imbalanced data is crucial
for effective machine learning in many applications
such as drug design and discovery. By employing a
fusion of algorithm-level and data-level strategies, and
focusing on appropriate evaluation metrics, research-
ers can build models that better identify rare but valu-
able compounds, leading to more successful outcomes
in drug discovery and development.

Techniques to deal with imbalanced data can be
categorized into>'*'* data pre-processing or resam-
pling methods,'>'* model-level techniques,>'” ensemble
algorithms'® and cost-sensitive methods." Strategies in
the first group include resampling methods, which
attempt to make the training set’s class distribution
more balanced using sampling techniques, and feature
selection methods, which are carried out in the feature
space rather than the sample space.” Examples of resa-
mpling procedures include oversampling,***" under-
sampling®** and hybrid-sampling algorithms.'>***
Respectively, these procedures attempt to rebalance the
sample space by creating new samples from the minor-
ity group, discarding representatives from the majority
group, or a combination of both. Methods belonging to
the second group, the model-level techniques, attempt
to make adjustments to steps of the algorithm itself so
that there is less bias towards classes of larger size.
Ensemble algorithms use the output of multiple classi-
fiers to make predictions, which can improve the per-
formance of individual classifiers.>*® Lastly,
cost-sensitive procedures instead assign a larger mis-
classification cost to classes of smaller size."”

Some cost-sensitive approaches to imbalanced
data classification involve thresholding, which is
applied in a post-processing step.” In particular,
thresholding algorithms are cost-sensitive techniques
which assign a probability to each of the test elements.
For a threshold of 0.5, which is the default probability
threshold value in most classifiers,”® any test element
with a probability of at least 0.5 will be assigned to one
class; otherwise, it will be assigned to another class. In
the case of highly imbalanced data classification, the
threshold of 0.5 may not be optimal; thus, threshold
algorithms attempt to find a more optimal threshold
boundary for the machine learning task. Usually, a bal-
anced accuracy metric is used; some examples include
the ROC curve (receiver operating characteristic
curve),” the G-Mean,* F1-score,?® the Matthews corre-
lation coefficient® and the balanced accuracy.” In these
cases, the goal is to maximize the balanced accuracy
metric. Overall, one approach for image classification
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and feature extraction is detailed in Ref. 32, which pro-
poses a convolution-based efficient transformer image
feature extraction network. Moreover, Wang et al.*
introduce a micro-directional propagation model using
deep learning, and Zhu* focus on an adaptive agent
decision model derived using autonomous learning
deep reinforcement learning. In addition, Yin et al.*®
detail feature extraction modules, while Peng et al.*
present a systematic review of picture fuzzy decision-
making methods. Applications to sideband harmonics,
internet market design, large-scale sliding puzzles are
found in Refs. 37, 38 and 39.

However, most of the cost-sensitive techniques for
imbalanced data classification that search for the opti-
mal threshold can be computationally extensive
because retraining of the classifier is often required.
Inspired by the work of Esposito et al.,! in this paper,
we detail an algorithm for imbalanced data classifica-
tion which does not require any retraining in its proce-
dure. In order to motivate the proposed procedure, we
turn to the authors’ previous work,*® which demon-
strated the success of their BT-MBO method for
molecular data classification with very small labeled
sets; refer Ref. 41 for a survey of machine learning
techniques for data with limited labeled elements in
molecular science. The BT-MBO algorithm, which
admits two-dimensional molecular data in a special
format called the simplified molecular input line entry
specification (SMILES)* format, is composed of a bidi-
rectional transformer® and a graph-based and modi-
fied Merriman-Bence-Osher (MBO) algorithm*** in
series, utilizing the transformer model to generate
molecular fingerprints which then serve as features for
the MBO algorithm. The MBO method used in the
BT-MBO model* generates a probability distribution
over all classes for each data point, and it subsequently
classifies each data element by choosing the class for
which that element has the highest probability.
However, in the case of imbalanced data, this proce-
dure may cause the technique to miscategorize data
elements in the minority group, since the probability
distribution may be biased toward the majority classes.
Thus, in this work, we propose the BTDT-MBO
method (bidirectional transformer with MBO tech-
niques using a varying decision threshold), which is a
novel adaptation of the BT-MBO technique for use on
highly imbalanced molecular data.

In particular, the proposed BTDT-MBO method
incorporates a decision threshold adjustment in the
MBO algorithm, which utilizes the probability distri-
bution generated by the algorithm for each data point.
Instead of following the typical MBO classification
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procedure, the BTDT-MBO algorithm tests a set of
thresholds and chooses the threshold that produces the
highest ROC-AUC score (area under the ROC curve)
for the unlabeled points. The new thresholding step
introduced in the BTDT-MBO method does not
require any additional iterations of the MBO algo-
rithm; rather, at the end of each iteration, we repeat the
new thresholding step for each threshold. We refer to
the modified MBO algorithm with decision threshold
adjustment as the DT-MBO method. Another adapta-
tion introduced in the BTDT-MBO method is the
inclusion of the distance correlation***” as a weight
function in the DT-MBO algorithm. The default weight
function used in our BTDT-MBO method is a Gaussian
kernel; in addition to experiments using a Gaussian
weight function, we also carried out experiments using
a distance correlation weight function.

Given our previous BT-MBO method’s predictive
success for the challenging scenario of scarcely labeled
data,* we focus on the difficult task of data classifica-
tion of highly imbalanced molecular data sets in this
paper. Specifically, all six data sets used for bench-
marking the proposed BTDT-MBO algorithm have an
imbalance ratio (IR) of 16.5 or greater. We compare our
results using BTDT-MBO to those of the GHOST pro-
cedure' applied to four common classification algo-
rithms: random forest, gradient boosting decision
trees, extreme gradient boosting and logistic regres-
sion. Specifically, the GHOST technique' is an auto-
mated procedure that can be used in any data
classification procedure and that adjusts the decision
threshold of a classifier using the training set’s predic-
tion probabilities (i.e., without needing to retrain the
classifier); it achieved success in classifying imbalanced
molecular data, demonstrated on data with varying
levels of class imbalance. Detailed results on the six
highly imbalanced data sets, as well as a discussion, are
given in Sec. 3. The computational experiments indi-
cate that our BTDT-MBO method obtains superior
results to those of the comparison techniques.

Contributions
We present the main contributions of this work:

o We present a new technique, the BTDT-MBO
method, for molecular data classification, espe-
cially designed to be very useful even in cases of
highly imbalanced data sets. This procedure incor-
porates Merriman-Bence-Osher techniques, as
well as bidirectional transformers, distance correla-
tion and adjustments in the classification
threshold.

o The proposed BTDT-MBO algorithm is able to
perform extremely well even in the cases of molec-
ular data that is highly imbalanced and where the
class sizes vary significantly. This is extremely
important, since highly imbalanced data sets are
often found in practice.

o The proposed method utilizes several techniques to
achieve good performance when using data with
high class imbalance ratios, including adjustments
in the classification threshold.

o The proposed technique is evaluated using experiments
on six data sets. It is shown that the BTDT-MBO method
performs more accurately than the comparison methods
in almost all cases. The ROC-AUC score is used as a
metric.

2. METHODS

In this section, we derive the proposed techniques. In
particular, in Sec. 2.1, we outline the details of the pro-
posed BTDT-MBO method (bidirectional transformer
with MBO techniques** using a varying decision
threshold), which adapts some of the techniques of our
previous work.*’ In Sec. 2.2, we further discuss the dis-
tance correlation*®* as a potential similarity metric for
use in the BTDT-MBO method.

2.1. BTDT-MBO algorithm

The authors’ previous work? demonstrated the suc-
cess of their proposed BT-MBO method in molecular
classification problems with small sets of labeled
nodes, with the BT-MBO procedure outperforming
state-of-the-art techniques on some benchmark data
sets when only 1% of all data elements are viewed as
labeled. This work proposes a method, called BTDT-
MBO, that adapts some of the procedures of the
BT-MBO procedure for the data classification task on
molecular data sets where the classes of the data set
vary vastly in size.

Inspired in part by the success of Esposito ef al.! in
adjusting the classification threshold for machine
learning classifiers to make predictions about imbal-
anced molecular data, the proposed BTDT-MBO
method utilizes the aspects of the BT-MBO algorithm
from Ref. 40 along with a decision threshold adjust-
ment at each iteration of the method. We denote the
adjusted MBO method with varied decision threshold
by DT-MBO. The proposed BTDT-MBO algorithm
consists of a bidirectional transformer (created by
Chen et al.®) and a DT-MBO algorithm in series,
where the fingerprints (BT-FPs) generated by the
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transformer serve as input features to the DT-MBO
algorithm. Figure 1 illustrates the steps of the BTDT-
MBO algorithm. The BTDT-MBO algorithm is further
outlined in Algorithm 2, and details of the DT-MBO
method are given in Algorithm 1.

2.1.1. MBO scheme with decision
threshold adjustment

Here, we establish the similarity graph-based structure
our BTDT-MBO scheme uses, which adapts tech-
niques outlined in the literature.***** First, consider a
graph involving the vertex set V representing the data
set nodes. We can then define a weight function w :
VxV — R, whose value represents the degree of simi-
larity between two vertices of the graph. Specifically,
w(i, j) measures the degree of similarity of data ele-
ments i and j of the data set. While there are many
choices for the weight function, it should be con-
structed so that the value of w(i, j) corresponds to the
extent of resemblance or closeness of the data elements
i and j. A popular weight function is the Gaussian
weight function:

2 >
a

W(i,j) =exp| —

where d(i, j) represents the distance between vertices i
and j (computed using some prespecified metric such
as the Euclidean distance), and o> 0.4%

In this paper, we utilize the Gaussian weight func-
tion for some of our BTDT-MBO experiments, and for
other experiments, we use the distance correlation*® as
a weight function. The distance correlation is defined
and further discussed in Sec. 2.2.

Given a weight function w, let the weight matrix W
be the matrix W, =w(i, j). Then let the degree of a ver-
tex ieV be defined as dl:zjev w(i, 7). If we let D be a
diagonal matrix containing diagonal elements {d},
then we can define the graph Laplacian as follows:

L=D-W. 2)

Occasionally, the graph Laplacian is normalized so
that the diagonal entries of the normalized Laplacian
are unit values. Of course, the non-diagonal entries are
scaled accordingly.

For outlining the Merriman-Bence-Osher (MBO)
framework, formerly introduced in Ref. 45 to generate
approximations to mean curvature flow and then
applied using a graph-based setting to various
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applications such as hyperspectral imaging in works
such as Refs. 44, 48, 50, 51 and 52, we consider a general
data classification problem with m classes. Overall, the
MBO algorithm ultimately aims to compute a label
matrix U=(u1,...,uN)T; a row u, eR"™ of the label matrix
contains the probability values of the data element
i belonging to each of the m classes. For instance, the
first element of u, represents the probability that node i
is a member of the first class, the second element of u,
represents the probability that node i is a member of the
second class, and so on. Therefore, each vector u,can be
viewed as a component of the mth Gibbs simplex:

zm: = {(yl,. <Y, ) €[0,1]" such thatzm: V= 1}. (3)

k=1

The vertices of mth Gibbs simplex are unit vectors
{e}, where the probability of belonging to class i is 1,
while the probability of belonging to any other class is
0. Thus, the vertices {e} correspond to data elements
that belong exclusively to each of the m classes. In our
data classification problem with labeled and unlabeled
data elements, the labeled data elements are assigned to
their corresponding vertices of the Gibbs simplex.

The process by which the MBO algorithm gener-
ates the optimal label matrix U relies on energy mini-
mization, a time-splitting scheme, and transference to
a graph-based setting as described above. A general
graph-based machine learning algorithm for data clas-
sification can be formulated as minimizing the energy
consisting of the sum of a regularization term that
incorporates weights in addition to a fidelity part that
integrates the labeled nodes.*

As Garcia and coauthors demonstrated in Ref. 44,
one successful choice for the regularization term R is
the Ginzburg-Landau functional,”** often utilized in
image processing tasks and associated applications due
to its relation to the total variation functional.**>> For
the fidelity term, one can choose an L fit to all labeled
nodes. In the continuous setting, L, gradient descent
can then be applied to minimize the energy. This
results in a modified Allen-Cahn equation containing
an additional forcing part. Next, a time-splitting
scheme produces a technique that alternates between
two steps: a diffusion step, which uses the heat equa-
tion with an addition term, and a thresholding step.
Finally, one can use the techniques outlined in Refs. 44,
48 and 56 to transfer the procedure to a graph-based
setting, in which the thresholding step is replaced by
projection to the Gibbs simplex (3), followed by dis-
placing to the nearest vertex in the mth Gibbs simplex.
Additionally, to adapt to the graph setting, one can
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Fig. 1.

(Color online) Flowchart illustrating the BTDT-MBO method.

replace the Laplace operator by the graph Laplacian (2)
or some normalization of the graph Laplacian.

Thus, each iteration of the MBO algorithm ends
with the aforementioned displacement step, where
each row of the label matrix is displaced to its closest
vertex in the simplex. In the algorithm, the closest ver-
tex is determined by the class for which the data ele-
ment corresponding to that row has the highest

1343

probability. In this paper, we propose that this proce-
dure can instead be formulated using a decision thresh-
old, which utilizes the probability that a data element
belongs to the minority class. Given a decision thresh-
old and a row of the label matrix, if the probability
corresponding to the minority class is greater than that
threshold, that row will be displaced to the vertex for
the minority class. Otherwise, the typical displacement
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Algorithm 1.

DT-MBO Algorithm (using techniques from Refs. 49 and 56)

Require: Labeled set = {(x,, y,)}\,, with fingerprint x,and label y, N= size of data set, N =number of nearest neighbors, N.=number of

eigenvectors, dt, C, N,=maximum number of iterations, N =number of labeled elements, lenumber of labeled collections, N,

lo

m=number of classes, T, w:lowest threshold, Toigh =highest threshold, kmi“:index of minority group/cluster.

Ensure: Average optimal ROC-AUC score over the N, labeled sets.

1. Compute the N -nearest neighbor graph, unless one is using the Nystrom technique®- for large data. In the latter case, go to Step 3.

2. Construct the graph Laplacian L.

3. Calculate the smallest N, eigenvalues A and the corresponding eigenvectors ® of L. One can also approximate them using the

Nystrom method® - in case of large data sets.
4. The main procedure of the proposed method:

for =1 — N, do

Let the Nx1 vector I' vector be defined so that T'=1 for labeled points and 0 for unlabeled points.

fori=1 —> Ndo

Initialize each value of a row of U to a random number in [0,1], except for rows corresponding to labeled nodes, in which case,

set u? e, where k is the true class.

u! « projectToSimplex(u;). Here, u.is the ith row of the matrix U’

end for
nr<_ (Thigh - Tlow
A< DU,B<«0,E « l+(dt/Ns)A
for n=1 - N,do
for k=1 — N do
for j=1 - mdo
Aj <« (Aj - (dt/Ns)Bj)./E
end for
U« OA

)/0.05+1, U < 0, an Nxmxn_array of zeros.

B < C(®'(T'- (U" - U"))), where row-wise multiplication is performed.

end for
U™ « projectToSimplex(U")
for j=1—>n_do
Tj:Tlow+0'05(j -1)
fori=1 - N do
ifu} >7, then

u™ e, ,wheree,_ is the simplex vertex corresponding to the minority class.
min

else
/" e, where e, is the closest simplex vertex to w/*".
end if
end for
U, « U, where U_is the jth Nxm slice of U .
end for

end for

Compute ROC-AUC score for each threshold, and choose the threshold that yields the highest score.

end for

5. Compute the average of the N, Optimal ROC-AUC scores.

procedure is followed, with the row being displaced to
the vertex for which it has the highest probability.

To formulate our decision threshold technique, we
are inspired by Esposito et al.,' which demonstrated
success in classifying imbalanced molecular data by
developing a procedure that adjusts and optimizes the
decision threshold of machine learning classifiers. For
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binary data, the default decision threshold is usually
0.5, where the model assigns a sample to the minority
class if its probability of belonging to the minority class
is greater than 0.5 (this is identical to assigning the
sample to the class for which it has the highest proba-
bility). However, machine learning classifiers are likely
to misclassify minority points since the probability
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Algorithm 2. BTDT-MBO Method (using related procedures as in Ref. 40)

Require: Unlabeled set %/={s,}Y,, where s,is a molecular compound’s SMILES string, a chosen pretrained model from the three described

in Sec. 2.1.2, a dictionary which designates an integer number to each SMILES element.

Ensure: .7, ={x,}},, a set of normalized fingerprints.
1. Binarize the data consisting of SMILES strings.
2. Loading step: load the chosen model (which is pre-trained).

3. Extracting step: Extract the hidden information from %/ via the chosen pretrained model:

Initialize the empty dictionary D
for i=1 —> Ndo

hidden

(of length N) containing hidden features.

Compute tensor t, (of the same dimension as s), containing the dictionary values of the characters in the analogous locations in s..

Let t,be an input to the bidirectional encoder transformer from the chosen pretrained model. Obtain the inner state from the last

hidden layer T, whose dimensions are (I, 1, 512) (where [ is the length of t,).

Reshape T,into a tensor V,with the following dimensions: (I,512).

Set V_as ith element of the matrix D,
end for

hidden®

4. Generating step: Produce the fingerprints from the hidden information:

Initialize the list of fingerprints .7, (of length N).
for i=1 —> Ndo

Compute the first row x, from the ith element of the matrix D,

Set x,as the ith fingerprint in .7 .
end for

hidden®

5. Scale fingerprints F,=1{x,}}, so that they have unit variance and zero mean.
6. Send scaled fingerprints Z={x,}Y, to the DT-MBO algorithm, described in Algorithm 1.

distribution over the two classes for a given data point
may be skewed toward the majority class,” so Esposito
et al.! tested potential decision thresholds from 0.05 to
0.5 with a spacing of 0.05. Similarly, in this work, we
augment the MBO method by a process that optimizes
the decision threshold for the displacement step, result-
ing in our proposed decision-threshold-MBO
(DT-MBO) algorithm.

Two of the inputs of the DT-MBO algorithm,
which is integrated into the proposed BTDT-MBO
procedure, are a minimum threshold and a maximum
threshold to test. In this study, we test a minimum
threshold of 0.05 and a maximum threshold of 0.55,
with thresholds between these two values spaced by
0.05. This allows us to choose a more optimal thresh-
old than the usual one of 0.5.

Overall, we summarize the main iterative steps of
the DT-MBO procedure for the data classification task
used in this work below, with more details given in
Algorithm 1. The process is adapted from the MBO
algorithm used in our previous work,* with an addi-
tional decision threshold step in the displacement
step. The below steps require a given labeled/unlabe-
led partition of a data set as well as a list of thresholds
to test.

1. Diffusion step: compute U™ using the heat equa-
tion with an additional term using

1 1
U 2=U"—dtLU 2+4-(U"=U,..),

applied N times. Here, dt>0, and U, g1 @ matrix
where a row corresponding to a labeled element is
an indicator vector e, if the node is of class k, and a
zero vector for non-labeled points. Moreover, u is a
vector whose entries are equal to a constant for
labeled points, and zero otherwise. We set N =3.

2. Projection step: compute U™ via projecting (each
row) of the matrix U™** onto (3).

3. Displacement step: Replace every row of the result
from step 2 by its assigned vertex e, in the mth
Gibbs simplex (3) depending on the decision
threshold. This procedure is executed for every
threshold in the list.

(a) If the probability that the row belongs to the
minority class is greater than (or equal to)
the decision threshold, the row is replaced by
the vertex corresponding to the minority class.

(b) Otherwise, the row is replaced by the vertex for
which it has the highest probability.

After repeating the above steps for a number of
iterations, our model generates a predicted label matrix
for each threshold. To select the optimal decision
threshold from the set of thresholds for a given labeled/
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unlabeled partition of a data set, our model then com-
putes the ROC-AUC score for each label matrix and
subsequently chooses the threshold whose predicted
labels yield the highest ROC-AUC score. Notably, the
new thresholding procedure only involves alterations
to the displacement step and does not require addi-
tional iterations of the diffusion or projection to sim-
plex steps, thus saving computational time, in contrast
to many cost-sensitive methods which require the
complete retraining of the classifier. Section 3.3 con-
tains discussion regarding this threshold optimization
and its results.

2.1.2. Bidirectional transformer

As in our previous work,* the BTDT-MBO algorithm
utilizes a bidirectional transformer to convert the
SMILES input for each molecular compound to a vec-
tor in a latent space, which is then obtained as a
molecular fingerprint, named BT-FP, for that com-
pound. After being normalized, the BT-FPs for the
compounds in a given data set comprise the features
passed to the DT-MBO method for that data set.
Specifically, the BTDT-MBO algorithm uses a par-
ticular bidirectional transformer model introduced
by Chen et al.* involving an attention structure for
self-supervised learning (SSL). The model, the self-
supervised learning platform (SSLP), enables the gen-
eration of BT-FPs without the need for data labels.
Moreover, the model used for BTDT-MBO can be
chosen out of three SSLP models constructed by Chen
et al.”® The three SSLP models include one pretrained
on the ChEMBL data set.® The other two models
include one pretrained on the union of the ChEMBL
and PubMed* data sets and one model trained on the
union of the ChREMBL, PubMed and ZINC® data sets.
Additionally, there is an option to fine-tune the
selected self-supervised learning platform for specific
predictive tasks.

In our prior work,* we demonstrated the predic-
tive success of the BT-MBO model utilizing the
self-supervised learning platform trained solely on
ChEMBL for scarcely labeled molecular data.
Consequently, the proposed BTDT-MBO model in
this work uses the same SSLP trained on ChEMBL.
Similarly, our BT-MBO model in Ref. 40 performed
well without fine-tuning the SSLP, so we also bypass
the fine-tuning step for the proposed BTDT-MBO
model, instead passing our data directly to the pre-
trained SSLP.
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2.1.3. Overall procedure

The overall two stages of the BTDT-MBO procedure
are outlined as follows:

o Molecular data in the form of SMILES strings are
passed to the self-supervised learning platform pre-
trained on ChEMBL data set.*®

o The resulting BT-FPs are the rescaled so that they have
zero mean as well as unit variance and then served as an
input to the DT-MBO method, outlined in Algorithm 1.

More details of the stages are given in Algorithm 2.
Notably, because the SSLP does not require data labels,
this procedure can be applied to data with any number
of classes. Paired with our DT-MBO method as out-
lined in Sec. 2.1.1 and Algorithm 1, our BTDT-MBO
model can thus be used for problems with any number
of clusters or classes.

2.2. Distance correlation

As discussed in Sec. 2.1.1, the similarity graph-based
framework on which the DT-MBO scheme operates
requires a weight function to compute the degree of
similarity between two data elements. Various weight
functions can be used, but a suitable weight function is
defined so that a high degree of similarity between two
elements is reflected by a large weight function output,
and a low degree of similarity is reflected by a small
weight function output.®*

As in the authors’ previous work* using the
BT-MBO method, our proposed BTDT-MBO method
utilizes a Gaussian kernel (1) as one of the ways to
compute weights for the MBO scheme. By construc-
tion, when the distance between two data elements is 0,
the Gaussian weight function evaluated at those two
data elements equals 1. As the distance between two
data elements approaches infinity, the Gaussian weight
function approaches 0. In other words, the Gaussian
weight function outputs values close to 0 for dissimilar
data elements and 1 for identical data elements, with a
weight function output closer to 1 reflecting greater
similarity.

In this work, we further propose distance correla-
tion* as a potential weight function for the DT-MBO
scheme, motivated in part by the success of Hozumi
et al. in applying distance correlation to feature clus-
tering. Also, as will be illustrated below, the distance
correlation weight function scales similarly to the
Gaussian weight function, with potential outputs
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between 0 and 1, and higher weight function values
corresponding to greater similarity, supporting our
substitution. We hope to provide a new interpretation
of the MBO method by incorporating the distance cor-
relation as a weight function.

Distance correlation® is a measure of dependence
between random vectors that generalizes of the idea of
correlation. In particular, distance correlation is
defined for pairs of vectors in arbitrary dimension, and
the distance correlation of two vectors is 0 if and only
if the two vectors are independent. We use the distance
correlation between two vectors as defined in Ref. 46
and use the same notation below as in Ref. 47. First,
given a vector 7, i=1,2,...,I, we can compute a distance
matrix with entries defined by

aj.k=||zin—zfc , mk=12,...,M. (4)

Here, || - || represents the Euclidean norm. Also, the
doubly centered distance for z' is given by

Ay=a,—a.—a, +a., (5)

where a. represents the jth row mean. In addition, a,
represents the kth column mean, and a represents the
grand mean of the distance matrix for z'.

Given z' and 7/, we can define the squared distance
covariance as follows:

i 1 i A
dCov’(z',2)) = — 3\ 3 A Al (6)
ik

Now, the distance correlation between z' and 7 is

defined as follows:

dCov*(z',z’)
dCov(z',z')dCov(z’,2/)’

dCor(z',z’) := (7)

Note that the distance correlation dCor(z',7z)) can
take on values in the range [0,1] (see a complete proof
of this fact in Ref. 46). We have dCor(z’,Z))=0 when
vectors z' and 7 are independent (or dCov*(z',Z)=0),
and we have dCor(z,z')=1 when z’ and Z are linearly
dependent. Additionally, a higher squared distance
covariance between two vectors corresponds to a dis-
tance correlation closer to 1 for those vectors.

Thus, the distance correlation (7) satisfies the con-
ditions for a similarity weight function for the MBO
scheme. As discussed above, the range of the distance
correlation is identical to that of the Gaussian kernel,
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so computationally implementing the distance correla-
tion as a weight function in our DT-MBO method is
straightforward. Specifically, only the construction of
the graph Laplacian L in Step 2 of Algorithm 1 differs
when using the distance correlation to compute the
graph weights. Furthermore, Székely et al* proved
relationships between the distance correlation and the
standard bivariate normal distribution which support
this substitution in our algorithm. Namely, if X and Y
have standard normal distributions with correlation p,
then dCor(X,Y)<|p|.

3. RESULTS AND DISCUSSION

In this section, we discuss the computational experi-
ments and results. The code used for the DT-MBO
algorithm was written in MATLAB. To carry out com-
putational experiments and optimize parameters, we
utilized the High Performance Computing Center
(HPCC) at Michigan State University. For all jobs sub-
mitted through HPCC, we specified two CPUs per
task. Distance correlation weights were computed
using the distance correlation function from
the dcor library in Python.

3.1. Data sets

The data sets used in this work are characterized by a
high level of imbalance in class sizes, measured by the
imbalance ratio (IR). The IR of a data set with two
classes is defined as the ratio of the number of points in
the majority class to the number of points in the
minority class." Out of the public data sets Esposito
et al.' used for benchmarking their proposed thresh-
olding models, we selected data sets from each of the
following classes to benchmark our methods:

o DS1 Data Sets (obtained from Ref. 1, introduced in
Ref. 65 and refined in Ref. 66): Each of the DS1 data
sets corresponds to a particular ChEMBL target
and contains 100 associated diverse active com-
pounds against that target. For each data set, we
randomly chose 2,000 inactives from a set of 10,000
assumed inactives drawn from ZINC,* reproduc-
ing the data set construction procedure from Ref. 1.
These 10,000 compounds were selected in Ref. 66
to have similar property distributions to the set of
actives, with similarity measured by an atom-count
fingerprint. Every DS1 data set has an IR of 20.0 by
construction.
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Table 1. Information about the data used for benchmarking the model (results are shown in

Figs. 3 and 7). All data sets group molecules into two classes. The first four data sets are from Refs. 1 and 69
and the last two data sets are from Refs. 1, 65 and 66.

Data Set Data Set Grouping
CHEMBL1909150 DrugMatrix
CHEMBL1909157 DrugMatrix
CHEMBL1909132 DrugMatrix
CHEMBL1909134 DrugMatrix
CHEMBL100 DS1
CHEMBLS DS1

# Compounds

Imbalance Ratio (IR)

Labels

842 16.9 Active, Inactive
842 18.6 Active, Inactive
842 20.0 Active, Inactive
842 16.5 Active, Inactive
2100 20.0 Active, Inactive
2100 20.0 Active, Inactive

o DrugMatrix Assays (obtained from Ref. 1): Each of the
44 DrugMatrix assays benchmarked in Ref. 1 contains
results for 842 compounds tested in a particular assay,
with each data set labeled by the assay tested. Each mol-
ecule was labeled as active or inactive based on its “activ-
ity comment” value in the source data. In this paper, we
evaluate our proposed procedure on four of these data
sets, with IRs ranging from 16.5 to 20.0. The source data
was retrieved from ChEMBL and was originally recorded
in the DrugMatrix database.”

A brief summary of the data sets used for testing
the BTDT-MBO model is given in Table 1.

The authors’ BT-MBO method from Ref. 40 per-
formed better than the state-of-the-art techniques for
scarcely labeled molecular data. Inspired by this suc-
cess, in this work, we focus on the challenging task of
making predictions on highly imbalanced data sets. All
data sets used for benchmarking the proposed BTDT-
MBO method have an IR of 16.5 or greater.

3.2. Evaluation metrics

There are various existing evaluation metrics for data
classification tasks. One such metric is model accuracy,
which computes the fraction of data points correctly
classified by the model. However, this metric does not
capture many nuances of model performance.
Particularly when dealing with imbalanced data, as
Esposito et al. discussed in Ref. 1, the minority class
may be the class of most interest, but points from the
minority class are more likely to be misclassified by the
model than points from the majority class(es).
In highly imbalanced data sets, such as the ones used in
this work, there are comparatively very few points in
the minority class. Even if the model misclassifies all of
the points in the minority class, the performance of the
technique could still be very high, and the model could
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mistakenly appear to be suitable for the highly imbal-
anced classification task. Thus, to better quantify the
performance of our proposed method, we use another
evaluation metric, which computes the area under the
receiver operating characteristic curve (the ROC
curve). This is also known as the ROC-AUC score.
For the data classification problem, the ROC curve
plots the true positive rate versus the false positive rate
of the classifier for various thresholds. The ROC curve
captures useful information about the classifier, par-
ticularly on highly imbalanced data — because the
minority (or positive, in our case) class can be easily
misclassified, both the true positive rate (TPR) and the
false positive rate (FPR) need to be considered. Recall
that a classification threshold is used to predict a given
data point’s class using its probability distribution over
all classes. If the probability that the data point is affil-
iated with the minority class is greater than the thresh-
old, then that point is allotted to the minority class. For
a threshold equal to 0, the model would predict that
every data point belonged to the minority class. In this
case, the model would successfully classify all of the
true positive data points (i.e., a TPR of 1), but it would
also incorrectly classify all of the negative data points
as positive (i.e.,an FPR of 1). As the threshold increased,
fewer data points would be classified as positive. For a
threshold equal to 1, the model would classify all data
points as negative, producing a TPR and an FPR of 0.
The ROC-AUC score quantifies the relationship
between the TPR and FPR by computing the area
under the ROC curve. For an area close to 1, it is theo-
retically possible to choose an “optimal” threshold that
yields a high TPR and a low FPR (i.e., produces a point
close to the upper-left corner of the ROC plot). In gen-
eral, an AUC of 0.5 suggests that algorithm has no
ability to distinguish between the classes, 0.7 to 0.8
indicates an acceptable technique, 0.8 to 0.9 describes
an excellent technique, and greater than 0.9 designates
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Example ROC curves for two of the data sets (CHEMBL1909134 and CHEMBL1909150) used for benchmarking the proposed

method. Curves were constructed in MATLAB for a random labeled/unlabeled split of each data set using a set of increasing thresholds from

0 to 1, with each successive threshold increasing by 0.05. The average ROC-AUC scores for both data sets over all 50 random partitions can

be seen in Fig. 3.

an outstanding technique. To calculate the ROC-
AUC score in our experiments for the proposed BTDT-
MBO method, we used the perfcurve function in
MATLAB. There also exist functions that calculate
the ROC-AUC score for the multiclass case, so our
evaluation procedure can be applied for any number of
classes.

To further illustrate the construction of the ROC
curves as well as their reflection of the classification
performance of models, we have included example
ROC curves in Fig. 2 for two data sets used in bench-
marking the proposed BTDT-MBO model. These plots
were generated using a random labeled/unlabeled split
of each data set, and the thresholds used to construct
each plot ranged from 0 to 1, with each threshold
increasing by 0.05. The ROC curve on the right for the
CHEMBL1909150 data set demonstrates near-ideal
performance on this data partition, with a point very
close to the upper-left corner of the plot, corresponding
to an FPR close to 0 and a TPR close to 1. Indeed, as
displayed in Fig. 3 and discussed in Sec. 3.3, our model’s
average ROC-AUC score for 50 random partitions of
the CHEMBL1909150 data set was 0.978, displaying
outstanding classification performance. The ROC curve
on the left for the CHEMBL1909134 data set clearly has
a lower ROC-AUC value than the curve for the
CHEMBL1909150 data set, but the model still shows
some ability to discriminate between the two classes. As
shown in Fig. 3, our model’s average ROC-AUC score
over all partitions on the CHEMBL1909134 data set

was 0.792, which is not surprising given its example
ROC curve. Do note, however, that our proposed
model performed superior to the comparison methods
on this data set, which is further discussed in Sec. 3.3.

3.3. Model performance and discussion

To evaluate the performance of our BTDT-MBO
method for highly imbalanced molecular data sets, we
compare our models against the GHOST algorithm
from Ref. 1. The GHOST algorithm is designed to be
paired with any machine learning classifier, and the
code used in Ref. 1 ran experiments using GHOST
with random forest (RF), extreme gradient boosting
(XGB), logistic regression (LR) and gradient boosting
(GB) classifiers. In this work, all models used 80% of
the data as training (or labeled, in the MBO case) to
mirror the experiments by Esposito et al.!

Figures 3 and 4 display the results of the BTDT-
MBO procedure compared with the GHOST method
from Ref. 1. We generated results using GHOST paired
with LR, RE, GB and XGB. The GHOST model allows
the user to select the desired classification metric to use
for optimization from two options: the Cohen’s kappa,
which is a balanced classification metric that was used
as the default metric in Ref. 1, or the ROC-AUC score.
All of the experiments in this paper were evaluated
using the ROC-AUC score.

Overall, the experimental results indicate that the
BTDT-MBO algorithm obtains higher ROC-AUC

DOI: 10.1142/52737416524500479
J. Comput. Biophys. Chem. 2024, 23 (10), 1339-1358


https://dx.doi.org/10.1142/S2737416524500479%0D

J. Comput. Biophys. Chem. 2024.23:1339-1358. Downloaded from www.worldscientific.com

by MICHIGAN STATE UNIVERSITY on 07/17/25. Re-use and distribution is strictly not permitted, except for Open Access articles.

Journal of Computational Biophysics and Chemistry

Research

CHEMBL1909150 Results

BTDT-MBO

XGB GHOST

LR GHOST

BT-MBO

RF GHOST

GB GHOST

BT-SVM

BT-GB

BT-RF

0.80 0.85 0.90 0.95 1.00
ROC-AUC Score

CHEMBL1909132 Results

BTDT-MBO

LR GHOST

RF GHOST

XGB GHOST

BT-MBO

BT-SVM

GB GHOST

BT-GB

BT-RF

T T
0.50 0.55 0.60 0.65 0.70 0.75 0.80

ROC-AUC Score

Fig. 3.

CHEMBL1909157 Results
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(Color online) Comparison to other techniques on DrugMatrix data sets. The results of our proposed method are in red, while those

of other algorithms are in blue. The imbalance ratios for the pictured data sets vary from 16.5 to 20.0. Detailed information about the overall

size and composition of the comparison data sets is described in Sec. 3.1. The performance metric is the ROC-AUC score averaged over 50
random training-testing (or labeled/unlabeled) splits of the given data, with 80% of the data being labeled in each case. The BTDT-MBO
result for each data set is the highest of the BTDT-MBO model using a Gaussian weight function and the BTDT-MBO model using a distance
correlation weight function. Some comparison results were generated using the GHOST algorithm' via random forests (RF), extreme gradi-

ent boosting (XGB), logistic regression (LR) and gradient boosting (GB). Additional comparison results were generated using the BT-MBO

algorithm® as well as BT-GB, BT-RF and BT-SVM models (consisting of the BT-FPs passed to gradient boosting, random forest and support

vector machine algorithms, respectively).

scores than the comparison methods for all data,
except CHEMBLS, for which the result of the proposed
algorithm is second best, but almost the same as the
best. We first outline the details of the experiments in
this work, after which we provide a summary as well as
a further discussion of results.

To create labeled and unlabeled partitions in the
data input to our DT-MBO method, we randomly
selected 80% of the points to be labeled and denoted
the rest as unlabeled. Then, we applied the DT-MBO
method, which propagates the known labels to the
unlabeled nodes for a prescribed number of iterations
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as detailed in Sec. 2.1.1. We used the resulting pre-
dicted labels to calculate the optimal ROC-AUC score
for this partition (over all thresholds). In highly imbal-
anced data sets, which often contain very few points in
the minority class, results can vary widely depending
on the particular training/testing or labeled/unlabeled
partition. To account for this variability, as in Ref. 1, we
repeated each experiment 50 times, with a new random
partition for each experiment, and averaged the ROC-
AUC scores over the 50 trials. We used a similar split-
ting and averaging procedure to generate the GHOST
comparison results; however, Esposito ef al.' recorded
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(Color online) Comparison to other techniques on two DS1 data sets. The results of our proposed method are in red, while those

of other algorithms are in blue. The imbalance ratios for the pictured data sets are both 20.0. Detailed information about the overall size and

composition of the comparison data sets is described in Sec. 3.1. The metric is the ROC-AUC score averaged over 50 splits of the data, with
80% of the data being labeled in each case. The BTDT-MBO result for each data set is the highest of the BTDTMBO model using a Gaussian
weight function and the BTDT-MBO model using a distance correlation weight function. Some comparison results were generated using the

GHOST algorithm' via random forests (RF), extreme gradient boosting (XGB), logistic regression (LR) and gradient boosting (GB).
Additional comparison results were generated using the BT-MBO algorithm® as well as BT-GB, BT-RF and BT-SVM models (consisting of
the BT-FPs passed to gradient boosting, random forest and support vector machine algorithms, respectively).

the random seeds used for each training/testing data
split in their experiments, and we used the same 50
random seeds when running the GHOST tests. Results
in Figs. 3 and 4 indicate the average ROC-AUC score
over 50 different splits of the data.

Regarding parameters, the proposed BTDT-MBO
model requires specification of various parameters,
whose functions can be seen in Algorithms 2 and 1.
The bidirectional transformer® requires the user to
choose one of the three pretraining data sets as out-
lined in Sec. 2.1.2. In this work, all BTDT-MBO exper-
iments use the transformer model trained only on the
ChEMBL data set,*® based on its success in predicting
scarcely labeled molecular data in experiments from
the authors’ previous work* using the BT-MBO
method. The transformer model does not require any
additional parameter specifications, as all other param-
eters are implicit in the pretrained models.*>”

The DT-MBO algorithm relies on several parame-
ters, many of which are discussed in our previous
work,* but some of which have been added in this
work to implement the decision threshold adjustment.
Some parameters were defined manually prior to run-
ning all experiments, and other parameters were tuned
in our experiments. Here, we provide a brief descrip-
tion of all parameters and their settings or tuning.
First, to create the framework in which the DT-MBO

algorithm operates, we construct a N -neighbor graph.
After, the graph Laplacian L (2) is constructed, and the
first (smallest) N, eigenvalues and corresponding
eigenvectors of L are computed. Overall, both N and
N, were designated as hyperparameters and tuned in
our experiments. Other hyperparameters for the
DT-MBO method that were tuned are the C and dt
parameters in the diffusion step, as well as the number
of iterations, N..

Regarding other parameters, we let N=3 and
N,=50. Additionally, the number of labeled points N
was set at 80% of each data set for all tasks. Finally, the
decision threshold adjustment steps in our algorithm
require the specification of a minimum threshold and
a maximum threshold to test. For all BTDT-MBO
experiments, we used a minimum threshold of 0.05
and a maximum threshold of 0.55.

As previously stated, the proposed BTDT-MBO
algorithm obtained higher ROC-AUC scores than the
compared methods in all but one of the six highly
imbalanced data sets included in this work. Figure 3
displays our model’s results (using the best-performing
of the BTDT-MBO with Gaussian weight function and
BTDT-MBO with distance correlation weight func-
tion) compared with the GHOST algorithm’s results on
four highly imbalanced DrugMatrix data sets. The
BTDT-MBO procedure obtained a higher ROC-AUC
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score than all GHOST models for all four of the
DrugMatrix data sets. As indicated in Table 1, each of
the four DrugMatrix data sets contained 842 com-
pounds and had IRs of at least 16.5. Our model
achieved its best predictive performance on the
CHEMBL1909150 data set with an average ROC-AUC
score of 0.978, indicating an outstanding ability to dis-
criminate between the active and inactive classes.
Furthermore, our model outperformed all GHOST
models, which also demonstrated very high ROC-AUC
scores on this data set. For CHEMBL1909157, our pro-
cedure obtained excellent results, with an ROC-AUC
score of 0.866. Some of the GHOST models also
achieved ROC-AUC scores greater than 0.8, but the
GHOST model using GB performed significantly
worse. Our model similarly outperformed all four
GHOST comparison models on the CHEMBL1909132
and CHEMBL1909134 data sets.

Figure 4 shows our model’s results on two highly
imbalanced DS1 data sets, again compared with the
GHOST algorithm paired with LR, RF, XGB and GB.
Recall from Sec. 3.1 that all DS1 data sets have an IR of
20.0 by construction. For CHEMBL100, our method
achieved an outstanding ROC-AUC score of 0.974,
while the highest-performing GHOST model (using
LR) earned an ROC-AUC score of 0.959. While our
BTDT-MBO method did not achieve the highest ROC-
AUC score of comparison algorithms on CHEMBLS, it
obtained the second-best ROC-AUC score, performing
almost as well as the top-performing GHOST model
using LR. All models in this case demonstrated ROC-
AUC scores of at least 0.9, with the highest method
earning a score of 0.979 and BTDT-MBO scoring
0.978.

As outlined in Sec. 2.2, in addition to the default
Gaussian kernel used in our BTDT-MBO method, we
also conducted experiments that instead used the dis-
tance correlation to compute the weights between data
elements. In our experiments, the BTDO-MBO method
using a Gaussian weight function yielded higher ROC-
AUC scores than the BTDT-MBO method using dis-
tance correlation for five out of the six data sets
included in this work, with the BTDT-MBO algorithm
using distance correlation achieving the best results on
the CHEMBL1909157 DrugMatrix data set. However,
the BTDT-MBO algorithm using a distance correlation
weight function performed similarly to (and frequently
almost as well as) the BTDT-MBO method using a
Gaussian kernel on all six data sets, particularly on the
DS1 data sets used for benchmarking. For the
CHEMBL100 DS1 data set, the BTDT-MBO model
using distance correlation yielded an ROC-AUC score
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of 0.970, slightly lower than BTDT-MBO using
Gaussian weights (ROC-AUC=0.974) but still higher
than all comparison methods. Similarly, for the
CHEMBLS DSI data set, BTDT-MBO using distance
correlation scored 0.973, which was again lower than
BTDT-MBO using a Gaussian weight function (ROC-
AUC=0.978) but higher than two comparison meth-
ods. All tested models scored very highly on this
data set.

Our model using distance correlation saw similar
results on the DrugMatrix data sets. In fact, as men-
tioned above, BTDT-MBO using distance correlation
achieved the best overall result of all tested models on
the CHEMBL1909157 DrugMatrix data set, earning an
ROC-AUC score of 0.878. BTDT-MBO using a Gaussian
kernel scored an ROC-AUC value of 0.866; thus, both
BTDT-MBO methods beat all tested GHOST models.
For the CHEMBL1909150 data set, BTDT-MBO using
distance correlation scored an ROC-AUC value of
0.975, higher than all comparison methods and only
lower than our BTDT-MBO model using a Gaussian,
which scored 0.978. On the CHEMBL1909132
DrugMatrix data set, BTDT-MBO using distance cor-
relation earned an ROC-AUC score of 0.743, which
places it below BTDT-MBO using Gaussian weights
(ROC-AUC=0.785) and GHOST using LR, but above
the three other GHOST comparison methods. Our
model using distance correlation saw similar relative
results for the CHEMBL1909134 DrugMatrix data set,
with an average ROC-AUC score of 0.766. The model
earned the third-highest score of all methods tested for
this data set, lower than our BTDT-MBO method
using Gaussian weights (ROC-AUC=0.792) and very
close to GHOST paired with LR, which scored a 0.769.
Overall, these results suggest that the distance correla-
tion can be useful for quantifying similarity in molec-
ular data sets, including those that are highly
imbalanced. Furthermore, the distance correlation
may be considered as a potential alternative weight
function to the Gaussian function in similarity graph-
based settings, particularly when the data is not close
to a normal distribution.

To further visualize our proposed model’s perfor-
mance on the benchmark data sets, we additionally
utilized the residue-similarity (R-S) scores and associ-
ated R-S plots introduced by Hozumi et al.*’ For a given
data point in a particular class, its residue score is
defined as the sum of the distances from that point to
points in other classes. The point’s similarity score is
defined as the average distance from that point to
points in its own class. In other words, the residue
score measures how well data points in a given class are
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Fig. 5.
sets. The plots display R-S scores of unlabeled points from a random

(Color online) R-S score plots for the four DrugMatrix data

labeled/unlabeled partition of each data set. The x- and y-axes of the
plots represent residue and similarity scores, respectively. From left
to right, the panels plot points in class 1 (i.e., inactive compounds)
and class 2 (i.e., active compounds). Each point is colored based on
its class predicted by the proposed BTDT-MBO model.

separated from other classes, and the similarity score
measures how well data points in a given class are clus-
tered together. Given a training/testing (or labeled/
unlabeled) split of a data set, one can construct R-S
score plots visualizing the elements of each class sepa-
rately. In Figs. 5 and 6, we plot R-S scores for a random
labeled/unlabeled split of the six data sets used in our

CHEMBL100 R-S Score Plot

Predicted Class
o1
o2

CHEMBLS8 R-S Score Plot

Predicted Class
o1
o2

B

Fig. 6.
The plots display R-S scores of unlabeled points from a random

(Color online) R-S score plots for the two DS1 data sets.

labeled/unlabeled partition of each data set. The x- and y-axes of the
plots represent residue and similarity scores, respectively. From left
to right, the panels plot points in class 1 (i.e., inactive compounds)
and class 2 (i.e., active compounds). Each point is colored based on
its class predicted by the proposed BTDT-MBO model.

work. Points are separated into panels by their true
class label, and the color of each point corresponds to
its predicted class using our proposed BTDT-MBO
model. We use the optimal weight function for each
data set as discussed above.

Another novel addition to the proposed BTDT-
MBO method is its threshold optimization step, the
details of which are given in Sec. 2.1.1. This step chose
the decision threshold that yielded the highest ROC-
AUC score for a given partition of a particular data set.
Because the partitions were created randomly, the class
distribution of the unlabeled and labeled portions of a
data set could vary. Additionally, due to the high level
of class imbalance in the data, there may be very few
data points from the minority class in the labeled or
unlabeled set for a particular partition. Therefore, it is
not surprising that in our experiments, the optimal
thresholds for the splits varied considerably. However,
the optimal thresholds often tended to be lower than
the typical threshold of 0.5. For example, in one exper-
iment on the CHEMBL1909157 data set (i.e., testing
over 50 random labeled/unlabeled partitions), the low-
est optimal threshold for the 50 random splits was 0.05,
and the highest optimal threshold was 0.45. The
median optimal threshold over all 50 splits was 0.15.
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These results reinforce the impact and the advantage of
adjusting the decision threshold on classifier perfor-
mance for highly imbalanced data.

3.4. Statistical testing

In this paper, we perform statistical analysis using the
experimental results; we perform the Friedman and the
post-hoc Nemenyi test in order to achieve a more thor-
ough evaluation. The results are shown in Table 2 and
Fig. 7, including the mean rank values, where smaller
ranks demonstrate more competitive techniques. The
critical distance was around 4.29, with the significance
level being 0.05. Overall, the Friedman test’s null
hypothesis is that all algorithms have the same

performance. If the p-value is less than 0.05, the null
hypothesis is rejected, which it was in our testing.
Moreover, the Nemenyi post-hoc test is utilized to
identify which procedures are significantly different
from each other. Overall, it is shown that the proposed
algorithm is ranked consistently the best among com-
parison methods.

3.5. Future work and limitations

While the proposed method has many advantages,
such as the ability to perform accurately with highly
imbalanced data, it has certain limitations similarly to
any other algorithm. For example, the proposed proce-
dure requires the calculation of a small number of the

Table 2.

Results for statistical testing.

(a) Reference for (b) and (c)

Method

G & N o Ul K oW =

’ BTDT-MBO (Proposed)
’ LR-GHOST
’ RF-GHOST
’ XGB-GHOST
BT-MBO
’ GB-GHOST
BT-SVM

BT-GB

BT-RF

(b) Results of Friedman’s Test

Chi-sq statistic

112.39130

p-value

2.4237e-07

(¢) Mean rank values of the Friedman/Nemenyi test

oE o 3 g >

6 e s ‘@

1.16667 2.16667 3.16667 3.66667 4.83333 6.33333 6.66667 8.00000 9.00000
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Fig. 7. The average rank diagram of the Friedman/Nemenyi test.
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graph Laplacian’s eigenvectors and corresponding
eigenvalues. This can obviously be computationally
expensive for certain data sets. One possible direction
in such a scenario is to construct an approximation of
the full graph using other techniques, e.g., sampling-
based procedures, in particular the Nystrom Extension
technique, detailed in sources such as Refs. 61, 62
and 63. Such a technique can be utilized to very effi-
ciently compute approximations of the eigenvalues and
eigenvectors for the proposed procedure even for large
data sets.

Future work regarding this study includes explor-
ing imposing class size constraints into the technique.
Moreover, we would like to explore integrating other
correlation techniques, as well as incorporating extended-
connectivity fingerprints or autoencoders into the
algorithm structure.

4. CONCLUSION

Given the prevalence of molecular data where the class
sizes vary vastly, the ability of an algorithm to accu-
rately predict the class of data elements in imbalanced
data sets is extremely important. However, many clas-
sification techniques are not accurate on highly imbal-
anced data as they tend to overestimate majority
classes. This paper presents a BTDT-MBO method for
molecular data classification in case of imbalanced
data sets with highly varied class sizes. The method,
which integrates Merriman-Bence-Osher procedures
as well as a bidirectional transformer, incorporates
adjustments in the data classification threshold for
machine learning classifiers to handle the high class
imbalance. To illustrate the advantages of the proposed
technique, particular attention is given to highly imbal-
anced data sets.

Numerical experiments indicate that the BTDT-
MBO procedure performs very well even with high
class imbalance ratios; in particular, the computational
experiments on DS1 data sets and DrugMatrix data
sets demonstrate that the results of the proposed proce-
dure are almost always more accurate than the compar-
ison algorithms such as Ref. 1, as indicated by Figs. 2
and 3. The ROC-AUC score was used as a metric.
Overall, the new model serves as a powerful machine
learning tool for data sets with a high class imbalance.

This work additionally investigates the distance
correlation as a choice for a weight function in the
proposed BTDT-MBO algorithm, serving as an alter-
native to the Gaussian kernel often used to compute
graph weights. Overall, the results for the BTDT-MBO
technique using a distance correlation weight function

are similar to those using Gaussian weights, with the
distance correlation model performing better for one
data set; these results suggest further utility of the dis-
tance correlation in imbalanced molecular data classi-
fication and similarity graph-based methods. In
particular, data that is far from a normal distribution
may benefit from the use of a distance correlation
weight function rather than a Gaussian weight
function.
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