Integral-direct Hartree-Fock and Mgller-Plesset
Perturbation Theory for Periodic Systems with
Density Fitting: Application to the Benzene

Crystal

Sylvia J. Bintrim,” Timothy C. Berkelbach,*" and Hong-Zhou Ye*'

tDepartment of Chemistry, Columbia University, New York, New York 10027, USA

tCenter for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA

E-mail: tim.berkelbach@gmail.com; hzyechem@gmail.com

Abstract

We present an algorithm and implementation of integral-direct, density-fitted Hartree-Fock
(HF) and second-order Mgller-Plesset perturbation theory (MP2) for periodic systems. The
new code eliminates the formerly prohibitive storage requirements and allows us to study sys-
tems one order of magnitude larger than before at the periodic MP2 level. We demonstrate
the significance of the development by studying the benzene crystal in both the thermody-
namic limit and the complete basis set limit, for which we predict an MP2 cohesive energy of
—72.8 kJ/mol, which is about 10-15 kJ/mol larger in magnitude than all previously reported
MP?2 calculations. Compared to the best theoretical estimate from literature, several modi-
fied MP2 models approach chemical accuracy in the predicted cohesive energy of the benzene
crystal and hence may be promising cost-effective choices for future applications on molecular

crystals.
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1 Introduction

Recent years have witnessed a rapid growth of interest in leveraging systematically improvable
wavefunction-based quantum chemistry methods to study challenging problems in materials sci-
ence. ™! These simulations, often performed using periodic boundary conditions, are computa-
tionally expensive because of the large simulation cells or dense k-point meshes needed to reach
the thermodynamic limit!%!%!%-20 (TDL) and the large one-particle basis sets needed to reach the
complete basis set (CBS) limit.>!26 As in molecular calculations, the evaluation and storage of

k2730 in Hartree-

the electron-repulsion integrals (ERIs) represent a major computational bottlenec
Fock?®' (HF) and low-order perturbation (e.g., the second-order Mgller-Plesset perturbation the-
ory,3> MP2) calculations, including simulations using Kohn-Sham density functional theory**-4
(KS-DFT) with hybrid*=*7 and double-hybrid***!' exchange-correlation functionals. In Ref. 42,

43-45

the commonly used density fitting (DF) technique was adapted for periodic systems to reduce

the computational cost of handling the periodic ERIs. The resulting implementation in the PySCF
software package“*®*’ has been used in many applications, !>15-18:4849

This previous implementation of periodic DF* is integral-indirect, meaning that the needed
integrals are pre-computed and stored in memory or on disk for later use. The resources needed
to store the DF integrals grow quadratically with the number of k-points and cubically with the
size of the unit cell or the basis set, preventing studies of large systems in the two limits. An

integral-direct implementation that avoids storing all DF integrals at once is thus highly desirable

but is hindered by the high computational cost of evaluating these integrals.*’ Recently, two of



us introduced a range-separated DF’ (RSDF) algorithm for fast evaluation of the DF integrals,
which, when combined with efficient integral screening,”! accelerates periodic DF by one to two
orders of magnitude, as illustrated for the simulation of the benzene crystal in Fig. 1.

In this work, we leverage this significant speedup to enable an integral-direct implementation
of periodic HF and MP2. The development allows us to perform periodic HF and MP2 calculations
for systems one order of magnitude larger than with the previous integral-indirect implementation.
We demonstrate the significance of this development by estimating the MP2 cohesive energy of the
benzene crystal in both the TDL and the CBS limit. A careful comparison to existing MP2 results

2,4,52

in the literature suggests that they may have large finite-size and/or basis set incompleteness

errors, emphasizing the challenge and importance of reaching both the TDL and the CBS limit in
correlated wavefunction-based simulations of materials. We also show that various modified MP2

53-56

models exhibit nearly chemical accuracy in the computed cohesive energy of the benzene

crystal and hence may be promising for future applications on molecular crystals.
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Figure 1: Wall time for calculating the DF integrals for the benzene crystal, whose unit cell is
shown on the right, with I-point Brillouin zone sampling. The recently developed RSDF>° (or-
ange) algorithm accelerates the previous DF implementation (blue) by up to two orders of magni-
tude. All calculations are performed using PySCF on a single node with 16 CPU cores.



2 Theory

We start by briefly reviewing the formalism of periodic DF. In periodic systems, the atom-centered

Gaussian-type atomic orbitals (AOs) are translational symmetry-adapted

i) = ) "y, (r - R) (1)

R

where the lattice summation runs over all unit cells in real space and k is one of the N crystal
momenta sampled from the first Brillouin zone.® The periodic DF expands the AO product density

in a second, auxiliary set of translational symmetry-adapted Gaussian basis functions y%(r)***
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so that the ERIs can be approximated as
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where J ’;Q = (" ’5) is a two-center Coulomb integral and the crystal momentum conservation
requires that ki, = -k, + k;, = —ks4 + G, where G is a reciprocal lattice vector. The fitting

coefficients are determined by solving a linear equation
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which allows one to rewrite Eq. (3) as
Haux
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where V’“"‘“2 (2 |gn gh2), VEike = Lrefykik: and L* is the lower-triangular matrix from the

Cholesky decomposition of (J*¥)7!, i.e., (J¥)~' = L*L*". To summarize, periodic DF factorizes the



periodic four-center ERIs into periodic two-center and three-center Coulomb integrals, and this
compression is responsible for the reduced storage requirements.

However, even with DF, storage is still the main computational bottleneck for large systems:
storing the three-center Coulomb integrals Vg‘lfz requires O(N,fnauxnio) memory or disk space, i.e.,
it scales quadratically with the number of k-points and cubically with the size of the unit cell or
the basis set. The basic idea of an integral-direct implementation is to calculate the three-center
integrals on-the-fly to avoid the high cost of storing them all at once. In this work, using periodic
integral evaluation with RSDF, we calculate the integrals in blocks and batch one of the two AO
indices, which we denote by V}f["ﬁi The alternative choices to batch over the auxiliary function
index or the k-points are considered in the Supporting Information, where we argue that batching
over an AO index (as we do here) is best for calculations with large unit cells and small k-point
meshes, but batching over k-points will be best for calculations with small unit cells and large
k-point meshes (larger than N, ~ 5° with a high-quality basis set).

We first discuss our integral-direct implementation of periodic HF, which resembles the algo-
rithms previously developed for molecular HF calculations®”-® but is made compatible here with
the k-point symmetry that is unique to periodic systems. (See also Refs. 59-61 for recent re-
lated developments in periodic exchange evaluation.) Our goal is to calculate the Coulomb and
the exchange matrices, referred to as the J-build and K-build, in an integral-direct manner. The

discussion below assumes a spin-restricted mean-field state with crystalline orbitals (COs)

nAQ
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and the corresponding CO energies sl’j. (The common notation of i, j,--- labelling n,.. occu-
pied COs, a, b, - - - labelling n;, virtual COs, and p, g, - - - labelling unspecified COs, will be used
throughout the paper.) The extension to a general state that breaks spin symmetry is straightfor-

ward.



With DEF, the Coulomb matrix is calculated as

Naux
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where ¥ = (J°)'v,
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and D(’j 1 1s the HF density matrix. The intermediates v and ¥ are of size O(n,.,) and can always be
held in memory. We note that only three-center integrals that are diagonal in k are needed, but the
cubic scaling with the unit cell size or the basis set size is unchanged and can still be the bottleneck
for large unit cells and/or large basis sets. To that end, we perform the tensor contractions in

Egs. (7) and (8) in blocks by batching one of the AO indices,
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for Eq. (7) and
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for Eq. (8). The batching here introduces no extra computational cost but simply avoids storing the

full V}.?fv tensors.

58,62

For the exchange matrix, we adapt the occupied orbital-based K-build algorithm for peri-

odic calculations with DF,
N Noce Maux
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where Wkik2 = T kfWwkik2 gnq
nAO
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with n¥ the CO occupation number (i.e., 2 for a spin-restricted state). Like for the J-build, we



avoid the storage of the entire Vgl{’:z tensor in the half-transformation (12) by batching over an
AO index. The alternative that batches the o index in Eq. (12) is suboptimal because it requires
repeated tensor addition to accumulate the results. Because Wﬁ;?z is smaller than Vf.f;fz by a factor
of nao/noece, 1t can be stored in its entirety for significantly larger systems. When it can be stored
in memory, this completes our description of a fully direct periodic K-build.

When Wﬁ/‘fz does not fit in memory but does fit on disk, we use a semi-direct algorithm. In this

case, we store ngz on disk and loaded into memory in blocks by batching the i index in Eq. (11),

1 & Ty 3
K= (Vk SN Wﬁ;{“zwﬁ;fz*). (13)
[i] ky icli] P
If necessary, Eq. (13) can be used in a fully direct manner (i.e., using only memory), but this
increases the computational cost compared to the semi-direct algorithm because each batch of
the half-transformed integrals, Wg‘lﬁ]z, requires evaluating the entire set of three-center integrals
Vg‘tfz. Whether the semi-direct approach is more efficient than the fully direct alternative depends
on the relative cost of integral evaluation compared to writing to and reading from disk. For the
current RSDF implementation, we found by numerical tests that the integral evaluation is still the
computational bottleneck, and thus we use the semi-direct approach throughout this work for the
K-build. We note that the situation may change depending on the compute architecture, available

resources, or with further development of periodic integral evaluation (see e.g., ref 63).

Lastly, we discuss the integral-direct implementation of periodic MP2. The correlation energy

for periodic MP2 is
Nk kikakskyx kikoksky _ yskskokiks
pure _ L 2’ Z Vaivj (Ve Viiaj ) (14)
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where k, = k| — k; + k3 + G by crystal momentum conservation. With DF, the transformed ERIs



are approximated by three-index tensors
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are transformed three-center integrals, where we used Eq. (12) (nfc = 1 here) for the second equal-

ity. The half-transformed integrals Wk'k2

in Eq. (16) can be computed as discussed above for the
K-build and stored on disk. These integrals are then loaded into memory in blocks by batching the
i index for the second transform in Eq. (16); the alternative that batches the p index is suboptimal
due to the repeated tensor addition for accumulating the results. The U’;C‘”(c2 tensors are marginally
smaller than W’}f;fz (by a factor of nao/nyi;), and therefore have similar storage requirements. If

U, klkz exceeds the available disk space, we compute it in blocks by batching the i index, U kik2 and

Pali]’

compute the MP2 energy in blocks accordingly
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where the summand is the same as that in Eq. (14) and omitted here. Although not explored in
this work, the MP2 one-particle reduced density matrix, which is useful in various reduced-scaling

correlated methods based on MP2 natural orbitals, 216469

can be evaluated in essentially the same
manner. Additional approximations such as the Laplace transform that have been shown to further
reduce the computational cost of canonical periodic MP2 calculations® will be explored in future

work.



3 Computational details

The integral-direct algorithms presented above for periodic HF and MP2 calculations with DF are

4647 which uses libcint”® for calculating atomic inte-

implemented in the PySCF software package
grals. We demonstrate the impact of our integral-direct algorithms by estimating the MP2 cohesive
energy of the benzene crystal in both the TDL and the CBS limit. The cohesive energy of the ben-
zene crystal has been well-studied in the literature using molecular codes via the truncated many-
body expansion (MBE)”!~* with several correlated wavefunction methods’-”” including MP2.°?
Two different periodic MP2 calculations have also been reported,>* showing good agreement with
each other but differing from MBE results>> by about 7 kJ/mol. Here, we leverage the power of our
integral-direct implementations to investigate these discrepancies through our own careful investi-
gation of finite-size and basis set errors, ultimately finding an MP2 cohesive energy that is larger
in magnitude than any of these previous studies.

All calculations reported below were performed using PySCF on a single compute node with
384 GB of memory and 1 TB of disk space. The Brillouin zone is sampled by uniform k-point
meshes including the I'-point. Finite-size errors associated with the divergence of the HF exchange
integral at G = 0 are handled using a Madelung constant correction.’®~’® With this treatment, both

the HF energy and the MP2 correlation energy exhibit a 1/N; asymptotic convergence to the TDL

(i.e., Ny = o0) and can hence be extrapolated using the following two-point formula

NZIE(Ni)) = NJIE(Ne,)
E(o)= 2 & (18)
Nk,z_Nk,l

for sufficiently large N, ; and N;,. We denote an extrapolation based on Eq. (18) (Ny 1, Ni2).

4 Results and discussion

We first calculate the cohesive energy of the benzene crystal for the 138 K lattice geometry’”®

[code BENZENOI in the Cambridge Structure Database® (CSD)] using the all-electron cc-pVXZ
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Figure 2: Thermodynamic limit convergence of the HF cohesive energy (a) and the MP2 correla-
tion energy contribution to the cohesive energy (c) of the benzene crystal (CSD code BENZENO1)
using different basis sets. Panels (b) and (d) provide zoom-in views of the corresponding region
in (a) and (c) indicated by black rectangles. Hollow symbols correspond to calculations that can
be performed using the previous integral-indirect implementation, while filled symbols are calcu-
lations made possible by the integral-direct implementation developed in this work. For each basis
set, the TDL extrapolation based on the two largest calculations [(2%,3%) for DZ and (1°,23) for
others] is shown as a solid line of the corresponding color. For DZ, the (13, 2%) TDL extrapolation
is also shown as a black dashed line.

(henceforth referred to as XZ) basis sets®' up to QZ. As shown in Fig. 1, each unit cell contains four
benzene molecules, 168 electrons, and 456, 1056, and 2040 AOs with the DZ, TZ, and QZ basis
sets, respectively. The corresponding cc-pVXZ-JKFIT basis sets>® are used for DF. The 1s core
electrons of carbon are kept frozen in the MP2 calculations. The same lattice geometry and similar
basis sets were used in previous MBE calculations.’->>7> The k-point convergence of the cohesive
energy from our periodic HF and MP2 calculations is shown in Fig. 2 for different basis sets. For
MP2, an estimate of the CBS limit of a given k-point mesh is obtained by a 1/X* extrapolation
using the TZ (X = 3) and the QZ (X = 4) results of the same k-point mesh. For HF, the change of
the cohesive energy from TZ to QZ is less than 0.03 kJ/mol for all k-point meshes. Thus, the QZ
HF results are taken as the CBS limit without further extrapolation.

With the previous integral-indirect code, we can compute the cohesive energies using N = 1°

10



and 2° with the DZ basis set, but only using N, = 1° with the TZ and QZ basis sets, all of which
are marked by hollow symbols in Fig. 2. Therefore, the TDL extrapolation using Eq. (18) can
only be performed with DZ (black dashed lines) and gives a cohesive energy of 19.6 kJ/mol for
HF and —48.6 kJ/mol for MP2, respectively. The quality of this (13,2%) TDL extrapolation is,
however, questionable due to the use of relatively small k-point meshes. In addition, the MP2
cohesive energy at I'-point obtained using the DZ basis set is about 20 kJ/mol higher than the
estimated CBS limit as shown in Fig. 2(c), indicating a large basis set incompleteness error. A
simple composite estimate, based on these minimal data points, suggests an MP2 cohesive energy
of —67.9 kJ/mol in the combined TDL and CBS limit, which underestimates our best estimate by
about 5 kJ/mol (vide infra).

The integral-direct code developed in this work allows us to obtain the cohesive energies for
k-point meshes one order of magnitude larger than before, i.e., Ny = 3 with DZ and N, = 2°
with TZ and QZ, as marked by filled symbols in Fig. 2. For DZ, a (23,3% TDL extrapolation
using Eq. (18) (blue solid lines) gives a cohesive energy of 19.4 kJ/mol for HF and —48.7 kJ/mol
for MP2, respectively, which agree very well with the (1°,2%) TDL extrapolation discussed above
[see also the overlay of the blue solid line and the black dashed line in Fig. 2(b,d)]. The nearly
quantitative agreement justifies a (13,2%) TDL extrapolation for larger basis sets followed by a
composite correction from the difference between the (2°,3%) and (13, 23) TDL extrapolations of
DZ (which we denote by ADZ). The obtained cohesive energies in the TDL for various basis
sets and the estimated CBS limit are listed in Table 1, along with results from the literature for
comparison.

The cohesive energy from our periodic HF calculations in the CBS limit (20.2 kJ/mol) agrees
quantitatively with that obtained from a MBE truncated to tetramers.” Our estimated MP2 cohesive
energy in the CBS limit (—72.8 kJ/mol) is about 9 kJ/mol larger in magnitude than the MBE result
in ref 52, which considered only dimer interactions. We attribute the difference to the neglect of
contributions from trimers and tetramers, which have been shown to cause a sizable error for the

benzene crystal.’

11



Table 1: Cohesive energy of the benzene crystal. Results are reported for the 138 K lattice struc-
ture” (CSD code BENZENO1) unless otherwise specified.

Ecoh [kJ/mOI]

Basis set TDL
HF MP2
MBE
cc-pV5Z 20.2 N/A ref 7
(T,Q)-CBS N/A —-64.0 ref 52
Periodic
cc-pVDZ (23,3%) 19.4 —-48.7 this work
cc-pVTZ (13,2%) + ADZ 20.1 —65.5 this work
cc-pVQZ (13,23 + ADZ 20.2 —-69.8 this work
(T.Q)-CBS (13,2%) + ADZ 20.2 ~72.8 this work
p-aug-6-31G*** N/A N/A —-56.6° ref 2¢
p-aug-6-31G**? (13,2% 20.0 -67.9 this work®
cc-TZVP¢ 2x1x2° 21.2 —58.7 ref 4¢
cc-TZVP! (13,2%) 20.5 -69.5 this work®

 The diffuse p function for H and d function for C from the aug-cc-pVDZ basis set are added 6-31G**.
b Using local MP2%? (LMP2).

¢ Using the 123 K lattice structure®* (CSD code BENZENO07).

d Using the GTH pseudopotential optimized for HF. 34

¢ Using the truncated Coulomb potential® for HF.

Also listed in Table 1 are the cohesive energies from two periodic MP2 studies in literature>*
for the 123 K lattice structure®® (CSD code BENZENOQ7). Ref 2 uses a partially augmented 6-
31G** (p-aug-6-31G**) basis set and obtains an MP2 cohesive energy of —56.6 kJ/mol, while ref
4 uses a TZ-quality basis set (cc-TZVP) and Goedecker-Teter-Hutter (GTH) pseudopotentials %6
and predicts a similar value of —58.7 kJ/mol. Despite the reasonable agreement between them,
these values are noticeably smaller in magnitude, by up to 16 kJ/mol, than our best estimate in the
TDL and the CBS limit. We repeated our MP2 calculations using the same basis sets and lattice
structure as in these previous works, but extrapolated to the TDL based on the (1°,2?) scheme
established above. As shown in Table 1, the difference between our MP2 cohesive energies and the
literature values suggests that the latter have a finite-size error of about 11 kJ/mol. The difference

from our best estimate in the CBS limit reveals a basis set incompleteness error of about 3 and

12
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Figure 3: Cohesive energy of the benzene crystal (138 K lattice structure) computed from MP2
and its empirical modifications in both the TDL [(13,2%) + ADZ] and the CBS limit [(T,Q)]. The
theoretical best estimate (TBE) from ref 7 is plotted for comparison. The red shaded area indicates
+1 kcal/mol from the TBE.

5 kJ/mol for the cc-TZVP and the p-aug-6-31G** basis sets, respectively (we have numerically
confirmed that the two crystal structures have cohesive energies that differ by less than 1 kJ/mol).
These comparisons demonstrate the challenge of reaching the combined TDL and CBS limit and
the value of our integral-direct algorithms that enable calculations with large k-point meshes and
large basis sets.

Finally, we gauge the performance of various empirically modified MP2 models that are com-

5356 and which we have found, in forthcoming work from our group,

monly used for molecules,
to significantly improve the cohesive properties of covalently bound semiconductors and insu-
lators. These models are based on scaling the correlation energy of different spin components
[i.e., same-spin (SS) and opposite-spin (OS)] with different coefficients

MP2,c _ MP2,c MP2,c
Emodiﬁed(css’ COS) - CSSESS + COSEOS (19)

where the unmodified MP2 model is recovered for css = cos = 1. Figure 3 shows the benzene
crystal cohesive energy computed from three such models in the TDL and the CBS limit, along
with the theoretical best estimate (TBE) from ref 7 for comparison. All modified MP2 models
correct for the known overestimation of the dispersion interaction by unmodified MP2.%%° The

general-purpose spin-component-scaled (SCS) model* and the SCS-molecular interaction (SCS-

13



MI) model > parameterized for reproducing the CCSD(T)®! intermolecular interactions both give
results within chemical accuracy (1 kcal/mol or 4.2 kJ/mol; see the red shaded area in Fig. 3), while
the scaled-opposite-spin (SOS) model>* significantly underestimates the TBE by about 13 kJ/mol,

which is consistent with previous literature results.>>%2

5 Conclusion

To conclude, in this work we reported an integral-direct implementation of periodic HF and MP2
with DF, which is made possible by our recent developments in periodic DF integral evaluation. %!
The development enables us to study systems one order of magnitude larger than before and al-
lowed us to estimate the MP2 cohesive energy of the benzene crystal in both the TDL and the
CBS limit, which in turn corrects the previously reported MP2 results from the literature. Several
modified MP2 models were shown to exhibit nearly chemical accuracy for the benzene crystal
cohesive energy, which suggests that modified MP2 models and the closely related double-hybrid
KS-DFT 7384193 may be cost-effective choices for crystal structure prediction.

The integral-direct code developed in this work has essentially eliminated the storage bottle-
necks of large, periodic electronic structure calculations at the presented levels of theory. However,
it does not lower their computational scaling, which is now the bottleneck that precludes larger cal-

culations. For truly large-scale applications, local approximations in one form or another%>%+-8

are
necessary, and we expect that the work presented here will be essential in the benchmarking and

development of those methods.
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