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Abstract
The success of many machine learning (ML) methods depends crucially on having large
amounts of labeled data. However, obtaining enough labeled data can be expensive, time-
consuming, and subject to ethical constraints for many applications. One approach that has
shown tremendous value in addressing this challenge is semi-supervised learning (SSL);
this technique utilizes both labeled and unlabeled data during training, often with much less
labeled data than unlabeled data, which is often relatively easy and inexpensive to obtain. In
fact, SSL methods are particularly useful in applications where the cost of labeling data is
especially expensive, such as medical analysis, natural language processing, or speech recog-
nition. A subset of SSLmethods that have achieved great success in various domains involves
algorithms that integrate graph-based techniques. These procedures are popular due to the vast
amount of information provided by the graphical framework. In thiswork,wepropose an alge-
braic topology-based semi-supervised method called persistent Laplacian-enhanced graph
MBO by integrating persistent spectral graph theory with the classical Merriman–Bence–
Osher (MBO) scheme. Specifically, we use a filtration procedure to generate a sequence of
chain complexes and associated families of simplicial complexes, from which we construct
a family of persistent Laplacians. Overall, it is a very efficient procedure that requires much
less labeled data to perform well compared to many ML techniques, and it can be adapted
for both small and large datasets. We evaluate the performance of our method on classifica-
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tion, and the results indicate that the technique outperforms other existing semi-supervised
algorithms.

Keywords Topology-based framework · Graph MBO technique · Persistent Laplacian ·
Scarcely labeled data

1 Introduction

Machine learning has had tremendous success in science, engineering, andmany other fields.
However, most machine learning algorithms require large amounts of labeled data in order
to build a good model and make accurate predictions. At the same time, obtaining sufficient
amounts of labeled data can be very challenging for many applications as it is often expensive
and time-consuming, and sometimes requires experts in thefield.On the other hand, unlabeled
data is often available in abundance. Therefore, semi-supervised learning (SSL), the main
recent approaches of which have been outlined in a survey (Van Engelen andHoos, 2020) and
which utilizes mostly unlabeled data and much less labeled data for training, has garnered
significant attention in the machine learning community. In particular, one class of semi-
supervised learning algorithms that has gained popularity is graph-based semi-supervised
learning. The key goal of such methods is to use a graph structure, which is often similarity-
based, and both labeled and unlabeled data points, formachine learning tasks. Here, a graph is
often constructed with nodes and edges, where the nodes represent the labeled and unlabeled
data set elements, and the edges contain weights that encode the similarity between pairs of
data elements.

Overall, graph-based methods, such as those detailed in Sect. 2.1, have shown great
promise for several reasons. First, a similarity graph-based framework provides valuable
information about the extent of similarity between data elements through a weighted sim-
ilarity graph, which is crucial for applications such as data classification. Additionally,
graph-basedmethods yield information about the overall structure of the data. Second, graph-
based methods are capable of incorporating diverse types of data, such as social networks,
sensor networks, and biological interaction networks, using a graph structure. This flexibility
makes them some of the most competitive methods across a wide range of applications. In
addition, most real-world datasets exist in high-dimensional Euclidean space, but embedding
the features into a graphical setting reduces the dimensionality of the problem.

Moreover, topological data analysis (TDA) has recently emerged as a powerful tool for
analyzing complex data. The central technique of TDA is persistent homology (PH), which
combines classical homology and geometric filtration to capture topological changes at differ-
ent scales. However, PH has some limitations. Specifically, PH fails to capture the homotopic
shape evolution of data during filtration. To overcome this limitation, Wang et al. (2020)
introduces the concept of persistent spectral graphs, also known as persistent combinatorial
Laplacians or persistent Laplacians (PLs). In particular, PLs are an extension of the standard
combinatorial Laplacian to the filtration setting. It turns out that the harmonic spectra of
the PLs return all topological invariants, and the non-harmonic spectra of the PLs provide
information about the homotopic shape evolution of the data during filtration.

Motivated by the success of graph-based methods, persistent spectral graph theory, and
semi-supervised learning, we propose a novel graph-based algorithm for data classification
with low label rates by integrating similarity graph-based threshold dynamics with a fam-
ily of persistent Laplacians and semi-supervised techniques. The proposed method, called
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persistent Laplacian-enhanced graph MBO (PL-MBO), adapts the classical MBO scheme
developed in Merriman et al. (1994) to a label-propagation-based graph framework for data
classification. We validate our proposed algorithm using five benchmark data classification
datasets.

Specifically, the motivation for the proposed method stems especially from the benefits of
using the combination of graph-based techniques, semi-supervised procedures and persistent
spectral graph theory to derive the proposed algorithm, each of which are equipped with their
own important advantages.

For example, semi-supervised techniques significantly reduce the amount of labeled data
needed for accurate predictions due to their use of the information from the (vastly available)
unlabeled data. This is crucial since labeled data is scarce for many applications. Since most
machine learning approaches rely on large labeled sets to performwell, using semi-supervised
techniques provides our method with the advantage of good accuracy even in the common
scenario of low label rates.

In addition, integrating persistent spectral graph theory is beneficial since the theory
improves upon the persistent homology, the main workhorse of topological data analysis.
In fact, its kernel produces the same topological information as persistent homology, but
its non-harmonic spectrum offers additional shape evolution of the data, thus providing the
algorithm with more information which can often improve accuracy. This demonstrated via
ablation studies in Table 4.

Lastly, using (similarity) graph-based techniques offers several aforementioned advan-
tages such as providing valuable information about the extent of similarity between (labeled or
unlabeled) data elements through aweighted similarity graph,which is crucial for applications
such as data classification. Moreover, among semi-supervised learning (SSL) techniques,
graph-based approaches have received superior attention due to their uniqueness of struc-
ture, universality of applications, and scalability to large scale data. In fact, many data sets,
like social networks, can be represented by graphs. Undirected graphs also make it easier
to formulate the learning problem into a convex optimization problem, which can be solved
with existing techniques. Most importantly, the expressive power of graph structure under
the manifold assumption in semi-supervised learning contributes to the success of graph-
based semi-supervised methods. Specifically, the similarity graph construction implies that
vertices connected by an edge associated with a large weight tend to have the same label,
which coincides to the manifold assumption of SSL.

Overall, due to the integration of several aforementioned advantageous techniques, the
proposed method demonstrates its benefits most prominently in the case of a small amount of
labeled samples; this scenario is common since labeled data is scarce for many applications.
This common case, however, is a challenge for many machine learning methods since they
often require a large amount of labeled samples to learn an accurate model, especially if
unlabeled data is not used during training. Among graph-based semi-supervised algorithms,
our method has the additional benefit of integrating persistent spectral graph theory, which
has been shown to improve accuracy of predictions in ablation studies of Table 4.

The contributions of the paper are summarized as follows:
• We present a new algorithm, called persistent Laplacian-enhanced graph MBO (PL-

MBO), for data classification for low label rates or cases of low amounts of labeled
data.

• The proposed algorithm uses a family of persistent Laplacian matrices to obtain topo-
logical features of data sets that persist across multiple scales, thus giving the algorithm
valuable information.

123



7270 Machine Learning (2024) 113:7267–7292

• The proposedmethod requires a reduced amount of labeled data for accurate classification
compared to many other machine learning methods. In fact, it works well even with very
low amounts of labeled data, which is important due to the scarcity of labeled data.

• The proposed algorithm is very efficient.
• The proposed method can be adapted for both small and large data sets, as outlined in

Sect. 3.2, and works well for both types of data.

The remainder of the paper is organized as follows: in Sect. 2, we present background
information on related work, the graph framework, and persistent Laplacians. In Sect. 3,
we present the graph MBO technique and derive our proposed method. The results of the
experiments on benchmark data sets and the discussion of the results are presented in Sect. 4.
Section5 provides concluding remarks.

2 Background

2.1 Related work

Here, we review recent graph-based methods and persistent Laplacian-related algorithms,
with a focus on semi-supervised techniques. In particular, graph-based methods usually
utilize either the transductive or the inductive setting. The goal of the transductive setting is
to predict the class of the set of unlabeled elements, while the goal of the inductive setting is
to learn a function that can classify any element.

Label propagation is one of the earliest and yet popular methods for the label inference
task. Some of the earliest yet popular methods are the Gaussian random fields method (Zhu
and Ghahramani, 2002), the local and global consistency method (Zhou et al., 2003), special
label propagation (Nie et al., 2010) and the linear neighborhood propagation method (Wang
and Zhang, 2006). Some general label propagation regularization-based methods include
directed regularization (Zhou et al., 2005), manifold regularization (Belkin et al., 2006; Xu
et al., 2010), anchor graph regularization (Liu et al., 2010), label propagation algorithm
via deformed graph Laplacians (Gong et al., 2015), Tikhonov regularization (Belkin et al.,
2004b), and interpolated regularization (Belkin et al., 2004a).

Some recently developed label propagation methods involve adaptations of the origi-
nal Merriman–Bence–Osher (MBO) scheme (Merriman et al., 1994), which is an efficient
numerical algorithm for approximating motion by mean curvature, to different tasks. In par-
ticular, Merkurjev et al. (2013) introduces a graphical MBO-scheme based algorithm for
segmentation and image processing, while Garcia-Cardona et al. (2014), Merkurjev et al.
(2014a) present a fast multiclass segmentation technique using diffuse interface methods
on graphs. Moreover, Meng et al. (2017), Merkurjev et al. (2014b) develop algorithms for
hyperspectral imagery, while (Merkurjev, 2020) presents a new graph-based method for the
unsupervised classification of 3D point clouds, and Merkurjev et al. (2018) incorporates heat
kernel pagerank and variations of the MBO scheme. Additionally, Jacobs et al. (2018) devel-
ops a new auction dynamics framework for data classification, which is able to integrate class
size information and volume constraints. Furthermore, Merkurjev et al. (2022) introduces
a multiscale graph-based MBO scheme that incorporates multiscale graph Laplacians and
adaptations of the classical MBO scheme (Merriman et al., 1994). Lastly, Hayes et al. (2023)
develops three graph-based methods for the prediction of scarcely labeled molecular data by
integrating transformer and autoencoder techniques with the classical MBO procedure.
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Other popular graph-based semi-supervised methods include shallow graph embedding
algorithms. In particular, shallow graph embedding techniques include factorization-based
algorithms such as locally linear embedding (Roweis and Saul, 2000), Laplacian eigenmaps
(Belkin and Niyogi, 2001), the graph factorization algorithm (Ahmed et al., 2013), GraRep
(Cao et al., 2015), and HOPE (Ou et al., 2016). Moreover, a subset of graph embedding tech-
niques includes those which incorporate randomwalks; some randomwalk-based algorithms
include: DeepWalk (Perozzi et al., 2014), Planetoid (Yang et al., 2016), Node2Vec (Grover
and Leskovec, 2016), LINE (Tang et al., 2015), and HARP (Chen et al., 2018). In addition,
recently many deep embedding approaches have been proposed. A few of autoencoder-based
methods include deep neural networks for learning graph representation (DNGR), Cao et al.
(2016), deep recursive network embedding (DRNE) (Tu et al., 2018), and structural deep
network integration (SDNE) (Wang et al., 2016).

In addition, the success of convolutional neural networks (CNNs) has led to many adap-
tations of CNNs for graph-based and semi-supervised frameworks. In particular, Kipf and
Welling’s seminal work (Kipf and Welling, 2017) proposes a semi-supervised graph convo-
lutional network (GCN), where the convolutional architecture is developed via a localized
first-order approximation of spectral graph convolutions. In addition, Li et al. (2018) proposes
an adaptive graph convolutional network by constructing a residual graph using a learnable
distance function with two-node features as input. In recent years, variants of graph neural
networks (GNNs), such as the graph attention network described in Velickovic et al. (2018);
Zhang et al. (2018); Wang et al. (2019), have been developed and shown great success in
deep learning tasks and problems. For more information on graph-based methods, one can
refer to the review papers (Song et al., 2022; Van Engelen and Hoos, 2020).

Other recent semi-supervised graph based methods include the Centered Kernel method
(Mai and Couillet, 2018), a p-Laplace learning technique (Flores et al., 2022), Poisson
learning, Calder et al. (2020) Poisson MBO method, Calder et al. (2020) Dynamic Label
Propagationmethod,Wang et al. (2013), Sparse label Propagationmethod (Jung et al., 2016),
Semi-supervised learning by the AbsolutelyMinimal Lipschitz Extension (AMLE) (Bungert
et al., 2023), Semi-supervised learning by via the solution of the graph ‘graph.peikonal‘
equation (Calder and Ettehad, 2022). Our paper also presents a graph-based semi-supervised
learning framework for cases of low amounts of labeled data and uses Laplacian-based
techniques aswell, exceptwe integrate spectral graph theory to construct a family of persistent
Laplacians; we then incorporate threshold dynamics techniques into our proposed procedure.

Moreover, other recent graph-based methods include graph inference learning (GIL) (Xu
et al., 2020), where the authors define a structural relation that combines node attributes,
paths between nodes, and local topological structures to establish a connection between
two nodes, Wang et al. (2021), where the authors propose label propagation with structured
graph learning (LPSGl) methods for semi-supervised learning, and Cai et al. (2021), where
the authors propose fully linear graph convolutional networks (FLGC) for semi-supervised
learning and clustering, where they train FLGC based on computing a globally optimal
closed-form solutionwith a decoupled procedure, resulting in a generalized linear framework.
Other recent methods that integrate graph convolutional networks include semi-supervised
classification by graph p-Laplacian convolutional networks (GpLCN) (Fu et al., 2021b),
graph Laplacian regularized graph convolutional networks (Jiang and Lin, 2018), dynamic
graph learning convolutional networks (DGLCN) (Fu et al., 2021a), graph convolutional
networks using heat kernel (GraphHeat) (Xu et al., 2020), as well as variance-enlarged graph
Poisson networks (Zhou et al., 2023).

In addition to the above, it is important to note that the proposed method utilizes topo-
logical tools from persistent spectral graph theory. In particular, while persistent homology

123



7272 Machine Learning (2024) 113:7267–7292

is a powerful tool in topological data analysis (TDA) for investigating the structure of data
(Edelsbrunner and Harer, 2008; Zomorodian and Carlsson, 2004), it is incapable of describ-
ing the homotopic shape evolution of data during filtration. Therefore, in Wang et al. (2020),
the authors introduce persistent spectral theory to extract rich topological and spectral infor-
mation of data through a filtration process, while the theoretical properties of persistent
Laplacians are presented in Mémoli et al. (2022). Overall, persistent Laplacians have had
tremendous success in computational biology and biophysics, such as protein-ligand binding
(Meng and Xia, 2021), protein-protein binding problems (Chen et al., 2022), and protein
thermal stability (Wang et al., 2020). Motivated by the success of topological persistence,
we integrate persistent spectral tools to develop our proposed method. Specifically, in this
paper, we integrate adaptations of the MBO scheme with persistent Laplacian techniques to
develop a semi-supervised graph-based method for data classification that can perform well
in cases of data with few labeled elements.

2.2 Graph-based framework

In this section, we review the graph-based framework used in this paper. Specifically, let
G = (V , E) be an undirected graph, where V and E are the sets of vertices and edges,
respectively. The vertex set V = {x1, . . . , xN } is associated with the elements of the data and
E is the set of edges connecting pairs of vertices. The similarity between vertices xi and x j
is measured by a weight function w : V × V → R. The weight function values are usually
in the interval [0, 1] and are equipped with the following property: a large value ofw(xi , x j )
indicates that vertices xi and x j are similar to each other, whereas a small value indicates they
are dissimilar; thus, the graph-based framework is able to provide crucial information about
the data. The weight function is also symmetric. Some popular weight functions include:

• the Gaussian weight function

w(xi , x j ) = exp
(

−d(xi , x j )2

σ 2

)
, (1)

where d(xi , x j ) represents a distance (computed using a measure) between vertices xi
and x j , associated with the ith and jth data elements, and σ > 0 is a parameter which
controls scaling in the weight function.

• Zelnik-Manor and Perona (ZMP) weight function (Zelnik-Manor and Perona, 2004)

w(xi , x j ) = exp
(

−d(xi , x j )2

σ (x)σ (y)

)
, (2)

where d(xi , x j ) represents a distancemetric and
√

σ (xi ) = d(xi , xM ) is a local parameter
for each xi , where xM is the Mth closest vector to xi .

• Cosine similarity weight function (Singhal, 2001)

w(xi , x j ) = cos(xi , x j ) =
〈xi , x j 〉

||xi ||||x j ||
(3)

Overall, there are a few important terms to define in a graph-based framework. For exam-
ple, the degree of vertex xi ∈ V is defined as

d(xi ) =
∑

j

w(xi , x j ).
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Moreover, denote W as the weight matrix Wi, j = w(xi , x j ). If D is the diagonal matrix
with the degrees of the vertices as elements, then we can define the graph Laplacian as
L = D − W. In some cases, the graph Laplacian is normalized to account for the behavior
that arises when the sample size is large. One example of a normalized graph Laplacian is
the symmetric graph Laplacian defined as:

Ls = I − D−1/2WD−1/2. (4)

In this work, to derive our proposed method, we use a filtration procedure to generate
a sequence of chain complexes and associated families of simplicial complexes and chain
complexes, from which we construct a family of persistent Laplacians, which allows us to
capture important information from the data. In the next section, we review some background
on persistent Laplacians.

2.3 Persistent Laplacians

In this section, we review some basic notions to formulate the persistent Laplacian matrix on
the simplicial complex. The details can be found in Wang et al. (2020).

2.3.1 Simplicial complex

For q ≥ 0, a q−simplex σq in an Euclidean space Rn is the convex hall of a set P of q + 1
affinely independent points in Rn . In particular, a 0-simplex is a vertex, a 1-simplex is an
edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. A q-simplex is said to have
dimension q .

Moreover, a simplicial complex K is a (finite) collection of simplices in Rn such that

1. Every face (σp) of a simplex of K is in K .
2. The non-empty intersection of any two simplices of K is a face of each.

2.3.2 Chain complex

Let K be a simplicial complex of dimension q . A q-chain is a formal sum of q-simplices
added with some coefficients. Under the addition operation of Z2, a set of all q-chains
forms a chain group Cq(K ). One can also relate chain groups at different dimensions by a
boundary operator: given a q-simplex σq = {v0, . . . , vq}, we define the boundary operator
∂K
q : Cq(K ) → Cq−1(K ) by

∂qσq =
q∑

i=0

{v0, . . . , v̂i , . . . , vq}, (5)

where v̂i indicates the vertex vi is omitted. In general, the boundary operator changes a
q-simplex to a (q − 1)-simplex.

A chain complex is a sequence of chain groups connected by boundary operators. Similar
to boundaries of chains, we have the notion of coboundaries of cochains defined as

∂∗
q : Cq−1(K ) → Cq(K ). (6)

Moreover, the qth homology group of K is Hq(K ) = Zq(K )/Bq(K ), where Zq(K ) is
ker(∂K

q ) and Bq(K ) is im(∂K
q+1). In addition, the qth Betti number is the rank of the
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q-dimensional homology: βK
q = rank(Hq(K )); the Betti number reveals the intrinsic topo-

logical information of a geometry or data. Specifically, β t
0 provides the number of connected

components in Kt , β t
1 provides the number of one-dimensional circles and β t

2 gives the
number of two-dimensional voids in Kt . For K oriented simplicial complex, for q ≥ 0, the
q-combinatorial Laplacian is a linear operator that maps Cq(K ) to Cq(K ):

$q := ∂q+1∂
∗
q+1 + ∂∗

q ∂q . (7)

Similarly, we can represent the q-combinatorial Laplacian matrix as

Lq = Bq+1BT
q+1 + BT

q Bq , (8)

where Bq and BT
q is the matrix representation of the q-boundary operator and the q-

coboundary operator ∂∗
q : Cq−1(K ) → CqK defined in Hatcher (2005), respectively. Note

thatwhen K is a graph,we haveL0(K ) = B1BT
1 +BT

0 B0. Thismeans that the 0-combinatorial
Laplacian matrix is similar to a graph Laplacian matrix defined in the Sect. 2.2 except that
their matrix values are very different. Note that the use of simplicial complexes allows
high-dimensional modeling in combinatorial Laplacians, whereas graph Laplacians can only
support pairwise interactions.

2.3.3 Filtration

The notion of filtration is at the core of topological persistence. In particular, a filtration can be
defined in the context of topological spaces or simplicial complexes. Specifically, a filtration
of F = F(K ) of a oriented simplicial complex K is a nested sequence of its subcomplexes

F : φ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K . (9)

Overall, it induces a sequence of chain complexes:

· · · C1
q+1

∂1q+1−−⇀↽−−
∂1

∗
q+1

C1
q

∂1q−−⇀↽−−
∂1

∗
q

· · ·
∂13−−⇀↽−−
∂1

∗
3

C1
2

∂12−−⇀↽−−
∂1

∗
2

C1
1

∂11−−⇀↽−−
∂1

∗
1

C1
0

∂10−−⇀↽−−
∂1

∗
0

C1
−1

⊆ ⊆ ⊆ ⊆ ⊆

· · · C2
q+1

∂2q+1−−⇀↽−−
∂2

∗
q+1

C2
q

∂2q−−⇀↽−−
∂2

∗
q

· · ·
∂23−−⇀↽−−
∂2

∗
3

C2
2

∂22−−⇀↽−−
∂2

∗
2

C2
1

∂21−−⇀↽−−
∂2

∗
1

C2
0

∂20−−⇀↽−−
∂2

∗
0

C1
−1

⊆ ⊆ ⊆ ⊆ ⊆

···

···

···

···

···

⊆ ⊆ ⊆ ⊆ ⊆

· · · Cm
q+1

∂mq+1−−⇀↽−−
∂m

∗
q+1

Cm
q

∂mq−−⇀↽−−
∂m

∗
q

· · ·
∂m3−−⇀↽−−
∂m

∗
3

Cm
2

∂m2−−⇀↽−−
∂m

∗
2

Cm
1

∂m1−−⇀↽−−
∂m

∗
1

Cm
0

∂m0−−⇀↽−−
∂m

∗
0

C1
−1,

(10)

where Ct
q := Cq(Kt ) and ∂ tq : Cq(Kt ) → Cq−1(Kt ).

2.3.4 Persistent Laplacians

At the core of our proposed method is the persistent Laplacian matrix. In this section, we
discuss the concept in more detail. Consider Ct+p

q , the subset of Ct+p
q whose boundary is in
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Ct
q−1, defined by:

Ct+p
q = {e ∈ Ct+p

q |∂ t+p
q (e) ∈ Ct

q−1} ⊆ Ct+p
q . (11)

We define the p-persistent q-boundary operator as ðt+p
q : Ct+p

q → Ct
q−1 and the adjoint

boundary operator as (ðt+p
q )∗ : Ct

q−1 → Ct+p
q ; both operators are well-defined. The p-

persistent q-combinatorial Laplacian operator is defined as:

$
t+p
q = ðt+p

q+1(ð
t+p
q+1)

∗ + (∂ tq)
∗∂ tq .

Now, we denote the matrix representation of ðt+p
q+1 and ðtq by Bt+p

q+1 and Bt
q , respectively.

Similarly, we can represent (ðt+p
q+1)

∗ and (ðtq)
∗ by matrices (Bt+p

q+1)
T and (Bt

q)
T , respectively.

Therefore, the p-persistent q-combinatorial Laplacian matrix is defined as:

Lt+p
q = Bt+p

q+1(B
t+p
q+1)

T + (Bt
q)

TBt
q . (12)

We also denote the set of spectral of Lt+p
q by

Spectra(Lt+p
q ) = {((1)t+p

q , ((2)
t+p
q , · · · , ((N )

t+p
q },

where the spectra are arranged in ascending order. Moreover, the p-persistent qth Betti
numbers can be defined as the number of zero eigenvalues of the p-persistent q-combinatorial
Laplacian matrix Lt+p

q . Thus,

β
t+p
q = dim(Lt+p

q ) − rank(Lt+p
q ) = nullity(Lt+p

q ) = #of zero eigenvalues ofLt+p
q .

In the abovedefinition,β t+p
q counts the number ofq-cycles in Kt that are still alive in Kt+p .

This topological information is exactly what can be obtained using persistent homology.
However, persistent spectral theory provides additional geometric information using the
spectra of persistent combinatorial Laplacians. More specifically, the non-harmonic spectra
can capture both the topological changes and the homotopic shape evaluation of the data;
see Fig. 1 for an illustration. More detailed descriptions of persistent spectral graphs can be
found in Wang et al. (2020).

3 Methods

This section provides the graph MBO technique and its LP generalization.

3.1 The graphMBO technique

The proposed data classification method derived in this paper is based on the techniques
outlined in the literature, such as Garcia-Cardona et al. (2014), Merkurjev et al. (2014a,
2013), Hayes et al. (2023), Merkurjev et al. (2022), which generalize the original MBO
algorithm (Merriman et al., 1994) into a graphical setting.

For the derivation of our method, consider a matrix U = (u1, . . . , uN )
T ∈ RN ,K , where

K is the number of classes, N is the number of data elements and ui ∈ RK indicates the
probability distribution over the different classes for the data element xi ; thus, the jth element
of ui is the probability of data element xi of belonging to class j . In particular, the vector ui
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Fig. 1 Comparison of persistent homology and persistent Laplacians. The top panel shows the same data (seven
points) at four different stages of filtration characterized by a radius r . The second and third panels represent
the corresponding topological (i.e., harmonic) and non-harmonic features of dimension 0 and dimension 1,
respectively. The blue line represents the persistent homology (PH) barcodes of dimension 0 (β0(r)) and
dimension 1 (β1(r)), while the red line represents the first non-zero eigenvalues of dimension 0 ((0(r)) and
dimension 1 ((1(r)) of the persistent Laplacians (PLs). It is shown that the harmonic spectra of PLs return
all topological invariants of PH and the non-harmonic spectra of PLs reveal the additional homotopic shape
evolution of PLs during the filtration (i.e., the second jumps in the red curves correspond to the increase in
connectivity, the third geometric shape, but therewas no topological change).We note that persistent homology
fails to capture the homotopic shape evolution during filtration. The details on persistent spectral graphs can
be found in the work (Wang et al., 2020) (color figure online)

is an element of the Gibbs simplex )K :

)K := {(x1, . . . , xK ) ∈ [0, 1]K |
K∑

k=1

xk = 1}. (13)

The goal of the proposed technique will be to compute the optimal matrix U.
Regarding the data classification problem of machine learning, many data classification

algorithms can be regarded as optimization techniques where a specific objective function
is optimized. In particular, one of the popular optimization techniques for data classification
involves minimizing the following general objective function:

E(U) = R(U)+ F(U), (14)

where U is a classification variable with each row representing a probability distribution
of a particular data element over the classes, R(U) is a regularization term and F(U) is a
fidelity term containing information about labeled data. The goal is to minimize E(U) and
thus to obtain the optimal U.

Regarding the regularization term R(U), it may be useful to examine a certain functional
called the Ginburg-Landau (GL) functional, described in more detail in Merkurjev et al.
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(2013). The classical GL functional takes the following form:

GL(u) = ε

2

∫
|+u|2dx + 1

ε

∫
W (u)dx, (15)

where u is a scalar field representing the state of the phases in the system, W (u) is a double-
well potential, ε is a positive constant and+ denotes the spatial gradient operator. In Bertozzi
and Flenner (2012), Garcia-Cardona et al. (2014), the authors modify the original Ginzburg-
Landau functional (15) into a graph-based functional by replacing the first term with the
graphDirichlet energy to obtain a graph-based regularization term. In addition, to incorporate
multiple classes, they modify the double-well potential into a multi-class setting; one can
also add anL2 penalty term to incorporate the labels of the labeled elements. For more details
about this graph-based representation of the Ginzburg-Landau functional, one can refer to
Garcia-Cardona et al. (2014), Merkurjev et al. (2014a, 2013).

Inspired by the above, the optimization problem we consider in this work consists of
minimizing the following graph-based Ginzburg-Landau energy:

E(U) = ε

2
〈U,LnormU〉 + 1

2ε

∑

i∈V
(

K∏

k=1

1
4
||ui − ek ||2L1

)+
∑

i∈V

µi

2
||ui − û||2, (16)

where 〈U,LnormU〉 = trace (UTLnormU), Lnorm is any normalized graph Laplacian such
as the symmetric graph Laplacian, K is number of classes, and ui is the ith row of U. In
addition, ûi is a vector indicating the prior class knowledge of xi , ek is an indicator vector
of size K with a one in kth component and zero elsewhere, and µi takes some positive value
if xi is labeled data element and 0 otherwise.

To minimize the graph-based multiclass energy functional in (16), the authors of Garcia-
Cardona et al. (2014) developed a convex splitting scheme.Similarly, the authors ofMerkurjev
et al. (2013) derived amodifiedMBO scheme tominimize (16).More specifically, the authors
drew upon a technique that can be used tominimize the classical non-graphical GL functional
(15), which can be optimized in the L2 sense using gradient descent, resulting in an Allen–
Cahn equation. If a time-splitting scheme is then applied, one obtains a procedure where one
alternates between propagation using the heat equation with a forcing term and thresholding,
which is similar to the steps of the original MBO scheme (Merriman et al., 1994), an efficient
numerical technique for computing an approximation of mean curvature flow. This can be
extended to a graphical and multiclass setting by using a graph Laplacian and projecting to
the closest vertex in the Gibbs simplex (13). For a detailed explanation, one can refer to the
work (Merkurjev et al., 2013).

Overall, the goal of this paper is to integrate similar techniques with persistent spectral
graphs and a filtration procedure, from which we construct a family of persistent Laplacians.
Incorporating persistent Laplacians into our proposed procedure will allow us to obtain
crucial information about the data, such as all topological invariants and the homotopic
shape evolution of the data during the filtration.

3.2 PL-MBO algorithm

In this section, we will derive our proposed semi-supervised method, PL-MBO, for data
classification, which is especially useful for cases with low label rates. To derive the proposed
method, the PL-MBOalgorithm,wewill considerminimizing a variant of (16), where instead
of choosing the graph Laplacian to be the normalized graph Laplacian, we will choose it from
a family of persistent Laplacians.
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Consider a simple graph; we can then generate persistent Laplacians from a weighted
graph Laplacian by using a threshold in the matrix computation. In particular, we define the
weighted Laplacian as Lnorm = (Li j ), where Lii = −∑N

j=1 Li j and Li j ≤ 0 for all i and
j , and N is the number of data elements in the data set.

For i -= j, let Lmax = max
i j

Li j , Lmin = min
i j

Li j , and d = Lmax − Lmin.

Let Ln be an integer greater than 1. We can then define the kth persistent Laplacian,
Lk
persistent, for k = 1, 2, . . . , Ln , as (Lk

persistent)i j = Lk
i j , where, for i -= j :

Lk
i j =

{
0 if Li j ≤ k

Ln
d + Lmin,

−1 otherwise.
(17)

The diagonal entries of the persistent Laplacian, Lk
persistent, are computed as

Lk
ii = −

N∑

j=1

Lk
i j . (18)

In our proposed method, {Lk
persistent} (for k = 1, 2, . . . , Ln) are used in place of Lnorm in

(16). Specifically, a variant of (16) with each derived persistent Laplacian from the family
is minimized using similar techniques to those described at the end of Sect. 3.1. Finally, the
results from each persistent Laplacian assisted MBO technique are concatenated and fed
into a classifier, such as a gradient-boosting decision tree, support vector machine, a random
forest, or another classifier, which predicts the final class of each data element.

In particular, letU represent a matrix where each row ui contains the probability distribu-
tion of each data element over the classes. Also, let dt > 0 be the step size, N be the number
of data elements, and K be the number of classes. Moreover, let the vector µ represent a
vector that takes the value µ at labeled data elements and 0 at unlabeled data elements. In
addition, we define the Ulabeled matrix as follows: for labeled elements, each row is an indi-
cator vector with a 1 in the entry corresponding to the class of the labeled element. All other
entries are set to 0.

We can summarize our proposed method as follows:

• Using the input data, construct a similarity graph using a chosen similarity function such
as (2), and then compute the symmetric graph Laplacian (4).

• Using the symmetric graph Laplacian, construct a family of Ln persistent Laplacians,
i.e. {Lk

persistent}, for k = 1, 2, . . . , Ln , where Ln is an integer greater than one, as derived
in Sect. 2.3.4.

• Use a spectral technique: in particular, for each persistent Laplacian in the family, i.e.
Lk
persistent, for k = 1, 2, . . . , Ln , compute the smallest Ne eigenvalues and associated

eigenvectors. It is important to note that usually only a small portion of the eigenvalues
and associated eigenvectors are needed to be computed for accurate predictions. Please
see next page for more detail.

• Initialize U using techniques such as random initialization or Voronoi initialization. In
particular, in Voronoi initialization, the labels of the unlabeled points are initialized by
creating a Voronoi diagram with the labels of the labeled points as the seed points; every
point is assigned the label of the labeled point in its Voronoi cell. We note that, in any
initialization, the rows of the initial U corresponding to labeled points should consist of
indicator vectors with a 1 at the place corresponding to the true class of the data element.
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Fig. 2 Visual description of PL-MBO. a From a given data set, a similarity graph is constructed using a
chosen similarity function. b A family of persistent Laplacians is formed as derived in Sect.2.3. c The graph-
based Ginzburg-landau energy (16) is minimized using a modified persistent Laplacian-based MBO scheme
incorporating the family of persistent Laplacians; a new test set is formed using the output. d A machine
learning algorithm is used to classify the new test data. e The accuracy of the proposed method is computed
on the test data set

• For each persistent Laplacian in the family, i.e. Lk
persistent, for k = 1, 2, . . . , Ln , perform

the following MBO-like steps for Nt iterations, to obtain the next iterate of U; if there
are Ln persistent Laplacians, there will be Ln output matrices U:

1. Heat equation with a forcing term:

Un+ 1
2 = Un − dt{Lk

persistentU
n+ 1

2 + µ · (Un − Ulabeled)},
where µ is a vector which takes a value µ in the ith place if xi is a labeled element
and 0 otherwise, and the term µ · (Un − Ulabeled) indicates row-wise multiplication
by a scalar. Later, we describe the spectral techniques used to make the first step
efficient even for larger data sets.

2. Projection to simplex: Each row of Un+ 1
2 is projected onto the simplex using Chen

and Ye (2011).
3. Displacement: un+1

i = ek , where un+1
i is the ith row of Un+1, and ek is the indicator

vector.

• Concatenate the results of each output matrix (from each persistent Laplacian) to form a
new matrix. For the binary case, one only needs to concatenate the first column of each
output matrix to form the new matrix.

• Use a classifier, such as a gradient-boosting decision tree, a support vector machine or a
random forest, to predict the final class of the data elements. The rows corresponding to
µi = µ are used for training of the classifier.

The proposed PL-MBO procedure is detailed as Algorithm 1. For an illustration, an
intuitive interpretation of the proposed method is shown in Fig. 2.

To make the scheme even more efficient, we use a spectral technique and utilize a low-
dimensional subspace spanned by a small number of eigenfunctions, similar to the procedures
outlined in Merkurjev et al. (2014a, 2013), Garcia-Cardona et al. (2014). The idea is to first
rewrite Step 1 (Heat equation with a forcing term) as

Un+ 1
2 = C−1Uupdate, (19)

where C = I+ dtLk
persistent and Uupdate = Un − dtµ · (Un − Ulabeled).

Now, let the eigendecomposion of Lk
persistent be denoted as Lk

persistent = X+XT, and let
Xtruncated and +truncated be truncated matrices of X and +, respectively, containing only
Ne smallest eigenvectors and eigenvalues of the persistent Laplacian, respectively, where
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Algorithm 1: PL-MBO Algorithm
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Ne << N . Therefore, Xtruncated and +truncated are matrices of sizes N × Ne and Ne × Ne;
thus, at least one dimension is very small. One can then rewrite (19) as

Un+ 1
2 = Xtruncated(I+ dt+truncated)

−1XT
truncatedUupdate, (20)

whereUupdate = Un − dtµ · (Un −Ulabeled). Note that all of the aforementioned matrices in
(20) have at least one dimension which is small, and that only the smallest Ne eigenvalues of
the persistent Laplacian and their corresponding eigenvectors need to be computed, saving
much computational time.

Overall, this spectral technique allows the diffusion operation of the proposed scheme,
particularly Step 1, which involves the heat equation with a forcing term, to be decomposed
into faster matrix multiplication, resulting in an efficient proposed algorithm. It is also impor-
tant to note that the graph weights are only used to compute the first Ne eigenvalues. Once
they are computed, the main steps of the scheme involve only the truncated matrices and U,
which allows the scheme to be fast.

Regarding the computation of the few eigenvalues and their corresponding eigenvec-
tors (for a particular persistent Laplacian derived in Sect. 2.3), which our proposed method
requires, we note that there are many methods available for the task. For sparse matrices,
such as the family of persistent Laplacians derived in this paper, and moderately small
datasets, the authors in Bertozzi and Flenner (2012), Garcia-Cardona et al. (2014) sug-
gest using the Rayleigh–Chebyshev procedure (Anderson, 2010). This efficient method is a
modified version of the inverse subspace iteration algorithm. For large and fully connected
graphs, the Nyström extension technique (Belongie et al., 2002; Fowlkes et al., 2001) is rec-
ommended. In particular, the Nyström extension algorithm is a matrix completion method
that incorporates computations using much smaller submatrices of lower dimensions, thus
saving computational time, and approximates eigenvectors and eigenvalues using a quadra-
ture rule with randomly chosen interpolation points. Moreover, this technique requires the
computation of only a very small portion of the graph weights, making this procedure effi-
cient even for very large datasets. For simplicity, in our computational experiments, we
use MATLAB’s eigs function to compute the Ne smallest eigenvalues and the associated
eigenvectors. The details on MATLAB’s eigs function is provided in supplementary mate-
rial.

For small data sets, like some of those used in the experiments of this paper, it is more
desirable to compute the graph weights directly by calculating pairwise distances. In this
case, the efficiency of the task can be increased by using a parallel computing technique
or by reducing the dimension of the data. Then, a graph is often made sparse using, for
example, thresholding or an l nearest neighbors technique, resulting in a similarity graph
where most of the edge weights are zero. Overall, a nearest neighbor graph can be computed
efficiently using, for example, the kd-tree code of the VLFeat open source library (Vedaldi
and Fulkerson, 2008).

4 Results and discussion

4.1 Data sets

We tested our proposed method on five benchmark data sets: two artificial data sets and five
real-world data sets. The data sets are as follows:
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• The G50C data set (G50C, 2009) is an artificial data set inspired by Grandvalet and
Bengio (2004): the data is generated from two standard normal multivariate Gaussians.
This data set contains 550 points located in a 50-dimensional space such that the Bayes
error is 5%. There are two classes in the data set.

• The WebKB, i.e., World Wide Knowledge Base, data set (WebKB, 1998) contains web
pages collected from departments of Cornell University, University of Texas, University
of Washington, and University of Wisconsin. We used a subset of the WebKB data set
consisting of 1051 sample points that were classified into two categories: course and
non-course. Each web document is described by the text on the web pages (called page
representation) and the anchor text on the hyperlinks pointing to the page (called link
representation). The information from the text of each data element is encoded with a
4840-component vector.

• The Pendigits data set (Pendigits, 1998) is a set of 10,992 images of handwritten digits;
the set has 10 classes. Each image is represented by a feature vector consisting of 16
values, each between 0 and 100.

• The Statlog Heart data set (Heart, 1998) is a data set of 270 elements with 13 attributes.
There are 2 classes, predicting the absence or presence of heart disease.

• The Madelon data set (Madelon, 2008) consists of data points grouped into 32 clusters,
placed at the vertices of a five-dimensional hypercube, with two classes. The five dimen-
sions constitute five informative features, and 15 linear combinations of those features
were added to form a set of 20 redundant informative features. The goal is to classify
examples into two classes based on these 20 features. The dataset also contains dis-
tractor features called ’probes’ with no predictive power. The order of the features and
patterns was randomized. This data set contains 2000 elements, all of which are in a
500-dimensional space.

• The Banana data set (Banana, 2015) is a binary classification dataset that contains two
banana-shaped clusters; thus, there are two classes in this data set. There are 5300 ele-
ments in the data set, which each element being 2-dimensional.

• The Opt-Digits data set (OptDigits, 1998) is a multiclass data set of grayscale images
of 5620 handwritten digits. It has 5620 instances with 64 attributes. The data set has 10
classes.

• The USPS data set (USPS, 2015) is a multiclass data set of 9298 grayscale images with
10 different classes. The grayscale images are centered, mormalized and show a broad
range of font styles.

• The Coil-20 data set (COIL-20, 1996) is a multiclass data set of 1440 normalized images
of 20 objects. The objects were placed on motornized turn table. With fixed camera, the
turn table was rotated trough 360 degrees to capture different pose on the interval of 5
degrees.

• The Landsat data set (Landsat, 1999) is a set of 6435 elements which consist of the
multi-spectral values of pixels of 3 × 3 neighbourhoods in a satellite image, and the
classification is associated with the central pixel in each neighbourhood.

• The CIFAR-10 data set (Krizhevsky et al., 2009) is a set of 60,000, 32 × 32 colour
images of 10 classes. Each class has 6000 images. To build good quality graphs, we
trained autoencoders to extract important features from the data. We used AutoEncod-
ingTransformations architecture (Zhang et al., 2019) with default paramaters for the
training.

• The CIFAR-100 data set (Krizhevsky et al., 2009) is a set of 60,000, 32 × 32 colour
images of 100 classes. Each class has 600 images. To build good quality graphs, we
trained variational autoencoders (Kingma and Welling, 2013) to extract representation
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Table 1 Data sets used in the experiments

Data set Number of data elements Number of attributes Number of classes

G50C 550 50 2

Opt-Digits 5620 64 10

Heart 270 13 2

WebKB 1051 4840 2

Madelon 2000 500 2

Banana 5300 2 2

Coil-20 1440 1024 20

USPS 9298 256 10

Landsat 6435 36 6

Pendigits 10,992 16 10

CIFAR-10 60,000 3072 10

CIFAR-100 60,000 3072 100

of the data in the latent space. We run 200 epochs with the default parameters for the
training.

The details of the data sets are outlined in Table 1.

4.2 Hyperparameters selection

In this section, we outline the parameters that we have selected for the proposed method.
Instead of computing the full graph, we construct an Nn-nearest neighbor graph. To compute
the graph weights, we use the Zelnik-Manor and Perona (ZMP) weight function (2). After
the graph construction, we compute the family of persistent graph Laplacians as derived in
Sect. 2.3.4. For each persistent Laplacian in the family, we compute its first Ne eigenvalues
and eigenvectors, where Ne << N . Overall, both Nn and Ne are hyperparameters that need
tuning. Some other hyperparameters that might require tuning are the number of persistent
Laplacians (Ln), the time step for solving the heat equation (dt), the constraint constant on
the fidelity term (µ), themaximum number of iterations (Nt ), and the factorC in the diffusion
operator. In this paper, we found the exact parameters used for the experiments using random
search and outlined them in the Supplementary Information.

4.3 Comparison to recent methods

In this section, we compare our proposed method to several recent graph-based semi-
supervised algorithms. The results of the experiments and the comparisonmethods are shown
in Table 2.Please check the layout of Tables 2 and 3 are correct. All computational experi-
ments were implemented using the GraphLearning Python package (Calder, 2022).

In particular, for all data sets,we compare our proposedmethod, PL-MBO, to the following
recent graph based semi-supervised algorithms:

• centered kernel method (CK) (Mai and Couillet, 2018)
• p-Laplace method (p-Laplace) (Flores et al., 2022)
• modularity MBO (M-MBO) (Boyd et al., 2018)
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• SSL via absolutely minimal Lipschitz extension ((AMLE) (Bungert et al., 2023)
• Poisson MBO (P-MBO) (Calder et al., 2020)

Below, we provide a brief overview of the previouslymentioned semi-supervisedmethods. In
particular, inMai andCouillet (2018), the authors generalize the graph-based semi-supervised
technique proposed in Zhu et al. (2003), which derives an approach to semi-supervised learn-
ing based on a Gaussian random field model. Specifically, they introduce a normalization
parameter in the cost function in order to construct a large class of regularized affinity-based
methods, among which are the Laplacian-based techniques. They then provide a quantitative
performance study of the generalized graph-based semi-supervised method for large dimen-
sionalGaussian-mixture data and radial kernels. In Flores et al. (2022), the authors explore the
graph p-Laplacian, where p > 2, as a replacement for the standard (p = 2) graph Laplacian,
for graph-based semi-supervised learning in the case of low amounts of labeled data. In addi-
tion, they develop fast and scalable procedures for solving the variational and game-theoretic
p-Laplace equations on weighted graphs for p > 2. Overall, Flores et al. (2022) derives
the theory and explores applications of l p-based Laplacian regularization in semi-supervised
learning. In Boyd et al. (2018), the authors propose a modularity optimization scheme to
perform semi-supervised learning on graphs. In Calder and Ettehad (2022), the authors study
a family of Hamilton-Jacobi equations on graphs; the equations are named p-eikonal equa-
tions. The authors also consider the application of p-eikonal equations on semi-supervised
learning. The experiments on real image datasets shows that p-eikonal equations offers sig-
nificantly better results compared to those of the shortest part distances metric. In Bungert
et al. (2023), the authors prove uniform convergence rates for solutions of the graph infinite
Laplace equation as the number of vertices grows to infinity. In Calder et al. (2020), the
authors propose a Poisson learning framework for graph based semi-supervised learning at a
very low label rates. One key difference between Poisson learning and the classical Laplace
learning framework is that in Laplace learning, the labels are imposed as boundary conditions
in a Laplace equation, while in Poisson learning, the labels appear as a source term in the
graph Poisson equation.

4.4 Performance and discussion

The data sets that we used for our computational experiments are detailed in Sect. 4.1 and
Table 1. For all data sets, we consider the AUC score as the main evaluation metric. The
results of the experiments are shown in Table 2. In terms of the AUC score, our proposed
method obtains superior results on all data sets.

4.5 Statistical tests

We performed a non-parametric test regarding the experiments obtained from the learning
algorithms, specifically, the Friedman ranking test, which assigns rankings to each data set.
The statistic follows a chi-squared distribution with K − 1 degrees of freedom, where K
represents the number of algorithms. Moreover, the null hypothesis (H0) for the Friedman
test is that there are no differences between the methods. In this case, the null hypothesis
was rejected due to very low p-value. The results from the test are in Table 3, where we also
record the mean rank value of the Friedman test for each algorithms, where smaller ranks
indicate a more accurate algorithm. The proposed PL-MBO algorithm obtained a superior
ranking.
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Table 2 AUC score comparison
of the PL-MBO algorithm with
other methods

# of labels per class 5 10 15 20 25

(a) G50C results (AUC score)

PL-MBO 0.978 0.983 0.986 0.986 0.986

CK 0.958 0.959 0.960 0.961 0.961

p-Laplace 0.955 0.981 0.983 0.985 0.985

M-MBO 0.954 0.954 0.955 0.957 0.957

AMLE 0.938 0.940 0.943 0.943 0.954

P-MBO 0.934 0.935 0.942 0.945 0.948

(b) Opt-Digits results (AUC score)

PL-MBO 0.992 0.998 0.998 0.998 0.998

CK 0.953 0.969 0.974 0.979 0.981

p-Laplace 0.993 0.995 0.995 0.996 0.997

M-MBO 0.981 0.986 0.986 0.988 0.987

AMLE 0.994 0.994 0.996 0.997 0.997

P-MBO 0.981 0.986 0.987 0.988 0.988

(c) Heart results (AUC score)

PL-MBO 0.836 0.870 0.868 0.871 0.873

CK 0.784 0.797 0.807 0.814 0.826

p-Laplace 0.783 0.819 0.830 0.862 0.882

M-MBO 0.791 0.793 0.802 0.797 0.830

AMLE 0.759 0.736 0.740 0.757 0.764

P-MBO 0.801 0.812 0.828 0.834 0.846

(d) WebKB results (AUC score)

PL-MBO 0.974 0.984 0.983 0.985 0.985

CK 0.969 0.969 0.970 0.970 0.971

p-Laplace 0.972 0.982 0.985 0.994 0.995

M-MBO 0.954 0.958 0.959 0.962 0.962

AMLE 0.949 0.942 0.924 0.930 0.946

P-MBO 0.922 0.916 0.902 0.905 0.905

(e) Madelon results (AUC score)

PL-MBO 0.587 0.604 0.655 0.657 0.678

CK 0.568 0.583 0.595 0.601 0.615

p-Laplace 0.588 0.613 0.640 0.658 0.671

M-MBO 0.541 0.580 0.607 0.589 0.594

AMLE 0.591 0.596 0.617 0.634 0.638

P-MBO 0.567 0.586 0.608 0.614 0.625

(f) Banana results (AUC score)

PL-MBO 0.760 0.798 0.859 0.890 0.903

CK 0.689 0.751 0.786 0.804 0.826

p-Laplace 0.727 0.818 0.826 0.872 0.895

M-MBO 0.747 0.779 0.781 0.811 0.804

AMLE 0.758 0.828 0.860 0.888 0.898

P-MBO 0.688 0.764 0.803 0.813 0.834

The best results among all methods are indicated in bold
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Table 2 continued # of labels per class 5 10 15 20 25

(g) Coil20 results (AUC score)

PL-MBO 0.993 0.996 0.997 0.998 0.998

CK 0.924 0.961 0.975 0.984 0.993

p-Laplace 0.990 0.994 0.995 0.996 0.997

M-MBO 0.747 0.779 0.781 0.811 0.804

AMLE 0.988 0.993 0.995 0.996 0.997

P-MBO 0.959 0.976 0.985 0.993 0.995

(h) USPS results (AUC score)

PL-MBO 0.991 0.993 0.993 0.993 0.993

CK 0.906 0.930 0.940 0.947 0.953

p-Laplace 0.972 0.980 0.982 0.985 0.986

M-MBO 0.953 0.960 0.964 0.964 0.964

AMLE 0.983 0.980 0.984 0.987 0.990

P-MBO 0.952 0.959 0.961 0.965 0.967

(i) Landsat results (AUC score)

PL-MBO 0.959 0.971 0.975 0.977 0.978

CK 0.835 0.900 0.918 0.937 0.945

p-Laplace 0.950 0.960 0.962 0.965 0.967

M-MBO 0.876 0.892 0.897 0.901 0.901

AMLE 0.950 0.955 0.961 0.966 0.971

P-MBO 0.886 0.898 0.904 0.908 0.910

(j) Pendigits results (AUC score)

PL-MBO 0.981 0.988 0.990 0.992 0.993

CK 0.912 0.949 0.961 0.969 0.972

p-Laplace 0.956 0.972 0.980 0.984 0.986

M-MBO 0.957 0.973 0.977 0.982 0.986

AMLE 0.936 0.953 0.959 0.970 0.968

P-MBO 0.961 0.970 0.976 0.983 0.985

(k) CIFAR-10 results (AUC score)

PL-MBO 0.894 0.912 0.917 0.920 0.928

CK 0.801 0.831 0.847 0.855 0.858

p-Laplace 0.847 0.871 0.879 0.883 0.886

M-MBO 0.735 0.760 0.767 0.768 0.773

AMLE 0.853 0.871 0.873 0.879 0.884

P-MBO 0.764 0.790 0.796 0.802 0.809

(l) CIFAR-100 results (AUC score)

PL-MBO 0.751 0.778 0.801 0.810 0.823

CK 0.641 0.679 0.695 0.717 0.734

p-Laplace 0.684 0.711 0.726 0.738 0.744

M-MBO 0.583 0.621 0.643 0.667 0.689

AMLE 0.676 0.695 0.721 0.723 0.731

P-MBO 0.695 0.733 0.754 0.767 0.779

The best results among all methods are indicated in bold
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Table 3 Friedman test
(significance level of 0.05)

Statistic p-value Result

24.72579 0.00016 H0 is rejected

Rank Ranking algorithms

19.36364 PL-MBO

22.45455 p-Laplace

27.72727 AMLE

42.00000 CK

42.27273 P-MBO

47.18182 M-MBO

Table 4 Ablation studies

Data set Accuracy (with combinatorial
Laplacian)

Accuracy (with the proposed
persistent Laplacian)

G50C 93.08 95.18

Opt-Digits 96.95 97.85

Heart 80.09 81.00

WebKB 97.37 97.63

Madelon 60.10 62.34

Banana 83.47 85.05

Coil-20 77.35 89.16

USPS 91.48 94.85

Landsat 82.29 83.73

Pendigits 87.55 93.22

CIFAR-10 0.897 (AUC) 0.928 (AUC)

CIFAR-100 0.780 (AUC) 0.823 (AUC)

4.6 Ablation studies

In order to evaluate the effectiveness of our method, we conducted ablation studies on various
components of our method. In particular, we analyzed the effectiveness of using the proposed
persistent Laplacian instead of using the standard combinatorial Laplacian. The results are
shown in Table 4. It is important to note that the use of the persistent Laplacian has improved
the accuracy on all datasets.

4.7 Timing

The proposed method is very efficient; all experiments were performed on a 1.4 GHz Quad-
Core Interl Core i5 computer. The timing results are listed in Table 5, where we record the
timing details of each data set. In particular, we divide the timing into two parts. First, we
record the time required to compute the graph weights. Second, we record the time required
for the PL-MBO procedure once the graph has been computed. We perform the experiment
ten times and record the average value.
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Table 5 The timing of the proposed PL-MBO method

Data set Number of data
elements

Number of
attributes

Timing (construction of
weight matrix) (s)

Timing (PL-MBO
procedure) (s)

G50C 550 50 0.02 0.25

Heart 270 13 0.004 0.30

WebKB 1051 4840 0.03 0.86

Coil-20 1440 1024 0.06 8.45

Madelon 2000 500 0.12 14.59

Banana 5300 2 1.23 55.84

Opt-Digits 5620 64 1.60 139.61

Landsat 6435 36 1.95 157.55

USPS 9298 256 11.03 217.81

Pendigits 10,992 16 13.90 421.12

CIFAR-10 60,000 3072 23.64* 3053.23*

CIFAR-100 60,000 3072 25.72* 3956.68*

*These calculations were made on a MacBook Pro (Apple M3 Max) with 64GB RAM memory. We used
20-dimensional autoencoder-based embeddings for CIFAR-10 and CIFAR-100

5 Concluding remarks

We present a novel topological graph-based semi-supervised method called PL-MBO by
integrating persistent spectral graphs with an adaptation and graph-based modification of the
classical Merriman–Bence–Osher (MBO) technique. This method is an efficient procedure
that performs well with low label rates and small amounts of labeled data, which is crucial
since labeled data is often scarce in many applications. The proposed algorithm is also
adaptable for both small and large datasets. Experimental results on various benchmark
datasets indicate that the proposed PL-MBO method outperforms other recent methods. In
future work, we plan to explore integrating techniques such as various types of autoencoders
for feature extraction, and to perform experiments with different types of molecular data.
Overall, the proposed PL-MBO scheme is a powerful approach for data science when there
are few labeled data elements, a common scenario for many applications.
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Jacobs, M., Merkurjev, E., & Esedoḡlu, S. (2018). Auction dynamics: A volume constrained mbo scheme.

Journal of Computational Physics, 354, 288–310.
Jiang, B., & Lin, D. (2018). Graph Laplacian regularized graph convolutional networks for semi-supervised

learning. arXiv preprint arXiv:1809.09839
Jung, A., Hero, A. O., III, Mara, A., & Jahromi, S. (2016). Semi-supervised learning via sparse label propa-

gation. arXiv preprint arXiv:1612.01414
Kingma, D. P., & Welling, M. (2013). Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114
Kipf, T., &Max,W. (2017). Semi-supervised classification with graph convolutional networks. In Proceedings

of 5th international conference on learning representations (pp. 1–14).
Krizhevsky, A., & Hinton, G. (2009). Learning multiple layers of features from tiny images.
Landsat. (1999). Landsat Data Set. https://archive.ics.uci.edu/dataset/146/statlog+landsat+satellite
Li, R., Wang, S., Zhu, F., & Huang, J. (2018). Adaptive graph convolutional neural networks. In Proceedings

of the AAAI conference on artificial intelligence (vol. 32).
Liu, W., He, J., & Chang, S.-F. (2010). Large graph construction for scalable semi-supervised learning. In

Proceedings of the 27th international conference on machine learning (pp. 679–686).
Madelon. (2008).Madelon Data Set. https://archive.ics.uci.edu/ml/machine-learning-databases/madelon/
Mai, X., & Couillet, R. (2018). A random matrix analysis and improvement of semi-supervised learning for

large dimensional data. The Journal of Machine Learning Research, 19(1), 3074–3100.
Mémoli, F., Wan, Z., &Wang, Y. (2022). Persistent Laplacians: Properties, algorithms and implications. SIAM

Journal on Mathematics of Data Science, 4(2), 858–884.
Meng, Z., Merkurjev, E., Koniges, A., & Bertozzi, A. L. (2017). Hyperspectral image classification using

graph clustering methods. Image Processing On Line, 7, 218–245.
Meng, Z., & Xia, K. (2021). Persistent spectral-based machine learning (PerSpect ML) for protein–ligand

binding affinity prediction. Science Advances, 7(19), eabc5329.
Merkurjev, E. (2020). A fast graph-based data classification method with applications to 3D sensory data in

the form of point clouds. Pattern Recognition Letters, 136, 154–160.
Merkurjev, E., Bertozzi, A. L., & Chung, F. (2018). A semi-supervised heat kernel pagerank mbo algorithm

for data classification. Communications in Mathematical Sciences, 16(5), 1241–1265.
Merkurjev, E., Garcia-Cardona, C., Bertozzi, A. L., Flenner, A., & Percus, A. G. (2014). Diffuse interface

methods for multiclass segmentation of high-dimensional data. Applied Mathematics Letters, 33, 29–34.
Merkurjev, E., Kostic, T., & Bertozzi, A. L. (2013). An MBO scheme on graphs for classification and image

processing. SIAM Journal on Imaging Sciences, 6(4), 1903–1930.
Merkurjev, E., Nguyen, D. D., & Wei, G.-W. (2022). Multiscale Laplacian learning. Applied Intelligence, 66,

1–20.
Merkurjev, E., Sunu, J., & Bertozzi, A. L. (2014b). Graph MBO method for multiclass segmentation of

hyperspectral stand-off detection video. In IEEE international conference on image processing (pp.
689–693).

Merriman, B., Bence, J. K., & Osher, S. J. (1994). Motion of multiple junctions: A level set approach. Journal
of Computational Physics, 112(2), 334–363.

Nie, F., Xiang, S., Liu, Y., & Zhang, C. (2010). A general graph-based semi-supervised learning with novel
class discovery. Neural Computing and Applications, 19, 549–555.

OptDigits. (1998). Optical recognition of handwritten digits. UCI Machine Learning Repository. https://doi.
org/10.24432/C50P49

Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric transitivity preserving graph embedding.
In ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1105–1114).

Pendigits. (1998).Pen-based recognition of handwritten digits data set. https://archive.ics.uci.edu/ml/datasets/
Pen-Based+Recognition+of+Handwritten+Digits

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In ACM
SIGKDD international conference on knowledge discovery and data mining (pp. 701–710).

123

http://arxiv.org/abs/1809.09839
http://arxiv.org/abs/1612.01414
http://arxiv.org/abs/1312.6114
https://archive.ics.uci.edu/dataset/146/statlog+landsat+satellite
https://archive.ics.uci.edu/ml/machine-learning-databases/madelon/
https://doi.org/10.24432/C50P49
https://doi.org/10.24432/C50P49
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+Digits


Machine Learning (2024) 113:7267–7292 7291

Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science,
290(5500), 2323–2326.

Singhal, A. (2001). Modern information retrieval: A brief overview. IEEE Data Engineering Bulletin, 24(4),
35–43.

Song, Z., Yang, X., Zenglin, X., & King, I. (2022). Graph-based semi-supervised learning: A comprehensive
review. IEEE Transactions on Neural Networks and Learning Systems. 6, 66.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). LINE: Large-scale information network
embedding. In Proceedings of the international conference on World Wide Web (pp. 1067–1077).

Tu, K., Cui, P., Wang, X., Yu, P. S., & Zhu, W. (2018). Deep recursive network embedding with regular
equivalence. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery
& data mining (pp. 2357–2366).

USPS. (2015). Usps data set. https://www.kaggle.com/datasets/bistaumanga/usps-dataset
Van Engelen, J. E., & Hoos, H. H. (2020). A survey on semi-supervised learning.Machine Learning, 109(2),

373–440.
Vedaldi, A., & Fulkerson, B. (2008). VLFeat: An open and portable library of computer vision algorithms.

http://www.vlfeat.org/
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., &Bengio, Y. (2018). Graph attention networks.

InProceedings of the international conference on learning representations, (vol. 1050(no. 20), pp. 1–12).
Wang, B., Tu, Z., Tsotsos, J. K. (2013). Dynamic label propagation for semi-supervised multi-class multi-label

classification. In Proceedings of the IEEE international conference on computer vision (pp. 425–432).
Wang, D., Cui, P. & Zhu, W. (2016). Structural deep network embedding. In Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining (pp. 1225–1234).
Wang, F., & Zhang, C. (2006). Label propagation through linear neighborhoods. In Proceedings of the 23rd

international conference on machine learning (pp. 985–992).
Wang, F., Zhu, L., Xie, L., Zhang, Z., & Zhong, M. (2021). Label propagation with structured graph learning

for semi-supervised dimension reduction. Knowledge-Based Systems, 225, 107130.
Wang, R., Nguyen, D. D., &Wei, G.-W. (2020). Persistent spectral graph. International Journal for Numerical

Methods in Biomedical Engineering, 36(9), e3376.
Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., & Yu, P. S. (2019). Heterogeneous graph attention network.

In The World Wide Web conference (pp. 2022–2032).
WebKB. (1998). vCMU World Wide Knowledge Base (WebKB) project. http://www.cs.cmu.edu/~webkb/
Xu, B., Shen, H., Cao, Q., Cen, K., & Cheng, X. (2020). Graph convolutional networks using heat kernel for

semi-supervised learning. arXiv preprint arXiv:2007.16002
Xu, Z., King, I., Lyu, M.R.-T., & Jin, R. (2010). Discriminative semi-supervised feature selection via manifold

regularization. IEEE Transactions on Neural Networks, 21(7), 1033–1047.
Yang, Z., Cohen,W., & Salakhudinov, R. (2016). Revisiting semi-supervised learning with graph embeddings.

In International conference on machine learning (pp. 40–48).
Zelnik-Manor, L., & Perona, P. (2004). Self-tuning spectral clustering. Advances in Neural Information Pro-

cessing Systems, 17, 66.
Zhang, J., Shi,X.,Xie,H.M., Junyuan,A.,King, I.,&Yeung,D.-Y. (2018).GaAN:Gated attention networks for

learning on large and spatiotemporal graphs. InProceedings of the thirty-fourth conference on uncertainty
in artificial intelligence (pp. 339–349).

Zhang, L., Qi, G.-J., Wang, L., & Luo, J. (2019). Aet vs. aed: Unsupervised representation learning by auto-
encoding transformations rather than data. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 2547–2555).

Zhou,D., Bousquet, O., Lal, T.,Weston, J., & Schölkopf, B. (2003). Learningwith local and global consistency.
Advances in Neural Information Processing Systems, 16, 66.

Zhou, D., Huang, J., & Schölkopf, B. (2005). Learning from labeled and unlabeled data on a directed graph.
In Proceedings of international conference on machine learning (pp. 1036–1043).

Zhou, X., Liu, X., Yu, H., Wang, J., Xie, Z., Jiang, J., & Ji, X. (2023). Variance-enlarged poisson learning for
graph-based semi-supervised learning with extremely sparse labeled data. In The twelfth international
conference on learning representations.

Zhu, X., & Ghahramani, Z. (2002). Learning from labeled and unlabeled data with label propagation. CMU
CALD Tech Report CMU-CALD-02-107.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using Gaussian fields and harmonic
functions. International Conference on Machine Learning, 3, 912.

Zomorodian, A., & Carlsson, G. (2004). Computing persistent homology. In Proceedings of the twentieth
annual symposium on computational geometry (pp. 347–356).

123

https://www.kaggle.com/datasets/bistaumanga/usps-dataset
http://www.vlfeat.org/
http://www.cs.cmu.edu/~webkb/
http://arxiv.org/abs/2007.16002


7292 Machine Learning (2024) 113:7267–7292

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Persistent Laplacian-enhanced algorithm for scarcely labeled data classification
	Abstract
	1 Introduction
	2 Background
	2.1 Related work
	2.2 Graph-based framework
	2.3 Persistent Laplacians
	2.3.1 Simplicial complex
	2.3.2 Chain complex
	2.3.3 Filtration
	2.3.4 Persistent Laplacians


	3 Methods
	3.1 The graph MBO technique
	3.2 PL-MBO algorithm

	4 Results and discussion
	4.1 Data sets
	4.2 Hyperparameters selection
	4.3 Comparison to recent methods
	4.4 Performance and discussion
	4.5 Statistical tests
	4.6 Ablation studies 
	4.7 Timing

	5 Concluding remarks
	References


