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Abstract

Inspired by Grimme’s simplified Tamm-Dancoff density functional theory approach [S.
Grimme, J. Chem. Phys. 138, 244104 (2013)], we describe a simplified approach to excited
state calculations within the GW approximation to the self-energy and the Bethe-Salpeter equa-
tion (BSE), which we call sGW/sBSE. The primary simplification to the electron repulsion
integrals yields the same structure as with tensor hypercontraction, such that our method has a
storage requirement that grows quadratically with system size and computational timing that
grows cubically with system size. The performance of sGW is tested on the ionization poten-
tial of the molecules in the GW100 test set, for which it differs from ab initio GW calculations
by only 0.2 eV. The performance of sBSE (based on sGW input) is tested on the excitation en-
ergies of molecules in the Thiel’s set, for which it differs from ab initio GW/BSE calculations
by about 0.5 eV. As examples of the systems that can be routinely studied with sGW/sBSE, we
calculate the band gap and excitation energy of hydrogen-passivated silicon nanocrystals with
up to 2650 electrons in 4678 spatial orbitals and the absorption spectra of two large organic

dye molecules with hundreds of atoms.


tim.berkelbach@gmail.com

1 Introduction

The GW approximation to the self-energy and the Bethe-Salpeter equation (BSE) are known to
provide accurate charged and neutral excitation energies, respectively. '™ Physically, the accuracy
of these methods is attributable to the use of the screened Coulomb interaction in many-body
perturbation theory. Given their successful application to solid-state materials, they have been
increasingly applied to problems in molecular chemistry, for which they have been found to be
affordable approaches with reasonable accuracy.'’~'® The computational cost of ab initio GW/BSE
calculations depends on implementation details, which yield computational timings that scale as
N3 to N® with system size N'°3° (throughout this work we exclusively consider the non-self-
consistent GyW, approximation but will typically refer to it as the GW approximation, for brevity).
Although promising, the storage requirements and computational timing for ab initio GW/BSE
calculations are still prohibitive for applications to very large systems or to problems requiring
many calculations, such as averaging over the course of a molecular dynamics trajectory or in
workflows for materials screening. The present work is concerned with reducing this cost and we
will largely ignore the qualitative features or applicability of GW/BSE methods, which are well
documented; we refer to the reviews presented in Refs. 31-33 for further information.

The same observations about computational costs of ab initio density functional theory (DFT)
and time-dependent DFT (TDDFT) have led to a number of more affordable semiempirical approx-
imations, including density functional tight-binding (DFTB),*** extended tight-binding (xTB), ¢~
the simplified Tamm-Dancoff approximation/TDDFT (sTDA/sTDDFT) ,***° and combinations
thereof, such as TD-DFTB, *'*> sSTDA-xTB,*’ and TDDFT+TB.* These affordable, semiempirical
methods have had significant impact in the field of chemical simulations, enabling ground-state and
excited-state calculations of large molecules with more than one thousand atoms; for more details
and specific examples, we refer the reader to a recent Perspective article.*’ Inspired in particular
by Grimme’s sSTDA, here we present a simplified GW/BSE approach that we call sGW/sBSE. At
the heart of both approaches is an approximation to the electron repulsion integrals, which we

show leads to a sSGW/sBSE implementation with storage requirements that are quadratic in sys-



tem size and execution times that are cubic in system size. Because we only introduce numerical
approximations, we expect SGW/sBSE to be physically appropriate for the same types of systems
as ab initio GW/BSE, i.e., weakly to moderately correlated molecules and materials. Although
sGW/sBSE results differ from ab initio ones by 0.1-1 eV, they can be applied to very large systems
using only commodity computing resources (in fact, the results presented here are limited in size
by the cost of the initial DFT calculation). In this regard, the sSGW/sBSE methods are not meant to
be replacements for advanced ab initio GW/BSE implementations that can be deployed on high-
performance computing architectures. Instead, they facilitate simple, rapid, and semiquantitative
calculations that are intermediate between effective-mass or related model-based approaches and

fully ab initio approaches.

2 Theory

2.1 Integral approximations

A standard DFT calculation is first performed to yield the Kohn-Sham eigenvalues &, and molec-
ular orbitals (MOs) ¢,(r). For the remainder of the manuscript, we will use i, j,k, [ to index
occupied MOs in the Kohn-Sham reference, a, b, ¢, d to index unoccupied MOs, and p, g, r, s for
general MOs. In contrast to many GW/BSE implementations that utilize plane-wave basis sets,
in our work the MOs are expanded in a basis of atomic orbitals (AOs) ¢,(r) or symmetrically

orthogonalized AOs ¢, (1),
Up(r) = Y $u(r)Cup = D $(r)Cys (1)
u u

where C’ = S'2C and S is the AO overlap matrix. The primary simplification we make is to the
four-center two-electron repulsion integrals (ERIs), whose storage and manipulation is responsible

for much of the cost in correlated calculations with atom-centered basis functions. Specifically, the



MO ERIs are approximated as (in 1122 notation),
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where L), = = C,,,C,, 1s the orthogonalized AO component of the orbital pair density, J,,, = (uulvv)’
is a one- or two-center Coulomb type integral in the orthogonalized AO basis, and the primed
notation indicates ERIs calculated over orthogonalized AO basis functions. The above approxima-
tion recognizes that Coulomb-type ERIs (uu|vv)" are typically the largest, which is also known as
the zero differential overlap approximation. The O(N) one-center Coulomb integrals are evaluated
exactly, Jfllf) = (uulvv), and the O(N?) two-center Coulomb integrals are approximated by the

Mataga-Nishimoto-Ohno-Klopman formula, *6-8

1 1/2
(20) o
P .

|ry _rv|2+77;3

where n,, = [J;ELC) + Jﬁlvc)] /2. This approximation to the two-center Coulomb integrals has the
correct asymptotic behavior when [r, — r,| > 0 and reproduces one-center Coulomb integrals
(ry =r,)whenpu =v.

Although the final algebraic structure of our ERI approximation is similar to that of the sSTDA
method, our specific choices are quite different. The sTDA approximation to MO ERIs follows
from our Eq. (2) by first neglecting the orbital dependence of J,, and retaining only its atomic
dependence J,, ~ Jap, Which yields (pglrs) ~ X4z JABC];‘qCIfs where ng ZﬂGA pg Are pair
density charges according Lowdin population analysis. In early stages of our work, we found
this approximation too crude for an accurate representation of the dielectric matrix, which is why
we keep the explicit AO dependence of the ERI parameterization. Next, we recall that in TDA
calculations, the only MO ERIs that appear are of the Coulomb type (ijlab) and exchange type

(ia| jb) for occupied-unoccupied pairs. Within sTDA, this motivates a separate parameterization



of J4p depending on whether it appears in a Coulomb or exchange-type integral (Ref. 39 further
adopted a more general parameterization than our Eq. (3) and introduced four global empirical
parameters). In contrast, GW/BSE calculations require many more MO ERI types, necessitating
the general approximation scheme (2).

The ERI approximation (2) has the same structure as the density fitting approximation (also
known as the resolution of the identity approximation),*~? which has been regularly used in ab
initio GW/BSE implementations with atom-centered basis sets.>#?%2-33-3* However, we emphasize
that here the three-index tensors L}, are expressible as a product of two-index objects, the MO co-
efficients. Therefore, the standard density fitting procedure, requiring the calculation of two-center
and three-center integrals and the solution of a system of linear equations, is completely bypassed
(although we note that it may be used in the initial DFT calculation) and three-index objects need
not be stored. More importantly, the second equality of Eq. (2) has the same structure as the com-
pressed ERIs in tensor hypercontraction methods, > leading to an sGW/sBSE implementation that
only requires the storage of two-index objects and opportunities for reductions in the scaling of
the computational time. Matrices expressed in the basis of single particle orbitals require only
trivial amount of memory; for example, with 10,000 basis functions, such a matrix requires less
than 1 GB of memory. The use of this approximate but efficient MO ERI compression in GW/BSE
calculations is the primary novelty of this work. In contrast to other advanced implementations, the
speedups enabled in the sGW/sBSE methods described in the next sections do not rely on sparsity

that is only realized in asymptotic limits with localized orbitals.

2.2 Simplified GW

The GW approximation and the resulting approximate solution to the Bethe-Salpeter equation are
Green’s function techniques. The GW approximation is similar to the Hartree-Fock approximation,
except that it uses a dynamically screened exchange interaction that accounts for the response of
the other electrons upon electron addition or removal. In practice, the self-energy is commonly

evaluated in a “one-shot” manner, as a correction to DFT MO energies. Within the diagonal GoW,



approximation, matrix elements of the self-energy operator are given by
Zp(w) = Z(w) + = 4)

where ZE,X) is the static exchange part of the self-energy (i.e., matrix elements of the nonlocal ex-
change potential) and Eﬁf)(w) is the dynamical correlation part of the self-energy. We first consider
the static exchange part and recall that hybrid functionals often provide a better starting point for
GoW/BSE calculations, '33-¢ in which case matrix elements of the exchange potential are already
available and can be reused for free in the evaluation of the GW self-energy (4). When the initial
DFT calculation is done with a semilocal functional, then several options exist. The exchange
potential matrix elements can be calculated exactly with a one-time O(N?) cost per eigenvalue or
O(ngwN?) overall to calculate ngw eigenvalues. Alternatively, the exchange matrix elements can
be calculated according to their definition Z;,X) = — >.:/(pilip), using the MO ERI approximation (2).
In numerical tests (not shown), this was found to be a poor approximation to exchange potential
matrix elements, which could not be cured by minor empirical modifications; we believe this to
be a worthy topic of future study. Instead, we tested a modification to include one-center AO

exchange integrals (only to be used for calculating matrix elements of the exchange potential),

Ic
(pilip) ~ Y LiLl J + (Zi (LhLy, + 14, L7) KOO, (5)

v #v
This improvement adds negligible computational cost with only O(N?) scaling but improves the
accuracy of the exchange matrix elements. To increase the flexibility, the one-center AO exchange
integrals Kfﬁf) were empirically scaled by a single parameter S, i.e., KS,C) = Bx(uvluv)’, where the
O(N) AO exchange-type ERIs (uv|uv)” are calculated exactly. In Sec. 3.1, we will compare results

obtained using this latter approximation and using exact exchange matrix elements.

The correlation part of the GW self-energy is the most time-consuming part to evaluate and is



given by

Ef)(w)=§2fdw' Wogap(w) = (pglqp) ©
q
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where 7 is a positive infinitesimal and u is the chemical potential. The screened Coulomb interac-
tion is

W(ry, m; w) = fdrsl(rl,r;w)lr — 7! (7

where the dielectric function is
e(ry, rsw) = 6(ry — 1) — fdrl'r] — 7| P(r, s ) ()

and the independent-particle polarizability is

P(r1,m2;0) = D Ya(r i )Wi(raa(ra)
ia (9)
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As mentioned above, Eq. (2) has the same structure as the density fitting approximation with

¢, (r)? playing the role of the auxiliary basis,
Up(W(r) = " ClLClald(mP = > L), (r)P. (10)
p T

In this nonorthogonal auxiliary basis, the dielectric function has a matrix representation &,,(w) =

[e(w)],,y With

e(w) =8 - JS'P(w), (11)
S = f dr|e) (r)Plg,(r), (12)
P (w) = f dridra|d) (TP P(r1, 723 w)|¢,(r2) . (13)



Rather than inverting the dielectric matrix at every frequency and numerically integrating, we use

the plasmon-pole approximation.’>’>® Considering the generalized eigenvalue problem

e(w)U(w) = SU(w)A\(w), (14)

we assume U(w) = U(w = 0) and that the eigenvalues can be parameterized by the form

L 1 ) 1
@ =t ST et ) ()

The parameters z; and w; are chosen to match the numerical eigenvalues 4;(w) obtained at the two
frequencies w = 0 and w = &y, (i.€., the Kohn-Sham band gap). With this form, the frequency

integration can be performed analytically to give

(W) = Z LA [SUAY(w)U'S ' J1,L),

quv
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where A9(w) is a diagonal matrix with elements

AD(w) = ! . (17)
— &5 — wisgn(e, — )
We calculate the GW quasiparticle energies E, using the linearized form
E, =&, +Z,|Z,(g,) = (18)

(x

where v), C) is a diagonal matrix element of the DFT exchange-correlation potential and the renor-



malization factor is

-1
= 1—(—62(“’)) ] . (19)

Using only O(N?) storage, the intermediates indicated in square brackets in Eq. (16) can be formed

for each orbital p of interest in O(N?) time; the time needed to calculate ngw eigenvalues is then
O(ngwN?). If O(N?) storage is available, then the intermediates indicated can be calculated once
and stored as a three-index object; the time needed to calculate all eigenvalues is then only O(N?).
We emphasize that these computational savings are solely enabled by the compressed form of the

ERIs (2).

2.3 Simplified BSE

Within the Tamm-Dancoff and static screening approximations, the BSE is an eigenvalue problem
for the matrix

Aigjp = (Eq = E))bij0a + alial jb) — (ij|Wlab), (20)

where @ = 2 for singlets and O for triplets. Just like in simplified TDDFT,*’ the Tamm-Dancoff
approximation could be removed within sBSE by including the associated space of deexcitations.
Note that GW quasiparticle energies E, are required as input to a BSE calculation; sGW energies
will be used in sBSE calculations. With the integral simplification (2) and the static screening

approximation to the screened Coulomb interaction (7), in SBSE we have

(ijWlab) = > LAL,Way = > CliCliCruClyWoy (21a)
uv 7%
W=Se"w=0)]J] (21b)

Note that (ij|W|ab) has the same structure as the bare (ijlab), with W, replacing J,,,, and that W,
can be built simply by matrix multiplication, requiring only quadratic storage and cubic CPU time.
We discuss further computational costs of SBSE below.

For comparison, we also provide results obtained by the simplified TDA approach,® which is



a structurally identical eigenvalue problem for the matrix
Aiajp = (4 — €1)0;j0ay + alialjb) — a.(ijlab), (22)

where a, is the fraction of exact exchange included in the DFT functional. We will present results
obtained with the original ERI approximations of Ref. 39 (which we will call sSTDA) as well as with
our ERI approximation (2) (which we will call sSTDA*). Clearly the only two differences between
sBSE and sTDA* are the use of sGW or DFT eigenvalues and the use of a screened Coulomb
interaction or a rescaled bare Coulomb interaction. For solids or heterogeneous nanostructures,
it is expected that the screening in sSBSE provides a more accurate treatment of the electron-hole
interaction.

Select eigenvalues of the STDA* or sBSE matrices can be found by iterative eigensolvers, like
the Davidson algorithm, that require only matrix-vector products and the O(N?) storage of trial
vectors ¢f. With the integral approximations (2) and (21), the STDA* and sBSE matrix-vector

product can be done with O(N?) storage in O(N?) time,
[Aclia = (Eo = ENe} +@ ) CliCha Y v D C1iClyc
v jb

" (23)

= CL Y CLuW Y Gl Y Cleh
7 v j b

with intermediate formation as indicated. In fact, if only a few sBSE eigenvalues are desired and
only O(N?) storage is available, then the calculation of the sGW eigenvalues to be used in the SBSE
is more expensive than finding the few eigenvalues of the sBSE matrix. We note that the original
sTDA method*° employs an aggressive but accurate truncation of the excitation space followed by
complete diagonalization. Formally, this incurs an O(N*) computational cost or higher, which is
why we suggest the iterative diagonalization above that guarantees O(N?) computational scaling
per eigenvalue. However, depending on system size and the number of eigenvalues desired, the

walltime of the original truncation approach might be lower and can be straightforwardly used with

10



the sBSE matrix.

3 Results

All calculations (DFT, GW/BSE, sGW/sBSE, and sTDA*) were performed using a locally modified
version of the PySCF software package?*~%® using the TZVP basis set.®! DFT calculations used

the B3LYP exchange-correlation functional unless stated otherwise.

3.1 Simplified GW

The performance of sSGW is assessed with the first ionization potential (highest occupied molecular
orbital energy) of the atoms and molecules in the GW100 test set, ' using the published geome-
tries; % the TZVP basis set is used for all atoms except I, Xe, and Rb for which the DZVP basis set®?
is used. We assess the accuracy of sSGW by comparing to ab initio, full-frequency GW calculations
(i.e., without the plasmon pole approximation) using the same basis set.

We first address the evaluation of the static exchange part of the self-energy. As mentioned
previously, it can be approximated by Eq. (2), Eq. (5), or calculated exactly, which is free when a
hybrid functional is used in the DFT reference. Figure 1(a) compares the IPs from ab initio GW
to those of sGW when approximate [Eq. (5)] or exact exchange matrix elements are used. With
approximate exchange, the single free parameter S is optimized to minimize the mean absolute
error (MAE) with respect to the ab initio GW calculations, which leads to Sx = 0.46; this value
was found to be robust to the basis set or exchange-correlation functional used. This approximate
treatment of exchange gives a reasonable estimate of the IP with a MAE of 1.81 eV (note that
the IPs of the test set range from —25 to —3 eV). The use of the exact exchange integrals greatly
increases the accuracy, giving a MAE of only 0.20 eV. These results reflect the fact that the static
exchange part of the self-energy is significantly larger in magnitude than the dynamical correlation
part. Figure 1(b) shows that sSGW also gives good agreement with experimental IPs, !> especially

when exact exchange is used. We reiterate that because exact exchange matrix elements were
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Figure 1: First ionization potential of the molecules in the GW 100 set calculated by sGW @B3LYP
compared to (a) ab initio GW @B3LYP results and (b) experiment, using an approximate (light)
and exact (dark) bare exchange matrix element.

already computed in the DFT step, the sSGW calculations with exact exchange have essentially the
same cost as those with approximate exchange. We only expect a difference in timing when the
parent DFT calculation uses a semilocal functional but, even in this case, the cost to calculate the
correlation part of the self-energy still dominates. Therefore, for the rest of this study, the exact
exchange part of the self-energy is used, but we will return to this point in Sec. 4.

Table 1 summarizes the MAE, mean signed error (MSE), and mean absolute relative error
(MARE) of the sGW IPs compared to ab initio GW IPs and of both methods compared to ex-
perimental values. The GW and sGW calculations used PBE, PBEQ, and B3LYP references; for
PBE, we calculated the exact diagonal matrix element of the exchange operator after the SCF
convergence. Calculations using the hybrid functionals PBEO and B3LYP are about 0.2 eV more
accurate than those with the PBE functional. The difference in the performance of the ab initio
GW and sGW is marginal with MAREs of around 2%, indicating an accurate estimation of the
correlation term of the self-energy by sGW. As will be demonstrated in Sec. 3.3, the cost of the

sGW calculations is significantly smaller than that of the ab initio GW calculations.

3.2 Simplified BSE

Neutral excitation energies calculated by sTDA and sGW/sBSE are tested on a set of 28 organic

t, 64,65

molecules commonly known as Thiel’s se using the published geometries in reference 64.
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Figure 2 compares 97 singlet states and 51 triplet states calculated by sBSE to those calculated by
ab initio BSE and to the best theoretical estimates from higher level methods proposed by Thiel
and coworkers. ®+% The ab initio BSE calculations are done using full-frequency GW eigenvalues,
with ab initio static screening of the Coulomb interaction (i.e., without the plasmon-pole approx-
imation), and without the Tamm-Dancoff approximation. The MAEs and MSEs are summarized
in Table 2. The MAEs of singlet and triplet excitations calculated by sBSE with respect to ab
initio BSE are 0.51 eV and 0.38 eV, respectively, which are similar to the errors exhibited by sGW,
but the MAREs are larger (about 10%) simply because the excitation energies are smaller than
IPs. The MAEs of singlet and triplet excitations calculated by sBSE with respect to the theoretical
best estimates are 0.71 eV and 0.81 eV, respectively, which are similar to the errors exhibited by
ab initio BSE. Once again we conclude that the performance difference between ab initio BSE
and sBSE is marginal. Interestingly, sSTDA* gives similar but smaller errors for both singlets and

triplets when compared to the best theoretical estimates.

3.3 Applications

Having demonstrated the accuracy of the sGW/sBSE framework on benchmark sets of small
molecules, we move on to study silicon clusters as a prototypical semiconductor nanomaterial.
Specifically, we apply sGW/sBSE@B3LYP to hydrogen-passivated silicon clusters ranging from
Table 1: Mean absolute error (MAE), mean absolute relative error (MARE) and mean signed error
(MSE) of the first ionization potential of the molecules in the GW100 test set with respect to ab

initio GW and experimental values. Errors are in eV and exact exchange matrix elements were
used in the sGW calculations.

PBE PBEO B3LYP
GW sGW GW sGW GW sGW
MAE wrt GW - 0.23 - 0.19 - 0.20
MSE wrt GW - -0.01 - -0.03 - -0.04
MARE wrt GW - 2.4% 1.9% 2.0%

MAE wrt Expt 089 093 068 069 072 0.72
MSE wrt Expt 085 0.84 057 053 062 0.58
MARE wrt Expt 88% 11.5% 6.8% 84% 7.1% 8.7%
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Figure 2: Singlet excitation energies of the 28 molecules in Thiel’s set calculated by sBSE com-
pared to (a) ab initio BSE results and (b) best theoretical estimates. Analogous results for triplet
excitation energies are shown in (c) and (d).

SiHy to Sij31Hj16, which has 2650 electrons and 4678 spatial orbitals. Calculations on larger clus-
ters were limited by the cost of the initial B3LYP calculation. The structure of SiHy, is from the
GW100 set," the structures of SisH;, and Si;oH;¢ are from PubChem,®® and the structures of
larger clusters are from CSIRO Nanostructure Data Bank,%” without further geometry relaxation.
In Fig. 3(a), we show the quasiparticle gap (calculated by DFT and sGW) and the first neutral ex-
citation energy (calculated by sBSE, sSTDA*, and the original sSTDA>) as a function of the cluster
diameter, which is estimated by approximating the cluster as a sphere with a number density equal
to that of bulk silicon (50 atoms/nm?). As expected, we see a large band gap renormalization from
sGW and a large exciton binding energy from sBSE, both of which are reduced with increased
cluster size.

For comparison, we show experimental photoluminescence energies from Ref. 68. The large
system sizes accessible with sGW/sBSE allow us to compare directly to these experimental values.

We see that the sBSE excitation energies are about 1 eV higher than experiment. Interestingly, we
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find that the original sTDA and our modified sTDA* methods predict excitation energies that are
only about 0.3 eV higher than experiment (and almost identical to one another, indicating that their
technical differences are inconsequential). However, we emphasize that a direct comparison with
experiment is complicated by potential differences in atomic structure as well as vibrational, finite-
temperature, or environmental effects. The choice of DFT functional will also affect excitation
energies, which we study in more detail in the next example.

Figure 3(b) shows the CPU time of each method as a function of number of electrons in the
silicon clusters. In practice, most calculations are performed with some degree of parallelism using
up to 32 cores; thus, while we report the total CPU time, the wall time can be significantly less. For
sGW, we report the CPU time required per eigenvalue using the algorithm that requires only O(N?)
storage, such that we expect O(N?) scaling, which is confirmed numerically. The savings afforded
by our sGW algorithm enabled us to calculate about 2500 GW orbital energies on our largest
system (with 2650 electrons and 4678 total orbitals) in about three days using a single 32-core
node. The sBSE calculations were performed in a truncated space that included those orbitals with
energies between 30 eV below the highest occupied orbital and 30 eV above the lowest unoccupied
orbital. Again we report the CPU time required per eigenvalue, such that we expect O(N?) scaling,
which is confirmed numerically. In practice, we were able to calculate 50 excitation energies on
the largest nanocluster in less than an hour with less than 1 GB of memory. We note that the sSBSE
calculations are less expensive than the preceding sGW calculations.

Table 2: Mean absolute error (MAE), mean absolute relative error (MARE) and mean signed error

(MSE) of singlet and triplet excitation energies of Thiel’s set with respect to ab initio BSE and best
theoretical estimates (BTE). Errors are in eV.

Singlet Triplet
BSE sBSE sTDA* BSE sBSE sTDA*®
MAE wrt BSE - 0.51 0.47 - 0.38 1.22
MSE wrt BSE - -0.10  0.31 - 0.27 1.22
MARE wrt BSE - 10.3% 9.1% 12.1% 38.0%

MAE wrt BTE 0.50  0.71 0.44 0.93 0.81 0.47
MSE wrt BTE -046 -0.56 -0.15 -093 -0.66 0.29
MARE wrt BTE 9.2% 132% 8.0% 21.8% 18.5% 11.1%
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Figure 3: (a) Quasiparticle gap calculated by DFT (B3LYP) and sGW @B3LYP and first excitation
energy calculated by sBSE, sTDA”, and original sSTDA of silicon nanoclusters. Experimental re-
sults (plus signs) were determined in Ref. 68 by photoluminescence. Also shown is the molecular
structure of the largest studied cluster, Si;g;H;6, which has 2650 electrons and 4678 orbitals in the
TZVP basis set. (b) CPU time required for DFT and CPU time required per eigenvalue for sGW
and sBSE calculations. The sBSE calculations used a truncated set of orbitals. The dashed lines
show N3 power laws.

As a final class of example problems, we apply sGW/sBSE to study the optical properties of
large organic molecules using four different DFT functionals as the starting point. In Fig. 4, we
show the absorption spectra of a 192-atom organic dye molecule and a 126-atom chlorophyll-
based donor-bridge-acceptor dyad, whose structures and experimental spectra are taken from Refs.
43 and 69, respectively. Calculations based on local functionals such as LDA and PBE fail to
predict the characteristic peaks of both molecules. However, when starting from hybrid functionals,
the agreement between sBSE and experiment is quite good considering that solvent effects and

vibrational dynamics are neglected. Since PBEO and B3LYP show similar performance (with
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Figure 4: Absorption spectra of (a) an organic dye molecule and (b) a chlorophyll-based donor-
bridge-acceptor molecule calculated using four different functionals. Blue vertical lines indicate
the relative oscillator strength of each transition calculated by sGW/sBSE@B3LYP. Blue squares
show the transitions with vanishing oscillator strength. Natural transition orbitals of the transitions
at 792 nm (a) and 677 nm (b) are shown as insets.

PBEQO slightly better than B3LYP), the following analysis holds for both hybrid functionals.

As shown in Fig. 4(a), the organic dye molecule has a broad peak between 700 and 800 nm and
strong peak at 360 nm; the sBSE predicts a slightly redshifted broad peak, but correctly predicts
the strong peak at 360 nm, including its lineshape. As shown in Fig. 4(b), the chlorophyll molecule
has two prototypical strong peaks, the so-called Q band and Soret band. The sBSE reproduces the
Q band near 650 nm and the strong Soret band around 430 nm. However, we note that some transi-
tions are spectroscopically dark at the equilibrium geometry but the experimental spectrum shows
clear vibronic signatures, indicating the likely importance of nuclear dynamics for total agreement.

Despite being a semiempirical method, sBSE yields a proper excited-state wavefunction, enabling
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a variety of analyses. As an example, in Fig. 4, we show the largest-weight natural transition or-
bitals (NTOs) " of one low-lying transition of each molecule (NTOs are the electron-hole orbital
pair that best represent the transition). Clearly, the NTOs show that the two analyzed excitations

are relatively localized to specific regions of the molecules.

4 Conclusions and future work

We have presented the simplified GW and BSE methods, which we call sGW/sBSE. In addition to
the plasmon-pole and static screening approximations, an approximate compression of the electron
repulsion integrals is most responsible for the low cost of sSGW/sBSE. The sGW/sBSE results are
in good agreement with ab initio results as well as those of experiments or higher-level methods.
In its present form, we expect that sGW/sBSE can facilitate rapid, semiquantitative calculations of
charged and neutral excitations of large molecules and nanomaterials.

An obvious limitation of the present sGW/sBSE framework is its reliance on an initial ab initio
DFT calculation, especially when hybrid functionals are used, as can be seen from Fig. 3(b). Fu-
ture work will address the replacement of DFT with a semiempirical mean-field theory, similar to
the combination of the extended tight-binding method (xXTB) with the sTDA for extremely afford-
able calculations of excitation energies.** Additionally, we plan to implement spin-orbit coupling
and Brillouin zone sampling for periodic systems. More generally, sGW/sBSE could be made
into a more ab initio method by pursuing similar structure through tensor decompositions or inte-
gral screening. Lastly, we believe that the sSGW/sBSE framework could be used as an affordable

testing ground for improvements to the GW/BSE formalism, such as self-consistency, vertex cor-

71-74 75,76

rections, or the combination of GW with dynamical mean-field theory.

Associated content

The data and code underlying this study are available from the corresponding author upon reason-

able request.
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