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Abstract

We present an algorithm and implementation of integral-direct, density-fitted Hartree-Fock

(HF) and second-order Møller-Plesset perturbation theory (MP2) for periodic systems. The

new code eliminates the formerly prohibitive storage requirements and allows us to study sys-

tems one order of magnitude larger than before at the periodic MP2 level. We demonstrate

the significance of the development by studying the benzene crystal in both the thermody-

namic limit and the complete basis set limit, for which we predict an MP2 cohesive energy of

↑72.8 kJ/mol, which is about 10–15 kJ/mol larger in magnitude than all previously reported

MP2 calculations. Compared to the best theoretical estimate from literature, several modi-

fied MP2 models approach chemical accuracy in the predicted cohesive energy of the benzene

crystal and hence may be promising cost-effective choices for future applications on molecular

crystals.
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1 Introduction

Recent years have witnessed a rapid growth of interest in leveraging systematically improvable

wavefunction-based quantum chemistry methods to study challenging problems in materials sci-

ence.1–19 These simulations, often performed using periodic boundary conditions, are computa-

tionally expensive because of the large simulation cells or dense k-point meshes needed to reach

the thermodynamic limit10,16,19,20 (TDL) and the large one-particle basis sets needed to reach the

complete basis set (CBS) limit.1,21–26 As in molecular calculations, the evaluation and storage of

the electron-repulsion integrals (ERIs) represent a major computational bottleneck27–30 in Hartree-

Fock31 (HF) and low-order perturbation (e.g., the second-order Møller-Plesset perturbation the-

ory,32 MP2) calculations, including simulations using Kohn-Sham density functional theory33,34

(KS-DFT) with hybrid35–37 and double-hybrid38–41 exchange-correlation functionals. In Ref. 42,

the commonly used density fitting (DF) technique43–45 was adapted for periodic systems to reduce

the computational cost of handling the periodic ERIs. The resulting implementation in the PySCF

software package46,47 has been used in many applications.12,15,18,48,49

This previous implementation of periodic DF42 is integral-indirect, meaning that the needed

integrals are pre-computed and stored in memory or on disk for later use. The resources needed

to store the DF integrals grow quadratically with the number of k-points and cubically with the

size of the unit cell or the basis set, preventing studies of large systems in the two limits. An

integral-direct implementation that avoids storing all DF integrals at once is thus highly desirable

but is hindered by the high computational cost of evaluating these integrals.42 Recently, two of

2



us introduced a range-separated DF50 (RSDF) algorithm for fast evaluation of the DF integrals,

which, when combined with efficient integral screening,51 accelerates periodic DF by one to two

orders of magnitude, as illustrated for the simulation of the benzene crystal in Fig. 1.

In this work, we leverage this significant speedup to enable an integral-direct implementation

of periodic HF and MP2. The development allows us to perform periodic HF and MP2 calculations

for systems one order of magnitude larger than with the previous integral-indirect implementation.

We demonstrate the significance of this development by estimating the MP2 cohesive energy of the

benzene crystal in both the TDL and the CBS limit. A careful comparison to existing MP2 results

in the literature2,4,52 suggests that they may have large finite-size and/or basis set incompleteness

errors, emphasizing the challenge and importance of reaching both the TDL and the CBS limit in

correlated wavefunction-based simulations of materials. We also show that various modified MP2

models53–56 exhibit nearly chemical accuracy in the computed cohesive energy of the benzene

crystal and hence may be promising for future applications on molecular crystals.
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Figure 1: Wall time for calculating the DF integrals for the benzene crystal, whose unit cell is
shown on the right, with Γ-point Brillouin zone sampling. The recently developed RSDF50 (or-
ange) algorithm accelerates the previous DF implementation (blue) by up to two orders of magni-
tude. All calculations are performed using PySCF on a single node with 16 CPU cores.
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2 Theory

We start by briefly reviewing the formalism of periodic DF. In periodic systems, the atom-centered

Gaussian-type atomic orbitals (AOs) are translational symmetry-adapted

ωkµ (r) =
∑

R

eik·Rωµ(r ↑R) (1)

where the lattice summation runs over all unit cells in real space and k is one of the Nk crystal

momenta sampled from the first Brillouin zone.8 The periodic DF expands the AO product density

in a second, auxiliary set of translational symmetry-adapted Gaussian basis functions εkP(r)42,50

ωk1→
µ (r)ωk2

ϑ (r) ↓
naux∑

P

dk1k2
Pµϑ ε

k12
P (r) (2)

so that the ERIs can be approximated as

Vk1k2k3k4
µϑϖϱ ↓

naux∑

P,Q

dk1k2
Pµϑ Jk34

PQ dk3k4
Qϖϱ (3)

where Jk
PQ = (ε↑kP |εkQ) is a two-center Coulomb integral and the crystal momentum conservation

requires that k12 ↔ ↑k1 + k2 = ↑k34 + G, where G is a reciprocal lattice vector. The fitting

coefficients are determined by solving a linear equation

naux∑

Q

Jk12
PQ dk1k2

Qµϑ = Vk1k2
Pµϑ (4)

which allows one to rewrite Eq. (3) as

Vk1k2k3k4
µϑϖϱ ↓

naux∑

P,Q

Vk1k2
Pµϑ [(Jk34)↑1]PQVk3k4

Qϖϱ =
∑

P

Ṽk1k2
Pµϑ Ṽk3k4

Pϖϱ (5)

where Vk1k2
Pµϑ = (ε↑k12

P |ωk1→
µ ω

k2
ϑ ), Ṽk1k2 = Lk12†Vk1k2 , and Lk is the lower-triangular matrix from the

Cholesky decomposition of (Jk)↑1, i.e., (Jk)↑1 = LkLk†. To summarize, periodic DF factorizes the
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periodic four-center ERIs into periodic two-center and three-center Coulomb integrals, and this

compression is responsible for the reduced storage requirements.

However, even with DF, storage is still the main computational bottleneck for large systems:

storing the three-center Coulomb integrals Vk1k2
Pµϑ requires O(N2

k nauxn2
AO) memory or disk space, i.e.,

it scales quadratically with the number of k-points and cubically with the size of the unit cell or

the basis set. The basic idea of an integral-direct implementation is to calculate the three-center

integrals on-the-fly to avoid the high cost of storing them all at once. In this work, using periodic

integral evaluation with RSDF, we calculate the integrals in blocks and batch one of the two AO

indices, which we denote by Vk1k2
P[µ]ϑ. The alternative choices to batch over the auxiliary function

index or the k-points are considered in the Supporting Information, where we argue that batching

over an AO index (as we do here) is best for calculations with large unit cells and small k-point

meshes, but batching over k-points will be best for calculations with small unit cells and large

k-point meshes (larger than Nk ↓ 53 with a high-quality basis set).

We first discuss our integral-direct implementation of periodic HF, which resembles the algo-

rithms previously developed for molecular HF calculations57,58 but is made compatible here with

the k-point symmetry that is unique to periodic systems. (See also Refs. 59–61 for recent re-

lated developments in periodic exchange evaluation.) Our goal is to calculate the Coulomb and

the exchange matrices, referred to as the J-build and K-build, in an integral-direct manner. The

discussion below assumes a spin-restricted mean-field state with crystalline orbitals (COs)

ςkp(r) =
nAO∑

µ

Ck
µpω

k
µ (r) (6)

and the corresponding CO energies φkp . (The common notation of i, j, · · · labelling nocc occu-

pied COs, a, b, · · · labelling nvir virtual COs, and p, q, · · · labelling unspecified COs, will be used

throughout the paper.) The extension to a general state that breaks spin symmetry is straightfor-

ward.
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With DF, the Coulomb matrix is calculated as

Jk
µϑ =

naux∑

P

Vkk
PµϑṽP (7)

where ṽ = (J0)↑1v,

vP =
1
Nk

Nk∑

k

nAO∑

ϖϱ

Vkk
PϖϱDk

ϱϖ, (8)

and Dk
ϱϖ is the HF density matrix. The intermediates v and ṽ are of size O(naux) and can always be

held in memory. We note that only three-center integrals that are diagonal in k are needed, but the

cubic scaling with the unit cell size or the basis set size is unchanged and can still be the bottleneck

for large unit cells and/or large basis sets. To that end, we perform the tensor contractions in

Eqs. (7) and (8) in blocks by batching one of the AO indices,

Jk
[µ]ϑ =

naux∑

P

Vkk
P[µ]ϑṽP (9)

for Eq. (7) and

vP =
∑

[ϖ]

( 1
Nk

Nk∑

k

∑

ϖ↗[ϖ]

nAO∑

ϱ

Vkk
PϖϱDk

ϱϖ

)
(10)

for Eq. (8). The batching here introduces no extra computational cost but simply avoids storing the

full Vkk
Pµϑ tensors.

For the exchange matrix, we adapt the occupied orbital-based K-build algorithm58,62 for peri-

odic calculations with DF,

Kk1
µϑ =

1
Nk

Nk∑

k2

nocc∑

i

naux∑

P

W̃k1k2
Pµi W̃k1k2→

Pϑi (11)

where W̃k1k2 = Lk12†Wk1k2 and

Wk1k2
P[µ]i =

nAO∑

ϱ

Vk1k2
P[µ]ϱC

k2
ϱi

√
nk2

i (12)

with nk
i the CO occupation number (i.e., 2 for a spin-restricted state). Like for the J-build, we
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avoid the storage of the entire Vk1k2
Pµϱ tensor in the half-transformation (12) by batching over an

AO index. The alternative that batches the ϱ index in Eq. (12) is suboptimal because it requires

repeated tensor addition to accumulate the results. Because Wk1k2
Pµi is smaller than Vk1k2

Pµϑ by a factor

of nAO/nocc, it can be stored in its entirety for significantly larger systems. When it can be stored

in memory, this completes our description of a fully direct periodic K-build.

When Wk1k2
Pµi does not fit in memory but does fit on disk, we use a semi-direct algorithm. In this

case, we store Wk1k2
Pµi on disk and loaded into memory in blocks by batching the i index in Eq. (11),

Kk1
µϑ =

∑

[i]

( 1
Nk

Nk∑

k2

∑

i↗[i]

naux∑

P

W̃k1k2
Pµi W̃k1k2→

Pϑi

)
. (13)

If necessary, Eq. (13) can be used in a fully direct manner (i.e., using only memory), but this

increases the computational cost compared to the semi-direct algorithm because each batch of

the half-transformed integrals, Wk1k2
Pµ[i] , requires evaluating the entire set of three-center integrals

Vk1k2
Pµϑ . Whether the semi-direct approach is more efficient than the fully direct alternative depends

on the relative cost of integral evaluation compared to writing to and reading from disk. For the

current RSDF implementation, we found by numerical tests that the integral evaluation is still the

computational bottleneck, and thus we use the semi-direct approach throughout this work for the

K-build. We note that the situation may change depending on the compute architecture, available

resources, or with further development of periodic integral evaluation (see e.g., ref 63).

Lastly, we discuss the integral-direct implementation of periodic MP2. The correlation energy

for periodic MP2 is

EMP2,c = ↑ 1
N3

k

Nk∑

k1k2k3

∑

abi j

Vk1k2k3k4→
aib j (2Vk1k2k3k4

aib j ↑ Vk3k2k1k4
bia j )

φk1
a ↑ φk2

i + φ
k3
b ↑ φ

k4
j

(14)

where k4 = k1 ↑ k2 + k3 +G by crystal momentum conservation. With DF, the transformed ERIs
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are approximated by three-index tensors

Vk1k2k3k4
aib j ↓

naux∑

P

Ũk1k2
Pai Ũk3k4

Pb j (15)

where Ũk1k2 = Lk12†Uk1k2 and

Uk1k2
Pai =

nAO∑

µ

( nAO∑

ϑ

Vk1k2
Pµϑ Ck2

ϑi

)
Ck1→
µa =

nAO∑

µ

Wk1k2
Pµi Ck1→

µa (16)

are transformed three-center integrals, where we used Eq. (12) (nk
i = 1 here) for the second equal-

ity. The half-transformed integrals Wk1k2
Pµi in Eq. (16) can be computed as discussed above for the

K-build and stored on disk. These integrals are then loaded into memory in blocks by batching the

i index for the second transform in Eq. (16); the alternative that batches the µ index is suboptimal

due to the repeated tensor addition for accumulating the results. The Uk1k2
Pai tensors are marginally

smaller than Wk1k2
Pµi (by a factor of nAO/nvir), and therefore have similar storage requirements. If

Uk1k2
Pai exceeds the available disk space, we compute it in blocks by batching the i index, Uk1k2

Pa[i] , and

compute the MP2 energy in blocks accordingly

EMP2,c =
∑

[i]

∑

[ j]

(
↑ 1

N3
k

Nk∑

k1k2k3

∑

i↗[i]

∑

j↗[ j]

nvir∑

ab

· · ·
)

(17)

where the summand is the same as that in Eq. (14) and omitted here. Although not explored in

this work, the MP2 one-particle reduced density matrix, which is useful in various reduced-scaling

correlated methods based on MP2 natural orbitals,21,64–69 can be evaluated in essentially the same

manner. Additional approximations such as the Laplace transform that have been shown to further

reduce the computational cost of canonical periodic MP2 calculations9 will be explored in future

work.
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3 Computational details

The integral-direct algorithms presented above for periodic HF and MP2 calculations with DF are

implemented in the PySCF software package46,47 which uses libcint70 for calculating atomic inte-

grals. We demonstrate the impact of our integral-direct algorithms by estimating the MP2 cohesive

energy of the benzene crystal in both the TDL and the CBS limit. The cohesive energy of the ben-

zene crystal has been well-studied in the literature using molecular codes via the truncated many-

body expansion (MBE)71–74 with several correlated wavefunction methods7,75 including MP2.52

Two different periodic MP2 calculations have also been reported,2,4 showing good agreement with

each other but differing from MBE results52 by about 7 kJ/mol. Here, we leverage the power of our

integral-direct implementations to investigate these discrepancies through our own careful investi-

gation of finite-size and basis set errors, ultimately finding an MP2 cohesive energy that is larger

in magnitude than any of these previous studies.

All calculations reported below were performed using PySCF on a single compute node with

384 GB of memory and 1 TB of disk space. The Brillouin zone is sampled by uniform k-point

meshes including the Γ-point. Finite-size errors associated with the divergence of the HF exchange

integral at G = 0 are handled using a Madelung constant correction.76–78 With this treatment, both

the HF energy and the MP2 correlation energy exhibit a 1/Nk asymptotic convergence to the TDL

(i.e., Nk = ↘) and can hence be extrapolated using the following two-point formula

E(↘) =
N↑1

k,2E(Nk,1) ↑ N↑1
k,1E(Nk,2)

N↑1
k,2 ↑ N↑1

k,1

(18)

for sufficiently large Nk,1 and Nk,2. We denote an extrapolation based on Eq. (18) (Nk,1,Nk,2).

4 Results and discussion

We first calculate the cohesive energy of the benzene crystal for the 138 K lattice geometry79

[code BENZEN01 in the Cambridge Structure Database80 (CSD)] using the all-electron cc-pVXZ
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Figure 2: Thermodynamic limit convergence of the HF cohesive energy (a) and the MP2 correla-
tion energy contribution to the cohesive energy (c) of the benzene crystal (CSD code BENZEN01)
using different basis sets. Panels (b) and (d) provide zoom-in views of the corresponding region
in (a) and (c) indicated by black rectangles. Hollow symbols correspond to calculations that can
be performed using the previous integral-indirect implementation, while filled symbols are calcu-
lations made possible by the integral-direct implementation developed in this work. For each basis
set, the TDL extrapolation based on the two largest calculations [(23, 33) for DZ and (13, 23) for
others] is shown as a solid line of the corresponding color. For DZ, the (13, 23) TDL extrapolation
is also shown as a black dashed line.

(henceforth referred to as XZ) basis sets81 up to QZ. As shown in Fig. 1, each unit cell contains four

benzene molecules, 168 electrons, and 456, 1056, and 2040 AOs with the DZ, TZ, and QZ basis

sets, respectively. The corresponding cc-pVXZ-JKFIT basis sets58 are used for DF. The 1s core

electrons of carbon are kept frozen in the MP2 calculations. The same lattice geometry and similar

basis sets were used in previous MBE calculations.7,52,75 The k-point convergence of the cohesive

energy from our periodic HF and MP2 calculations is shown in Fig. 2 for different basis sets. For

MP2, an estimate of the CBS limit of a given k-point mesh is obtained by a 1/X3 extrapolation

using the TZ (X = 3) and the QZ (X = 4) results of the same k-point mesh. For HF, the change of

the cohesive energy from TZ to QZ is less than 0.03 kJ/mol for all k-point meshes. Thus, the QZ

HF results are taken as the CBS limit without further extrapolation.

With the previous integral-indirect code, we can compute the cohesive energies using Nk = 13
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and 23 with the DZ basis set, but only using Nk = 13 with the TZ and QZ basis sets, all of which

are marked by hollow symbols in Fig. 2. Therefore, the TDL extrapolation using Eq. (18) can

only be performed with DZ (black dashed lines) and gives a cohesive energy of 19.6 kJ/mol for

HF and ↑48.6 kJ/mol for MP2, respectively. The quality of this (13, 23) TDL extrapolation is,

however, questionable due to the use of relatively small k-point meshes. In addition, the MP2

cohesive energy at Γ-point obtained using the DZ basis set is about 20 kJ/mol higher than the

estimated CBS limit as shown in Fig. 2(c), indicating a large basis set incompleteness error. A

simple composite estimate, based on these minimal data points, suggests an MP2 cohesive energy

of ↑67.9 kJ/mol in the combined TDL and CBS limit, which underestimates our best estimate by

about 5 kJ/mol (vide infra).

The integral-direct code developed in this work allows us to obtain the cohesive energies for

k-point meshes one order of magnitude larger than before, i.e., Nk = 33 with DZ and Nk = 23

with TZ and QZ, as marked by filled symbols in Fig. 2. For DZ, a (23, 33) TDL extrapolation

using Eq. (18) (blue solid lines) gives a cohesive energy of 19.4 kJ/mol for HF and ↑48.7 kJ/mol

for MP2, respectively, which agree very well with the (13, 23) TDL extrapolation discussed above

[see also the overlay of the blue solid line and the black dashed line in Fig. 2(b,d)]. The nearly

quantitative agreement justifies a (13, 23) TDL extrapolation for larger basis sets followed by a

composite correction from the difference between the (23, 33) and (13, 23) TDL extrapolations of

DZ (which we denote by ∆DZ). The obtained cohesive energies in the TDL for various basis

sets and the estimated CBS limit are listed in Table 1, along with results from the literature for

comparison.

The cohesive energy from our periodic HF calculations in the CBS limit (20.2 kJ/mol) agrees

quantitatively with that obtained from a MBE truncated to tetramers.7 Our estimated MP2 cohesive

energy in the CBS limit (↑72.8 kJ/mol) is about 9 kJ/mol larger in magnitude than the MBE result

in ref 52, which considered only dimer interactions. We attribute the difference to the neglect of

contributions from trimers and tetramers, which have been shown to cause a sizable error for the

benzene crystal.7
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Table 1: Cohesive energy of the benzene crystal. Results are reported for the 138 K lattice struc-
ture79 (CSD code BENZEN01) unless otherwise specified.

Basis set TDL Ecoh [kJ/mol]

HF MP2
MBE

cc-pV5Z 20.2 N/A ref 7
(T,Q)-CBS N/A ↑64.0 ref 52

Periodic
cc-pVDZ (23, 33) 19.4 ↑48.7 this work
cc-pVTZ (13, 23) + ∆DZ 20.1 ↑65.5 this work
cc-pVQZ (13, 23) + ∆DZ 20.2 ↑69.8 this work
(T,Q)-CBS (13, 23) + ∆DZ 20.2 ↑72.8 this work

p-aug-6-31G**a N/A N/A ↑56.6b ref 2c

p-aug-6-31G**a (13, 23) 20.0 ↑67.9 this workc

cc-TZVPd 2 ≃ 1 ≃ 2e 21.2 ↑58.7 ref 4c

cc-TZVPd (13, 23) 20.5 ↑69.5 this workc

a The diffuse p function for H and d function for C from the aug-cc-pVDZ basis set are added 6-31G**.
b Using local MP282 (LMP2).
c Using the 123 K lattice structure83 (CSD code BENZEN07).
d Using the GTH pseudopotential optimized for HF.84

e Using the truncated Coulomb potential85 for HF.

Also listed in Table 1 are the cohesive energies from two periodic MP2 studies in literature2,4

for the 123 K lattice structure83 (CSD code BENZEN07). Ref 2 uses a partially augmented 6-

31G** (p-aug-6-31G**) basis set and obtains an MP2 cohesive energy of ↑56.6 kJ/mol, while ref

4 uses a TZ-quality basis set (cc-TZVP) and Goedecker-Teter-Hutter (GTH) pseudopotentials86,87

and predicts a similar value of ↑58.7 kJ/mol. Despite the reasonable agreement between them,

these values are noticeably smaller in magnitude, by up to 16 kJ/mol, than our best estimate in the

TDL and the CBS limit. We repeated our MP2 calculations using the same basis sets and lattice

structure as in these previous works, but extrapolated to the TDL based on the (13, 23) scheme

established above. As shown in Table 1, the difference between our MP2 cohesive energies and the

literature values suggests that the latter have a finite-size error of about 11 kJ/mol. The difference

from our best estimate in the CBS limit reveals a basis set incompleteness error of about 3 and
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Figure 3: Cohesive energy of the benzene crystal (138 K lattice structure) computed from MP2
and its empirical modifications in both the TDL [(13, 23) + ∆DZ] and the CBS limit [(T,Q)]. The
theoretical best estimate (TBE) from ref 7 is plotted for comparison. The red shaded area indicates
±1 kcal/mol from the TBE.

5 kJ/mol for the cc-TZVP and the p-aug-6-31G** basis sets, respectively (we have numerically

confirmed that the two crystal structures have cohesive energies that differ by less than 1 kJ/mol).

These comparisons demonstrate the challenge of reaching the combined TDL and CBS limit and

the value of our integral-direct algorithms that enable calculations with large k-point meshes and

large basis sets.

Finally, we gauge the performance of various empirically modified MP2 models that are com-

monly used for molecules,53–56 and which we have found, in forthcoming work from our group,88

to significantly improve the cohesive properties of covalently bound semiconductors and insu-

lators. These models are based on scaling the correlation energy of different spin components

[i.e., same-spin (SS) and opposite-spin (OS)] with different coefficients

EMP2,c
modified(cSS, cOS) = cSSEMP2,c

SS + cOSEMP2,c
OS (19)

where the unmodified MP2 model is recovered for cSS = cOS = 1. Figure 3 shows the benzene

crystal cohesive energy computed from three such models in the TDL and the CBS limit, along

with the theoretical best estimate (TBE) from ref 7 for comparison. All modified MP2 models

correct for the known overestimation of the dispersion interaction by unmodified MP2.89,90 The

general-purpose spin-component-scaled (SCS) model53 and the SCS-molecular interaction (SCS-
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MI) model55 parameterized for reproducing the CCSD(T)91 intermolecular interactions both give

results within chemical accuracy (1 kcal/mol or 4.2 kJ/mol; see the red shaded area in Fig. 3), while

the scaled-opposite-spin (SOS) model54 significantly underestimates the TBE by about 13 kJ/mol,

which is consistent with previous literature results.55,92

5 Conclusion

To conclude, in this work we reported an integral-direct implementation of periodic HF and MP2

with DF, which is made possible by our recent developments in periodic DF integral evaluation.50,51

The development enables us to study systems one order of magnitude larger than before and al-

lowed us to estimate the MP2 cohesive energy of the benzene crystal in both the TDL and the

CBS limit, which in turn corrects the previously reported MP2 results from the literature. Several

modified MP2 models were shown to exhibit nearly chemical accuracy for the benzene crystal

cohesive energy, which suggests that modified MP2 models and the closely related double-hybrid

KS-DFT17,38–41,93 may be cost-effective choices for crystal structure prediction.

The integral-direct code developed in this work has essentially eliminated the storage bottle-

necks of large, periodic electronic structure calculations at the presented levels of theory. However,

it does not lower their computational scaling, which is now the bottleneck that precludes larger cal-

culations. For truly large-scale applications, local approximations in one form or another62,94–98 are

necessary, and we expect that the work presented here will be essential in the benchmarking and

development of those methods.
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