
EcoEdgeInfer: Dynamically Optimizing Latency

and Sustainability for Inference on Edge Devices

Sri Pramodh Rachuri

PACE Lab

Dept. of Computer Science

Stony Brook University

srachuri@cs.stonybrook.edu

Nazeer Shaik

PACE Lab

Dept. of Computer Science

Stony Brook University

nshaik@cs.stonybrook.edu

Mehul Choksi

PACE Lab

Dept. of Computer Science

Stony Brook University

mchoksi@cs.stonybrook.edu

Anshul Gandhi

PACE Lab

Dept. of Computer Science

Stony Brook University

anshul@cs.stonybrook.edu

Abstract—The use of Deep Neural Networks (DNNs) has
skyrocketed in recent years. While its applications have brought
many benefits and use cases, they also have a significant envi-
ronmental impact due to the high energy consumption of DNN
execution. It has already been acknowledged in the literature that
training DNNs is computationally expensive and requires large
amounts of energy. However, the energy consumption of DNN
inference is still an area that has not received much attention,
yet. With the increasing adoption of online tools, the usage of
inference has significantly grown and will likely continue to grow.
Unlike training, inference is user-facing, requires low latency,
and is used more frequently. As such, edge devices are being
considered for DNN inference due to their low latency and
privacy benefits. In this context, inference on edge is a timely area
that requires closer attention to regulate its energy consumption.

We present EcoEdgeInfer, a system that balances performance
and sustainability for DNN inference on edge devices. Our
core component of EcoEdgeInfer is an adaptive optimization
algorithm, EcoGD, that strategically and quickly sweeps through
the hardware and software configuration space to find the jointly
optimal configuration that can minimize energy consumption and
latency. EcoGD is agile by design, and adapts the configuration
parameters in response to time-varying and unpredictable in-
ference workload. We evaluate EcoEdgeInfer on different DNN
models using real-world traces and show that EcoGD consistently
outperforms existing baselines, lowering energy consumption by
31% and reducing tail latency by 14%, on average.

Index Terms—inference, energy, latency, workload changes

I. INTRODUCTION

The adoption of Deep Neural Networks (DNNs) has sky-

rocketed in recent months and years with applications in

image recognition, speech recognition, and natural language

processing [1]. While these applications have brought many

benefits to society in general, the underlying compute require-

ments of executing the DNNs have had a severe environmental

impact, leading to significantly high energy consumption and

carbon emissions [2]. This negative impact of training large

and expensive DNNs has been highlighted in recent works, and

has already resulted in research efforts to regulate the monetary

and environmental cost of DNN training, for example, by

leveraging hardware techniques [3], [4].

However, the sustainability costs of DNN inference have

not received as much attention, yet. This is likely because

DNN inference has much lower computational needs (usually

completes in seconds or minutes, compared to hours or days

for training). Unlike training, inference is usually a one-shot

operation, where the input data is fed to the DNN and the out-

put is generated without any further adjustments to the model

or need for complex backpropagation operations; this makes

inference a lightweight and short-lived task. Unfortunately,

with the increasing popularity of online tools like ChatGPT [5]

and GitHub Copilot [6], the usage of inference has signifi-

cantly grown, and will likely continue to grow. Consequently,

even though it has lower computational demand, inference is

executed much more frequently than training [7], and can thus

have a substantial environmental impact. Addressing the high

energy costs of the quickly scaling inference applications is

thus a crucial and timely problem.

DNN inference, unlike training, is user-facing, and thus

requires low (mean and tail) latency. The inference latency

experienced by an end-user can be broadly categorized into

network latency (to and from the cloud service) and computa-

tion latency. By deploying DNN inference on edge devices, the

network latency can be significantly reduced as the input and

output data does not have to be transferred to/from the cloud.

This is especially useful for real-time and privacy-conscious

applications like autonomous vehicles, augmented reality, and

smart cities. Depending on the application, edge devices

may be deployed in remote locations with limited access to

power sources, and some might even be solar- or battery-

powered [8]. As such, minimizing the energy consumption of

DNN inference is important in the edge computing setting.

Addressing the energy costs of DNN inference on the edge

is a challenging problem for several reasons:

(1) The energy consumption of inference on edge depends on

both hardware and software configurations. While there

are tuning knobs that can influence energy consumption,

such as GPU operating frequency and batch size, their

impact on energy may be inter-related, and thus they

cannot be optimized independently.

(2) There is an inherent tension between reducing energy

consumption and improving inference latency, resulting

in a non-trivial optimization to balance the energy-latency

tradeoff. For example, setting the GPU frequency to the

maximum allowable value can reduce inference latency

but at the expense of high energy.

(3) Although the effect of batch size on energy has been

1

studied, it is not always clear how batch size affects

inference latency, especially under dynamic workload.

(4) Inference applications are user-driven, and thus, the re-

quest load can change dynamically and unpredictably,

requiring an agile solution that can adapt to changing

conditions quickly and with low overhead to prevent high

inference tail latencies.

There have been several recent works that focused on

reducing the energy consumption of DNN training. However,

these solutions are not directly applicable to DNN inference

as the requirements (e.g., memory, compute capacity, and tail

latency) and usage patterns (e.g., request rate and burstiness)

for training and inference are different. Moreover, most of the

prior works on DNN inference have focused on server and

cloud environments [9], and have not considered the unique

challenges of running inference on edge devices, such as

limited power/energy and low-overhead requirements. Finally,

while there have been works that analyze the impact of

hardware and software parameters on energy consumption of

DNN execution [10], [11], they are offline studies that neither

consider dynamic workload conditions nor focus on designing

an adaptive solution for practical deployments. As such, there

is a gap in research on adaptive solutions for energy-efficient

DNN inference on the edge. We discuss related works in detail

in Section III.

Our contributions: In this work, we first present EcoEdgeIn-

fer, a framework for DNN inference serving on edge devices

that regulates their energy consumption and latency at run-

time. EcoEdgeInfer works by dynamically and transparently

tuning hardware and software parameters based on recom-

mendations from optimization algorithms. We have imple-

mented EcoEdgeInfer on NVIDIA Jetson devices using Python,

ensuring seamless integration with existing DNN inference

libraries like PyTorch. The code for EcoEdgeInfer is publicly

available as a GitHub repository to promote further research

and facilitate reproducibility.1

Our key contribution is an optimization algorithm, EcoGD,

specifically designed for sustainable inference on edge de-

ployments. EcoGD is inspired by Gradient Descent, and en-

hances its functionality via real-time adaptation to changing

workloads, estimating the cost of unexplored configurations

and gradients, and maintaining low overhead. To prevent

fluctuations in performance and maintain low tail inference

latency, EcoGD limits its exploration space; to react to evolv-

ing workload conditions quickly, EcoGD maintains a limited

memory of explored configurations.

We experimentally evaluate EcoGD against existing solu-

tions with different DNN inference models. Our results show

that EcoGD converges to superior configurations under fixed

and bursty synthetic load patterns, reducing energy consump-

tion by 22% and lowering mean inference latency by 13%,

on average, compared to existing solutions. Further, EcoGD’s

achieved energy and latency values are within 2% and 10%,

respectively, of those achieved by an (impractical) offline

1https://github.com/PACELab/EcoEdgeInfer

TABLE I
TECHNICAL SPECIFICATIONS OF NVIDIA XAVIER NX

Specification Value

CPU 6-core Nvidia Carmel

CPU Freq. range 115 MHz – 1.9 GHz; 25 steps of 77 MHz

GPU NVIDIA Volta

GPU Cores 384 CUDA Cores + 48 Tensor Cores

GPU Freq. range 114 MHz – 1.1 GHz; 15 steps of 90 MHz

Memory 8 GB LPDDR4x

Throughput 21 TOPs

Default Power Modes 10W, 15W, 20W

Jetpack version 5.1.3 [L4T v35.5.0]

Framework PyTorch 2.1.0

Operating Sys. & Libraries Ubuntu 20.04.6; CUDA 11.4 + cuDNN 8.6

optimal solution. Importantly, EcoGD effectively adapts to

changing load conditions, consistently outperforming other

solutions by lowering energy consumption by as much as 66%

(with 31% average reduction) and reducing tail latency by as

much as 91% (with 14% average reduction) under real-world

workload traces. To the best of our knowledge, ours is the first

work that jointly optimizes energy consumption and latency of

DNN inference on edge devices at runtime while adapting to

changing workload conditions.

II. BACKGROUND

In this section, we provide the necessary background on the

problem of energy-efficient DNN inference on edge devices.

We first discuss the types of edge devices we consider in

this paper and the control knobs they offer to regulate energy

consumption. We then discuss workload parameters that can

also be adjusted to regulate energy consumption. Finally, we

discuss the significance of the request arrival pattern on our

problem and how it can impact energy consumption.

A. Smart Edge Devices for Deep Learning

Edge computing is the practice of processing data near

the source of data generation rather than relying on cen-

tralized data centers. While a range of devices, from IoT

sensors to on-premise workstations, can be considered edge

devices, we focus on edge devices with limited computational

resources, such as single-board computers, called smart edge

devices [12]. These devices are typically equipped with low-

power processors, small amounts of memory, and are energy-

limited.

With the launch of NVIDIA’s Jetson series [13], running

Deep Learning (DL) models on edge devices has become

feasible due to the integrated GPUs with CUDA support. For

example, NVIDIA Xavier NX has 8 ARM cores, 384 CUDA

cores, 48 Tensor cores, and 8GB of LPDDR4x memory; it con-

sumes at most 20W of power. (More details about the Xavier

NX device, which we also use in our evaluation, are provided

in Table I for reference.) However, the limited computational

resources on these devices also make it challenging to run

large models in an efficient manner.

B. Hardware parameters on edge devices for managing energy

To regulate energy consumption, NVIDIA provides three

power modes (10, 15, 20 Watts) as default presets to change

2

hardware parameters of the Xavier NX device. However, we

can also manually change hardware parameters for greater

and finer control. While running DL inference, we noticed a

significant impact on energy consumption by varying the GPU

frequency, a moderate impact by varying the CPU frequency,

and almost no impact when varying the number of CPU cores.

This is because the GPU is the primary resource used by DL

inference. Further, Python being single-threaded, the CPU is

not used for parallelism; hence, the number of cores does not

significantly impact energy or performance. So, we only focus

on GPU and CPU frequencies in our experiments.

C. DNN Inference Parameters

In addition to hardware parameters, there are also software

or workload parameters that can be adjusted to regulate energy

consumption. When a user submits an inference request, the

DNN model and their weights are fixed by the user. However,

the inference system or framework can still adjust knobs like

the batch size and how the model’s task graph is loaded (stati-

cally or dynamically). Static loading using Pytorch’s JIT Trace

does not have a significant impact on energy consumption in

the long run when compared to dynamic loading because it

only shifts the model initialization and loading [14]. So, we

ignore the model loading mechanism and focus on the batch

size as a potential tunable parameter.

Da et al. [15] showed that increasing the batch size always

leads to increased throughput (not necessarily latency) due

to higher parallelism and utilization of the GPU. They also

showed that increasing the batch size can lead to energy

savings, but these savings taper off after a certain point. The

maximum batch size a model can handle is limited by the

device’s memory. Given the limited memory on edge devices,

the batch size is kept low to prevent out-of-memory errors.

D. Request Arrival Pattern

Another factor that impacts DNN inference performance,

especially on the edge, is the arrival pattern of requests. This

is also a factor that has not been thoroughly investigated by

prior works that focus on regulating DNN inference energy.

Note that the arrival pattern of requests does not just refer to

the arrival rate, but can also include the distribution of requests

and factors such as burstiness of arrivals.

Consider an inference serving system. When the rate of

inference requests coming in is low, the system can adjust

its parameters (such as CPU and GPU frequency) to strike a

balance between inference latency and energy consumption.

However, when the request rate is high, the system may have

to tune its parameters to maximize performance to handle

the high load. In fact, for resource-limited edge devices, it

is possible that a long queue starts building up quickly at

high request rate as the serving capability of the device may

be limited, thereby constraining the system to exclusively

pick the highest performance configurations. As such, the

optimal system configuration and the potential for tuning the

configuration parameters are affected by the request rate.

The request arrival pattern also indirectly affects the system

performance through the batch size. While batch size can help

increase the throughput and energy efficiency [15], it also leads

to increased tail latency due to the time taken to accumulate

the batch before processing [16]. For example, if we have a

constant stream of requests with an inter-arrival time (IAT)

of 10ms, it will take ∼100ms to accumulate a batch size

of 10. But, if the IAT is 100ms, it will take about 1s to

get to the same batch size. So, a lower batch size may be

preferable for a high IAT workload to avoid large accumulation

delays and long tail latencies. However, if the arrival pattern

is bursty, the above conclusions can change; a burst of 10

(or more) uninterrupted requests can immediately lead to

an accumulation of the required batch size, with additional

requests now waiting to be served. Worse, the request arrival

pattern can change unpredictably, especially for user-facing

workloads [17], necessitating an agile solution that adapts to

arrival pattern changes at runtime.

Finally, the content of requests can also impact inference la-

tency and energy. For example, images with different blurring

and brightness may have different processing times and energy

consumption for image recognition. For this paper, we do not

consider such content-based workload changes, and limit our

focus to changes in arrival rate and request distribution.

III. RELATED WORK

Optimizing the energy or carbon usage of Deep Learning

workloads has been an important topic of research in the past

few years. However, most of the work has focused on model

training on server-grade GPUs and machines. There are very

few works that focus on inference workloads on edge devices;

we discuss these at the end of this section.

A. Energy Efficient DNN Training

Google’s CICS [18] focuses on minimizing the carbon

footprint of data centers by temporally delaying flexible

workloads to greener times. Zeus [3] optimizes the energy

efficiency of DNN training by finding optimal job and GPU-

level configurations. PowerFlow [4] is a GPU cluster sched-

uler that reduces the average job completion time under an

energy budget. Cloud providers have also started offering

Machine-Learning-as-a-Service (MLaaS) platforms that run on

heterogeneous GPU clusters and automatically optimize the

hardware, software, cluster configuration, and hyperparameters

for training DNNs to reduce the energy consumption and

improve the performance of the training jobs [19].

Works like PowerFlow [4] and Zeus [3] change the fre-

quency of server-grade GPUs using power-limit APIs and

thereby reduce energy consumption. Since we are focusing on

a single device optimization, Zeus is the closest work to ours.

Zeus uses Multi-Armed Bandit (MAB) to find the optimal

batch size and performs exhaustive search to find the optimal

GPU power limit for server-grade GPUs. Zeus can afford to

run an exhaustive search on GPU power limit settings since it

does not consider a change in workload (i.e., only considers

a static training setting). However, in our inference case, due

3

to the varying workload patterns, an exhaustive search is not

feasible, as we show in Section VI. The MAB approach is

feasible, and we compare against MAB (as a baseline) in our

evaluation in Section VI.

Prashanthi et al. [10] is one of the first works focusing on

changing CPU and GPU frequencies for DNN workloads on

edge devices. The authors study the impact of power modes

(presets of frequency limits by NVIDIA) on CPU and GPU

utilization, training time, and energy usage. However, the work

focuses on DNN training. Instead, our work here focuses on

DNN inference, which is better suited for resource-constrained

edge devices than (computationally heavy) DNN training.

The observations made for training workloads do not readily

apply to inference workloads. For example, Zeus [3] does not

consider their system to have a queue of jobs that need to be

scheduled because training workloads are usually long running

and are not sent by users in a queue. Inference workloads, on

the other hand, take a lot less time to complete but are more

frequent and arrive dynamically. Hence, we must consider

the real-time queueing effects on latency when optimizing for

user-facing inference workloads.

B. Energy Efficient DNN Inference on Edge

JEDI [20] focuses on edge devices and considers inference

workloads. The authors create a TensorRT-based pipelining

framework to increase resource utilization and performance.

They consider parameters like multi-threading, multi-device

(CPU, GPU, DLA) processing, and buffer assignment. While

JEDI results in lower energy consumption, this is not the

primary objective and is a by-product of their optimization. As

such, they did not attempt to tune energy-saving knobs, like

CPU and GPU frequencies, which we believe are powerful

and lightweight and lightweight tools to optimize energy

consumption.

Dutt et al. [11] focus on the inference side of DNN work-

loads and profile the effects of processor frequency tuning on

energy consumption. However, they do not consider workload

parameters and do not consider latency or performance as an

objective. Further, only a static offline workload is considered

for evaluation. By contrast, we specifically focus on the

tradeoff between energy consumption and inference latency,

and consider dynamic changes in inference workload.

Based on our literature review above, we believe there are

very few prior works on jointly optimizing the energy con-

sumption and latency of DNN inference workloads on edge

devices by tuning both hardware and software parameters.

Further, we are unaware of existing research that considers

the impact of request arrival pattern on energy consumption

and inference latency for edge devices.

IV. SYSTEM DESIGN

In this section, we describe the system design of our

solution, EcoEdgeInfer. We primarily break down the features

of EcoEdgeInfer into: (1) Core Inference System, (2) Metrics

Collection, (3) Optimizer, and (4) Applying the optimal config-

uration. Figure 1 illustrates the system design of EcoEdgeInfer

and the interactions between these components.

134 Batching
Buffer

2
1
2
3
4

Batch
Processing

Output
Request Queue

Inference
Requests

CPU
GPU

Core Inference System

Latency Monitor Energy Monitor

EcoEdgeInferHardware

Arrival time End time St
ar

t/S
to

p
Si

gn
al

in
g

OptimizerFrequencies Batch Size

Fig. 1. Illustration of EcoEdgeInfer’s system design.

A. Core Inference System

The core inference system is the component of EcoEdge-

Infer that actually performs the DNN inference and batching,

and is the only component that interacts with the developer’s

code. It also allows us to collect the metrics that are used by

the optimizer.

Every time the inference method is called, the core inference

system receives the input data and adds it to the request queue.

On a separate thread, it waits for the request queue to have

enough requests to form a batch (in the batching buffer) and

then performs the inference on the batch. The batch size is

determined by the optimizer and can be changed dynamically.

The request queue, the batching buffer, and the tunable batch

size together allow the system to process requests with varying

arrival rates by staging the incoming requests; see Figure 1.

The core inference system sends signals to the monitoring

system to start collecting metrics while processing each batch.

B. Metrics Collection

The monitoring system is responsible for collecting (at least)

the latency and energy consumption metrics based on the

signals received from the core inference system. The latency

monitor uses the arrival timestamp of each request in the

request queue and the completion timestamp of the request to

calculate the request’s latency. The energy monitor starts and

stops logging the power sensors based on the signals received

from the core inference system. We log the power sensors

every 10 ms over the i2c interface and the sysfs interface

provided by NVIDIA’s API [21]. The latency and energy

metrics collected for a single batch may be too small and

can lead to noisy values. So, the monitoring system stores

the metrics in a temporary cache till enough samples are

collected. In our experiments, we found that monitoring for

∼400 requests is enough to remove the noise and get a good

estimate of the metrics. This duration (of 400 requests) is

referred to as an Optimizer Step in the rest of the paper.

C. Optimizer and optimization policies

The optimizer is the core component of EcoEdgeInfer that

determines the optimal parameter values to be used. It uses the

metrics collected in the previous optimizer step to calculate

a cost function. In our paper, we consider the cost function

to be the mean of homogenized latency and homogenized

4

energy consumption; we aim to minimize this cost function.

In general, any combination of these two metrics could be

employed as needed. To homogenize the latency and energy

metrics, we divide the observed latency and energy values in

each experiment by those obtained when all parameters are set

to their maximum value. Similar approaches have been used in

prior work to balance multiple metrics in the objective function

(latency and energy, in our case) [3], [22].

The calculated cost is then used by the optimizer to predict

the optimal CPU Frequency, GPU Frequency, and Batch Size

that can be used for the next optimizer step. In addition to

our algorithm, EcoGD (described in the next subsection), we

have implemented five other optimization policies inspired

by prior works as baselines, including Grid Search, Multi-

Armed Bandit, and Bayesian Optimization. These baselines

are detailed in Section V-C.

D. Predicting the optimal configuration via EcoGD

We design a specific optimization algorithm, EcoGD, for the

problem of optimizing the parameters of inference on edge.

Our EcoGD algorithm is inspired by the gradient descent al-

gorithm. However, unlike standard gradient descent problems,

in the inference on edge setting, we do not have access to the

gradient of the cost function nor do we readily have all the data

points needed to calculate it. As such, the traditional gradient

descent algorithms cannot be used as-is; similar observations

have been made by prior works addressing different problems

as well, such as the problem of tuning the parameters of

transactional memory [23]. EcoGD can be considered a variant

of the broad family of local-search heuristic algorithms, which

includes algorithms like hill climbing and simulated annealing,

with Tabu search being the closest algorithm to EcoGD [24].

Algorithm 1 shows the pseudo code for EcoGD along

with the input, output, and parameters of the optimizer (lines

1–4). At every optimizer step, EcoGD either explores the

neighboring configurations (lines 7–9) or, if the neighborhood

has been sufficiently explored, jumps to a new configuration

(lines 11–20).

Every configuration in the 3-dimensional space of CPU

Frequency, GPU Frequency, and Batch Size has 26 neighbors:

6 directly adjacent (i.e., change in only one dimension), 4 di-

agonally adjacent in the CPU-GPU plane (i.e., change in both

frequency dimensions), and 16 other diagonally adjacent con-

figurations (i.e., change in batch size and at least one frequency

dimension). However, EcoGD only evaluates the cost of the

6 directly adjacent neighbors of the current configuration for

exploration (line 6). This reduces the number of configuration

evaluations from 26 to just 6, thereby significantly reducing

the exploration time. The 4 configurations that are diagonally

adjacent in the CPU-GPU plane are instead estimated (line 10)

using the following equation:

Cost(i+ x, j + y, k) =
Cost(i, j + y, k) + Cost(i+ x, j, k)

2
(1)

where Cost(i, j, k) is the cost of the configuration with CPU

Frequency i, GPU Frequency j, and Batch Size k. Note that

Algorithm 1 Pseudo code for EcoGD

1: Input: History matrix H containing the cost of all ex-

plored configurations.

2: Output: Next configuration to run C =
(CPU,GPU,Batchsize)

3: Parameters: Memory size Memsize, Maximum loops

Max Loops, Starting Config Cstart

4: Initialize: loop counter ← 0, last center ← Cstart

Function EcoGD(H):
5: H = copy(H,Memsize)

▷ Trim history to last Memsize configurations

6: unexplored nbhr
← {nbhr ∈ 6-nbhrhd(last center) s.t. nbhr /∈ H}

▷ Finding unexplored neighbors in 6-neighborhood

▷ neighbour, neighborhood abbreviated as nbhr, nbhrhd

7: if Len(unexplored nbhrs) > 0 then

8: C ← unexplored nbhrs[0]
9: return C ▷ Return the first unexplored nbhr if any

10: nbhrhd history
← explored nbhrs history(last center,H)
+ unexplored nbhrs history(last center,H)

▷ History of unexplored neighbors are estimated

11: best config ← argmin(nbhrhd history)
12: if best config ̸= last center then

13: loop counter ← 0
14: else

15: loop counter ← loop counter + 1
16: if loop counter > Max Loops then

17: best config ← random nbhr(last center)
▷ Jump to a random neighbor if stuck

18: loop counter ← 0
19: last center ← best config
20: return best config

x, y ∈ {−1, 1} indicates the diagonal neighbors of the current

configuration in the CPU-GPU plane.

The remaining 16 diagonally adjacent configurations are

not considered for estimation because we could not find a

reliable and accurate approach to estimate the cost of such

configurations. With this approach of selective exploration

and estimation, EcoGD is able to converge to the optimal

configuration quickly while following a path with reasonable

costs. This is a key feature of EcoGD that distinguishes it from

Tabu search and other local-search heuristic algorithms.

If the neighborhood is already explored, EcoGD jumps

to the neighbor that has the lowest cost and the process is

repeated (line 11). We do not let EcoGD jump farther than the

neighboring configurations to avoid the optimizer from moving

to a vastly different configuration. In practice, we found that

jumping farther than the neighboring configurations does not

lead to a significant improvement in the cost function and can

cause repeated overshooting over the optimal configuration.

Note that a learning rate like mechanism cannot be used and

tuned because the configuration space is discrete and only the

5

immediate neighbors are possible due to quantization.

To avoid re-exploring the same configurations repeatedly,

EcoGD maintains a list of recently explored configurations and

the corresponding costs. We limit the number of configurations

remembered to a fixed number to allow adaptation to changing

workload conditions (lines 12–18). And to avoid getting stuck

in a local minima, EcoGD jumps to a random neighbor when

the same configuration is predicted more than a fixed number

of times and all the neighbors have been explored already (line

17).

EcoGD maintains only a few configurations and costs in

its history to minimize physical memory overheads and also

to quickly adapt to changing workloads by discarding stale

configurations (line 5). The details of the hyperparameters of

EcoGD are discussed in Section V-E.

E. Applying the optimal configuration

After the optimizer predicts the optimal configuration, it sets

the optimal CPU frequency using the cpufreq driver and the

optimal GPU frequency using NVIDIA’s API [21]. In parallel,

the optimizer sends the optimal batch size value to the core

inference system, to be used for the subsequent inferences.

V. EXPERIMENTAL SETUP AND METHODOLOGY

In this section, we describe the experimental setup, work-

load traces, baseline algorithms, and the methodology we em-

ploy for our experimental evaluation (presented in Section VI).

A. Experimental setup

We perform all evaluations on an NVIDIA Jetson Xavier

NX device; see section II-A for the technical specifications of

the device. We use PyTorch v2.1.0, CUDA v11.4, and cuDNN

v8.6 for our experiments.

We primarily use Resnet50 from the torchvision library [25]

to extend our evaluation to a different model; for this model,

we use an image of size 224×224 as the input request. We

also use a transformer-based model, BERT-Tiny [26], [27], to

extend our evaluation; for this model, we use a random text

of size ∼1KB as the input request.

B. Request arrival patterns and traces

A key contribution of our evaluation is considering the

impact of the request arrival pattern. As such, we perform

our evaluations under three different inference request arrival

patterns. First, we consider fixed inter-arrival times (time

between successive requests); these conditions represent a

controlled workload setting. We choose inter-arrival times of

50ms and 90ms, representing high and low load, respectively;

these values were also chosen to ensure a stable system,

as the minimum inference service time is about 40ms for

Resnet50. Second, we consider bursty arrivals, representing

a more extreme workload setting. Specifically, requests arrive

in bursts of 10 requests every 500ms or every 900ms, thus still

maintaining an average inter-arrival time of 50ms and 90ms,

respectively, but with a more bursty arrival pattern.

Finally, we also evaluate using snippets from three real-

world time-varying load traces. Publicly accessible inference

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

ad

Azure
Bellevue
Twitter

Fig. 2. Timeseries of normalized load for the traces used in our evaluation.

request traces are not widely available. As such, we consider

the following traces in our evaluation.

1) Bellevue trace: Number plate reading is a popular in-

ference task at edge devices and smart cameras, and is

used in applications such as traffic monitoring and parking

management. The number of inference requests arriving at

such edge devices is proportional to the number of vehicles

passing through the camera at any given time [28]. To

generate realistic traffic for this inference task, we use

the Bellevue Traffic Video Dataset [29], which contains

video data of vehicular traffic in Bellevue, Washington. We

extract the number of vehicles per second from the dataset

and use this as a proxy for the incoming rate of inference

requests.

2) Twitter trace: Social media content moderation is another

popular inference application to perform large-scale tasks

such as sentiment analysis and fake news detection. In this

application, each request for inference corresponds to a

tweet that needs to be analyzed. To simulate the load for

such an application, we use Twitter’s sampled stream of

tweets [30], [31]. We select a 3-hour period surrounding

midnight on December 31, 2020, and January 1, 2021, from

the East Coast of the United States to create a localized

traffic trace. The number of tweets per second serves as a

proxy for the inference request rate.

3) Azure trace: Owing to the increasing popularity of private

edge data centers, well-known cloud paradigms such as

serverless inference [32], [33] are expected to be employed

at the edge in the near future [34]. We use the Azure

Functions Traces [35] to represent the load on such an

edge system. The rate of serverless invocations is used as

a proxy for the arriving request rate at the edge device.

In all traces, we select 3 hours of data that exhibit diverse

traffic patterns. Figure 2 shows how the load varies over time

in the three traces; the load is normalized to the maximum

for each trace for ease of comparison. We see that the Azure

trace has a small surge at the start and then a more significant

surge to the maximum load, and then a drop back to moderate

load. The Bellevue trace has a more stable load with a gradual

increase towards the end and then a sudden drop. In the Twitter

trace, we see a sharp surge to maximum load and then a

gradual drop to a very low load. The trace data is scaled to our

device capacity and is used to create a timeseries of request

rates arriving at our edge device. In terms of average load (or

6

request rate) post-scaling, the Bellevue trace has the highest

load, followed by the Twitter and the Azure traces.

C. Comparison baselines

In our experimental evaluation, we compare EcoGD with

five other baseline algorithms.

1) Grid Search is a simple optimization policy that exhaus-

tively tries all possible combinations of CPU Frequency, GPU

Frequency, and Batch Size, and then selects the one with the

lowest cost. Grid Search is easy to implement and should result

in the optimal configuration but it requires significant running

time to sweep over all possible combinations of parameters.

For example, on the NVIDIA Xavier NX, the search space is

25× 15× 16 = 6, 000 combinations. While Grid Search may

be impractical for real inference systems (requiring a full Grid

Search to be re-performed every time the workload conditions

change), we use this policy as a baseline in our evaluation.

2) Linear Search starts with a default configuration sweep

through one dimension at a time (from among batch size, CPU

frequency, and GPU frequency) and selects the configuration

in that dimension that gives the lowest cost. It then moves

to the remaining dimensions iteratively to optimize their

configuration, while fixing the optimal configuration for the

prior dimensions. Once the search is complete, a configuration

which is locally optimal in each dimension is reported. The

policy is much faster than Grid Search as it only searches

through 25+15+16 = 56 configurations. However, like Grid

Search, Linear must be rerun every time the workload changes.

3) DVFS is the default policy (enabled by default) used in

servers and edge devices to dynamically set the CPU and

GPU frequency depending on the incoming load. The Xavier

NX device ships with many governor policies for automatic

DVFS control for CPU and GPU. Among them, schedutil and

nvhost podgov are the default governors for CPU and GPU,

respectively. We also experimented with other governors, but

there were no remarkable differences in performance. As such,

we report DVFS results under their default CPU and GPU

governors. DVFS, in theory, automatically adapts to chang-

ing workloads and is thus an adaptive policy. For example,

schedutil constantly monitors the CPU utilization and adjusts

the CPU frequency accordingly [36]. Note that DVFS does

not manage the batch size, and so we use a reasonably large

(for edge devices) batch size of 16 and a moderate batch size

of 8 in our experiments.

4) Bayesian Optimization is an optimization technique that

has been often used in systems literature [37]–[39] to optimize

black-box functions. It uses a probabilistic model to predict the

cost function and then uses an acquisition function to decide

the next configuration to try. We use the GaussianProcessRe-

gressor and RadialBasisFunction kernel from the scikit-learn

library to implement Bayesian Optimization [40].

5) Multi-Armed Bandit (MAB) is another popular technique

used in systems literature to find optimal configurations for

systems [3], [41]. We chose the most popular variant of MAB,

the epsilon-greedy algorithm, for our evaluation. At every step,

the MAB algorithm probabilistically selects either exploration

or exploitation. When exploration is selected, the algorithm

tries new random configurations, and when exploitation is

selected, the algorithm selects the configuration that has given

the lowest cost so far. When the same configuration is selected

multiple times, we choose to update the cost history using ex-

ponential moving average as it is the most common technique

used in the literature when conditions are changing [42].

We informally refer to Bayesian Optimization, MAB, and

EcoGD as learning-based algorithms since they learn from the

cost of the configurations they have tried so far and use this

information to decide on the next configuration to try.

D. Evaluation methodology

For our evaluation, we consider the energy consumption,

inference latency, and cost as the primary metrics (see Sec-

tion IV-C for our cost definition); we consider mean and

tail values for these metrics in different evaluation settings.

When running Grid Search and Linear Search, we run the

experiments till the end of the search space. DVFS, Bayesian

Optimization, MAB, and EcoGD are run for 150 optimizer

steps in the case of fixed and bursty request arrival patterns.

For the traces, we run the experiments for 3 hours as that is

the length of the traces. We also repeat each experiment 3

times. The error bars in the bar plots of Section VI represent

the standard deviation of the 3 runs.

All experiments are given 5 optimizer steps as a warm-up

period to get rid of bootstrapping effects such as PyTorch’s

lazy initialization. All algorithms and result interpretations

ignore these 5 steps. We also limit all algorithms’ optimizer

search space to prevent configurations that are known to be bad

and can cause queue build-up (and may crash the experiments);

these bad configurations comprised about 1% of the total

possible search space.

E. Hyperparameters settings of different algorithms

Different algorithms have different hyperparameters that

need to be tuned and set to achieve their best performance.

• Grid Search has no hyperparameters.

• Linear Sweeps has hyperparameters to define the order of

parameters (batch size, GPU frequency, CPU frequency) to

sweep through. We tried all 6 permutations of the order and

found that the differences in the results, especially the cost

achieved, were negligible. As such, we present the results for

the permutation that performed the best (within the narrow

margin of results): batch size sweep, then CPU frequency

sweep, and finally GPU frequency sweep.

• DVFS only optimizes the CPU and GPU frequencies. So,

we manually set the batch size to a fixed value. We initially

consider batch sizes of 8 and 16, and show both sets of

results in our evaluation. We find that batch size 16 is

superior, so we fix the batch size to 16 for DVFS under

trace-driven experiments.

• Multi-Armed Bandit (MAB) has hyperparameters to de-

fine the exploration/exploitation probability. While higher

7

exploitation probability results in lower energy consumption

as the algorithm sticks to the best configuration, it may

take much longer to find the best configuration. We set the

exploitation probability to 0.9, exponential decay to 0.9, and

the number of configurations when cold starting to 10, as

they gave the best results in our experiments.

• Bayesian Optimization, similar to MAB, needs some initial

configurations to start the optimization when cold starting.

We set this value to 10 to make it comparable with MAB.

• EcoGD has hyperparameters to set the memory size of

configuration cost history and the number of maximum

loopbacks allowed to jump out of local minima. Having

a higher memory size results in better performance when

running under fixed inter-arrival patterns, but it harms the

performance when the arrival pattern is dynamic. Setting a

lower value for maximum loopbacks may result in faster

convergence but can also lead to random spikes in the cost

achieved. We set the memory size to 10 and maximum

loopbacks to 10, as they gave the best results in our

experiments. Unlike MAB and Bayesian, EcoGD does not

need any initial configurations to start the optimization when

cold starting.

VI. EVALUATION RESULTS

In this section, we present our evaluation results. We

first consider Resnet50 under fixed and bursty load, in Sec-

tions VI-A and VI-B, respectively, to analyze the performance

and characteristics of different algorithms. This performance

analysis is summarized in Section VI-C for reference. We

then present our main results in Section VI-D using Resnet50

and BERT-Tiny under three time-varying, real-world request

traces; we analyze both mean and tail results under these trace-

driven experiments.

A. Comparison of algorithms under fixed load

1) Best configuration achieved: We start our evaluation

by comparing the performance of the best configuration

achieved by each algorithm. For Grid Search and Linear,

the best configuration is the one found after sweeping their

respective parameter search spaces. In the case of learning-

based algorithms (i.e., MAB, Bayesian, and EcoGD), the best

configuration is the one that is selected by the algorithm after

it converges; the algorithms are said to have converged when

the same low-cost configuration is selected multiple times in a

row. For DVFS, the frequency selection is done automatically

by the governors based on various external factors that are not

in our control, and DVFS does not have a distinct convergence

phase. For a fair comparison, we select as ‘best’ configuration

for DVFS the one that DVFS picks after it has taken the same

number of steps as that taken by EcoGD to converge.

Figure 3 shows the energy consumed, latency achieved,

and cost incurred by each algorithm once it converges to

the best configuration; we show results separately for a fixed

inter-arrival time (IAT) of 50ms and 90ms. All values for

all algorithms are normalized by that under Grid Search for

ease of comparison. Note that the cost is obtained based on

One every 50 ms One every 90 ms
Inter Arrival Time (IAT)

0.0

0.5

1.0

1.5

2.0

Be
st

 N
or

m
. E

ne
rg

y

Grid Search
Linear
DVFS_16

DVFS_8
Bayesian

MAB
EcoGD

One every 50 ms One every 90 ms
Inter Arrival Time (IAT)

0.0

0.5

1.0

Be
st

 N
or

m
. L

at
en

cy
One every 50 ms One every 90 ms

Inter Arrival Time (IAT)

0.0

1.0

2.0

Be
st

 N
or

m
. C

os
t

3.7 3.7

Fig. 3. Energy, latency, and cost incurred by all algorithms after convergence
under fixed request inter-arrival times.

homogenized energy and homogenized latency values (see

Section IV-C); as such, the cost values are not simply a mean

of the energy and latency values shown in the figure.

We see that Grid Search consumes the lowest cost in both

the cases (tied with EcoGD for 50ms IAT), as it sweeps

through all possible configurations to find the best configu-

ration. This is to be expected as Grid Search is essentially

an exhaustive search solution. Note that Grid Search does

not necessarily consume the lowest energy in all cases; for

example, it consumes more energy than Linear in the case of

50ms IAT. However, it does achieve the lowest cost, as that

is the objective function being optimized; see Section IV-C

for the cost definition. In the case of 50ms, it does so by

obtaining a low latency to make up for the slightly higher

energy consumption.

While Linear Search achieves roughly the same cost as

Grid Search in the case of 50ms, it does so by sweeping

through only a fraction of the configurations. But in the case of

90ms, Linear incurs more energy, latency, and cost than Grid

Search. This is because Linear independently optimizes the

three dimensions (batch size, CPU frequency, GPU frequency)

and does not consider the interactions between them. As such,

Linear Search may converge to a sub-optimal configuration.

DVFS with batch size 16 has higher energy consumption,

latency, and cost compared to Grid Search and Linear because

it does not have access to workload information (e.g., batch

size) and cannot optimize to it. DVFS with batch size 8 incurs

8

the lowest latency among all algorithms and approximately 2×
lower when compared with Grid Search because it has a lower

batch accumulation delay. However, it incurs as much as 3.7×
higher energy consumption. Consequently, it has the highest

cost among all algorithms. This result highlights the need for

joint optimization rather than only focusing on a single metric

(latency or energy).

On further inspection, we found that this high energy

consumption is because of the smaller batch size (8) for this

variant of DVFS. All other algorithms converged to a high

batch size (closer to 16) for their optimal configurations. In

general, energy efficiency improves with batch size (due to

amortization), and so a smaller batch size increases energy

consumption. Prior works analyzing the impact of batch size

in server-class machines for training and inference have made

similar observations [3], [15]. This highlights the importance

of optimizing workload parameters along with hardware

parameters for jointly optimizing energy and latency.

The learning-based algorithms (Bayesian, MAB, and

EcoGD) typically achieve a cost only slightly higher than that

achieved by (the exhaustive) Grid Search. They also achieve

lower cost than sub-optimal configurations found by Linear in

the case of 90ms IAT, and a much lower cost than that achieved

by DVFS for both IATs. In general, we can conclude that the

learning-based algorithms all achieve a fairly low cost under

fixed IATs. In fact, EcoGD achieves the lowest cost (tied with

Grid Search) in the case of 50ms IAT.

2) Total cost till convergence, including overhead: The

above best configuration results do not account for the energy,

time, and cost incurred to arrive at the best configuration (via

exploration, exploitation, and search space sweeps). To get

a comprehensive view of the results, we now consider the

cumulative energy consumption, inference latency, and cost

incurred during the time it took each algorithm to converge

to the best cost configuration. Figure 4 shows these metrics

for each algorithm normalized by that under Linear Search; we

chose Linear Search in this case for normalization because the

performance of Grid Search is quite poor and would make it

difficult to compare algorithms if normalized by Grid Search.

We see that Grid Search incurs prohibitively high over-

head, evidenced by the high values for all three metrics; this

is to be expected as it needs to sweep through the 6,000

configurations (modulo the ones we discard due to predictably

poor performance) to find the best one. Linear Search has

much lower consumption when compared to Grid Search, as

it only sweeps through 56 configurations, which represents

more than a 100× reduction in search space size. In fact,

Linear results in the lowest cost under 50ms IAT (but not

under 90ms IAT).

Bayesian has high energy consumption, latency, and cost

overhead; this is because Bayesian does not seem to converge

well and keeps exploring newer configurations, resulting in

frequent jumps in cost. This is because Bayesian Optimization

does not have a mechanism to exploit the best configurations it

has found so far and instead keeps exploring the search space.

While Bayesian Optimization is useful in offline optimization

One every 50 ms One every 90 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

3.0

To
ta

l N
or

m
. E

ne
rg

y

Grid Search
Linear
DVFS_16

DVFS_8
Bayesian

MAB
EcoGD

One every 50 ms One every 90 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

To
ta

l N
or

m
. L

at
en

cy
One every 50 ms One every 90 ms

Inter Arrival Time (IAT)

0.0

1.0

2.0

To
ta

l N
or

m
. C

os
t

48 6.5 31 4.1

17 9.3

37 5.0 17 3.6

Fig. 4. Total energy, latency, and cost with overhead incurred by all algorithms
till convergence under fixed request inter-arrival times.

(unlike our focus), it may not be very effective in online

scenarios [43], [44]. While MAB has lower energy, latency,

and cost compared to Bayesian, it still lags behind EcoGD in

cost (and energy).

DVFS with batch size 16 has higher energy consumption,

latency, and cost than EcoGD. This is because DVFS does

not have access to workload information and cannot optimize

for it. Similar to the observations for best cost, we see that

DVFS with batch size 8 has a lower latency because of the

lower batch accumulation time but has much higher energy

consumption and cost.

EcoGD has the lowest energy consumption among all

algorithms. Further, and more importantly, EcoGD achieves

the lowest cost under 90ms IAT and second-lowest cost (only

4% higher than Linear) under 50ms IAT. This superior per-

formance of EcoGD is because it is able to explore the search

space through an efficient route using (observed and estimated)

gradients while converging to the best configuration.

We also notice that the standard deviation is higher for MAB

and EcoGD in case of 90ms IAT than other algorithms. This

is because they explored the search space through different,

diverse routes, although they individually converged to the

same neighborhood of configurations eventually. For example,

in case of 90ms IAT, EcoGD converged to the neighborhood of

configurations [1.8, 0.96, 14], [1.91, 0.6, 15] and [1.19, 0.41,

15] in its three runs. Here, the first, second, and third elements

of the configuration triplet refer to the CPU frequency (in

9

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

0.5

1.0

1.5

2.0

Be
st

 N
or

m
. E

ne
rg

y
Grid Search
Linear
DVFS_16

DVFS_8
Bayesian

MAB
EcoGD

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

0.5

1.0

1.5

Be
st

 N
or

m
. L

at
en

cy

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

Be
st

 N
or

m
. C

os
t

2.2 2.5

12 4.4 8.6 20 6.8 4.0

Fig. 5. Energy, latency, and cost incurred by all algorithms after convergence
under bursty request inter-arrival times.

GHz), GPU frequency (in GHz), and batch size, respectively.

We see that all three runs converged to high batch sizes; two

of the runs converged to low GPU frequencies; two other runs

converged to high CPU frequency. Despite the differences in

the configurations, we find that their converged costs are within

4% of each other. This shows that multiple, local optima with

similar cost values can exist; since we optimize for cost, the

actual converged configurations may be slightly different as

long as they have similar cost values. In the case of MAB,

the converged configurations were [1.57, 0.6, 13], [1.88, 0.51,

15], [1.91, 0.8, 15], and all resulted in converged costs that

were within 5% of each other.

B. Comparison of algorithms under bursty load

We now move on to the case where the inter-arrival time of

inference requests is bursty.

1) Best configuration achieved: Figure 5 shows the energy

consumed, latency achieved, and cost incurred by each algo-

rithm once it converges to the best configuration; we show

results under bursty inter-arrival times of 500ms and 900ms

between a batch of 10 successive requests. Grid Search incurs

almost the lowest cost, energy, and latency in both cases of

IATs as it sweeps through all configurations to find the best

configuration. Linear Search takes more energy, latency, and

cost than Grid Search in both IATs as it settles for sub-optimal

configurations.

Both versions of DVFS have higher costs than Grid Search

and Linear. We again find that DVFS with batch size 8 has the

highest energy and cost among all algorithms (because of its

lower batch size, as explained in Section VI-A1). We also see

that DVFS with batch size 16 has significantly higher latency;

this is because, with 10 requests arriving every 500ms and

900ms, it has to wait for enough batches to accumulate 16

requests before it can begin processing them.

MAB has significantly higher latency among the learning-

based algorithms for both IATs. We find that MAB results in

highly variable behavior under bursty load, often converging

to sub-optimal configurations. It also exhibits high standard

deviation in latency under 900ms IAT due to the variable

exploration routes it takes. Bayesian avoids the very high

latency that MAB incurs, but still has higher cost than EcoGD.

Among the learning-based algorithms, EcoGD has the

lowest cost and energy consumption for both bursty IATs.

In fact, it has the lowest cost among all algorithms for 900ms

IAT. It also has the second-lowest latency for both IATs among

learning-based algorithms.

Figure 6 shows a heatmap of the converged cost achieved

by each algorithm (see Figure 5) under the bursty 900ms

IAT over the configuration parameters being optimized; we

omit DVFS algorithms as their cost is quite high. The fig-

ure caption explains the axes and notations used. We see

that different algorithms converge to different configuration

neighborhoods. For example, Grid Search converges to lower

GPU frequencies whereas EcoGD converges to higher GPU

frequencies. Nonetheless, they both have low converged costs.

This suggests that there are multiple local optima that could

result in low cost. Bayesian and MAB converge to smaller

batch sizes, compared to EcoGD, which results in higher

energy consumption as energy efficiency typically improves

with batch size [3], [15].

2) Total cost till convergence, including overhead: Figure 7

shows the total energy consumed, latency achieved, and cost

incurred by each algorithm until it converges to the best

configuration; we show results under bursty inter-arrival times

of 500ms and 900ms between a batch of 10 successive

requests. All metrics for each algorithm are normalized by

that under Linear Search.

Grid Search again performs quite poorly due to its very large

search space. Linear continues to perform better than Grid

Search. However, compared to fixed load (Figure 4), Linear

does not perform as well in terms of total cost; for example,

DVFS (with batch size 16) and EcoGD have lower cost than

Linear for both IATs. This suggests that a static algorithm like

Linear is not well suited for bursty arrivals.

Among the DVFS configurations, DVFS with batch size

8 has higher energy than DVFS with batch size 16 but much

lower latency than DVFS with batch size 16 and all other algo-

rithms. This is because a single burst of 10 requests can easily

satisfy the batch size 8 requirement, resulting in very low

batch accumulation time. But, as discussed in Section VI-A1,

this comes at the cost of high energy consumption. Note that

the cost values shown are based on homogenized versions of

energy and latency (see Section IV-C for cost definition), and

10

0.
6

0.
8

1.
0

1.
1

GPU Frequency (GHz)

1.3

1.5

1.7

1.9

CP
U

Fr
eq

ue
nc

y
(G

Hz
)

12

1212

Batch
Size

Grid Search

0.
6

0.
8

1.
0

1.
1

GPU Frequency (GHz)

1.3

1.5

1.7

1.9

CP
U

Fr
eq

ue
nc

y
(G

Hz
)

11

11

Linear

0.
6

0.
8

1.
0

1.
1

GPU Frequency (GHz)

1.3

1.5

1.7

1.9

CP
U

Fr
eq

ue
nc

y
(G

Hz
) 1012 10

Bayesian

0.
6

0.
8

1.
0

1.
1

GPU Frequency (GHz)

1.3

1.5

1.7

1.9

CP
U

Fr
eq

ue
nc

y
(G

Hz
)

15

9

9

MAB

0.
6

0.
8

1.
0

1.
1

GPU Frequency (GHz)

1.3

1.5

1.7

1.9

CP
U

Fr
eq

ue
nc

y
(G

Hz
)

15 15
15

EcoGD

1.0 1.22 1.43 1.65 1.87 2.08
Cost

Reoccuring Configuration

Fig. 6. Heatmap of converged cost, shown as squares, achieved by all algorithms under bursty request inter-arrival time of 900ms between even batch of 10
requests. The axes indicate the CPU and GPU frequency for the configurations; the batch size is denoted as the numbers inside the squares. The color shading
indicates converged cost (see colorscale), with darker squares indicating lower cost. Circles indicate re-occuring converged configurations across runs.

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

3.0

To
ta

l N
or

m
. E

ne
rg

y

Grid Search
Linear
DVFS_16

DVFS_8
Bayesian

MAB
EcoGD

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

To
ta

l N
or

m
. L

at
en

cy

Ten every 500 ms Ten every 900 ms
Inter Arrival Time (IAT)

0.0

1.0

2.0

To
ta

l N
or

m
. C

os
t

34 4.5 36 5.0

22 3.6 11 3.4

11 4.3 24 3.3

Fig. 7. Total energy, latency, and cost with overhead incurred by all algorithms
till convergence under bursty request inter-arrival times.

so a very low (pre-homogenized) latency does not immediately

translate to low cost.

Among the learning-based algorithms, we again see

Bayesian performing poorly, similar to the case of fixed IATs,

due to its inability to converge to good configurations. MAB

again has a lower cost than Bayesian, but higher than EcoGD.

EcoGD continues to achieve very low cost, even under

bursty load. Specifically, EcoGD has the lowest cost under

500ms IAT and the second-lowest cost (only 5% higher

than DVFS with batch size 16) under 900ms IAT. This is

primarily due to its low energy consumption coupled with its

reasonably low latency. In fact, EcoGD achieves the lowest

energy consumption for both IATs (tied with DVFS with batch

size 16 for 500ms IAT). This shows that EcoGD performs well

for static and bursty conditions.

C. Key takeaways from synthetic load patterns

The performance evaluation of algorithms from the above

subsections can be informally summarized as follows. Grid

Search, not surprisingly, converges to low cost configurations,

but is not a viable option in practice due to its high overhead.

Linear can be sub-optimal and is not well-suited for bursty

workloads. DVFS with batch size 8 has low latency but high

energy consumption and cost, whereas DVFS with batch size

16 has lower energy consumption but higher latency and

high cost. Among the learning-based algorithms, Bayesian

has low post-convergence cost but high overhead. MAB has

higher energy overhead, which impacts its total cost; it also

converges to configurations with very high latency in bursty

IAT conditions, hurting its post-convergence cost. EcoGD

achieves low post-convergence cost with low overhead in both

fixed and bursty load conditions, typically achieving the lowest

total cost among all algorithms.

D. Performance evaluation under real-world traces

We now present our key performance evaluation results

by comparing the dynamic algorithms on real-world request

traces described in Section V-B. One objective here is to

evaluate how the algorithms perform under unpredictable and

potentially abrupt changes in request arrival rate. Another

objective is to study the impact on mean and tail metrics.

We do not consider the static Grid Search and Linear Search

algorithms in this subsection. Grid Search has very high

overhead, as established in Figures 4 and 7; this overhead will

be incurred much more frequently in trace-driven experiments,

making Grid Search impractical. While Linear has lower

overhead than Grid Search, its overhead and post-convergence

performance are still sub-optimal, especially under bursty

workload; this will get worse under dynamic traces.

1) Comparison for mean metrics: Figure 8 shows the

energy consumption, latency, and cost achieved by differ-

ent dynamic algorithms, normalized to those achieved un-

der DVFS, for the three different traces we consider using

11

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

1.0

2.0

3.0

M
ea

n
No

rm
. E

ne
rg

y
DVFS Bayesian MAB EcoGD

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

0.5

1.0

1.5

2.0

M
ea

n
No

rm
. L

at
en

cy

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

1.0

2.0

M
ea

n
No

rm
. C

os
t

Fig. 8. Mean energy, latency, and cost incurred by all algorithms under real-
world request traces using Resnet50 and BERT-Tiny.

Resnet50 and BERT-Tiny. Since DVFS with batch size 16

outperformed DVFS with batch size 8 for the fixed and bursty

load conditions, we only consider DVFS with batch size 16.

We start by again noticing the poor performance of

Bayesian, which incurs very high energy consumption, result-

ing in its high cost. We find that Bayesian does not converge to

good configurations, which is in agreement with our findings

from prior subsections. Coupled with the fact that the request

rate changes frequently in the traces, Bayesian results in the

highest cost in all six scenarios we consider.

DVFS maintains low energy consumption via its dynamic

modulation of CPU and GPU frequencies. However, under

the dynamic request traces, its fixed batch size contributes to

high accumulation delay during periods of low request rate,

resulting in high inference latency and (consequently) cost.

MAB, on the other hand, is able to dynamically change the

batch size and maintain lower latency compared to DVFS.

However, it is unable to achieve the low energy consumption of

DVFS, resulting in a somewhat similar (albeit slightly lower)

eventual cost as DVFS.

EcoGD consistently achieves low cost across all scenarios

by balancing energy consumption and latency. We see that

EcoGD achieves the lowest energy among all algorithms for

all Resnet50 scenarios. While it does not achieve the lowest

energy for BERT-Tiny scenarios, it makes up for it with lower

latency. On close inspection, we find that EcoGD has the

lowest cost (which is our optimization metric) for all scenarios,

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

0.5

1.0

1.5

2.0

Co
st

DVFS
Bayesian

MAB
EcoGD

Fig. 9. Cost timeseries of DVFS, MAB and EcoGD for Bellevue trace with
Resnet50 model.

except for Azure traffic with BERT-Tiny, where it has the

second-lowest cost (2% higher than MAB). Averaged across

all six scenarios, EcoGD reduces cost compared to DVFS,

Bayesian, and MAB by 11%, 41%, and 6%, respectively.

We find that the reduction is slightly higher for Resnet-50

scenarios (14%, 38%, and 10%, respectively).

2) Analyzing the adaptive behavior of algorithms: To better

understand the adaptive behavior of the different algorithms,

we plot their cost as a function of time for the Bellevue trace

with Resnet50 model in Figure 9. We see that DVFS exhibits

consistently high cost, largely because of its inability to adapt

the batch size. EcoGD almost always achieves the lowest

cost but does exhibit spikes in cost, occasionally resulting

in momentarily higher costs than DVFS. These spikes are

a result of our algorithm’s configuration explorations as it

attempts to look for better search spaces. MAB also exhibits

such spikes for a similar reason, though the cost spikes quite

significantly under MAB, often doubling its cost momentarily.

This is because MAB has a mandatory exploration step,

where it jumps to a random configuration from the entire

search space, potentially resulting in a momentarily high

cost. Bayesian (lightly colored to maintain visibility of other

lines) can be seen to exhibit very variable cost behavior over

time, with almost continual spikes. This is because Bayesian

Optimization’s expected improvement acquisition function is

not designed to be adaptable to changing workloads [45].

As the load pattern changes under request traces, previously

known configurations may become irrelevant, which Bayesian

Optimization does not take into account.

The above observations provide insights into the workings

of the algorithms and also highlight the consistently superior

performance of EcoGD throughout the trace duration. We

observe similar behavior for the other traces as well.

We also evaluated the performance of the algorithms under

a synthetic trace where the inter-arrival time changed abruptly

and immediately from 50ms to 90ms. We again found similar

results with EcoGD performing the best (and obtaining 10%

lower cost than the next best algorithm, MAB), suggesting

that EcoGD is able to adapt to rapid changes in the workload.

However, we note that the real-world traces we considered in

Section VI-D1 did not exhibit such abrupt changes.

3) Comparison for tail metrics: In real-world scenarios, it

is often important to optimize for tail metrics, such as tail

latency, in addition to mean metrics [17], [46], [47]. As such,

12

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

1.0

2.0

3.0

No
rm

. 9
9%

ile
 E

ne
rg

y
DVFS Bayesian MAB EcoGD

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

0.5

1.0

1.5

No
rm

. 9
9%

ile
 L

at
en

cy

Azure
Resnet-50

Azure
BERT-Tiny

Bellevue
Resnet-50

Bellevue
BERT-Tiny

Twitter
Resnet-50

Twitter
BERT-Tiny

0.0

1.0

2.0

No
rm

. 9
9%

ile
 C

os
t

7 4 9 4 6 4 5 3 7 3 9 4

5.3 10 2.0

5.3 3.8 9.6 2.8

Fig. 10. 99th percentile of energy, latency, and cost incurred by all algorithms
under real-world request traces using Resnet50 and BERT-Tiny.

we now analyze, in Figure 10, the 99th percentile energy

consumption, latency, and cost achieved by different dynamic

algorithms under all six trace-driven scenarios.

We see that the tail energy consumption under Bayesian and

MAB is very high compared to DVFS and EcoGD; this was

not the case for the mean energy consumption in Figure 8. We

also find that the tail latency is high for Bayesian, especially

for the BERT-Tiny model. MAB also exhibits high tail latency

in some scenarios.

In terms of cost, Bayesian, as expected, has a high tail

cost in all scenarios. MAB also results in a high tail cost,

especially under the Bellevue request trace. This is because of

MAB’s probabilistic random exploration, which can result in

high cost configurations being chosen over time. By contrast,

EcoGD achieves the lowest 99th percentile cost for all

scenarios, except for Azure traffic with BERT-Tiny, where

it has the second-lowest cost (13% higher than MAB).

Unlike MAB, EcoGD does not have a mandatory exploration

phase and instead can decide to either continue exploiting the

best known configuration or explore a new one based on its

knowledge of the neighborhood. This allows EcoGD to avoid

high cost configurations. Averaged across all six scenarios,

EcoGD reduces tail cost compared to DVFS, Bayesian, and

MAB by 11%, 72%, and 27%, respectively. We thus conclude

that EcoGD achieves low mean and tail cost, making it readily

applicable in real-world scenarios.

We also find that different algorithms perform slightly

differently depending on the DNN model being employed.

For example, MAB has lower latency and higher energy con-

sumption under BERT-Tiny compared to Resnet50 in Figure 8,

whereas Bayesian experiences high tail latency under the

BERT-Tiny model in Figure 10. This is because BERT-Tiny

has higher computational and processing requirements than

Resnet50, resulting in different opportunities for optimization.

However, the difference in performance for a given algorithm

across traces is not that remarkable. This is likely because

all real-world traces do exhibit similarly significant levels

of load variations (see Figure 2). We do see slightly high

tail latencies and costs under the Bellevue trace and slightly

low tail latencies and costs under the Azure trace for MAB

in Figure 10. This is likely because, among the traces we

employed, Bellevue had the highest average load and Azure

had the lowest average load.

VII. CONCLUSION

This paper focuses on dynamic and energy-efficient DNN

inference on edge. We present EcoEdgeInfer, a framework that

optimizes the tradeoff between inference latency and energy

consumption by tuning hardware and software parameters

dynamically and in response to changes in workload. Our core

contribution is EcoGD, our adaptive parameter tuning opti-

mization algorithm, inspired by Gradient Descent, that quickly

converges to near-optimal configurations with low overhead

while avoiding fluctuations in achieved cost. Evaluation results

under three different request arrival traces and two different

DNN workloads show that EcoGD consistently outperforms

existing baselines, lowering the mean cost objective by as

much as 55% (with 19% average reduction) and the tail cost

objective by as much as 90% (with 36% average reduction).

ACKNOWLEDGMENT

This work was supported by NSF grants CCF-2324859,

CNS-2214980, CNS-2106434, and CNS-1750109.

REFERENCES

[1] R. Pugliese, S. Regondi, and R. Marini, “Machine learning-
based approach: global trends, research directions, and regulatory
standpoints,” Data Science and Management, vol. 4, pp. 19–29, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2666764921000485

[2] J. Vincent, “How much electricity does AI consume?
— theverge.com,” https://www.theverge.com/24066646/
ai-electricity-energy-watts-generative-consumption, [Accessed 05-
07-2024].

[3] J. You, J.-W. Chung, and M. Chowdhury, “Zeus: Understanding
and optimizing GPU energy consumption of DNN training,” in 20th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 23). Boston, MA: USENIX Association, Apr. 2023, pp. 119–
139. [Online]. Available: https://www.usenix.org/conference/nsdi23/
presentation/you

[4] D. Gu, X. Xie, G. Huang, X. Jin, and X. Liu, “Energy-efficient gpu
clusters scheduling for deep learning,” 2023.

[5] OpenAI, “ChatGPT,” https://openai.com/chatgpt/, [Accessed 05-07-
2024].

[6] GitHub, “GitHub Copilot,” https://copilot.github.com/, [Accessed 05-07-
2024].

13

[7] S. Luccioni, Y. Jernite, and E. Strubell, “Power hungry processing: Watts
driving the cost of ai deployment?” in Proceedings of the 2024 ACM

Conference on Fairness, Accountability, and Transparency, ser. FAccT
’24. New York, NY, USA: Association for Computing Machinery, 2024,
p. 85–99. [Online]. Available: https://doi.org/10.1145/3630106.3658542

[8] R. Haight, W. Haensch, and D. Friedman, “Solar-powering the internet
of things,” Science, vol. 353, no. 6295, pp. 124–125, 2016. [Online].
Available: https://www.science.org/doi/abs/10.1126/science.aag0476

[9] Z. Xu, L. Zhao, W. Liang, O. F. Rana, P. Zhou, Q. Xia, W. Xu, and
G. Wu, “Energy-aware inference offloading for dnn-driven applications
in mobile edge clouds,” IEEE Transactions on Parallel and Distributed

Systems, vol. 32, no. 4, pp. 799–814, 2021.

[10] P. S.K, S. A. Kesanapalli, and Y. Simmhan, “Characterizing the
performance of accelerated jetson edge devices for training deep
learning models,” Proc. ACM Meas. Anal. Comput. Syst., vol. 6, no. 3,
dec 2022. [Online]. Available: https://doi.org/10.1145/3570604

[11] A. Dutt, S. P. Rachuri, A. Lobo, N. Shaik, A. Gandhi, and Z. Liu,
“Evaluating the energy impact of device parameters for dnn inference
on edge,” in Proceedings of the 14th International Green and

Sustainable Computing Conference, ser. IGSC ’23. New York, NY,
USA: Association for Computing Machinery, 2024, p. 52–55. [Online].
Available: https://doi.org/10.1145/3634769.3634809

[12] L. Foundation, “Sharpening the edge: Overview of the lf edge taxonomy
and framework,” Jul 2020. [Online]. Available: https://www.lfedge.org/
wp-content/uploads/2020/07/LFedge\ Whitepaper.pdf

[13] “NVIDIA Embedded Systems for Next-Gen Autonomous Machines
— nvidia.com,” https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/, [Accessed 05-07-2024].

[14] “Lernapparat - Machine Learning — lernapparat.de,” https://lernapparat.
de/jit-optimization-intro/, [Accessed 05-07-2024].

[15] D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy
efficiency of deep convolutional neural networks on cpus and gpus,”
in 2016 IEEE International Conferences on Big Data and Cloud

Computing (BDCloud), Social Computing and Networking (SocialCom),

Sustainable Computing and Communications (SustainCom) (BDCloud-

SocialCom-SustainCom), 2016, pp. 477–484.

[16] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: Machine learn-
ing inference serving on serverless platforms with adaptive batching,”
in SC20: International Conference for High Performance Computing,

Networking, Storage and Analysis, 2020, pp. 1–15.

[17] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-value Store,” in Proceedings of Twenty-

first ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP ’07, Stevenson, Washington, USA, 2007, pp. 205–220.

[18] A. Radovanović, R. Koningstein, I. Schneider, B. Chen, A. Duarte,
B. Roy, D. Xiao, M. Haridasan, P. Hung, N. Care, S. Talukdar, E. Mullen,
K. Smith, M. Cottman, and W. Cirne, “Carbon-aware computing for
datacenters,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp.
1270–1280, 2023.

[19] Q. Weng, W. Xiao, Y. Yu, W. Wang, C. Wang, J. He, Y. Li,
L. Zhang, W. Lin, and Y. Ding, “MLaaS in the wild: Workload
analysis and scheduling in Large-Scale heterogeneous GPU clusters,”
in 19th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 22). Renton, WA: USENIX Association,
Apr. 2022, pp. 945–960. [Online]. Available: https://www.usenix.org/
conference/nsdi22/presentation/weng

[20] E. Jeong, J. Kim, and S. Ha, “Tensorrt-based framework and
optimization methodology for deep learning inference on jetson
boards,” ACM Trans. Embed. Comput. Syst., vol. 21, no. 5, oct 2022.
[Online]. Available: https://doi.org/10.1145/3508391

[21] Nvidia, “Software-based power consumption modeling,” https://docs.
nvidia.com/jetson/archives/l4t-archived/l4t-3275/index.html, [Accessed
05-07-2024].

[22] E. Samikwa, A. D. Maio, and T. Braun, “Disnet: Distributed micro-split
deep learning in heterogeneous dynamic iot,” IEEE Internet of Things

Journal, vol. 11, no. 4, pp. 6199–6216, 2024.

[23] N. Diegues and P. Romano, “Self-Tuning intel transactional
synchronization extensions,” in 11th International Conference on

Autonomic Computing (ICAC 14). Philadelphia, PA: USENIX
Association, Jun. 2014, pp. 209–219. [Online]. Available: https://www.
usenix.org/conference/icac14/technical-sessions/presentation/diegues

[24] F. Glover, “Tabu search - part i,” in ORSA Journal on Computing,

vol. 1, no. 3, 1989, pp. 190–206. [Online]. Available: https:
//doi.org/10.1287/ijoc.1.3.190

[25] “TorchVision — pytorch.org,” https://pytorch.org/vision/stable/index.
html, [Accessed 05-07-2024].

[26] P. Bhargava, A. Drozd, and A. Rogers, “Generalization in nli: Ways
(not) to go beyond simple heuristics,” 2021.

[27] I. Turc, M. Chang, K. Lee, and K. Toutanova, “Well-read students
learn better: The impact of student initialization on knowledge
distillation,” CoRR, vol. abs/1908.08962, 2019. [Online]. Available:
http://arxiv.org/abs/1908.08962

[28] S. P. Rachuri, F. Bronzino, and S. Jain, “Decentralized modular
architecture for live video analytics at the edge,” in Proceedings

of the 3rd ACM Workshop on Hot Topics in Video Analytics and

Intelligent Edges, ser. HotEdgeVideo ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 13–18. [Online].
Available: https://doi.org/10.1145/3477083.3480153

[29] “GitHub - City-of-Bellevue/TrafficVideoDataset — github.com,” https:
//github.com/City-of-Bellevue/TrafficVideoDataset, [Accessed 05-07-
2024].

[30] “Twitter Streaming Api — developer.twitter.com,” https://developer.
twitter.com/en/docs/twitter-api/tweets/filtered-stream/introduction, [Ac-
cessed 05-07-2024].

[31] “Internet Archive: Digital Library of Free & Borrowable Books,
Movies, Music & Wayback Machine — archive.org,” https://
archive.org/details/twitterstream, [Accessed 05-07-2024].

[32] “Deploy models with Amazon SageMaker Serverless Inference - Ama-
zon SageMaker — docs.aws.amazon.com,” https://docs.aws.amazon.
com/sagemaker/latest/dg/serverless-endpoints.html, [Accessed 05-07-
2024].

[33] C. Karakus, R. Huilgol, F. Wu, A. Subramanian, C. Daniel, D. Çavdar,
T. Xu, H. Chen, A. Rahnama, and L. Quintela, “Amazon sagemaker
model parallelism: A general and flexible framework for large model
training,” CoRR, vol. abs/2111.05972, 2021. [Online]. Available:
https://arxiv.org/abs/2111.05972

[34] M. Zhang, C. Krintz, and R. Wolski, “Edge-adaptable serverless accel-
eration for machine learning internet of things applications,” Software:

Practice and Experience, vol. 51, 12 2020.

[35] Y. Zhang, I. n. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety,
C. Delimitrou, and R. Bianchini, “Faster and cheaper serverless
computing on harvested resources,” in Proceedings of the ACM SIGOPS

28th Symposium on Operating Systems Principles, ser. SOSP ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
724–739. [Online]. Available: https://doi.org/10.1145/3477132.3483580

[36] “Schedutil; The Linux Kernel documentation — docs.kernel.org,” https:
//docs.kernel.org/scheduler/schedutil.html, [Accessed 05-07-2024].

[37] S. Alabed and E. Yoneki, “High-dimensional bayesian optimization with
multi-task learning for rocksdb,” ser. EuroMLSys ’21, 2021.

[38] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and
M. Zhang, “Cherrypick: Adaptively unearthing the best cloud config-
urations for big data analytics,” in Proceedings of the 14th USENIX

Conference on Networked Systems Design and Implementation, ser.
NSDI’17, 2017.

[39] V. Dalibard, M. Schaarschmidt, and E. Yoneki, “BOAT: Building Auto-
Tuners with Structured Bayesian Optimization,” in Proceedings of the

26th International Conference on World Wide Web, ser. WWW ’17,
Perth, Australia, 2017, p. 479–488.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.

[41] G. Somashekar, K. Tandon, A. Kini, C.-C. Chang, P. Husak, R. Bhag-
wan, M. Das, A. Gandhi, and N. Natarajan, “OPPerTune: Post-
Deployment Configuration Tuning of Services Made Easy,” in NSDI

2024. Santa Clara, CA, USA: USENIX, 2024.

[42] S. Misra, S. P. Rachuri, P. K. Deb, and A. Mukherjee, “Multiarmed-
bandit-based decentralized computation offloading in fog-enabled iot,”
IEEE Internet of Things Journal, vol. 8, no. 12, pp. 10 010–10 017, 2021.

[43] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[44] B. Letham and E. Bakshy, “Bayesian optimization for policy
search via online-offline experimentation,” 2019. [Online]. Available:
https://arxiv.org/abs/1904.01049

14

[45] F. M. Nyikosa, M. A. Osborne, and S. J. Roberts, “Bayesian
optimization for dynamic problems,” 2018. [Online]. Available:
https://arxiv.org/abs/1803.03432

[46] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power management of online data-intensive services,” in
Proceedings of the 38th Annual International Symposium on Computer

Architecture, ser. ISCA ’11, San Jose, CA, USA, 2011, pp. 319–330.
[47] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of

ACM, vol. 56, no. 2, pp. 74–80, 2013.

15

