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Abstract: Global Positioning Systems (GPSs) can collect tracking data to remotely monitor live-
stock well-being and pasture use. Supervised machine learning requires behavioral observations
of monitored animals to identify changes in behavior, which is labor-intensive. Our goal was to
identify animal behaviors automatically without using human observations. We designed a novel
framework using unsupervised learning techniques. The framework contains two steps. The first
step segments cattle tracking data using state-of-the-art time series segmentation algorithms, and the
second step groups segments into clusters and then labels the clusters. To evaluate the applicability
of our proposed framework, we utilized GPS tracking data collected from five cows in a 1096 ha
rangeland pasture. Cow movement pathways were grouped into six behavior clusters based on
velocity (m/min) and distance from water. Again, using velocity, these six clusters were classified
into walking, grazing, and resting behaviors. The mean velocity for predicted walking and grazing
and resting behavior was 44, 13 and 2 min/min, respectively, which is similar to other research.
Predicted diurnal behavior patterns showed two primary grazing bouts during early morning and
evening, like in other studies. Our study demonstrates that the proposed two-step framework can
use unlabeled GPS tracking data to predict cattle behavior without human observations.

Keywords: animal behavior identification; unsupervised machine learning; time series segmentation;
clustering

1. Introduction

Behavior patterns (e.g., grazing, resting, walking, and ruminating) of cattle provide
critical information for livestock and rangeland management. Cattle have distinct diurnal
activity patterns. Cattle graze primarily in the early morning and late afternoon and evening
and often rest during midday and night [1]. The evaluation of cattle activity patterns can be
used to monitor grazing behavior and indirectly forage intake [2]. The energy expenditure
of cows is dependent on activity [3]. Cattle that walk farther and spend more time grazing
as opposed the resting will expend more energy than cows that walk less and loaf longer.
Cattle activity patterns are also useful for monitoring animal health and well-being [4,5].
Cattle are less active and move less when they become sick, which facilitates the detection
of illness from the remote monitoring of animal activity using on-animal sensors [6,7].
Stress can also change cattle activity patterns. Cattle spend less time grazing and reduce
feed intake during hot periods when they may be under heat stress [8]. The diurnal activity
patterns of cattle and sheep changed when predators were present compared to patterns
observed without predators [9,10].

Stockmen have traditionally monitored cattle health by observing their behavior, but
this is time-consuming and sometimes impractical on extensive and rugged rangelands [11].
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Manually observing changes in animal behavior requires much human effort as rangelands
span a large spatial range and can include variable topography as well as shrubs and trees
that interfere with visual observation. The development of on-animal sensors, such as
ear tag accelerometers, can remotely monitor cattle activities and potentially provide that
information in real time [12,13]. Video approaches have been used to record cattle behav-
ior [14], but the large amount of associated data makes real-time transmission impractical
for rangeland uses because of battery limitations. Accelerometers are also used to remotely
monitor cattle behavior, but like video accelerometers, they produce large amounts of data
recording three axes of movement at intervals of 10 to 20 Hz. To transmit data in real-time,
accelerometer data are often condensed using edge computing techniques to provide indices
that summarize data collected over 5-to-10-min intervals to a single value [13]. This sum-
marization may limit its value for the detection of some behaviors. Tracking data typically
produce less data than video and accelerometers, often recording positions at 1 to 15 min
intervals, making real-time transmissions less of a burden on batteries [11].

Global Positioning System (GPS) devices can remotely record spatial movements.
Tracking data can be used to monitor livestock health and well-being as well as the use
of forage across their pastures [11,15]. For example, GPS tracking successfully detected
simulated water system failures [16]. Statistical packages and analyses have been applied
to evaluate tracking data and automatically utilize collected data from GPS devices [17] and
other sensors [14,18]. More recently, machine learning (ML) and data mining techniques [19]
are gaining interest due to their power to extract useful knowledge from large datasets.

Supervised machine learning techniques, such as random forests, support vector ma-
chines, and linear and quadratic discriminant analyses, have been used recently to predict
livestock behavior from on-animal sensors and GPS tracking [17,20]. These supervised
learning approaches require observations to train and validate machine learning models.
However, it is time-consuming and expensive to manually collect visual observations,
especially on extensive rangeland pastures.

Unsupervised learning is an additional machine learning technique. It can find pat-
terns or group data without utilizing any user-labeled information (visual observations or
video). Many machine learning tasks, such as feature selection, data segmentation, change
point detection, anomaly detection, and clustering, can be solved using unsupervised
learning techniques. Some unsupervised learning methods can generate intermediate data
to facilitate the downstream machine learning tasks (e.g., classification [19,21]). As far as
we are aware, no existing works have used state-of-the-art techniques, including time series
segmentation, for analyzing GPS tracking data.

This study utilizes unsupervised learning approaches to assign livestock behaviors
from GPS tracking data that span a wide spatial and temporal range with no human ob-
servation input. We design a new unsupervised learning framework to help categorize
and label cow behaviors. The framework procedure partitions movement data into differ-
ent segments using a state-of-the-art time series segmentation approach. This approach
generates many segments, and the tracking data characteristics from each segment are
similar. These segments are then categorized through clustering analysis into different
groups, which is used to predict the cow’s behavior through time.

When we designed this framework, there were two major requirements. First, we ex-
pect the method to show good performance, including segmenting the data well, clustering
the segments correctly, and running reasonably fast, all the while the predictions are con-
sistent with the cattle expert’s expectations of typical cattle behavior patterns. The second
requirement is that adopted algorithms have reasonably good interpretability. Conversely,
two major technical challenges must be addressed when designing this framework. Most
existing time series segmentation algorithms are too complicated to be utilized as the pro-
cedures may not be readily understood by biologists. We must choose an algorithm that
provides good results and is explainable. Also, the length of the segments must be differ-
ent. Clustering analysis algorithms must extract segments from equal-length sets from
variable-length records.
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GPS data

This study integrates three unsupervised learning approaches, time series segmen-
tation, feature extraction, and clustering, into GPS tracking data and then presents and
evaluates the corresponding predictions.

2. Methodology

We designed a two-step framework for the analyses based on observations and live-
stock behavior knowledge. When a cow displays one behavior, that behavior may persist
for an extended time period. For example, cows often lie down for an hour or more, which
means that the remotely sensed features should show similar values for a continuous
period of time for one behavior. The recorded feature values for a cow should be similar
when the cow is exhibiting the same behavior. For example, a cow’s velocity (or rate) is
often similar if it is walking despite the change in location.

The two-step framework works as follows (Figure 1). The first step is to partition
the long sequence of recorded positions (a cow’s movement path) into multiple shorter
non-overlapping segments. In each segment, a cow’s behavior should be the same. These
segments may have different lengths and belong to different behaviors or share the same
behavior. The second step is to group the segments sharing similar characteristics into
different clusters, where each cluster represents one behavior or one behavioral bout.

Feature ) D
Preprocessing Mini-batch ClaSP extarction Clustering
H ]—-[ Segmented Grouped
data data

Step 1: Segmentation

Step 2: Clustering

Figure 1. The proposed two-step analysis framework.

2.1. Dataset Description

Tracking data were collected as part of another study completed at Deep Well Ranch
located near Prescott, Arizona [16]. The study site is a 1096 ha pasture with gentle undulat-
ing terrain (112°29' W, 34°41’ N). The climate at the site is classified as cold semi-arid (Bsk)
according to the Koppen-Geiger Climate Zone [22].

A total of 120 Corriente cows and their calves grazed the study pasture. Cows varied
in age from 2 to 15 years. These cows were raised at Deep Well Ranch and were familiar
with the study pasture. Eight of the cows in the herd (randomly selected) were tracked
with IgotU GT-120 or IgotU GT 600 GPS receivers (Mobile Action Technology Inc., Taipei,
Taiwan) mounted on collars [23]. Cows were tracked at 2 min intervals from 28 May 2018
to 22 June 2018 (i.e., a total of 26 days).

Three features (the course, rate, and distance from water) were selected from the
GPS tracking data for analysis. The course is the direction in which a cow moves between
recorded positions and was calculated by the GPS device. The rate was calculated by
dividing the distance between two consecutive positions by the elapsed time between the
position recordings. The “distance from water” feature is the Euclidean distance from the
recorded position to the only water source located in the southwest corner of the pasture
(Figure 2).
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Figure 2. The recorded GPS positions of cow 225 show the trajectory (or pathway) of her movements
from 28 May to 22 June. Positions are small circles and were recorded at 2 min intervals using a GPS
collar. The pink lines represent the boundary of the 1096 ha rangeland pasture. Water was available
to the cows in the southwest corner of the pasture (indicated by a red circle).

2.2. Terminology

This section defines the terminology used in this paper.

Definition 1 (Record). A record of a dataset keeps the information of an object or the status of an
object at different times or different locations.

A record is also called a sample or an instance. This paper uses record, sample, and in-
stance interchangeably. In our study, a record /sample is the cow’s movement information
at a timestamp.

Definition 2 (Feature). A feature (denoted as f) describes the intrinsic characteristic or property
of a sample.

Examples of features include a cow’s location, movement velocity, and movement
direction at the recording time.

Definition 3 (Time series/sequence). A time series (or sequence) S is an ordered list of records
[(t1,71), (t2,72), .-, (tn,7n)] where t; < t; when i < jand r; is the record at timestamp t;.

The tabular time series data represent the movement of a cow. Each row represents
a record consisting of recorded values for multiple features at a specific time. The length
of a time series is the number of records in it. Given S = [(t1,71), (f2,72), ..., (t10,710)],
the length is 10.

Definition 4 (Segment/subsequence). A segment of a sequence S is a subsequence with records
(sequential recorded cow locations) in a continuous time period. One segment Sij can represent
the subsequence [(t;,1;), (tiv1,7it1), -+, (ti1,7j-1, (tj, 7})], where 1 <i < j < length of S and
the length of Sjjis j — i+ 1.

2.3. Step 1: Segment Sequences of Cow Movement Using ClaSP Approach

Step 1 partitions the movement sequence of a cow into different segments using a time
series segmentation algorithm such that the behaviors of the cow in one segment are similar.
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We choose to use a state-of-the-art time series segmentation approach called ClaSP [24]
to partition the movement data after investigating the many existing time series algorithms.
The ClaSP method was chosen based on two factors. First, it is a state-of-the-art method
proposed in 2021 [24]. Second, it utilizes a very easy-to-understand K-nearest neighbor
(KNN) classifier as a building block and applies self-supervision [25]. Thus, results from
this method are easy to understand and explain.

2.3.1. The ClaSP Algorithm

Fora givensequence S = [(t1,71), (t2,72),..., (tn, 74)], ClaSP uses a divide and conquer
solution [26] by recursively splitting a long segment into two smaller segments until it
obtains a predefined number of segments (which is a parameter).

This algorithm utilizes another parameter w as the length of a sliding window to extract
subsequences. For each time point t;, a subsequence/segment S; ;,—1 = [(t;, i), (tiy1,7iv1),
voos (Hisw—1,Tiyw—1)] of length w is extracted. In total, for a length — n sequence, n — w + 1
segments can be extracted, and let X be the set of these segments. For each timestamp
t;, the algorithm computes a score o; to estimate whether we can split the segment at ;.
The higher the score 0; is, the more reason to partition S at timestamp ;.

The score o; (for splitting at ¢;) is calculated as follows.

*  For t;, the algorithm first labels all the length — w segments with a class label (either
0 or 1). All the segments in X before ¢; are labeled with one class label (e.g., label 0),
indicating they belong to one behavior. All the segments in X. that correspond to or
after ¢; are labeled with another class label (e.g., label 1), indicating a different behavior.
These class labels are considered as ground truth behavior labels for splitting at ¢;.

*  Foreach segment in X, the algorithm finds K segments from . that are most similar to it.
These K segments are called the K nearest neighbors (KNNs) of S; ;1 ;1. The predicted
class label of the subsequence S; ;1 is the majority class label of its KNNs.

*  Based on the grand truth labels (Step 1) and the predicted labels (Step 2), the algorithm
calculates a validation score, the Area Under Curve (AUC) score. This score is 0;.

The time point with the highest splitting score o; is treated as a splitting point if it is
higher than a threshold to generate two segments (one segment Sy ;_; before t; and one
segment S, , after t;).

If more segments need to be generated, the above algorithm is recursively applied to
the two segments S; ;1 and S; ,. Such a process can be recursively applied to any segment
to conduct further splitting until no segment can be split (which means that the highest
splitting score is lower than the threshold).

There are two important parameters in this method. One is the sliding window size w.
Another one is the splitting score threshold. Setting the parameters is not straightforward.
According to [24], the sliding window size needs to be appropriately decided by, in this
particular case, livestock experts. If the sliding window size is not properly set, the algo-
rithm either detects many false splitting points (when w is too small) or misses segments
(when w is set too large). Setting the splitting score threshold is also crucial so that the
algorithm can stop at a proper stage. In this paper, we manually analyzed single-day time
series segments and estimated the daily number of change points.

2.3.2. Data Preprocessing and Mini-Batch Creation

Despite the fact that the ClaSP is a state-of-the-art approach, it cannot be directly
utilized because of its constraints. It only works for univariate time series data. L.e., in our
definition of S, r; is just a scalar value, instead of an instance with values for multiple
features. Our dataset is a multivariate time series because the record at each timestamp
contains values for multiple features. This setting affects how we calculate the distance
between subsequences. To address this issue, we utilize a very simple strategy. For each
length — w subsequence, we concatenate the subsequences of all the selected features to
form one subsequence.
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Another major issue we encountered when applying the ClaSP algorithm is that no
meaningful segments can be found from the entire tracking sequence for a cow (in this case,
26 days), even though we tried different parameter values. Through the process, we find
that the issue is caused by the long sequence (over 20,000 locations per cow). The original
algorithm never used the long sequences that were used in our study. To address this issue,
we propose a mini-batch idea.

The “mini-batch idea” is based on an observation. When we find KNNs for a segment,
we do not need to look at all the movement trajectories (for 26 days). Instead, the movement
in a shorter period that is close to the segment (e.g., within one day) can better help
identify the segments with similar behavior. The mini-batch idea works as follows. When
calculating the KNNs for each segment, we only use the segments within a small time
window. With the domain expert’s help, we set the small batch size to 120 (4 h). With this
small batch, the experiments show (Section 3.2) that we can easily set window sizes as
1,2, or 3. Utilizing this mini-batch, the calculation of KNNs improves because the number of
candidates for the KNN calculation decreases dramatically (from the whole long sequence
to the subsequence in a shorter period).

2.4. Step 2: Clustering Analysis

This step aims to group the segments into different clusters such that the segments
in one cluster exhibit similar behavior. In this clustering analysis, one segment is one
clustering instance. Note that each segment contains data from three features (f, fc, fi2w),
and the segments’ lengths may vary.

For clustering algorithms to work, all the instances for clustering (segments) need to
have the same number of features. However, the segments we obtained from the previous
step have different lengths. We first need to extract features from each segment. In our
study, we used the mean and standard deviation of the original data features (the rate,
course, and distance to water features). After extensive experiments, we found that using
only the statistical features from the rate feature resulted in the most consistent clusters.
Thus, our reported clustering results were based only on the rate feature.

Segment Clustering

We choose to use the hierarchical clustering approach in our analysis because hierar-
chical clustering analysis does not require any input parameters and allows users to form
and visualize different clusters.

We apply hierarchical clustering to group segments based on the features we created
for each segment. The hierarchical clustering creates a dendrogram to clearly show how the
instances (i.e., segments) are grouped together step by step to form different groups/clusters
(Figure 3). Many rangeland studies that classified cattle behavior from remotely collected
monitoring data (typically GPS tracking and accelerometers) predicted resting, grazing,
and walking [27,28]. We also hypothesized that cattle behavior may differ when cattle are
near water (less than 200 m) compared to far from water. These three behaviors (grazing,
resting, and walking) and whether the cow is near or far from water create six situations.
Correspondingly, we set the number of clusters to six.
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Figure 3. Dendrogram obtained using hierarchical clustering. The horizontal red line is the selected
threshold for cow 225. Different colors are used to represent different hierarchical clusters.

3. Case Study

All the methods were implemented using Python 3.9 and tested on a Mac with an M1
chip. The Scikit-learn (version 1.0.2) library was used to preprocess the data and build the
clustering model. The ClaSP code is downloaded from [24] and modified to reflect changes
described in Section 2.3.1.

3.1. Data Cleaning

We removed three of the eight tracked cows from the dataset because the tracking
data were incomplete. The GPS failed to record positions for several hours or even days.
The tracking data for the other five cows had minimal missing data and were used for
our experiments.

3.2. Model Parameter Tunning

Proper parameter values need to be configured to make the algorithm work. We choose
parameters by extensively analyzing the data of one cow’s trajectory on one day to deter-
mine the effect of the window size on the ClaSP segmentation algorithm.

We conducted experiments to examine the effect of different parameter settings on the
segmentation algorithm. The first parameter we tested was window size w. Our results
(Figure 4) show that the algorithm with smaller window sizes generates more (but false
positive) segments, while the algorithm misses important segments when using larger
window sizes. Comparing three window sizes 1 and 2 (Figure 4), we can observe that the
ClaSP method found many segments. For example, the algorithm partitions the movement
close to the location (3,643,000, 3,840,000) into two segments highlighted in navy and
orange. However, these two segments do not have intrinsic differences because the cow
constantly moves while keeping the same direction. Thus, these two segments should be
combined as one segment.

The right map of Figure 4 shows the segmentation results with a larger window
size 3. The ClaSP method misses segments for this window size. For example, in the
trajectory between locations (365,700, 3,840,150) and (366,900, 3,840,600), the cow’s speed
and direction change many times. However, the method did not detect them.

Based on the above analyses, we chose the following parameter setting for our frame-
work. For the ClaSP algorithm, we set three parameters: the window size w of ClaSP
(Section 2.3.1) was set to be two so that each sliding window can cover movement in 4 min;
the splitting score threshold (i.e., AUC score) (Section 2.3.1) was set to 70% as the filtering
condition of the ClaSP algorithm; and the mini-batch size was set to 120, representing
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splitting the data into 4 h subsequences (Section 2.3.2). For the clustering method, we set
the number of clusters to six (Section 2.4).
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Figure 4. Effect of window sizes (1, 2, and 3) on segmentation for cow 225 on 20 June 2018. The map on
the left uses a window size of 1 for segmentation, and the middle and right maps show segmentation
with window sizes of 2 and 3, respectively. (Color changes within a map reflect different segments.
Fewer segments were assigned to this portion of the trajectory with larger window sizes (1 vs. 2 vs. 3).

4. Results and Discussion
4.1. Results of Segmentation

The segments changed in correspondence to changes in the movement patterns (Figure 5).
For example, positions were recorded apart in a straight line (a change in color in Figure 5)
from positions located near each other in a group. This demonstrates that our segmentation
strategy can appropriately partition the cow trajectory utilizing three features (the rate,
course, and distance to water) without any user input or prior knowledge. The differentia-
tion among segments (Figure 5) demonstrates that the algorithm has identified segments
in the trajectory that indicate changes in direction, which often occur during grazing [29].
Another example is that the red and orange segments (i.e., the segment change) on the
top right of the trajectory show a clear direction change in the cow’s movement. On the
other hand, the cow’s trajectory at location (367,000, 3,840,500) shows grouped position
points with constant direction changes, indicating that the cow is not moving; the direction
changes likely reflect GPS error and suggest the cow may be resting (standing or lying).
Other features are also useful in helping generate the segments. For example, ClaSP can de-
tect and segment the cow’s moving path near the water tank based on the distance-to-water
feature, which is reflected by the different segments near the water tank.

3842000 A

3841500 -

3841000 A

3840500 A

Northing

3840000 A

3839500 A

3839000 1 Water tank
363500 364000 364500 365000 365500 366000 366500 367000 367500
Easting

Figure 5. Segmentation of the trajectory or path of cow 225 from 28 May 2018 to 22 June 2018. Color
changes along the path represent the different segments. For example, the green segment in the
upper left of the map is one segment. The adjacent orange segment (shorter and more sinuous) is a
separate segment.
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4.2. Discussions of Segment Clustering Results

Six different clusters were created by aggregating segments using the rate feature
(Figure 6). In contrast to our expectations, the distance to water was not useful for clus-
tering. Six different colors represent six different clusters with 26 days of data from one
cow (Figure 6). For example, the segments belonging to the pink cluster (Figure 6 Clus-
ter 4) are aggregated, indicating that the cow stayed at the same location, and direction
changes are likely from GPS error. Intuitively, this cluster indicates that the cow is resting.
The olive (Figure 6 Cluster 5), crimson (Figure 6 Cluster 1), and purple (Figure 6 Cluster 3)
clusters represent successive positions relatively long distances apart along the same gen-
eral course, which suggests walking behavior. The green (Figure 6 Cluster 0) and orange
(Figure 6 Cluster 2) clusters are tortuous while the cow moves and switches directions,
which might indicate grazing. These clusters represent typical behavioral activities of cattle
and could be used to monitor their health and well-being. For example, cattle that rest
and limit their grazing during the early morning and evening (normal grazing bouts) may
be ill. Tobin et al. [30] found a distinct change in the diurnal behavior pattern of grazing
when cattle became ill with bovine ephemeral fever. Grazing activity markedly declined
at the onset of their illness, which was especially noticeable in the morning and evening.
Identifying these clusters and the associated behavior (i.e., labeling, see below) facilitates
the remote monitoring of cattle grazing rangelands and the potential detection of illness
and other welfare concerns [5,11].

—— Cluster 0 .
—— Cluster 1
3842000 Cluster 2
—— Cluster 3
3841500 Cluster 4
—— Cluster 5
o 3841000 -
£
=
5
S 3840500
3840000
3839500
3839000 - Water tank

363500 364000 364500 365000 365500 366000 366500 367000 367500
Easting

Figure 6. Map of clusters of the trajectory (path) cow 225 from 28 May 2018 to 22 June 2018. Different
colors represent different clusters. Clusters are combinations of consecutive segments (e.g., Figure 5)
with similar properties.

4.3. Classifying/Labeling Clusters with Behaviors

We labeled / classified each cluster with a cow behavior based on (i) the mean, median,
and standard deviation of the rate for each cluster (Table 1) and (ii) the diurnal pattern
(hourly) of a cow’s clusters (Figure 7). Intuitively, when S, < 4.5 m/min (S, represents the
mean rate of a cluster across all cows), the cow is resting; when 4.5 m/min < S, < 25 m/min,
the cow is grazing; and when S, > 25 m/min, the cow is walking, and this intuition is
consistent with the criteria used by Augustine et al. [28] Nyamuryekung’e et al. [31]
and Tobin et al. [16] used the following values for resting (rate < 2.34 m/min), grazing
(2.34 < rate < 25 m/min) and walking (rate > 25 m/min) (Table 2). Ungar et al. [27] re-
ported average cattle grazing velocities of 5 to 6 m/min and walking velocities of 30 m/min.
The diurnal activity pattern (by the hour) using our clusters (Figure 7) is also consistent
with the findings of Walker et al. [32] and Gregorini Pablo [33], where the cows’ common
daily activities are 38~48% grazing, 50~57% resting, and 2~5% walking.
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Figure 7. Diurnal distribution of activities by cow 225. Activities were categorized into three labels,
grazing, resting, and walking. The distribution reflects hourly averages across the entire tracking
period 28 May to 22 June 2018.

Table 1. Mean rate, standard deviation, and median of the six clusters and associated predicted
behaviors for cow 225.

Cow 225 Clusters Rate Mean Rate Standard Deviation Rate Median Label
Cluster 0 46.64 25.04 52.61 Walking
Cluster 1 24.84 26.73 19.15 Walking
Cluster 2 6.76 12.51 0.00 Grazing
Cluster 3 1.09 3.72 0.00 Resting
Cluster 4 13.18 19.86 0.00 Grazing
Cluster 5 3.56 7.52 0.00 Resting

Table 2. Average rate (m/min) of predicted walking, grazing and resting behaviors for all cows.

Cow Identification

Activities (m/mins) 225 257 322 535 oll Overall Average
Walking 35.74 38.38 39.83 61.18 47 .45 44.09
Grazing 9.97 12.20 12.07 16.39 13.86 12.90
Resting 2.33 242 1.31 2.16 1.98 211

We plotted the trajectory of cow 225 into three groups, grazing, walking, and resting
(Figure 8). The yellow line represents resting, and the corresponding cow trajectory looks
like the cow’s movement remains close to a specific location on the plot. The red line
represents the cow walking, which is a small portion of the whole trajectory. When the cow
is walking, it often moves directly to and from water. The walking trajectory shown in red
is relatively straight and provides evidence that the cow is walking. Finally, the winding
green line represents grazing. Larson-Praplan et al. [29] measured the tortuosity of cattle
movement paths and found that turning angles varied in response to forage characteristics
of patches. Cattle turned frequently while grazing and often modified turning angles
and increased tortuosity to remain in preferred patches (typically 30 to 90 m in size). The
diurnal pattern is also consistent with normal cow behavior with low levels of activity at
night and active periods during the early morning and evening (typical times for grazing
bouts). The timing of predicted walking bouts is also consistent with the expectation of
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cattle walking to water during the late morning [34-36]. The diurnal pattern of our example
cow (#225) is similar to the patterns of the other four cows (five total) evaluated (Figure 9
and Table 2). The similarity of the activity patterns among the five cows evaluated shows
that the proposed two-step non-supervised machine learning approach should work for
multiple cows.

—— Grazing

—— Walking
3842000 ) Resting

3841500

3841000
o
£
&
t
2 3840500

3840000

3839500

3839000 Water tank

363‘500 364000 364‘500 365‘000 365‘500 366‘000 366‘500 367b00 367‘500
Easting

Figure 8. Map of predicted behaviors of cow 225 from 05/28/2018 to 06/22/2018. Clusters
were combined into predicted behaviors (grazing, resting, and walking). Colors represent the

predicted behaviors.

—¥— Cow225Grazing —A— Cow257 Grazing —#— Cow322Grazing —— Cow 535 Grazing —4— Cow 011 Grazing
—¥— Cow225Walking ~—A— Cow 257 Walking ~—#— Cow322Walking —e— Cow 535Walking —#— Cow 011 Walking
Cow 225 Resting Cow 257 Resting Cow 322 Resting Cow 535 Resting Cow 011 Resting

100
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D
o

Behavior (%)
N
o
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Figure 9. Diurnal distribution (hourly) of predicted behaviors of all the cows. The diurnal distribution
reflects hourly averages of three behaviors (grazing, resting, and walking) for each cow across the
entire tracking period (May 28 to 22 June 2018).

Discussions of the Soundness of Labeled Clusters

We studied five cows over 26 days, plotting their hourly activities. From 10 p.m. to
6 a.m., they rest more than grazing, with no walking. By 6 a.m., they wake, begin the
grazing bout, and start walking. The peak walking time is around noon, possibly indicating
movement toward water sources. A second grazing bout was predicted during 5 to 8 p.m.
In the summer when our study occurred, cattle typically have two primary grazing bouts
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(early morning and evening [29,33]). Cattle may avoid grazing during midday and instead
travel to water and rest to help compensate for high temperatures.

Our framework can segment a cow’s trajectory and group movements exhibiting
similar behaviors. Similarly, we demonstrate the reasonability of our clustering and labeling
results by examining cows’ average daily behavior patterns. This framework can aid
researchers in identifying animal behaviors without having to observe cows in extensive
and/or rugged rangeland pastures to use in supervised machine learning models. These
observations are very labor-intensive. For example, Augustine and Derner [28] observed
cattle for a total of 504 h to use in supervised machine learning analyses with regression
trees. In other research that used supervised machine learning to classify behavior, two
observers monitored cows during daylight hours for 9 days in one study and three observers
recorded cattle behavior for 8 days in another study [27]. Most machine learning approaches
used to classify cattle behavior are more accurate if the model is developed separately
for each cow rather than pooling all cows together in a generic model [37]. This requires
many observations of each cow, which is difficult in extensive and rugged rangeland. This
unsupervised machine learning approach can predict the behavior of individual cows from
GPS tracking data without the time and expense of collecting observations to train the
model. As far as we know, this is the only study using unsupervised machine learning
to classify cattle behavior from tracking data. Unsupervised machine learning has been
used to predict and evaluate cattle behavior in the dairy industry using accelerometer and
milking order data [38,39]. Unsupervised machine learning models and accelerometer data
from dairy cattle were also used to predict estrus [40,41].

5. Conclusions and Future Work

In this study, we designed an unsupervised machine learning framework to classify
cow behaviors based on their movements. The framework first partitions the movement
data (represented as a long sequence) into shorter segments and then clusters the segments
into different groups. Each group represents one behavior. The approach was applied
to a dataset acquired from five cows in one month. The pattern of cattle’s behaviors was
consistent with previous studies. Our research suggests that animal behavior can be classi-
fied into different behaviors using GPS tracking data without observational data to train
models, saving time and labor. With the development of real-time tracking technologies,
unsupervised machine learning could be a valuable tool to help monitor livestock behavior
on an individual animal and site-specific basis.

In the future, we will create a pipeline to conduct this unsupervised analysis so that
domain experts, in this case, those studying livestock behavior, can directly utilize this
framework to label (classify) cow behaviors and apply them to the other datasets. Another
direction of future work is to design an online analysis approach or incremental method
to segment cow movement. The proposed two-step framework works offline. The offline
approach cannot be utilized to analyze movement data in real time. This technique has
advantages over using specific velocity values for assigning behavior (e.g., [31]), because it
is derived from the collected data of individuals and will vary among and across herds.
Potentially, this unsupervised machine learning framework may increase the availability of
predicted behavior patterns from remotely collected GPS tracking data that are reflective of
the unique characteristics of each animal and each location.

Most importantly, the results of this unsupervised machine learning algorithm must be
validated with actual observations. Although the purpose of this proposed framework is to
avoid collecting visual observations, a study using observations to validate the accuracy of
this approach is needed. In addition, specific studies are needed to compare the efficacy of
supervised and unsupervised machine learning approaches for predicting cattle behavior
patterns from remotely collected tracking data.
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