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Abstract—Using Raman spectroscopy (RS) signals for
skin cancer tissue classification has recently drawn sig-
nificant attention, because of its non-invasive optical tech-
nique, which uses molecular structures and conformations
within biological tissue for diagnosis. In reality, RS sig-
nals are noisy and unstable for training machine learning
models. The scarcity of tissue samples also makes it chal-
lenging to learn reliable deep-learning networks for clinical
usages. In this paper, we advocate a Transfer Contrast-
ing Learning Paradigm (TCLP) to address the scarcity and
noisy characteristics of the RS for skin cancer tissue clas-
sification. To overcome the challenge of limited samples,
TCLP leverages transfer learning to pre-train deep learning
models using RS data from similar domains (but collected
from different RS equipments for other tasks). To tackle
the noisy nature of the RS signals, TCLP uses contrastive
learning to augment RS signals to learn reliable feature
representation to represent RS signals for final classifica-
tion. Experiments and comparisons, including statistical
tests, demonstrate that TCLP outperforms existing deep
learning baselines for RS signal-based skin cancer tissue
classification.

Index Terms—Transfer learning, contrastive learning,
Raman spectroscopy, skin cancer, tissue classification.

[. INTRODUCTION

KIN cancer, characterized as the most prevalent cancer
S in the United States, presents a significant public health
challenge. The statistics show that one in five Americans will
develop skin cancer during their lifetime while one in four is
impacted by skin disease [1], [2]. Nonmelanoma skin cancers
(NMSCO), including basal cell carcinoma (BCC) and squamous
cell carcinoma (SCC), are particularly widespread, affecting
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over three million Americans annually [3]. The surge in skin
cancer cases is not only in the U.S. but reported globally [4].
Melanoma and Keratinocyte skin cancer (KSC), which is con-
sidered strongly related to exposure to ultraviolet (UV) radiation,
are the most common types in white populations, while the
incidence of KSC, comprising BCC and SCC, far exceeds that
of melanoma [5].

Predominantly, surgical intervention is a conventional ap-
proach to managing skin cancer, while it poses numerous chal-
lenges and bottlenecks at the same time. Differentiating cancer-
ous from normal skin tissue during surgery is often difficult, and
the procedures can be time-consuming, risky, and financially
burdensome for patients [6]. In this context, RS emerges as a
promising alternative. Preliminary studies have demonstrated
the potential of RS in distinguishing between normal and can-
cerous skin tissues [7].

The foundational principle of RS is Raman and Krishnan’s
groundbreaking study in 1928 which demonstrated the inelastic
scattering phenomenon of light in fluids [8], resulting in the
Nobel Prize in Physics in 1930. Over the decades, RS has under-
gone rapid advancements and diversifications, finding applica-
tions across various scientific domains, including chemistry and
medicine [9]. One of the most promising medical applications
of Raman techniques is in the early detection and diagnosis of
skin cancer. RS provides a molecular fingerprint of skin tissues
by analyzing the vibrational energy of molecules [10]. This
non-invasive technique can detect subtle biochemical changes
in skin cells that precede the visual signs of skin cancer, offering
a potential for early diagnosis. The specificity and sensitivity of
RS in identifying malignant tissue changes have made it a valu-
able tool in cancer diagnostics [11], contributing significantly to
early intervention and improved patient outcomes.

In addition to its non-invasive nature, RS signals are also
measured regarding Raman frequency shift, calculated using the
difference between the peak and excitation laser energy. The
unique characteristics make RS signals independent of laser
excitation frequency (i.e., the light source), allowing flexible
excitation frequency selection depending on characteristics of
particular samples and comparison of a spectrum to other spectra
even when different laser excitation energies are used [12]. In ad-
dition, RS signals are also independent of the optical properties
of the tested tissues, i.e., without requiring dyes, nanoparticles,
or other contrast agents [13].
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Fig. 1. Heatmap showing intra- and inter-class sample similarities
of the RS skin cancer dataset, using original RS signals as features.
Samples are indexed based on their class labels. Each value denotes
the cosine similarities between a pair of samples. The similarity is color-
coded with the transitions from blue, low similarity, to red, high similarity.

A. Learning From RS Data: Challenges

Machine learning (ML) and deep learning (DL) techniques
have been widely used in RS data analysis [14], particularly in
the medical field, such as detecting skin cancer. Traditional ML
algorithms like Linear Discriminant Analysis (LDA), Random
Forests (RF), and Support Vector Machines (SVM) have been
effectively used in RS data analysis [15], [16]. Moreover, DL
has further revolutionized this domain. DL models, especially
Convolutional Neural Networks (CNNSs) and their variants [17]
have demonstrated great proficiency in handling the complexity
of spectroscopy data. These advanced models extract complex
patterns and features, leading to more accurate and nuanced
interpretations. This combination of ML or DL with RS is key
in refining diagnostic processes and extracting deeper insights
from spectroscopy data.

Nevertheless, the classification of RS data faces significant
challenges. Limited data availability, a common issue in medical
fields due to privacy concerns, hinders the development of robust
ML and DL models [18]. Furthermore, the inherent noise in RS
data adds another layer of complexity, potentially deteriorates
the classification accuracy [19]. RS data are inherently noisy
primarily due to the nature of the Raman scattering process
itself, which is intrinsically weak compared to other types of
light-matter interactions. The RS signal is generated through
inelastic scattering, where a small part of the incident light is
scattered at different wavelengths, resulting in a very weak signal
often overshadowed by much stronger background noise, such as
fluorescence or ambient light. Moreover, collecting and measur-
ing these weak signals require highly sensitive detectors, which
can introduce additional noise, such as thermal or electronic
noise, complicating the signal-to-noise ratio further [20], [21].

Fig. 1 demonstrates cosine similarity heatmap between sam-
ples in an RS skin cancer dataset, using original RS signals as
features. It shows that samples have high intra- and inter-class
similarities, meaning that samples between classes can exhibit
similar or higher similarities than samples within the same class.

The above challenges motivate the development of sophis-
ticated data processing techniques and advanced algorithmic

To overcome these challenges, innovative approaches like trans-
fer learning and contrastive learning have been employed in
RS data analysis. Transfer learning allows for adapting models
pre-trained on extensive datasets to smaller, specific datasets, ef-
fectively addressing the issue of limited sample availability [22],
[23], [24]. This approach leverages pre-existing knowledge to
enhance performance in specific RS classification tasks. On the
other hand, contrastive learning can significantly enhance the
ability to discern data differences and structural similarities [25],
[26], even in challenging scenarios with noise and limited anno-
tated data. This technique effectively narrows the representation
gap between similar spectra while distinctly separating dissimi-
lar ones, thereby boosting the accuracy and robustness of spectral
data interpretation [27].

B. Contribution and Rationality

Building on these concepts, our study introduces an innovative
approach integrating transfer learning with contrastive learning
for RS data classification. Specifically, we employ a source
dataset to train an encoder utilizing the contrastive learning
technique. Subsequently, this trained encoder forms the basis of
a classifier, which is further refined and fine-tuned using a target
dataset. This methodology leverages the strengths of both trans-
fer and contrastive learning paradigms, aiming to enhance the
accuracy and efficiency of RS data classification. Experiments
and comparative analyses demonstrate significant improvement
in the classification of RS data using our proposed methodology.

The niche of using transfer learning and contrastive learning
to alleviate the sample scarcity stems from RS signals’ unique
characteristics of being independent of excitation laser energy
and optical properties of the tested samples [13]. In transfer
learning, a source dataset is used to support the learning on
the target dataset, where two datasets (i.e., source and target
datasets) might be collected using different lasers and different
types of tissues. The independent nature of the RS signals, w.r.t
lasers, and samples allows us to use source datasets with a
similar RS shift to the target dataset to improve the learning
and classification performance.

Il. BACKGROUND AND RELATED WORK
A. Machine Learning for RS Data Analytics

Combining ML with RS is a promising approach for quick
analysis and diagnosis of cancers [15]. Traditional ML models,
both linear, such as LDA, or non-linear, such as SVM, Deci-
sion Tree (DT), or RF, are usually used with data processing
techniques, such as Principal Component Analysis (PCA) for
reducing dimensions and capturing the largest variation, and
smoothing methods like moving average for despising.

In biomedical RS, the most common ML model is a combi-
nation of PCA and LDA [28], where LDA subsequently learns
a criterion for classifying the data into one of several categories
with labeled examples. RS was obtained from cultured breast
cancer cell lines in [16], and the data were analyzed by two
ML algorithms: PCA—discriminant function analysis (DFA) and
PCA-SVM. Using DT to evaluate the serum tumor markers
levels in blood samples, RS was combined with PCA to predict
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trained to discriminate patients’ liver cells between tumor and
non-tumor by exploiting a combination with RS [30]. Other
feature extraction algorithms: partial least squares (PLS), kernel
principal component analysis (KPCA), isometric feature map-
ping (isomap) and locally linear embedding (LLE), combined
with other classifiers, k—nearest neighbor (kNN), extreme learn-
ing machine (ELM), DT, backpropagation neural network (BP),
genetic optimization backpropagation neural network (GA-BP)
and LDA, are also able to detect cervical cancer [31].

B. Deep Learning for RS Data Analytics

DL techniques have been widely used as modern tools for
accurately classifying and analyzing RS data. Among all DL
structures, CNNs, particularly 1D-CNN, have become the
most popular leveraged models due to their proficiency in
spectral data representation and classification [18]. Studies have
demonstrated that 1D-CNN models can achieve outstanding
diagnostic accuracies, especially in medical diagnostics, such as
in the classification of breast tissues [32], extracellular vesicles,
and the differentiation of melanocytes from melanoma cells [33].

Beyond CNNs, other DL structures such as Residual Net-
works (ResNet) and autoencoders have also been effectively
adapted for Raman spectral data analysis to deal with complex
problems like outlier robustness and rapid identification across
biological samples. ResNet, CNN architectures with residual
connections, have shown potential in parsing datasets ranging
from human bladder tissues to classifying types of skin tumors,
showing substantial superiority over traditional methods [34].
Autoencoders, known for their unsupervised feature learning
and anomaly detection capabilities, when combined with locally
connected neural networks, have proven to classify the presence
of outliers. [35] accurately. Furthermore, Generative Adversarial
Networks (GANs) have been utilized ingeniously to enhance
data augmentation in improving classification performance even
when original datasets are limited [36], [37]. Additionally, re-
current structures, such as recurrent neural networks (RNNs)
and Long Short-Term Memory (LSTM) networks, have been
proposed for the discrimination of various biological entities
with RS data [38].

C. Transfer Learning

It is crucial to overcome dataset size limitations to
successfully train classification models in the realm of RS [18].
Recent research highlights the effectiveness of transfer learning
in this context. The most popular method involves pre-training
a DL model with a domain-specific RS dataset, followed by
fine-tuning using source data. This approach effectively utilizes
contrastive learning, where a model pre-trained on source data
undergoes modification by discarding its original input and
output layers while retaining the 1D CNN network with trained
weights [22].

Innovations in data input and DL model construction further
augment the potential of transfer learning in a decision fusion-
based approach [39], which feeds multiple target datasets into
diverse DL models like CNN-LSTM, GoogleNet, and ResNet.
The outputs of these models then serve as inputs for logistic
regression, which undergoes further refinement with source

data for enhanced classification. Meanwhile, other researchers
focus on reconstructing input data to facilitate transfer learn-
ing. To achieve transfer learning, spline interpolation is used
to adjust wavenumber intervals [23], while the performance
was surpassed by a polynomial reconstruction algorithm for
Raman spectra [24]. These advancements demonstrate that not
only the relevance of the source dataset but also the innovative
pre-processing and model adaptation significantly boost the
accuracy of RS data classification.

D. Contrastive Learning

Recently, contrastive learning methods have attained impres-
sive results in various downstream applications, notably in the
field of image recognition [40], [41], [42]. A simple framework
for contrastive learning of visual representations (SimCLR)
was presented to characterize the similarities and dissimilari-
ties between images in a batch without requiring specialized
architectures or a memory bank [25]. Similar samples were
encoded as the same feature representations, while dissimilar
samples must be encoded as different representations. How-
ever, directly applying SimCLR to a time series field usually
performed poorly due to unmatched data augmentations and
feature extractors. Hence, a framework called TimeCLR was
proposed to extend SIimCLR to be suitable for univariate time
series representation [40], which is achieved by combining the
advantages of Dynamic Time Warping (DTW) data augmen-
tation and InceptionTime. Similarly, a self-supervised learning
approach was introduced for time-series analysis based on the
SimCLR contrastive learning using multiple data-augmentation
techniques [41].

Due to the astonishing performance of contrastive learning
in image recognition, applying contrastive learning to RS has
attracted researchers’ interest. Using contrastive learning, the
representation learning module can pull similar spectra closer
in the learned representation space and simultaneously push
dissimilar spectra away [43]. This enables the representation
learning module to distinguish subtle differences from RS, even
with noise perturbations. Guo et al. [26] developed a method
based on contrastive learning for representation learning aimed
at deriving a valuable embedding space for spectral data. The
embeddings generated through this learning process can not only
differentiate spectra from various compounds but also uncover
the structural similarities between them. A deep clustering-based
framework, RamanCluster, was designed for the accurate and
robust unsupervised identification of pathogenic bacteria us-
ing Raman spectral analysis, eliminating the requirement for
any annotated data. An Xception-based architecture with the
Siamese network for Raman spectrum matching was tested in
three publicly available datasets, achieving good accuracy in
classification [27]. This approach demonstrated commendable
robustness in challenging scenarios.

[Il. MATERIAL AND METHOD
A. Datasets

Target dataset X;: Our research aims to study transfer and
contrasting learning for skin cancer tissue classification using

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 17,2025 at 18:34:46 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: TRANSFER CONTRASTIVE LEARNING FOR RAMAN SPECTROSCOPY SKIN CANCER TISSUE CLASSIFICATION

7335

TABLE |
STATISTICS OF THE BENCHMARK SOURCE RS DATA

Category Cells Serum content  # of samples
A A2058 10% 9
A-S A2058 0% 9
G G361 10% 9
G-S G361 0% 8
HPM HPM 10% 9
HPM-S HPM 0% 9
HF HF 10% 9
HF-S HF 0% 9
ZAM ZAM 10% 9
ZAM-S ZAM 0% 9
DMEM None 10% 8
DMEM-S  None 0% 9
TABLE II

STATISTICS OF THE BENCHMARK TARGET RS DATA

Category  # of samples
BCC 36
Normal 63
Nee 50

Raman spectroscopy. The target dataset used in your study was
originally collected from Strasswinmer Mobs Surgery, Delray
Beach, FL. The same dataset was also used in our previous study
about deep learning based RS data classification [36].

Table II reports the statistical breakdown of the benchmark
target RS dataset [44], which includes three categories: Basal
BCC, Normal, and SCC. It contains 149 records in total, show-
ing an imbalance in distribution. The Normal category has
the highest number of records at 63, surpassing SCC with 50
records and significantly exceeding BCC, which has only 36
records. For further information about this dataset, please refer
to the study about Raman spectroscopy based SCC and normal
skin separation following treatment with a high-powered CO2
laser [44], which investigates the impact of laser treatment on
the RS tissue separation.

Source Dataset Xs: The source dataset used in our study
was originally collected by Erzina et al. (2020) [45], whose
objective is to study cancer detection using a combination of
SERS (Surface-Enhanced Raman Spectroscopy [46]) and con-
volutional neural network.

Table I reports the statisitics of the source dataset, which was
amassed at the University of Chemistry and Technology, Prague,
as part of the research focused on cancer detection. It contains
twelve different classes, each containing three unique types of
substrate surface RS data. The number of samples in each class
is small, and vary between eight to nine samples. Within each
sample, there are three data types of benzenediazonium tosylate
derivatives were designated: ADT-NH2 (amine-functionalized)
(NH2), ADT-COOH (carboxyl-functionalized) (COOH), and
ADT-(COOH)2 (dicarboxyl-functionalized) (COOH2), all syn-
thesized according to established procedures detailed in prior
research. The Raman shift scale used in this dataset is measured

in reciprocal centimeters, ranging from a start point of 100 to an
endpoint of 4,278. This range translates into 2,090 data points
for each sample.

From Fig. 3, the samples show notable differences in
wavenumber lengths between source and target datasets. Specif-
ically, the source data exhibits a longer wavenumber, extending
up to 2,090, in contrast to the target data, which spans only
1,608 wavenumbers. However, the latter segment of the source
data, particularly in the wavenumber range from 1,608 to 2,090,
demonstrates a flattened curve, which is almost a straight line,
that bears no resemblance to the target data. Intuitively, this
segment will likely have minimal, if not zero, influence on our
methodological approach. Consequently, this extra tail segment
of the source data has been removed to ensure consistency in
the length format of source and target data. This adjustment
facilitates a better way of data handling and network training for
comparison.

B. Data Augmentation for RS Data

This section delves into the intricacies of data augmenta-
tion techniques specifically tailored for RS data, detailing the
methodologies and their impact on the original data. For a better
understanding, a summary of notations and symbols is presented
in Table III.

1) Random Noise: The Random Noise operation introduces
a small amount of random noise to each element of the input
x. Given a probability p, mean value p, and standard deviation
o, the operation N(-) adds a random value from the normal
distribution NV'(p1, o) to each input point with a probability of
1 — p. An example is shown in Fig. 2 under “Noise”.

T p
2) Random Scale: The Random Scale operation modifies
the input x by scaling up or down its values. Given a probability
p and a scaling factor a, the operation S(-) scales the input x
by a factor of (1 — a, 1 + a) with a probability of 1 — p. An
illustration is provided in Fig. 2 under “Scale”.

v=r(l—a,1+a) 2)
v i Vi, x5 € xyy 1 —
S(aiyg) = { 7 N 7 3)

3) Random Shift: The Random Shift operation translates
the entire input x; from left to right or right to left. Given
a probability p and a maximum shift value a, the operation
S(-) shifts the input z; in the direction [(b), where a positive
b means a leftward shift and a negative b stands for a rightward,
by |rp(—a, a)| steps for a probability of 1 — p. An example is
presented in Fig. 2 under the title “Shift”.

v =ryp(~a,0) )
F(z;) = {l(”)““ bop 5)

z; p
l(’U)(I}Z =T < Tk 0<= ] <=m

k= ((j +v)%m+m)%m (6)
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RS data samples are presented from both the source and target datasets. In the first row, three distinct classes from the source dataset

are displayed. It includes twelve types of cancer and normal cells in total. Each class is representative of a specific category within the source data
and is characterized by three main spectral bands. These bands arise from the structure of grafted organic moieties, specifically NHy, COOH, and
COOH, groups. The second row, in contrast, displays three unique classes from the target dataset: BCC, normal, and SCC, respectively. Each
sub-figure in this row demonstrates two samples, treated vs. untreated, denoting whether samples have been treated using a high-powered CO2

laser (treated) or not (untreated), respectively.

4) Random Reverse: The Random Reverse operation in-
verts a segment of the input x;. In this context, m denotes the
number of channels in x;, and ¢ is the size of the segment to be
reversed.

I$i

L

1—p

P1 ™

() = {

T —j |0 <:j<:m 17])2
IJ}Z': Ti 5 |0<j,0+t<j<m (8)
Tiyor—jlo<=j<=t+o bz

Given probabilities p1, p2, and a specified reversal size ¢, the R(-)
operation reverses the portion of the input x; with a probability
of 1 — p;. Within this operation, it reverses a segment of size
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TABLE IlI
SUMMARY OF NOTATIONS AND SYMBOLS

Notations | Descriptions
X A Raman Spectroscopy dataset
n Number of samples
N Batch size
m Number of Raman wave shift numbers (number of features)
z; € X A Raman sample in X
T € X4 Raman shift value reading measured at j wavenumber (cm™! per nanometer nm) for sample z;
[min,max] Minimum and maximum Raman shift wave numbers, Vi, j,z; € X: min < x; ; < max
N(-) Add random Gaussian noise to a given Raman sample in wave band level
S() Multiply a given Raman sample with a factor in wave band level
F() Shift a given Raman sample whether from left or right to left in wave band level
R(+) Reverse part of a given Raman sample in wave band level
r(a,b) Pick up a random number within the range of [a, b)
rp(a,b Pick up a random integer from the range of [a, b] where both a and b are positive integers
N(p,0?) Normal distribution with mean, u, and standard deviation, o
Ow, (+) A DL encoder with learnable weights W7
Dy, (+) A projection head of dense layers with learnable weights o
Ty, (+) A dense classifier layer with learnable weights W3

t1 = rp(0,1), starting from position o = r,(0,t1), with given
probability of p, as shown in (8). Additionally, the entire z; is
reversed, a process termed “flip”, (8), with a probability of 1 —
p2. This flip operation effectively mirrors the input. However,
it is important to note that the reversal of x;, whether partial
or complete, only occurs with a probability of 1 — p;, reflecting
the stochastic nature of this data augmentation process. The sub-
figure named “Reverse” shows an example of this operation in
Fig. 2.
5) Combinations:

©))

The series of data augmentation operations applied to the
input x; is concisely encapsulated in (9). This process sequen-
tially involves shifting the input, followed by scaling, adding
noise, and finally, applying a reverse operation. Two examples
of this comprehensive 7' operation can be found in Fig. 2,
demonstrating its impact on the input data.

T(w;) = RIN(S(F(x:))))

C. Proposed Method: Transfer Contrastive Learning for
RS Data

SimCLR [25] is a contrastive learning framework that ad-
vanced the field of computer vision by extracting useful and in-
variant representations. Notably, this approach has been adapted
to handle 1D time series data tasks, demonstrating strong effi-
cacy in a variety of applications [40], [47].

Leveraging the success of SimCLR, our study employs this
framework in a self-supervised learning context aimed at de-
veloping a feature extractor for converting RS data into rep-
resentation vectors. These vectors are designed to retain the
inherent structure and feature information of the original data.
Similar to SimCLR, our approach involves contrastive learning
to maximize the similarity between two augmented views of the
same RS sample. This is achieved by applying a contrastive loss
function within the latent, named NT-Xent [25].

Previous studies have demonstrated the effectiveness of trans-
fer learning in classification tasks [48], including classifying
RS data [18], [22]. This methodology involves training a DL

model with target data and then fine-tuning it with source data.
The source data may or may not be directly related to the
target data, while better performance was observed when using
domain-specific information.

Our study proposes a transfer contrasting learning paradigm
that combines contrastive learning with transfer learning. The
main theme is to use contrastive learning to tackle the noisy
nature of the RS data and leverage the strength of transfer
learning to tackle the sample scarcity challenge. The deep neural
networks are first trained using RS data from the public domain
and then are fine-tuned using target data for better classification
accuracy.

Fig. 4 indicates our two-stage approach for cancer tissue
classification using RS data combining transfer learning and
contrastive learning. Our methodology for cancer tissue classi-
fication utilizing RS data employs a two-stage approach inte-
grating transfer learning and the SimCLR technique.

1) Pre-Training Stage (Contrastive Learning): During the
initial phase, denoted as the pre-training stage, a series of data
augmentations, 7', is applied to each sample to generate two
transformed instances (z; and x ;). The purpose is to intention-
ally augment the signals to teach the underlying deep learning
model, such that it can focus on the important patterns instead
of nontrivial details. A common approach used in contrastive
learning is to augment a sample as two copies (by using different
augmentations), such that the classifier must learn to separate
whether two copies are from the same sample or not, as defined
in the (10).

According to the RS data characteristics, the augmentations
used in our study include alterations in scale, noise level, shift,
and part of reverse, which help enhance the model’s ability to
learn robust features. The notation N represents the number
of randomly selected mini-batch sizes from the input sample,
with each sample undergoing a random augmentation operation
twice, resulting in a total of 2,V samples.

The augmented data is then processed through a neural net-
work encoder (O, (+)), extracting high-dimensional feature
representations (h; and h;) using a 1D CNN followed by an
MLP structure. Subsequently, a projection head refines these
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Fig. 4. Top panel: lllustration of the SIMCLR working process employed in the pre-training stage of our study. Bottom panel: Description of the

subsequent fine-tuning process.

representations, producing (z; and z;) through a dense layer
followed by a Rectified Linear Unit (ReLU) activation function
and another dense layer. This step is significant for distilling
essential features and maximizing the representational similarity

Algorithm 1: TCLP Pre-Training Process.

1 Input: batch size N, constant 7, structure of Oy, Py, T,
dataset X
2 for sampled mini-batch {xk}kN:l € Xs do

of augmented pairs, aligning with the core principles of the 3 | forallk e 1,.... N do
SimCLR framework. 4 t~T,0 ~T
5 Top—1 = gxk)(~ )
exp(sim(z;, z;)/7T 6 hok—1 = Ow, (Tok—1
lij = —log =55 (sinlz j)/ ) 10§ 2011 = Py, (hop_1, Wa)
o1 W iri) exp(sim(z;, 2x)/7) X G — ' (x1)
, : : . 9 hag, = Ow, (Z2x, W1)
With the given SimCLR and the deﬁned pre-training stage, the |, 2ok = Py (hog, Wa)
NT-Xent can be defined as shown in (10), where N samples 1y end
are randomly selected for the contrastive prediction task on 12 foralliel,..,.N, jel,...N do
pairs of augmented examples, resulting in 2V data points. Each 13 | lij = Eq. (10)
augmented pair is defined as a positive pair, while the other i: zmi Eq. (11)
N — 1 pairs serve as negative pairs. The loss function considers updateqéwl and ®yy, to minimize £

each positive pair and computes the final loss across all positive
pairs in a mini-batch, N. The similarity between representations
of two augmented views of RS data, measured as the dot product
of L2-normalized feature vectors (cosine similarity) shown as
sim(u,v) = p'v/(||p]] - |v]]), should be higher than their sim-
ilarity with other views. The temperature-scaled (7) similarities
are utilized as logits for cross-entropy. This formula should be
calculated for all 7, 5 € 2.

In this case, assuming a training batch size denoted by /N and
learnable weights W; and W5 corresponding to the functions
Ow, () and Py, (-), respectively, the final objective function
for contrastive learning can be defined as presented in (11). This
function aims to minimize the associated loss, characterized as
follows:

N

Z(szq,zk(l’k) + log 2k—1(2k))

k=1

L= (an

min —
Wi, We 2N

17 end
8 return encoder network Oyy, .

—

where the k denotes the sample index within the batch size of N.
The terms 2k — 1 and 2k correspond to an augmented positive
pair derived from sample k. The main idea of this process is
shown in Algorithm 1.

2) Fine-Tuning Stage (Transfer Learning): In the second
stage, named fine-tuning, we leverage the encoder and repre-
sentation layer obtained from the first stage, integrating them
with a new output layer to construct a specialized classifier. Sig-
nificantly, the initial weights for the encoder and representation
layer are retained from the previous phase. This conservation of
weights is essential, as it transfers the classifier to build upon
the broad understanding of RS data and signals acquired during
pre-training rather than starting from scratch. Doing so ensures
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Algorithm 2: TCLP Fine-Tuning Process.

1 Input: pre-trained ©yy,, structure of I'yy,, constant epochs
e, dataset X¢, and label Y
for 1...e do

update Oy, , and 'y, to minimize £

8 return Oy, and [y,

that the sophisticated patterns and features learned in the initial
stage are kept and transferred to the specific task of cancer tissue
classification.

This classifier is then precisely fine-tuned with a target dataset
to ensure the model focuses on the unique characteristics of
the target cancer tissue. This targeted approach adjusts the
model’s learned patterns for more accurate identification and
classification of cancer cells. The classification cross-entropy
loss function is defined as (13) to be minimized. Where n is
the number of samples in the dataset, and C' is the number of
classes. y;; is the true label (1 for the correct class and O for
others) and g; ; is the predicted probability of the i-th sample
belonging to the j-th class, which is determined by the network

9W1 and FW:;() yz = (g]ila cee 73}1'6')'
Vi = Dw; (Ow, (z:)) (12)
1 n C
L= Wr?,ivrll/g, - Z Z Yij log(Ji.5) 13)

i=1 j=1

This stage is critical for transferring the generalized learning
from the pre-training stage to the specific task at hand, enhancing
the model’s accuracy and reliability in real-world diagnostic
applications. The algorithm of this stage is presented in Algo-
rithm 2.

V. EXPERIMENT AND RESULTS
A. Baselines

1) Traditional Machine Learning Methods: We employ a
range of traditional machine learning classifiers as our base-
line to compare our model’s performance in classifying Raman
spectroscopy cancer tissues. These include:

® Multinomial Naive Bayes (MNB): A probabilistic classi-

fier known for its simplicity and effectiveness in classifi-
cation tasks involving multiple classes.

® Logistic Regression (LR): A widely-used method for bi-

nary classification problems, adapted here for multiclass
classification.

® RF: Anensemble learning method that combines multiple

DTs for improved accuracy and robustness.

e DT: A non-parametric approach that divides the dataset

into branches to form an inverted DT.

® LNN: A simple algorithm that classifies data points based

on the majority class of their nearest neighbors.

e SVM: A powerful classifier that finds the optimal hyper-
plane for class separation in a high-dimensional space.

2) Deep Learning Approaches: In addition to traditional
methods, we also compare the efficacy of deep learning models
in our study:

® Multilayer Perceptron (MLP): A basic form of a neural
network consisting of multiple layers of perceptrons.

® CNN-Ma: We utilized this CNN architecture from Ma
et al. (2021), this model offers an approach to handling
spectroscopic data for classification [32].

® ResNet: This model with ResNet [49] structure was from
paper.

® RNN: RNN are designed for processing sequences, effi-
ciently capturing temporal dynamics in data [50].

e LSTM: A type of RNN capable of learning order depen-
dence in sequence prediction problems [51].

® Gated Recurrent Units (GRU): they are a gating mecha-
nism in RNN [52].

3) Proposed Model and Variants for Ablation Study: We de-
note our proposed method by TCLP. For ablation study purposes,
we also introduce four variants by removing contrastive and/or
transfer learning components from TCLP to understand the role
each module is playing.

® TCLP-r() : This is a variant of the TCLP, which removes
transfer and contrastive learning from the TCLP. This
approach directly applies the CNN model, inspired by the
architectures from our previous study [36], to the target
dataset to train a deep learning model for classification.

® TCLP.7 : This is a variant of the TCLP, by only in-
corporating the contrastive learning component (i.e. the
transfer learning is removed). Initially, the model was
pre-trained on the target dataset using contrastive learning
loss, which employs a self-supervised approach to learn
rich feature representations. Following this, it undergoes
fine-tuning on the same target dataset. This method en-
hances the model’s feature extraction capabilities, poten-
tially leading to a more accurate classification of cancer
tissues.

® TCLP_c : This is a variant of the TCLP, by only incor-
porating the transfer learning component (i.e. the con-
trastive learning is removed). The encoder in the model
was pre-trained with source dataset X5 followed by a
fine-tuning stage with target dataset & for the model.
When pre-training or fine-tuning the model, no contrastive
learning loss is imposed on the learning objective.

e TCLP: The proposed method utilizes contrastive learning
for pre-training on a source dataset. After pre-training, the
model is fine-tuned on the target dataset. This approach
investigates the effectiveness of transfer learning in im-
proving model performance, especially considering the
diversity and complexity of data in Raman spectroscopy
cancer tissue analysis.

B. Experimental Setup

The experiment was rigorously designed to ensure the robust-
ness of the results. We use 5-fold cross-validation process and
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TABLE IV
CLASSIFICATION RESULTS ON THE TARGET RS DATASET

with Min-Max Normalization

with PCA (n = 100)

ACC(T) F1(T) AUC() FNR({) | ACC(T) F1(D AUC(T) FNR({)
MNB 0.6051 0.5578 0.7812 0.4133 - - - -
LR 0.7455 0.7088 0.9047 0.1471 0.7655 0.7415 0.9068 0.1167
RF 0.6653 0.5960 0.8237 0.1333 0.5977 0.4805 0.7623 0.0000
DT 0.5703 0.5434 0.6636 0.3000 0.4156 0.3846 0.5445 0.5667
KNN 0.6101 0.5901 0.7850 0.4619 0.6168 0.5963 0.7849 0.4476
SVM 0.6253 0.5255 0.8041 0.0667 0.6453 0.5510 0.8304 0.0000
MLP 0.7786 0.7427 0.9218 0.2333 0.7857 0.7679 0.9163 0.1167
RNN 0.7448 0.7088 0.8845 0.2844 0.6244 0.5975 0.7873 0.3743
LSTM 0.6975 0.6742 0.8846 0.2561 0.4763 0.4261 0.6680 0.2867
GRU 0.7584 0.7396 0.9173 0.1250 0.6246 0.5739 0.7400 0.1738
CNN-Ma 0.6094 0.5219 0.8694 0.0500 0.4363 0.3068 0.6368 0.1200
TCLP—(1,0) 0.8126 0.7858 0.9237 0.1452 0.6379 0.6045 0.7849 0.2638
TCLP ¢ 0.8124 0.7931 0.9235 0.0952 0.6851 0.6542 0.8286 0.3186
TCLP—T 0.8260 0.8015 0.9255 0.1452 0.5501 0.5139 0.7260 0.2762
TCLP 0.8329 0.8107 0.9254 0.0786 0.6379 0.5977 0.7641 0.3962

“With PCA” means that PCA was applied to preprocess the data Before learning the models.

early stopping and dropout techniques for each classification
method. This approach can help to overcome the randomness
inherent in neural network parameter initialization and training,
leading to a more accurate evaluation of method performance.
Regarding neural network-based methods, despite different ar-
chitectures, we standardized all parameters, including epochs
and augmentation parameters in the contrastive learning process,
to facilitate fair comparisons.

A variant of the proposed base model, referred to as
TCLP-(t,c) in Tables IV is a DL model structured as a ID-CNN.
This model comprises a single CNN layer equipped with 512
filters of kernel size 7. A ReLU activation function follows this
layer. Subsequently, the architecture includes a dense layer with
512 units, followed by a ReLU activation. The final component
of this model is the output layer.

Additionally, the MLP model, showcased in Table IV, features
a two-layered hidden structure. The first hidden layer contains
100 units, and the second layer comprises 32 units. Each layer
is followed by a ReLU activation function, ensuring non-linear
processing capability. Lastly, the RNN, LSTM, and GRU models
consist of 100 units for the output space followed by an output
layer.

C. Experimental Results

Table IV presents comprehensive performance metrics for
standard baseline classifiers and our novel methods for the
original data processed using min-max normalization and PCA.
The values are averages from five cross-validation results. Our
methods outperform all traditional ML and DL approaches in
accuracy, F1 score, and false negative rate(FNR) [53]. The FNR
was employed because cancer classification is a digital health
problem, and the model needs to detect actual cases of skin
cancer correctly.

LG achieves the highest performance among the traditional
classifiers, recording an accuracy of 0.7455 and 0.7655 when

data proceeded with Min-Max normalization PCA (n = 100),
respectively. While the other traditional methods fall short in
effectively classifying the target RS data, with accuracies all
below 70%. However, SVM achieved the lowest FNR with only
0.0667.

Regarding DL approaches, the MLP demonstrates noticeable
efficacy in classification, achieving accuracies of 0.7784 and
0.7857 when data was handled with normalization and PCA,
respectively. The CNN-Ma shows the lowest FNR, 0.05, among
all the models, along with low values in another measurement,
with only 0.6094 accuracy.

However, our new models, the new base model TCLP (1),
with contrastive learning, TCLP_p, with transfer learning,
TCLP-c, and our proposed method, TCLP, outperformed these
benchmarks in all ACC, F1, and AUC metrics. TCLP achieved
outstanding metrics, with the highest accuracy of 0.8329, F1
score of 0.8107, and a high AUC of 0.9254, indicating a
significant improvement over existing deep learning models.
Despite TCLP achieving a slightly higher FNR score of 0.0786
compared to CNN-Ma’s 0.0500, it demonstrates superior per-
formance in other metrics. TCLP notably improves accuracy by
over 20% (from 0.6094 to 0.8329) and F1 score by over 30%
(from 0.5219 to 0.8107), showing its effectiveness in the task.
This improvement in F1 score is also remarkable.

Relative to the best-performing by MLP model, the improve-
ments in accuracy were 3.4%, 4.74%, and 5.43% for TCLP—(1,0),
TCLP_r, and TCLP, respectively. The AUC values of the MLP
model are comparable to our methods, suggesting similar overall
classification effectiveness. However, our methods demonstrate
superior accuracy, F1 scores, and lower FNR, which are crucial
for reliable cancer tissue classification. This enhanced perfor-
mance highlights the effectiveness of the innovative techniques
and optimizations integrated into our approaches.

One notable observation is the distinct performance exhib-
ited by the new base model when enhanced through transfer
learning, denoted as TCLP-c. When the data is pre-processed
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TABLE V
PERFORMANCE OF TCLP USING DIFFERENT DL ENCODER STRUCTURES

Encoders Method ACC(T) FI(T) AUC(T) FENR()
TCLPc 0.7786 0.7427 0.9218  0.2333
MLP TCLP_¢ 0.7853 0.7533  0.9081  0.2000
TCLP_T 0.7920 0.7555 0.9211 0.2178
TCLP 0.7855 0.7466 0.9128 0.1778
TCLPc) 0.6094 05219 0.8694  0.0500
CNN-Ma  TCLP_c 0.6779  0.6459 0.9043  0.0667
TCLP .t 0.6586 0.5174 0.8635  0.0400
TCLP 0.7715 0.7356  0.9012  0.1111
TCLP—tc 0.7515 0.7176  0.9289  0.2250
ResNet TCLP_c 0.7579  0.7086 0.9155  0.3300
TCLP .t 0.7579  0.7044  0.9226  0.1000
TCLP 0.7717 0.7341  0.9276  0.2000
TCLP 1) 0.7448 0.7088 0.8845 0.2844
RNN(100)  TCLP_¢ 0.7055 0.6525 0.8394 0.1167
TCLP—T 0.7251  0.6985 0.8851  0.2000
TCLP 0.7113  0.6679 0.8650  0.1844
TCLP o 0.6975 0.6742 0.8846  0.2561
LSTM(100) TCLP_¢ 0.6453 0.6053 0.7681  0.2390
TCLP_T 0.7175  0.6967 0.9028  0.2633
TCLP 0.7515 0.7293 0.8897  0.2619
TCLPc 0.7584 0.7396 0.9173  0.1250
GRU(100)  TCLP_¢ 0.7315 0.6941 0.8796  0.2550
TCLP_T 0.7851 0.7673 09142  0.1488
TCLP 0.7922 0.7772 09173  0.1250

MLP: Dense(100) x Dense(32)
CNN-Ma: CNN(10x10) x MP(2) x BN x Dense(100) x BN
ResNet: ResNet[(CNN(64) x 2)] x 3 x Dense(500)

using Min-Max normalization, both TCLP_r and TCLP out-
perform the base model, TCLP(t), for all metrics. However,
TCLP_¢ negatively impacts the accuracy, which is marginally
slower than that in the base model but shows great improvement
in the FNR score.

In scenarios where the PCA technique is employed, only 4 out
of 14 models show an improvement in accuracy, and 5 out of 14
show an improvement in the FNR. Those models are primarily
from traditional ML algorithms and MLP. Table IV indicates that
the PCA method does not yield positive results for NN models,
except for MLP. For NN models, PCA significantly reduces
accuracy and increases the FNR rate. These two metrics are
crucial for the cancer classification task. These results suggest
that NN models tend to utilize the entirety of the data within each
RS data rather than relying solely on a reduced set of principal
components extracted through PCA.

D. Performance of TCLP Using Different DL Encoders

To further evaluate the efficacy of our proposed method,
TCLP, we compare its performance across six distinct DL
encoders. Table V presents the detailed results for these models.
Overall, TCLP effectively improves the accuracy for five out of
six encoders and reduces the FNR for three encoders, with one
showing no change.

When considering only transfer learning (TCLP_¢), improve-
ments in accuracy were observed in half of the models, accompa-
nied by a decrease in FNR. In contrast, when solely implement-
ing contrastive learning (TCLP_r), enhancements in accuracy
were noted for five out of six models, with four demonstrating

TABLE VI
CONFUSION MATRIX FOR CANCER CLASSIFICATION

Actual/Predicted BCC NORMAL SCC
BCC 23 7 6
NORMAL 3 55 5
SCC 1 3 46

TABLE VII
PERFORMANCE METRICS FOR CANCER CLASSIFICATION

Class Precision Recall F1 Score FNR
BCC 0.852 0.639 0.727 0.361
Normal 0.846 0.873 0.859 0.127
SCC 0.807 0.920 0.860 0.080

a reduction in FNR values. The integration of both techniques
under TCLP showcased its efficacy by further elevating accuracy
across five models; while its FNR was lower than base model
(TCLP-(r)), none achieved the lowest FNR.

Specifically utilizing a DL as an encoder revealed that all
three methods—transfer learning, contrastive learning, and their
combination—resulted in diminished accuracy but concurrently
exhibited a decrease in FNR.

Using an MLP encoder, the accuracy increase was marginal,
but the FNR decreased significantly from 0.2333 to 0.1778.
Although the FNR increased from 0.0500 to 0.1111 with the
CNN-Ma encoder, accuracy was significantly improved from
0.6094 to 0.7715, approximately a 17% increase. Employing
a ResNet encoder increased accuracy (from 0.7515 to 0.7717)
and a decrease in FNR (from 0.2250 to 0.2000). Using an RNN
encoder, while there was a decrease in accuracy from 0.7448
to 0.7113, the FNR was substantially reduced from 0.2844
to 0.1844. For the LSTM encoder, accuracy increased from
0.6975 to 0.7515, but there was a slight increase in FNR from
0.2561 to 0.2619, which is an undesirable outcome. For a GRU
encoder, accuracy improved from 0.7584 to 0.7922, while the
FNR remained stable at 0.1250.

In comparing the metrics of accuracy and FNR between
the baseline model based on different encoders and with the
proposed method, TCLP, and we found that although the method
does not uniformly enhance performance across all NN en-
coders, it generally leads to significant improvements in both
accuracy and FNR for this cancer classification task. This
demonstrates the potential utility of our method in enhancing
model performance in specific applications.

E. Comprehensive Results

Table IV reports the measurements based on averaging of
the five-fold cross-validation results. In Table VI, we report the
confusion matrix with respect to each class of the target dataset
(using five-fold cross-validations). Table VII further reports the
classification performance using different metrics, based on
the results reported in the Table VI. Both Tables VI and VII
represent the combined performance of the model across all
cross-validations, offering a more comprehensive assessment of
the model performance.
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Local Interpretable Model-agnostic Explanations

BCC: Top 5 features from samples

NORMAL: Top 5 features from samples.

SCC: Top 5 features from samples

)

Fig. 5.

Gindex)

Aggregated top-5 RS features selected by the LIME explainer [54] for all test samples. Each dot denotes one identified RS feature. Each

plot shows the results of all test samples in each individual target class. LIME explainer selects top-5 RS features for each test sample, so each plot

has more than five red dots.

Table VI demonstrates that the model prefers classifying data
into the Normal and SCC classes. It incorrectly classified 10
and 11 data points as Normal and BCC, respectively, while only
4 data points were incorrectly classified as BCC. It also shows
that more data in the BCC and Normal could not be classified
correctly. This could be due to the similarities in the features,
which can be further proved by the heat map shown in Fig. 1 that
a small part of BCC and Normal data are highly similar while
differing from other data points.

In Table VII, it is evident that while the precision of the BCC
class is notably high at 0.852, its recall (0.639) and F1 score
(0.727) are significantly lower, resulting in a higher FNR of
0.361. This indicates that the model struggles to classify BCC
tissue correctly and effectively. On the other hand, the SCC class
demonstrates a high recall value of 0.920 and a low FNR of
0.080, suggesting that the model performs well in classifying
SCC data. However, it is important to note that other data types
are more likely to be misclassified into this class, as indicated
by its relatively low precision value of 0.807.

F. Model Performance Vs. Feature Explainability

To better explain the model, the LIME explainer [54] was used
to find top-5 important features for each of the test samples,
shown in Fig. 5. The results show that each sample and each
class has its own unique RS features for classification. Peak
RS signals do not necessarily form explainable features for
separation. Based on the top features, a new dataset was created
from the target dataset and then used to validate the model again.
However, training and validating models on this new dataset led
to a significant decrease in performance metrics. This suggests
that DL models may prefer learning from all features rather
than specific ones, a hypothesis supported by the PCA results in
Table IV, where most NN models exhibit poorer performance
after the PCA process.

G. Model Convergence and Overfitting

Fig. 6 illustrates the training and testing losses across epochs.
In the NN structure, a dropout rate of 0.2 was implemented,
and early stopping with patience of 10 epochs based on the test
loss was employed to prevent over-fitting during training. As
shown in Fig. 6, without early stopping, the training loss steadily
decreases, but the testing loss starts to increase after the early
stopping point, indicating the onset of over-fitting. The higher

Training and Test Loss with and without Early Stopping

—— Train loss (w/o early stopping)
—— Test loss (w/o early stopping)
—=—=- Train loss (w/ early stopping)
=== Test loss (w early stopping)
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Fig. 6. Training vs. test loss with and without early stopping technique
to help tackle overfitting.

test loss compared to the training loss is possibly due to noise
or outliers in the dataset.

H. Discussion

Both transfer learning and contrastive learning play important
roles in TCLP. Inreality, selecting source data to support learning
on the target data is nontrivial, and we have carried out following
three criteria in our design to select domains for RS data. (1)
Domain Similarity: We aimed to select domains closely related
to cancer or tissue-related Raman spectroscopy data, as these
domains are more likely to share similar patterns with our target
data. The closer the similarity, the better the transfer learning
performance is expected to be; (2) Pattern Similarity: The RS
data from the selected domains should exhibit patterns that are
not significantly different from our target data. The more similar
the patterns, the more effective the transfer learning is expected
to be; (3) Effectiveness of Transfer Learning: While the domains
we found were not perfectly similar to our target domain, they
still demonstrated effectiveness for transfer learning. Finding a
better and larger public dataset that closely matches the target
domain could lead to better results.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a transfer contrastive learning
paradigm for skin cancer tissue classification using Raman spec-
troscopy data. We argued that the non-invasive optical nature and
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other characteristics of the RS signals, such as the independence
of laser sources and optical properties of the tested tissues,
make them useful for clinical usage. Nevertheless, RS data
are inherently noisy, and the scarcity of samples in biomedi-
cal domains further imposes significant challenges to training
deep learning models from RS data. By leveraging contrastive
learning to handle noisy data and using transfer learning to tackle
the sample scarcity, TCLP method can further improve existing
DL structures, highlighting the significant potential of our ap-
proach in advancing the classification of cancer tissues using RS
data.

Looking ahead, our research opens avenues for further explo-
ration into applying advanced DL techniques to medical imaging
and diagnostics, especially in scenarios constrained by data
privacy and availability. Future work could focus on optimizing
these techniques for other types of medical data by generalizing
the workflow and models and exploring the implications of
these methods in clinical settings. Additionally, investigating our
approach’s integration with other medical data modalities could
provide a more holistic view of medical diagnostics, potentially
leading to more accurate and early detection of various cancer
types.

Our study also shows some limitations. While our method
is effective for most DL structures, it may not be suitable for
certain models like RNNs. Furthermore, while our approach
improves accuracy significantly, it may also adversely affect the
FNR score. Additionally, our dataset is limited to 149 samples,
some of which may contain noise from non-standardized manual
operations or machine biases. Future work could focus on stan-
dardizing the data collection process and expanding the dataset
to address these limitations.
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