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Abstract

Metallic solids are an enormously important class of materials, but they are a challenging

target for accurate wavefunction-based electronic structure theories and have not been studied

in great detail by such methods. Here, we use coupled-cluster theory with single and dou-

ble excitations (CCSD) to study the structure of solid lithium and aluminum using optimized

Gaussian basis sets. We calculate the equilibrium lattice constant, bulk modulus, and cohesive

energy and compare them to experimental values, finding accuracy comparable to common

density functionals. Because the quantum chemical “gold standard” CCSD(T) (CCSD with
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perturbative triple excitations) is inapplicable to metals in the thermodynamic limit, we test

two approximate improvements to CCSD, which are found to improve the results.
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Introduction. Ab initio wavefunction-based electronic structure theories are being increasingly

applied to periodic solids,1–13 where they can be used as predictive tools on their own or to guide the

choice of functionals in more affordable density functional theory (DFT)14,15 calculations. To date,

most applications of these methods are to semiconducting or insulating systems. To realize their

full predictive power, these methods must be extended to metals, which are essential in innumer-

able technologies, including energy storage and catalysis. This extension is a challenge because

many of the most successful wavefunction-based methods employ finite-order perturbation the-

ory, whose correlation energy typically diverges in the thermodynamic limit.3,16–18 Coupled-cluster

(CC) theory19 is particularly promising in this regard, because even its lowest-order nontrivial trun-

cation to single and double excitations (CCSD) includes a number of important, canonical classes

of diagrams, including ladder diagrams (important at low density) and ring diagrams (important at

high density and necessary to remove the aforementioned divergence).20–24 Despite extensive ap-

plication to the ground state of the uniform electron gas (UEG),17,18,21–23,25–31 CC theory has seen

limited application to atomistic metals.8,32–35

Here, we apply CCSD to study the structural and energetic properties of two simple metals,

body-centered cubic (BCC) lithium and face-centered cubic (FCC) aluminum. We address two

of the key technical hurdles associated especially with the ab initio study of metals, namely the

removal of basis set error and finite-size error. To address basis set error, we use system-specific

Gaussian-type orbital (GTO) basis sets36,37 that are optimized to lower the total energy and to

lower the condition number of the overlap matrix. We demonstrate the success of this approach

by comparing our results to those obtained with plane-wave basis sets. To address finite-size

error, we employ relatively dense Brillouin zone samplings with twisted boundary conditions and

subsequent extrapolation. We then address the CCSD error by two approximate methods: adding

the correlation energy due to perturbative triples38 with a coarse Brillouin zone sampling or scaling

the CCSD correlation energy by a non-empirical factor determined by the UEG.

Methods. For BCC Li, we use an isotropic primitive cell containing two atoms. For FCC

Al, we use two unit cells: an anisotropic primitive cell containing two atoms and an isotropic
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cubic cell with four atoms. Except where indicated, calculations were performed with the lattice

constants a = 3.5 Å (Li) and a = 4.05 Å (Al), which are close to the experimental values. All

calculations are performed at zero temperature using PySCF6,39,40 (versions 1.7 and 2.0, as well as

development versions) with libcint,41 and GTO-based calculations were performed with Gaussian

density fitting.42–44 We use GTH pseudopotentials,45–48 correlating three electrons per atom, for

both Li and Al.

Basis set optimization. The original GTO basis sets designed for use with GTH pseudopo-

tentials37 were not optimized for correlated calculations and furthermore only contain s, p, and d

functions. Therefore in this work, we re-optimize the GTH-DZVP (DZ), GTH-TZV2P (TZ), and

GTH-QZV3P (QZ) basis sets; for aluminum, we also added f functions to the TZ and QZ basis

sets, which were found to be important in our testing. In periodic solids, increasing the size of the

basis set by brute force frequently leads to linear dependencies, quantified by an overlap matrix

with large condition number, and concomitant numerical issues. Following similar works,37,49–52

here we optimize these basis functions for each solid by minimizing the cost function

cost = EHF + E(2)
c + ω ln(cond(S)) (1)

where EHF is the Hartree-Fock (HF) energy, E(2)
c is the second-order Møller-Plesset perturba-

tion theory (MP2)53 correlation energy, S is the periodic overlap matrix of the GTO basis, and

ω = 10↑4 Eh. For this basis set optimization, we sampled the Brillouin zone with a uniform

mesh54 of Nk = 23 k-points (Li) or Nk = 13 k-points (Al), including the Γ point; with these

boundary conditions, the system is gapped and thus MP2 provides a well-defined and compu-

tationally affordable correlation energy. At this level of theory, the exponents and contraction

coefficients of the GTO basis functions were optimized in an approximately alternating fash-

ion. The optimization was started from the original GTH basis set (with additional f func-

tions in TZ and QZ, for Al) and the final basis functions may represent a local minimum of the

cost function. To avoid biasing the atomic structure, the cost function (1) was summed over

4



three lattice parameters approximately spanning the range used in later calculations. See the

Supporting Information (SI) for further details about pseudopotentials and our optimized basis

sets. The optimized basis sets are also available for download in machine-readable format at

https://github.com/verena-neufeld/2022_data_for_paper_cc_al_li, along with data

produced in this work.

To demonstrate the impact of basis set optimization, in Fig. 1 we show the basis set convergence

of the MP2 and CCSD correlation energy of lithium and aluminum at the Γ point of their primitive

cells, comparing GTO and plane wave (PW) results (for this figure only, the GTO results were

evaluated using a PW basis set to compute the occupied bands and an approximate PW resolution

of the original and optimized GTO bases to compute the virtual bands50,55,56). For Li, we see that

GTO optimization increases the correlation energy by almost a factor of two, i.e., about 20 mEh. A

crude extrapolation suggests that the optimized QZ results recover about 80–90% of the correlation

energy in the basis set limit. With this small k-point mesh, we can perform PW calculations with a

reasonably large number of orbitals, but for Li these results converge slowly due to the inclusion of

the core 1s electrons. An MP2 calculation with our optimized QZ basis set with 67 bands recovers

more correlation energy than one with a PW basis set containing 1203 orbitals, highlighting the

immense computational savings afforded by GTO basis sets. With very large PW basis sets, we

begin to see the onset of N↑1
bands convergence to a basis set limit in good agreement with that of the

optimized GTO basis sets. For Al, the core electrons are not explicitly treated in the calculations

and the PW calculations converge faster. Again, we see the benefit of basis set optimization as well

as the addition of f functions. The QZ result captures about 90% of the correlation energy in the

basis set limit.

In addition to recovering a greater amount of electron correlation, our basis sets were optimized

to reduce their numerically problematic linear dependencies. Indeed, with our largest QZ basis,

the condition number of the overlap matrix decreases from about 1013 to 104 for Li and from

about 1016 to 107 for Al. For both Li and Al, the qualitative similarity between the MP2 and CCSD

correlation energies justifies our use of the former when optimizing the GTO basis set and suggests
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Figure 1: Basis set convergence of MP2 (faint, open symbols) and CCSD (solid, closed symbols)
correlation energies Ec per atom for (a) lithium and (b) aluminum. Results were obtained using
plane waves (PW) of increasing energy and using Gaussian type orbitals (GTO) and optimized
GTOs, at the DZ, TZ, and QZ level. The Brillouin zone was sampled only at the Γ point.

good transferability to other correlated methods.50

Henceforth, we use these re-optimized GTO basis sets. Compared to the transferable, correlation-

consistent basis sets recently developed by two of us,56 preliminary testing (not shown) indicates

that these optimized GTO basis sets exhibit slightly different basis set convergence but yield CBS

results in good agreement.

Finite-size effects. Finite-size errors are especially problematic for metals due to shell-filling

effects, which can be alleviated with twisted boundary conditions.18,30,34,35,57–61 In Fig. 2, we show

the finite-size convergence of the HF energy and CCSD correlation energy for Li and Al in the

optimized DZ bases. HF calculations were performed with up to Nk = 83 (Li) and Nk = 73

(Al) k-points, and a Madelung constant correction was used to eliminate the leading-order N↑1/3
k

finite-size error54,62,63 due to nonlocal exchange. All calculations were performed using a twisted

boundary condition defined by the Baldereschi point,57,59,61 which was found to yield smoother

convergence to the thermodynamic limit (TDL) than calculations without a twist angle. Results

for Li obtained by averaging over four Chadi-Cohen twist angles58 (not shown) were found to give

very similar results.

In this manner, the TDL of the HF energies can be estimated to an accuracy of about 1 mEh.

For Li, CCSD calculations were performed with up to Nk = 43 k-points; with that mesh they were

performed using a truncated basis of MP2 natural orbitals and corrected based on results obtained
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Figure 2: Thermodynamic limit convergence of the DZ HF (top) and DZ CCSD correlation (bot-
tom) energy per atom as a function of the inverse of the number of atoms in the effective supercell
NkNatoms, where Nk is the number of k-points sampled in the Brillouin zone and Natoms is the num-
ber of atoms in the unit cell. For Al, the results using an anisotropic primitive and an isotropic
cubic cell are shown.

with smaller meshes. Extrapolation assuming finite-size errors that scale as N↑1
k suggests an extrap-

olation uncertainty of about 1 mEh. For Al, due to the larger number of atoms in a cubic unit cell,

our largest mesh has Nk = 33 k-points. For better extrapolation, we also performed calculations

using an anisotropic primitive cell, with up to Nk = 5 ↓ 5 ↓ 2. Except for two meshes, all results

from both cell choices are found to lie roughly on a straight line and reliable extrapolation can be

performed to estimate the HF energy in the TDL. With the anisotropic cell, two meshes (4 ↓ 4 ↓ 2

and 8↓ 8↓ 4) yield HF energies that are too high, which may correspond to incorrect HF solutions

due to the challenge of minimization in metals at zero temperature; somewhat surprisingly, the

correlation energy associated with the higher-energy HF solution at Nk = 4 ↓ 4 ↓ 2 is in line with

the other correlation energies, facilitating extrapolation. In all future calculations on Al, we use the

isotropic cell for HF energies and the anisotropic cell for correlation energies. The total energies

that we calculate using our largest meshes differ from the extrapolated results by about 1 mEh (Li)

and 3-4 mEh (Al), and the extrapolated results have an uncertainty of about 1 mEh or less.
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Figure 3: Cohesive energy equations of state from the indicated CCSD-based methods for (a)
lithium and (b) aluminum. The Birch–Murnaghan equation64,65 was fit to the data and shown as a
solid line.

To our DZ results obtained with increasingly large Nk, we add basis set corrections determined

by calculations with smaller values of Nk. For the HF energy, we assume that the QZ result is near

the complete basis set (CBS) limit. For the correlation energy, the CBS limit is estimated via X↑3

extrapolation66 of TZ and QZ results, where X = 3, 4 is the cardinality.

Henceforth, we assume basis set corrections and finite-size corrections are independent and

additive, enabling a composite approach to the estimation of energies in the combined CBS and

thermodynamic limits. See the SI for precise details about our composite corrections.

Equation of state. In Fig. 3, we show the equation of state (EOS) of Li and Al as a function

of the cell volume, where the cohesive energy, which is defined with respect to a single atom, was

counterpoise-corrected by surrounding the atom with ghost atoms and their basis functions.67,73,74

Single-atom calculations were performed in a spin-unrestricted manner. For Al, in sequential

calculations from small to large volumes, we found that using the converged HF density matrix

of the previous volume was essential in obtaining a smooth curve. The HF EOS was calculated

by performing TDL extrapolation at each lattice constant. The correlation energy contribution to
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Table 1: Lattice constant a, bulk modulus B, and cohesive energy Ecoh of lithium and aluminum.
All experimental (Exp.) values have been corrected for zero-point motion (ZPM) effects as de-
scribed in the text. The HF cohesive energy of Li reported in Ref. 67 includes a ZPM correction,
which we estimate to be only 0.001 Eh.

a (Å) B (GPa) Ecoh (Eh/atom)
Li

HF (ours) 3.68 9.0 ↑0.022
HF67 3.73 8.1-11.9 ↑0.020
CCSD (ours) 3.49 12.8 ↑0.051
Incremental CCSD32 3.50 – ↑0.060
CCSD(T)SR 3.48 12.9 ↑0.054
CCSD-SVC 3.49 12.7 ↑0.057
Exp.65,68–70 3.45 13.3 ↑0.061

Al
HF 4.08 80.0 ↑0.051
CCSD 4.02 93.2 ↑0.109
CCSD(T)SR 4.02 91.7 ↑0.114
CCSD-SVC 4.03 91.4 ↑0.123
Exp.65,70–72 4.02 80.3 ↑0.126

the CCSD EOS was either TDL extrapolated with smaller meshes (Li) or calculated using our

largest k-point meshes (Al) and then rigidly shifted by a finite-size correction calculated at lattice

parameters 3.5 Å (Li) and 4.05 Å (Al), which are close to the experimental values. See SI for

further details.

In Fig. 3(a) and (b), we show CCSD results in the QZ basis and CBS limit, which only differ

by about 0.2 mEh for Li and 1-2 mEh for Al, indicating the good performance of our optimized

basis sets. By fitting our data to a Birch-Murnaghan equation,64,65 we extract the lattice constant,

bulk modulus, and cohesive energy. These properties are listed in Tab. 1 and compared to exper-

imental values. The experimental results have been corrected for zero-point motion (ZPM) using

the correction obtained in Ref. 65 with the HSE06 functional,75–77 although other functionals yield

similar corrections.

Beyond coupled cluster with single and double excitations. Comparing to experiment, we find

that the magnitude of the CCSD cohesive energy is too small by about 10 mEh (Li) and 20 mEh

(Al), which our testing suggests is mostly due to insufficient correlation in the solid rather than the
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Figure 4: Structural properties (lattice parameter a, bulk modulus B, and cohesive energy Ecoh) of
(a) lithium and (b) aluminum evaluated with HF (this work), DFT (from Ref. 65) colored by rung,
and coupled cluster (CC) (this work) in its CCSD, CCSD(T)SR and UEG scaled CCSD (CCSD-
SVC) forms. The zero or low temperature experimental values (from Refs. 65,68–72) are shown
by dashed vertical lines. All experimental (Exp.) values have been corrected for zero-point motion
(ZPM) effects as described in the text.

single atom. Therefore, we developed and applied two approximate improvements to CCSD. First,

we test CCSD(T), which applies a perturbative correction to the correlation energy due to triple

excitations. The energy of the atom was calculated in the usual manner, but the CCSD(T) energy

of the solid must be calculated in a modified form because otherwise it diverges in the TDL17

due to the contribution of low-energy excitations with vanishing momentum transfer. Because the

long-range part of the Coulomb interaction is already treated with CCSD (which treats density

fluctuations at the level of the random-phase approximation78–82), we only consider the CCSD(T)

correlation energy due to the short-range part of the Coulomb interaction. In practice, we calcu-

late the CCSD(T) correlation energy using a coarse k-point mesh, which can be understood as an

approximate regularization of an infrared divergence via enforcement of a minimum momentum

transfer determined by the employed k-point mesh; we will refer to this method as CCSD(T)SR.

Here we use Nk = 23 for Li and Nk = 2↓2↓1 for Al, which corresponds to neglecting momentum

transfers that are less than about 1 Å↑1. This (T) contribution is evaluated at the QZ level indepen-
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dent from basis set studied. The EOS using this approach is shown in the middle panels of Fig. 3,

with properties given in Tab. 1. The error in the cohesive energy is reduced by about 30%. Other

properties are also improved, but less significantly. Clearly, these results are dependent on the

choice of the coarse k-point mesh, and future work will investigate a black-box determination. For

example, the density-dependent Thomas-Fermi screening length can help identify an appropriate

coarse k-point mesh or a similarly screened Coulomb potential can be used in the evaluation of the

(T) contribution.17

For our second approximate improvement to CCSD, we recall that valence electrons in simple

metals are delocalized and thus reasonably approximated as a UEG. The relative simplicity of the

UEG enabled its numerically exact ground-state solution by diffusion Monte Carlo,83 which paved

the way for the local density approximation and the subsequent family of functionals that are exact

in the limit of uniform density. In contrast, CCSD is not exact in this limit, but the availability of

numerical data on the UEG suggests a straightforward correction. In this approach, which we refer

to as CCSD with scaling valence correlation (CCSD-SVC),84 we calculate the correlation energy

of the solid as

ECCSD-SVC
c = ECCSD

c,core + ECCSD
c,val /F(ε), (2)

where Ec,core/val is the correlation energy of the core/valence electrons, and F(ε) is a non-empirical

factor that is determined according to the UEG of the same valence density ε as the sytem under

study. Specifically, we take F(ε) = eCCSD
c (ε)/eexact

c (ε), where eexact
c is the exact correlation energy

density of the UEG according to the Perdew-Zunger fit85 to diffusion Monte Carlo results83 and

eCCSD
c is the CCSD correlation energy density of the UEG according to our own Perdew-Zunger-

style fit to CCSD results from Shepherd.28 By construction, the CCSD-SVC correlation energy

is exact in the limit of uniform density, suggesting an improved applicability to atomistic simple

metals. For this UEG description, we consider one valence electron for Li and three valence

electrons for Al, and we calculate the density at all lattice parameters studied. At the experimental

lattice parameters, this approach gives valence densities corresponding to Wigner-Seitz radii of

about rs = 3.24 Bohr for Li and rs = 2.06 Bohr for Al and scaling factors F ↔ 0.8–0.9. For
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Li, we calculate ECCSD
c,val by performing calculations with the 1s electrons frozen and then define

ECCSD
c,core = ECCSD

c ↑ECCSD
c,val , where ECCSD

c is calculated by correlating both core and valence electrons.

For Al, ECCSD
c,core = 0 because the 1s, 2s, and 2p electrons are treated by the pseudopotential. The EOS

calculated using CCSD-SVC is shown in the bottom row of Fig. 3, with properties given in Tab. 1.

The cohesive energies are significantly improved over CCSD or CCSD(T)SR, only deviating by

3-4 mEh from experiment. Overall, CCSD-SVC predicts lattice parameters and bulk moduli that

are similar to those of CCSD or CCSD(T)SR.

Discussion. For Li, our results can be compared to previous ones in the literature, which are

included in Tab. 1. First, our HF results are in good agreement with those reported in Ref. 67,

which were calculated using an optimized DZ basis with the CRYSTAL package.86 This agree-

ment confirms a consistent starting point for correlated calculations. To our knowledge, there are

no reports of periodic CCSD calculations of the equation of state of BCC Li (a recent work34 used

periodic CCSD to estimate the energy difference between FCC and BCC Li). However, in Ref.

32, an incremental CCSD scheme was applied based on finite clusters. Although that work found

a lattice constant in good agreement with ours, it found a cohesive energy that was significantly

different (↑0.060 Eh compared to our ↑0.051 Eh) and in much better agreement with experiment.

As discussed in detail in that work, the application of incremental schemes to metallic systems

is delicate and nontrivial, and this might be responsible for the disagreement. Based on our in-

vestigations, we find no evidence for errors on the order of 0.01 Eh. Instead, we believe that this

level of accuracy is expected for CCSD based on its known performance for the UEG,18,28 where

it underestimates the correlation energy at metallic densities by about 10-20%.

Finally, it is natural to compare CC methods to DFT, which is significantly more affordable.

In Fig. 4, we compare the properties of Li and Al predicted by CCSD, CCSD(T)SR, and CCSD-

SVC to those predicted by HF and by common functionals, as reported in Ref. 65. We compare

to a few popular functionals of increasing sophistication, including the local density approxima-

tion (LDA),15 the generalized gradient approximations (GGAs) PBE87 and PBEsol,88 the meta

GGA M06-L,89 and the screened hybrid HSE06.75–77 Overall, the CC results are comparable to
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those from GGAs but worse than the hybrid HSE06, which performs extremely well for these two

materials.

Looking forward, it will be interesting to apply CC methods to transition metals and to less

uniform metallic systems, such as metal surfaces including adsorbates or chemical reactants. For

these latter problems, we expect to see an increased advantage of CC over DFT, due to the greater

variations in the electron density and the importance of dispersion interactions. More broadly,

our work has reemphasized the need for wavefunction based methods that improve upon CCSD

without the use of perturbation theories that diverge for metals. Beyond more systematic inves-

tigation of the two methods proposed here, other possibilities include the use of spin-component

scaling,90–92 regularization,93–95 or screened interactions,17,96 although these approaches typically

introduce empirical parameters. Alternatively, the full or limited inclusion of non-perturbative

triple excitations97–99 is a promising ab initio route towards chemical accuracy in metallic solids.
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(17) Shepherd, J. J.; Grüneis, A. Many-body quantum chemistry for the electron gas: Convergent

perturbative theories. Phys. Rev. Lett. 2013, 110, 226401.

(18) Callahan, J. M.; Lange, M. F.; Berkelbach, T. C. Dynamical correlation energy of metals

in large basis sets from downfolding and composite approaches. J. Chem. Phys. 2021, 154,

211105.

(19) Bartlett, R. J.; Musia!, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys.

2007, 79, 291–352.

(20) Gell-Mann, M.; Brueckner, K. A. Correlation energy of an electron gas at high density.

Phys. Rev. 1957, 106, 364–368.

(21) Bishop, R. F.; Lührmann, K. H. Electron correlations: I. Ground-state results in the high-

density regime. Phys. Rev. B 1978, 17, 3757–3780.

(22) Bishop, R. F.; Lührmann, K. H. Electron correlations. II. Ground-state results at low and

metallic densities. Phys. Rev. B 1982, 26, 5523–5557.

(23) Shepherd, J. J.; Henderson, T. M.; Scuseria, G. E. Range-separated Brueckner coupled clus-

ter doubles theory. Phys. Rev. Lett. 2014, 112, 133002.
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