
The XAI system for answer set
programming xASP2

MARIO ALVIANO, DEMACS, University of Calabria, Via Bucci 30/B, 87036
Rende (CS), Italy.

LY LY TRIEU, Department of Computer Science, New Mexico State University,
Las Cruces, NM, USA.

TRAN CAO SON, Department of Computer Science, New Mexico State
University, Las Cruces, NM, USA.

MARCELLO BALDUCCINI, Department of Decision & System Sciences, Saint
Joseph’s University, Pennsylvania, PA, USA.

Abstract
Explainable artificial intelligence (XAI) aims at addressing complex problems by coupling solutions with reasons that justify
the provided answer. In the context of Answer Set Programming (ASP) the user may be interested in linking the presence or
absence of an atom in an answer set to the logic rules involved in the inference of the atom. Such explanations can be given
in terms of directed acyclic graphs (DAGs). This article reports on the advancements in the development of the XAI system
xASP by revising the main foundational notions and by introducing new ASP encodings to compute minimal assumption sets,
explanation sequences, and explanation DAGs. DAGs are shown to the user in an interactive form via the xASP navigator
application, also introduced in this work.

Keywords: Answer Set Programming, eXplainable Artificial Intelligence, Knowledge Representation and Reasoning.

1 Introduction

The interest in explainable artificial intelligence (XAI) has grown substantially in recent years. The
reasons for this trend are obvious: while intelligent systems capable of solving complex problems are
useful, confidence in their results is limited unless users can query them about the reasons that lead
to the solutions produced. The right to an explanation law, extensively discussed in the USA, EU
and UK, and partly enacted in some countries, increases the need for XAI systems. In this paper, we
focus on the development of an XAI system for Answer Set Programming (ASP) [19, 22]. ASP is a
knowledge representation and reasoning (KR&R) approach to problem solving using logic programs
under answer set semantics [15], an extension of Datalog with a strong connection with well-founded
semantics [23]. In this setting, we are mainly interested in the question “given an answer set A of a
program Π and an atom α, why does α ∈ A (or α �∈ A)?”

As a logic program Π is a set of rules, the question can be answered by providing the subset
of Π that supports the presence (or the absence) of α given Π and A. If Π is a Datalog program,
then its models are easily explainable by the derivation procedure implemented by Datalog engines.
Essentially, each atom in the model is explained by the support provided by a rule whose body is
true and contains only already explained atoms. If Π is a logic program under the well-founded

Vol. 34, No. 8, © The Author(s) 2024. Published by Oxford University Press. All rights reserved.
For permissions, please e-mail: journals.permission@oup.com.

Advance Access Publication on 29 July 2024 https://doi.org/10.1093/logcom/exae036

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

https://doi.org/10.1093/logcom/exae036

The XAI System for Answer Set Programming xASP2 1501

semantics, then the fact that α belongs (or does not belong) to the well-founded model of Π can
be explained similarly, with the addition of some atoms that are concluded to be false because they
belong to some unfounded set. Generally speaking, explanations for logic programs under the answer
set semantics can also be produced in a similar way under the assumption provided by the answer sets
themselves for the interpretation of false atoms. However, taking all false atoms as an assumption
would likely result in a faint explanation, actually in an explanation by faith for all such false atoms.
Therefore, two main issues need to be tackled in explaining the assignment of α in A: (i) how to
compute a hopefully small set of assumptions capable of explaining the assignment of α in A; and
(ii) how to support sophisticated linguistic constructs such as choice rules and aggregates, which can
be involved in explaining the falsity of some atoms in easily understandable terms.

An XAI system providing the reasons for the presence or absence of a given atom in an answer
set finds another important application in the identification of the cause of unexpected results. This
is a feature that can be particularly useful to the designers of complex systems confronted with
unexpected inferences. In fact, identifying the root causes of those inferences can be daunting due
to the many possible interactions in large knowledge bases. We found ourselves faced with such
a challenge during the recent development of a commercial application. The ASP program that
powered the decision-making component comprised a number of modules that could be enabled or
disabled depending on needs. During development, we noticed that certain combinations of modules
yielded unexpected results. After carefully checking each module, individually, for errors, we began
to suspect that rules from different modules were interacting with each other in unexpected ways.
Investigating those interactions proved to be a very time-consuming task that took approximately
3 Full-Time Equivalent weeks and considerably slowed down the project at a critical time. While
XAI-inspired research conducted by the ASP community had already produced a number of tools
related to this problem, such as xclingo [8], DiscASP [17], xASP [28] and s(CASP) [3], none
of them could be used for our problem, due to their inability to process a program of the size of ours
in an acceptable amount of time and the lack of support for certain advanced language features, and
in some cases due to shortcomings in the type of information produced.

In this paper, we present research that takes inspiration from the approach used in xASP [28]
and extends from [2], but that aims at yielding substantially increased scalability and breadth of
supported language features, while producing information more immediately and consistently useful
to users. The ultimate goal is to produce a system that can be applied to programs of size and
complexity found in commercial-grade applications. Our main contributions are the following:

– A notion of explanation for the presence or absence of an atom in an answer set in terms of
easy-to-understand inferences originating from a hopefully small set of atoms assumed false
(Section 3).

– A representation of explanations in terms of directed acyclic graphs, restricted to the atoms
involved in the explanation (Section 3), and a proof of existence for the explanations according
to the given definition (Section 4).

– The implementation of a system for producing explanations powered by ASP and its empirical
evaluation (Sections 5–6).

– The implementation of a web application for visualizing and interacting with the generated
explanations.

– Suggestions on how to rewrite input programs in order to obtain richer explanations.

The supported fragment of ASP includes uninterpreted function symbols, common aggregation
functions, comparison expressions, strong negation, constraints, normal rules and choice rules.
Aggregates are expected to be stratified, to not involve default negation, and to have a single

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

1502 The XAI System for Answer Set Programming xASP2

atomic condition. Choice rules are expected to be unconditional, or otherwise to have exactly
one conditional atom with a self-explanatory condition (as for example a range expression or an
extensional predicate). Additionally, to ease the presentation, in Section 2 we only consider sum
aggregates, and completely omit uninterpreted function symbols, comparison expressions, strong
negation and conditions in choice rules.

2 Background

All sets and sequences considered in this paper are finite. Let P, C, V be fixed nonempty sets of
predicate names, constants and variables. Predicates are associated with an arity, a non-negative
integer. A term is any element in C∪V. An atom is of the form p(t), where p ∈ P, and t is a possibly
empty sequence of terms. A literal is an atom possibly preceded by the default negation symbol not;
they are referred to as positive and negative literals.

An aggregate is of the form

sum{ta, t′ : p(t)} � tg, (1)

where � is a binary comparison operator, p ∈ P, t and t′ are possibly empty sequences of terms, and
ta and tg are terms.

A choice is of the form

t1 ≤ {atoms} ≤ t2, (2)

where atoms is a possibly empty sequence of atoms, and t1, t2 are terms. Let ⊥ be syntactic sugar
for 1 ≤ {} ≤ 1.

A rule is of the form

head ← body, (3)

where head is an atom or a choice, and body is a possibly empty sequence of literals and aggregates.
For a rule r, let H(r) denote the atom or choice in the head of r; let BΣ(r), B+(r) and B−(r) denote
the sets of aggregates, positive and negative literals in the body of r; let B(r) denote the set BΣ(r) ∪
B+(r) ∪ B−(r).

A variable X occurring in B+(r) is a global variable. Other variables occurring among the terms t
of some aggregate in BΣ(r) of the form (1) are local variables. And any other variable occurring in
r is an unsafe variable. A safe rule is a rule with no unsafe variables. A program Π is a set of safe
rules. Additionally, we assume that aggregates are stratified, i.e. the dependency graph GΠ having a
vertex for each predicate occurring in Π and an edge pq whenever there is r ∈ Π with p occurring
in H(r) and q occurring in B+(r) or BΣ(r) is acyclic.

EXAMPLE 2.1
Given a connected undirected graph G encoded by predicate edge/2, source and sink nodes encoded
by predicates source/1 and sink/1, the following program assigns a direction to each edge so that
source nodes can still reach all sink nodes:

1 ≤ {arc(X ,Y); arc(Y ,X)} ≤ 1 ← edge(X ,Y) (4)

reach(X ,X) ← source(X) (5)

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

The XAI System for Answer Set Programming xASP2 1503

FIGURE 1. The undirected graph used as running example. Source vertices in blue, sink vertex in
red. The goal is to assign directions to edges so that all source nodes still reach all sink nodes.

reach(X ,Y) ← reach(X ,Z), arc(Z,Y) (6)

⊥ ← source(X), sink(Y), not reach(X ,Y) (7)

If failures on the reachability condition are permitted up to a given threshold encoded by predicate
threshold/1, the program comprising rules (4)–(6) and

fail(X ,Y) ← source(X), sink(Y), not reach(X ,Y) (8)

⊥ ← threshold(T), sum{1,X ,Y : fail(X ,Y)} > T (9)

can be used. Note that X and Y are local variables in rule (9), and all other variables are global. �
A substitution σ is a partial function from variables to constants; the application of σ to an

expression E is denoted by Eσ . Let instantiate(Π) be the program obtained from rules of Π by
substituting global variables with constants in C, in all possible ways; note that local variables are
still present in instantiate(Π). The Herbrand base of Π , denoted base(Π), is the set of ground atoms
(i.e. atoms with no variables) occurring in instantiate(Π).

EXAMPLE 2.2
Let Πrun comprise rules (4)–(6), (8)–(9) and the facts (i.e. rules with an empty body) edge(a, b),
edge(a, d), edge(d, c), source(a), source(b), sink(c) and threshold(0) (see Figure 1).

Hence, instantiate(Πrun) contains, among others, the rules

1 ≤ {arc(a, b); arc(b, a)} ≤ 1 ← edge(a, b)

⊥ ← threshold(0), sum{1,X ,Y : fail(X ,Y)} > 0

and base(Πrun) contains fail(a, c), fail(b, c) and so on. �
A (two-valued) interpretation is a set of ground atoms. For a two-valued interpretation I , relation

I |
 · is defined as follows: for a ground atom p(c), I |
 p(c) if p(c) ∈ I , and I |
 not p(c) if
p(c) /∈ I; for an aggregate α of the form (1), the aggregate set of α w.r.t. I , denoted aggset(α, I), is
{〈ta, t′〉σ | p(t)σ ∈ I , for some substitution σ }, and I |
 α if (

∑
〈ca,c′〉∈aggset(α,I) ca) � tg is a true

expression over integers; for a choice α of the form (2), I |
 α if t1 ≤ |I ∩ atoms| ≤ t2 is a true
expression over integers; for a rule r with no global variables, I |
 B(r) if I |
 α for all α ∈ B(r), and
I |
 r if I |
 H(r) whenever I |
 B(r); for a program Π , I |
 Π if I |
 r for all r ∈ instantiate(Π).

For a rule r of the form (3) and an interpretation I , let expand(r, I) be the set {p(c) ← body |
p(c) ∈ I occurs in H(r)}. The reduct of Π w.r.t. I is the program comprising the expanded rules of
instantiate(Π) whose body is true w.r.t. I , that is, reduct
(Π , I) := ⋃

r∈instantiate(Pi), I|
B(r) expand(r, I). An answer set of Π is an interpretation A such that
A |
 Π and no I ⊂ A satisfies I |
 reduct(Π ,A).

EXAMPLE 2.3
The only answer set Arun of program Πrun contains, among others, the atoms arc(b, a), arc(a, d),

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

1504 The XAI System for Answer Set Programming xASP2

FIGURE 2. The directed graph solution of the running example. All source nodes (in blue) reach all
sink nodes (in red).

arc(d, c), no other instance of arc/2, and no instance of fail/2 (see Figure 2). Hence, Arun |
 1 ≤
{arc(a, b); arc(b, a)} ≤ 1 and Arun �|
 sum{1,X ,Y : fail(X ,Y)} > 0.

A three-valued interpretation is a pair (L,U), where L,U are sets of ground atoms such that
L ⊆ U ; also let (L,U)1 denote the lower bound L of (L,U) and (L,U)2 denote the upper bounds U
of (L,U), so atoms in L are true, atoms in U \ L are undefined, and all other atoms are false. The
evaluation function [[·]]UL associates literals and aggregates with a truth value among u, t and f as
follows: [[α]]UL = u if α is a literal whose atom is p(c) and p(c) ∈ U \ L, or α is an aggregate of
the form (1) and aggset(α,U \ L) �= ∅, or α is a choice of the form (2) and (U \ L) ∩ atoms �= ∅;
[[α]]UL = t if [[α]]UL �= u and L |
 α; and [[α]]UL = f if [[α]]UL �= u and L �|
 α. The evaluation function
extends to rule bodies as follows: [[B(r)]]UL = f if there is α ∈ B(r) such that [[α]]UL = f; [[B(r)]]UL = t
if [[α]]UL = t for all α ∈ B(r); otherwise, [[B(r)]]UL = u.

EXAMPLE 2.4
For α being sum{1,X ,Y : fail(X ,Y)} > 0, [[α]]{fail(a,c)}

∅ = u, [[α]]{fail(a,c)}
{fail(a,c)} = t, and [[α]]∅∅ = f. �

Mainstream ASP systems compute answer sets of a given program Π by applying several
inference rules on (a subset of) instantiate(Π), the most relevant ones for this work summarized
below. Let (L,U) be a three-valued interpretation, and p(c) be a ground atom such that [[p(c)]]UL = u.
Atom p(c) in H(r) is inferred true by support if [[B(r)]]UL = t. (Actually, if H(r) is a choice of the
form (2), inference by support additionally requires that |atoms ∩ U | = t1, i.e. undefined atoms in
atoms ∩ U are required to reach the bound t1. Such extra condition is not relevant for our work,
and will not be used, because our explanations aim at associating true atoms with rules with true
bodies.) Atom p(c) is inferred false by lack of support if each rule r ∈ instantiate(Π) with p(c)
occurring in H(r) is such that [[B(r)]]UL = f. Atom p(c) is inferred false by a constraint-like rule
r ∈ instantiate(Π) if p(c) ∈ B+(r), [[H(r)]]UL = f and [[B(r) \ {p(c)}]]UL = t. Atom p(c) is inferred
false by a choice rule r ∈ instantiate(Π) if H(r) has the form (2), p(c) ∈ atoms, |atoms ∩ L| ≥ t2
and [[B(r)]]UL = t. Atom p(c) is inferred false by well-founded computation if it belongs to some
unfounded set X for Π w.r.t. (L,U), that is, a set X such that for all rules r ∈ instantiate(Π) at least
one of the following conditions holds: (i) no atom from X occurs in H(r); (ii) [[B(r)]]UL = f; (iii)
B+(r) ∩ X �= ∅.

EXAMPLE 2.5
Given the program instantiate(Πrun), and the three-valued interpretation (∅, base(Πrun)), atom
edge(a, a) is inferred false by lack of support, atom source(a) is inferred true by support, and
the set {edge(a, a), arc(a, a)} is unfounded. Given ({arc(d, c)}, base(Πrun) \ {reach(a, c)}), atom
reach(a, d) is inferred false by the constraint-like rule (6), and arc(c, d) is inferred false by the
choice rule (4). �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

The XAI System for Answer Set Programming xASP2 1505

3 Explanations

Let Π be a program, and A be one of its answer sets. A well-founded derivation for Π w.r.t. A,
denoted wf(Π ,A), is obtained from the interpretation (∅, base(Π)) by iteratively (i) adding to its
lower bound atoms of A that are inferred true by support and (ii) removing from its upper bound
atoms belonging to some unfounded set. Note that wf(Π ,A) is computed as a preprocessing step.

EXAMPLE 3.1
Given Πrun and Arun from Examples 2.2–2.3, the lower bound of wf(Πrun,
Arun) contains head atoms in Example 2.2, arc(b, a), arc(a, d), arc(d, c), reach(a, a), reach(b, b),
reach(a, d), reach(a, c), reach(b, a), reach(b, c) and reach(b, d). Indeed, according to our definition
of well-founded derivation for Π w.r.t. A, if the body of a rule is inferred true, then all head atoms
belonging to A are inferred true because they are supported in reduct(Π ,A). The upper bound
additionally contains arc(a, b), arc(d, a), arc(c, d) and several instances of reach/2 and fail/2. �

An explaining derivation for Π and A from (L,U) is obtained by iteratively (i) adding to L atoms
of A that are inferred true by support, and (ii) removing from U atoms that are inferred false by
lack of support, constraint-like rules and choice rules. An assumption set for Π and A is a set X ⊆
base(Π)\A of ground atoms such that the explaining derivation for Π and A from (∅,wf(Π ,A)2 \X)

terminates with A (in words, A is reconstructed from the false atoms of the well-founded derivation
extended with X). Let AS(Π ,A) be the set of assumption sets for Π and A. A minimal assumption
set for Π , A and a ground atom α is a set X ∈ AS(Π ,A) such that X ′ ⊂ X implies X ′ /∈ AS(Π ,A),
and α ∈ X implies α ∈ X ′ for all X ′ ∈ AS(Π ,A). (In other words, we prefer assumption sets not
including the atom to explain. When all assumption sets include the atom to explain, we opt for the
singleton comprising the atom to explain alone.) Let MAS(Π ,A, α) be the set of minimal assumption
sets for Π , A and α.

EXAMPLE 3.2
Set base(Πrun) \ Arun is an assumption set for Πrun and its answer set Arun. It can be checked that
also ∅ ∈ AS(Πrun,Arun, α), and it is indeed the only minimal assumption set in this case, for any
atom in base(Πrun). �

Given an assumption set X and an explaining derivation from (∅,wf(Π ,A)2\X), a directed acyclic
graph (DAG) can be obtained as follows: The vertices of the graph are the atoms in base(Π) and
the aggregates occurring in instantiate(Π). (The vertex p(c) is also referred to as not p(c).) Any
aggregate of the form (1) is linked to instances of p(t). Atoms inferred true by support due to a rule
r ∈ instantiate(Π) are linked to elements of B(r). Any atom α inferred false by lack of support is
linked to an element of B(r) that is inferred false before α, for each rule r ∈ instantiate(Π) such that
α occurs in H(r). Any atom α inferred false by a constraint-like rule r ∈ instantiate(Π) is linked to
the atoms occurring in H(r) and the elements of B(r) \ {α}. Any atom α inferred false by a choice
rule r ∈ instantiate(Π) is linked to the atoms occurring in H(r) that are true in A, and to the elements
of B(r). A portion of an example DAG is reported in Figure 3.

4 Existence of Minimal Assumption Sets

This section is devoted to formally show that the existence of minimal assumption sets is guaranteed,
and so are DAGs as defined in the previous section.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

1506 The XAI System for Answer Set Programming xASP2

FIGURE 3. Induced DAG on the vertices reachable from arc(a,b) for the minimal assumption set ∅
for Πrun.

THEOREM 4.1 (Main Theorem).
Let Π be a program, A one of its answer sets and α a ground atom in base(Π). Set MAS(Π ,A, α) is
nonempty.

To prove the above theorem, we introduce some additional notation and claims. Let Π be a
program, and (L,U) be a three-valued interpretation. We denote by Π ,L,U
� α the fact that α ∈ base(Π) is inferred true by support, which is the case when [[α]]UL = u, and
there is r ∈ instantiate(Π) such that α occurs in H(r) and [[B(r)]]UL = t, as defined in Section 2.
Similarly, we denote by Π ,L,U � not α the fact that α ∈ base(Π) is inferred false by lack of
support, constraint-like rules and choice rules, which is the case when [[α]]UL = u, and one of the
following conditions holds: each rule r ∈ instantiate(Π) with α occurring in H(r) is such that
[[B(r)]]UL = f; there is r ∈ instantiate(Π) with α ∈ B+(r), [[H(r)]]UL = f and [[B(r) \ {α}]]UL = t;
there is r ∈ instantiate(Π) with H(r) of the form (2), α ∈ atoms, |atoms∩L| ≥ t2 and [[B(r)]]UL = t.

The explaining derivation operator DΠ is defined as

DΠ(L,U) := (L ∪ {α ∈ base(Π) | Π ,L,U � α},U \ {α ∈ base(Π) | Π ,L,U � not α}).
Let (L,U) � (L′,U ′) denote the fact that L ⊆ L′ ⊆ U ′ ⊆ U , i.e. everything that is true w.r.t. (L,U)

is true w.r.t. (L′,U ′), and everything that is false w.r.t. (L,U) is false w.r.t. (L′,U ′).

LEMMA 4.2
Operator DΠ is monotonic w.r.t. �.

PROOF. For (L,U) � (L′,U ′), we shall show that DΠ(L,U) � DΠ(L′,U ′) holds. For α ∈
DΠ(L,U)1 \ L such that α /∈ L′, we have Π ,L,U � α, i.e. there is r ∈ instantiate(Π) such that
α occurs in H(r) and [[B(r)]]UL = t. As (L,U) � (L′,U ′), we have that [[B(r)]]U

′
L′

= t, that is, Π ,L′,U ′ � α holds, and therefore α ∈ DΠ(L′,U ′)1 \ L.
For α ∈ U \ DΠ(L,U)2 such that α ∈ U ′, we have Π ,L,U � not α, and therefore we have three

cases:

1. Each rule r ∈ instantiate(Π) with α occurring in H(r) is such that [[B(r)]]UL = f. As (L,U) �
(L′,U ′), [[B(r)]]U

′
L′ = f holds.

2. There is r ∈ instantiate(Π) with α ∈ B+(r), [[H(r)]]UL = f and [[B(r) \ {α}]]UL = t. As
(L,U) � (L′,U ′), [[H(r)]]U

′
L′ = f and [[B(r) \ {α}]]U ′

L′ = t.
3. There is r ∈ instantiate(Π) with H(r) of the form (2), α ∈ atoms, |atoms ∩ L| ≥ t2 and

[[B(r)]]UL = t. As (L,U) � (L′,U ′), |atoms ∩ L′| ≥ t2 and [[B(r)]]U
′

L′ = t.

In any case, Π ,L′,U ′ � α holds, and therefore α ∈ U ′ \ DΠ(L′,U ′)2. � �

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

The XAI System for Answer Set Programming xASP2 1507

LEMMA 4.3
L ⊆ A ⊆ U implies DΠ(L,U)1 ⊆ A ⊆ DΠ(L,U)2.

PROOF. For α ∈ DΠ(L,U)1 \ L we have Π ,L,U � α, that is, there is r ∈ instantiate(Π) such that
[[B(r)]]UL = t. Hence, A |
 B(r), and therefore expand(r,A) ⊆ reduct(Π ,A). In particular, α ← B(r)
belongs to the reduct, and therefore α ∈ A.

For α ∈ U \ DΠ(L,U)2 we have Π ,L,U � not α and we have to show that α /∈ A. Three cases:

1. Each rule r ∈ instantiate(Π) with α occurring in H(r) is such that [[B(r)]]UL = f.
2. There is r ∈ instantiate(Π) with α ∈ B+(r), [[H(r)]]UL = f and [[B(r) \ {α}]]UL = t.
3. There is r ∈ instantiate(Π) with H(r) of the form (2), α ∈ atoms, |atoms ∩ L| ≥ t2 and

[[B(r)]]UL = t.

In the first case, A \ {α} |
 reduct(Π ,A), and therefore A \ {α} = A because A is an answer set of
Π . In the other two cases, α /∈ A because A |
 Π by assumption. � �

The explaining derivation from (L,U) is obtained as the fix point of the sequence (L0,U0) :=
(L,U), (Li+1,Ui+1) := DΠ(Li,Ui) for i ≥ 0. Note that the fix point is reached in at most |base(Π)|
steps because of Lemma 4.2 and each application of DΠ reduces the undefined atoms (or is a fix
point). Thus, the system eventually terminates in at most |base(Π)| steps.

LEMMA 4.4
For any answer set A of Π , set base(Π) \ A is an assumption set for Π and A.

PROOF. Let (L,U) be the explaining derivation from (∅, base(Π) \ A). Thanks to Lemma 4.3, it is
sufficient to show that p(c) ∈ A implies p(c) ∈ L. Due to the assumption of stratified aggregates,
let us consider a topological ordering C1, . . . ,Cn (n ≥ 1) for the strongly connected components of
GΠ , and let p ∈ Ci. We use induction on i. Since p(c) ∈ A, there must be r ∈ reduct(Π ,A) such that
H(r) = p(c) and A |
 B(r). Hence, [[B−(r)]]UL = t. Moreover, [[BΣ(r)]]UL = t, either because i = 1
and BΣ(r) = ∅, or because of the induction hypothesis. Therefore, to have α /∈ L, it must be the
case that [[B+(r)]]UL �= t for all such rules, but in this case L |
 reduct(Π ,A), a contradiction with
the assumption that A is an answer set of Π . � �

Given Lemma 4.4, the proof of Main Theorem is immediate by the definition of MAS(Π ,A, α) as
following:
PROOF (Proof of Main Theorem). By definition, a minimal assumption set for Π , A and α is a
set X ∈ AS(Π ,A) such that X ′ ⊂ X implies X ′ /∈ AS(Π ,A), and α ∈ X implies α ∈ X ′ for all
X ′ ∈ AS(Π ,A). Lemma 4.4 guarantees the existence of an assumption set for Π and A. Existence
of a minimal assumption set for Π , A and α is therefore guaranteed. �

5 Generation via Meta-Programming

By leveraging ASP systems, the concepts introduced in Section 3 can be computed. A meta-
programming approach is presented in this section, where the full language of ASP is used,
including constructs omitted in the previous sections, like weak constraints, uninterpreted functions,
conditional literals and @-terms. The reader is referred to [11] for details. We will use the name ASP
programs for encodings using the full language of ASP, in contrast to the name program that we use
for encodings using the restricted syntax introduced in Section 2.

Program Π , answer set A and the atom to explain are encoded by a set of facts obtained by
computing the unique answer set of the ASP program serialize(Π ,A, α), defined next. Each atom

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

1508 The XAI System for Answer Set Programming xASP2

p(c) in base(Π) is encoded by a fact atom(p(c)) moreover, the encoding includes a fact true(p(c))
if p(c) ∈ A, and false(p(c)) otherwise. Additionally, if p(c) is false in wf(Π ,A), the encoding
includes a fact explaine_by(p(c)), initial_well_founded)—. As for α, the encoding
includes a fact explain(α). Each rule r of instantiate(Π) is encoded by

rule(id(X)) :- atom(p1(t1)), ..., atom(pn(tn)).

where id is an identifier for r, X are the global variables of r and B+(r) = {pi(ti) | i = 1, . . . , n};
moreover, the encoding includes

head(id(X),p(t)) :- rule(id(X)).
pos_body(id(X),p′(t′)) :- rule(id(X)).
neg_body(id(X),p′′(t′′)) :- rule(id(X)).

for each p(t) occurring in H(r), p′(t′) ∈ B+(r) and p′′(t′′) ∈ B−(r); additionally, for each aggregate
α of the form (1) in BΣ(r), an identifier agg for α is introduced, and the encoding includes

pos_body(id(X),agg(X)) :- rule(id(X)).
aggregate(agg(X)) :- rule(id(X)).
true(agg(X)) :- rule(id(X)), #sum{ta, t′ : true(p(t))} � tg.
false(agg(X)):- rule(id(X)), not true(agg(X)).

rule(agg(X)):- aggregate(agg(X)),true(agg(X)).
head(agg(X),agg(X)) :- rule(agg(X)).
pos_body(agg(X),p(t)):- rule(agg(X)),true(p(t)).
neg_body(agg(X),p(t)):-rule(agg(X)),false(p(t)).

rule((agg(X),p(t))) :- aggregate(agg(X)), false(agg(X)), atom(p(t)).
head((agg(X),p(t)),agg(X)):- rule((agg(X),p(t))).
pos_body((agg(X),p(t)),p(t)) :- rule((agg(X),p(t))), false(p(t)).
neg_body((agg(X),p(t)),p(t)) :- rule((agg(X),p(t))), true(p(t)).

Finally, if H(r) is a choice of the form (2), the encoding includes

choice(id(X),t1,t2) :- rule(id(X)).

Note that a true ground aggregate of the form (1) identified by agg(c) is associated with a single
rule whose body becomes true after all instances of p(t) are assigned the truth value they have in
the answer set A; on the other hand, a false aggregate is associated with one rule for each instance
of p(t), whose bodies becomes false when instances of p(t) are assigned the truth value they have in
the answer set A.

EXAMPLE 5.1
Recall Πrun and Arun from Examples 2.2–2.3. The ASP program serialize(Πrun,A, arc(a,b)) includes

atom(edge(a,b)). atom(arc(b,a)). atom (arc(a,b)).
explain(arc(a,b)).
true(edge(a,b)). true(arc(b,a)). false(arc(a,b)).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

The XAI System for Answer Set Programming xASP2 1509

rule(r4(X,Y)) :- atom(edge(X,Y)).
choice(r4(X,Y),1,1) :- rule(r4(X,Y)).
head(r4(X,Y), arc(X,Y)) :- rule(r4(X,Y)).
head(r4(X,Y), arc(Y,X)) :- rule(r4(X,Y)).
pos_body(r4(X,Y), edge(X,Y)):- rule(r4(X,Y)).

aggregate(agg1(T)) :- rule(r9(T)).
true(agg1(T)) :- rule(r9(T)), #sum1,X,Y : true(fail(X,Y)) > T.

and several other rules. The answer set of serialize(Πrun,A, arc(a,b)) includes, among other atoms,
aggregate(agg1(0)) and false(agg1(0)).

The ASP program ΠMAS reported in Figure 4, coupled with a fact for each atom in the answer
set of serialize(Π ,A, α), has optimal answer sets corresponding to cardinality-minimal elements
in MAS(Π ,A, α). Intuitively, line 1 guesses the assumption set, line 2–3 minimizes the size of the
assumption set (preferring to not assume the falsity of the atom to explain) and lines 4–5 impose that
each atom must have exactly one explanation. The other rules encode the explaining derivation for
Π and A from wf(Π ,A) \ X , where X is the guessed assumption set.

Given a minimal assumption set encoded by predicate assume{_}false/1, an explain-
ing derivation can be computed by removing lines 1–3 from the ASP program ΠMAS.
Let ΠEXP be such an ASP program. Finally, given an explaining derivation encoded by
explained{_}by(Index,Atom,Reason), with the additional Index argument encoding
the order in the sequence, a DAG linking atoms according to the derivation can be computed by the
ASP program ΠDAG reported in Figure 5.

EXAMPLE 5.2
Let ΠS have a fact for each atom in the answer set of serialize(Πrun,Arun,
arc(a, b)). ΠMAS ∪ ΠS generates the empty assumption set. ΠEXP ∪ ΠS ∪ ∅ generates an explaining
derivation, for example one including explained by(edge(a, b), (support,
r6)), explained by(arc(b, a), (support, r1(a, b))) and explained by(arc(a, b), (choice
rule, r1(a, b))). Let ΠE have a fact for each instance of explained by/3 in the explaining deriva-
tion. ΠDAG ∪ ΠS ∪ ΠE generates a DAG, for example one including link(arc(b, a), edge(a, b)),
link(arc(a, b), arc(b, a)) and link(arc(a, b), edge(a, b)). �

6 Implementation and Experiment

We deployed an XAI system for ASP named xASP2, which is powered by the clingo python
api [16]. By taking an ASP program Π , one of its answer sets A and an atom α as input, xASP2
is capable of producing minimal assumption sets, explaining derivations, and DAGs as output to
assist the user in determining the assignment of α. The source code is available at https://github.
com/alviano/xasp and an example DAG is given at https://xasp-navigator.netlify.app/.

The pipeline implemented by xASP2 starts with the serialization of the input data, which is
obtained by means of an ASP program crafted from the abstract syntax tree of Π and whose
answer set identifies the relevant portion of instantiate(Π) and base(Π). In a nutshell, ground atoms
provided by the user, A ∪ {α}, are part of base(Π) and used to instantiate rules of Π (by matching
positive body literals), which in turn may extend base(Π) with other ground atoms occurring in the
instantiated rules; possibly, some atoms of base(Π) of particular interest can be explicitly provided

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

https://github.com/alviano/xasp
https://github.com/alviano/xasp
https://github.com/alviano/xasp
https://github.com/alviano/xasp
https://github.com/alviano/xasp
https://xasp-navigator.netlify.app/
https://xasp-navigator.netlify.app/
https://xasp-navigator.netlify.app/
https://xasp-navigator.netlify.app/
https://xasp-navigator.netlify.app/

1510 The XAI System for Answer Set Programming xASP2

FIGURE 4. ASP program ΠMAS for computing a minimal assumption set

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

The XAI System for Answer Set Programming xASP2 1511

FIGURE 5. ASP program ΠDAG for computing a directed acyclic graph associated with an explaining
derivation

by the user. Aggregates are also processed automatically by means of an ASP program, and so is the
computation of false atoms in the well-founded derivation wf(Π ,A).

Obtained serialize(Π ,A, α), xASP2 proceeds essentially as described in Section 5, by computing
a minimal assumption set, an explaining derivation and an explanation DAG. As an additional
optimization, the explaining derivation is shrunk to the atoms reachable from α, utilizing an ASP
program. Finally, the user can opt for a few additional steps: obtain a graphical representation
by means of the igraph network analysis package (https://igraph.org/); obtain an interactive
representation in https://xasp-navigator.netlify.app/; ask for different minimal assumption sets,
explaining derivations and DAGs.

We assessed xASP2 empirically on the commercial application that we mentioned in the
introduction. The ASP program of the commercial application can be found in the Github repository.
The ASP program comprises 420 rules and 651 facts. After grounding, there are 4261 ground rules
and 4468 ground atoms. The program was expected to have a unique answer set, but two answer sets
were actually computed. Our experiment was run on an Intel Core i7-1165G7 @2.80 GHz and 16
GB of RAM. xASP2 computed a DAG for the unexpected true atom, behaves{_}inertially
(testing{_}posTestNeg,121), in 14.85 seconds on average, over 10 executions. The DAG
comprises 87 links, 45 internal nodes and 20 leaves, only one of which is explained by assumption;
only 30 of the 420 symbolic rules and 11 of the 651 facts are involved in the DAG; at the ground
level, only 48 of the 4261 ground rules and 65 of the 4468 ground atoms are involved. Additionally,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

https://igraph.org/
https://igraph.org/
https://igraph.org/
https://xasp-navigator.netlify.app/
https://xasp-navigator.netlify.app/
https://xasp-navigator.netlify.app/
https://xasp-navigator.netlify.app/
https://xasp-navigator.netlify.app/

1512 The XAI System for Answer Set Programming xASP2

FIGURE 6. Latin Square instances used in our experiment. Given clues in black. Computed solution
in blue.

we repeated the experiment on 10 randomly selected atoms with respect to two different answer sets,
repeating each test case 10 times. We measured an average runtime of 14.79 seconds, with a variance
of 0.004 seconds.

As a second experiment, we considered the Latin Square instances reported in Figure 6, whose
encodings are shown in Figures 7–8, and queries for each part of the computed solution, for a total of
97 queries. We recall that a Latin Square is a NxN grid with values from the integer interval 1..N and
no repeated entries in any row or column. Tests were run on an AMD EPYC 7313 3GHz with 2TB of
RAM, allowing 600 seconds and 16GB. The 16 queries associated with the 4x4 instance are answered
in around 1.38 seconds on average, using around 68MB of RAM. The produced explanation graphs
have around 77 links on average, and use an assumption set of size 1. The 81 queries associated with
the 9x9 instance are answered in around 38 seconds on average, using around 438MB of RAM. The
produced explanation graphs have around 527 links on average, and use an assumption set of size
2. Details are reported online (https://asp-chef.alviano.net/s/xasp/jlc2024) together with links to the
produced explanation graphs.
xASP2 also has the ability to handle explainable planning, meaning it can generate an explanation

graph showing why a particular action cannot take place at a certain time. To demonstrate this
capability, we will use a popular problem known as Blocksworld. The initial state (left) and goal
state (right) of the problem are shown in Figure 9. Five f luents are on(X ,Y) - block X is on block
Y , onTable(X) - block X is on the table, clear(X) - block X is clear, holding(X) - the agent holds
the block X and handEmpty - the agent does not hold anything. Four different actions are stack,
unstack, pickup and putdown. The domain description of the problem is shown in Table 1 in which
the predictions and effects of four actions are presented.

The rules for reasoning about effects of actions, action generation and goal enforcement [21] are
utilized as programming input in xASP2. Figure 10 shows the ASP program for reasoning about the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

https://asp-chef.alviano.net/s/xasp/jlc2024
https://asp-chef.alviano.net/s/xasp/jlc2024
https://asp-chef.alviano.net/s/xasp/jlc2024
https://asp-chef.alviano.net/s/xasp/jlc2024
https://asp-chef.alviano.net/s/xasp/jlc2024
https://asp-chef.alviano.net/s/xasp/jlc2024
https://asp-chef.alviano.net/s/xasp/jlc2024
https://asp-chef.alviano.net/s/xasp/jlc2024

The XAI System for Answer Set Programming xASP2 1513

FIGURE 7. ASP encoding associated with the 4x4 instance of Latin Square shown in Figure 6.

TABLE 1. The action preconditions and effects in Blocksworld problem

Action Precondition Effects

stack(X ,Y) - stack
block X is on block Y

Block Y is clear The
agent holds the block
X

X is clear X is on Y Y
is no longer clear The
agent does not hold
anything

unstack(X ,Y) -
unstack block X is
on block Y

X is clear X is on
Y The agent does not
hold anything

The agent holds the
block X Y becomes
clear X is not clear

pickup(X) - pickup
block X from the
table

X is clear X is on the
table the agent does
not hold anything

The agent holds the
block X X is no
longer on the table
and is not clear

putdown(X) - put
down block X onto
the table

The agent holds the
block X

X is clear X is on the
table the agent does
not hold anything

effects of actions in which an action occurs only when its preconditions are true and then its effects
are true in the next time step. Specifically, lines 5 and 6 are used to define states in which an action
cannot be executed, and constraint is employed to prevent non-executable actions from occurring
(line 7).

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

1514 The XAI System for Answer Set Programming xASP2

FIGURE 8. ASP encoding associated with the 9x9 instance of Latin Square shown in Figure 6.

a

b

b

a

Initial state Goal state

FIGURE 9. The initial and goal states of Blocksworld.

For the problem described in Figure 9, executing the actions of unstack(a, b), putdown(a),
pickup(b) and stack(b, a) at times 0, 1, 2 and 3, respectively, constitutes the optimal plan (assuming
time starts at 0). However, if users are in a rush and want to put down block a on the table at time 0,
as represented by the atom occurs(("putdown", constant("a")), 0), they will encounter a false occur-
rence of the action putdown(a). Figure 11 shows that atom occurs(("putdown", constant("a")), 0) is

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

The XAI System for Answer Set Programming xASP2 1515

FIGURE 10. ASP program for reasoning about effects of actions [21]

false because the constraint rule prevents its execution and the prediction of the action holding block
a is invalid/false.

6.1 xASP Navigator

In order to ease the understanding of the DAG produced by xASP2, we designed and implemented a
web application called xASP navigator (https://gitlab.com/mario.alviano/xasp-navigator/). The
application is written in Svelte (https://svelte.dev/), a modern Javascript framework and a concrete
alternative to broadly adopted frameworks such as Angular [29].

From the usability perspective, xASP navigator provides a minimalist user interface showing
the DAG as reported in the figures of this article, and some additional information is given on a side
panel. Specifically, the list of rules and facts are shown by default, and moving the pointer to a node
expand the shown information to include details on the explanation of the pointed node. Moreover,
the user interface includes a filter to highlight nodes and arcs of interest, as well as for restricting the
list of rules and facts. Finally, the DAG and the list of rules and facts are represented in the URL so
that they can be easily shared with other users, essentially by simply sending them a link.

From the development perspective, xASP navigator relies on the D3.js library [5] for
visualizing the DAG as a force-directed graph [18] with preferred points computed by xASP2 by
applying the Sugiyama layout [27]. The DAG is represented in JSON [6] according to the JSON
Schema given in Figure 12. For example, the DAG shown in Figure 3 is represented as the JSON
reported in Figure 13. Note that labels of nodes also carry the information about the reason of
derivation of each node, while labels of rules comprise a rule in input (as written in the input
program) and a substitution for its global variables. A DAG produced by xASP2 can be shown in
xASP navigator by calling the method show_navigator_graph, whose implementation
is given in Figure 14; essentially, the DAG is computed (if not already done; line 2), the URL is
composed by compressing its JSON representation (lines 3–8) and opened in the system browser
(line 9).

6.2 Usage

The easiest way to use xASP2 is via the interface provided by the Explain class. An instance
of Explain must be obtained by means of the factory method the_prog ram, passing the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

https://gitlab.com/mario.alviano/xasp-navigator/
https://gitlab.com/mario.alviano/xasp-navigator/
https://gitlab.com/mario.alviano/xasp-navigator/
https://gitlab.com/mario.alviano/xasp-navigator/
https://gitlab.com/mario.alviano/xasp-navigator/
https://gitlab.com/mario.alviano/xasp-navigator/
https://gitlab.com/mario.alviano/xasp-navigator/
https://svelte.dev/
https://svelte.dev/
https://svelte.dev/

1516 The XAI System for Answer Set Programming xASP2

FIGURE 11. The DAG for atom occurs(("putdown", constant("a")), 0).

program Π , the answer set A and the (true or false) atom to explain α. Obtained an instance
of Explain, the methods minimal_assumption_set, explanation_sequence and
explanation_dag can be used to obtain facts representing the artifacts involved in the
explanation process. Additionally, method show_ navigator_graph can be called to open
the graph in the xASP navigator application (see Figure 14). A code snippet materializing the
running example is shown in Figure 15.

An important aspect to take into account in using xASP2 is that, by design, true atoms are
only explained by support, and choice rules with true bodies are considered a support for all
true atoms in their heads. Depending on the program in input, the produced explanation can
be oversimplified due to such design choices. For example, consider the program reported in
Figure 16—whose unique answer set comprise all atoms in the program but missing—and the
explanation shown in Figure 17 for the query atom. It can be observed that the query atom is
explained by the support provided by the rule at line 1, and the body atom direct_support
is explained by the support provided by the choice rule at line 5. While such an explanation
justifies the presence of query in the answer set, it can be considered oversimplified as the
choice rule does not necessarily enforces the truth of its head atoms; again, this is a design
choice, and in this work we opted for justifying the presence and absence of atoms, rather than
justifying the mandatory presence and absence of atoms. Nonetheless, the program can be rewritten
to obtain more detailed explanations. First of all, the choice rule at line 5 can be rewritten in

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

The XAI System for Answer Set Programming xASP2 1517

FIGURE 12. JSON Schema of DAGs visualized in xASP navigator.

terms of cyclic negation as shown below: {} direct_support:- not direct_support’.
{} direct_support’:- not direct_support. This way, the support provided by the
choice rule is conditioned by the assumption on the falsity of direct_support’, as shown
in Figure 18. As a second observation, note that the constraint at line 2 actually enforces truth
of direct_support, which however we do not capture by design (constraints are only used
to justify falsity). In order to capture such an inference, negative literals can be rewritten by
introducing (or reusing) auxiliary symbols. In this example, the constraint at line 2 is replaced
by {}:- indirect_support, direct_support’. as in fact direct_support’ is the
complement of direct_support. The rewritten program is reported in Figure 19, and the
associated explanation is shown in Figure 20.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

1518 The XAI System for Answer Set Programming xASP2

FIGURE 13. JSON encoding of the DAG shown in Figure 3.

7 Related Work

As mentioned in the introduction, our work is in the context of XAI, which in turn can be applied
to debug by identifying a set of rules that justifies the derivation of a given atom. For example, if an
atom α is supposed to be false in all answer sets of a program Π but appears in some answer set A, an
explanation graph of α could help to understand which rules are behaving anomalously. Therefore,

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

The XAI System for Answer Set Programming xASP2 1519

FIGURE 14. Method show_navigator_graph in xASP2.

FIGURE 15. xASP2 generating the DAG for Πrun, Arun and query arc(a,b).

in this section we consider some debugging tools for ASP, as well as state-of-the-art XAI systems
for ASP. Table 2 reports a summary of the compared features: whether the explanation is guaranteed
to be acyclic; whether the input program may include aggregates and constraints; whether the query
atom can be false in the answer set; and whether the system is available for experimentation.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

1520 The XAI System for Answer Set Programming xASP2

FIGURE 16. A program leading to the oversimplified explanation shown in Figure 17.

FIGURE 17. The oversimplified explanation generated for the program reported in Figure 16, its
unique answer set and the query atom.

FIGURE 18. The oversimplified explanation generated for the program reported in Figure 16 with
the rewritten choice rule line 5, its unique answer set and the query atom.

FIGURE 19. The program reported in Figure 16 rewritten by eliminating choice rules and negative
literals in constraints.

xclingo [8] can generate derivation trees for an atom in an ASP computation. Derivation trees
are obtained by adding to the input program trace:rule and trace annotations, which are
then compiled into theory atoms and auxiliary predicates. Then, the explanations are obtained by
decoding the answer sets of the modified program. xclingo 2.0, the latest release of xclingo
[9, 10], introduces new annotations: mute for atoms and mute_body for rules. The annotations
serve to prune the edges and exclude nodes explanations, thus aiding in information filtering. While
our system maintains edges and nodes in the DAG, it leverages visualization capabilities from xASP
navigator to enhance exploration and navigation. Nonetheless, the possibility to control the
granularity of the explanation is an interesting feature that we may include in future releases of
the navigator. Differently from our system, xclingo and xclingo 2.0 do not support some
linguistic constructs such as constraint, and cannot include negative literals in their explanations.
For example, given a program Πx = {a. b ← a, not c.} and its answer set {a, b}, asking for why b is

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

The XAI System for Answer Set Programming xASP2 1521

FIGURE 20. A more detailed explanation generated using the rewritten program reported in
Figure 19, its unique answer set and the query atom.

TABLE 2. Summary of compared features.

System (if any) and
reference

Acyclic explanation Linguistic
extentions

Explanation for
false atoms

System
availability

xclingo [8] Yes None No Yes
s(CASP) [3] Yes Constraints Yes Yes
Visual-DLV [24] Yes Constraints No Yes
spock [7] Yes Constraints No Yes
DWASP [13] Yes Constraints No Yes
[25] No None Yes No
[30] Yes None Yes No
ASPeRiX [4] Yes Constraints Yes Yes
LABAS [26] No None Yes Yes
[20] No Aggregates Yes No
xASP2 Yes Aggregates and

Constraints
Yes Yes

true, the explanation from xclingo 2.0 is as follows:

The DAG associated with atom b is shown in Figure 21.
s(CASP) [3] leverages top-down Prolog computation to generate a justification tree in natural

language for Constraint Answer Set programs. Due to Prolog computation, different justifications
are produced when the order of atoms in rules or the order of rules in the program is changed [28].
Note that our explanation graphs are not affected by program reordering.

Visual-DLV [24] is a GUI for developing and testing DLV programs, which in particular
provides a command to examine why an atom is true in the latest computed answer set. Such a
question is answered by providing the reason that led the solver infer the atom, among them the
possibility that the atom is a branching literal (a literal guessed to be true by the backtracking
algorithm). Differently from the approach proposed in this paper, in Visual-DLV the link with
the original program is weak due to several simplifications implemented by the grounder and the

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

1522 The XAI System for Answer Set Programming xASP2

FIGURE 21. The DAG for b given the program Πx = {a. b ← a, not c.} and its answer set {a, b}.

FIGURE 22. Induced DAG on the vertices reachable from c for the MAS {a} of Πrw (Section 7).

solver. Moreover, while our approach minimizes the atoms whose truth value must be assumed,
Visual-DLV by design does nothing to simplify the amount of data shown to the user to explain
the derivation of an atom. For example, the answer set {b} of Πrw = { a ← not b. a ← b, c.
b ← not a. c ← a, b.} may be obtained by branching on not c, inferring nothing, and then on
not a, inferring b. Asking for why c is false, would result in the answer “because not c is a branching
literal.” xASP2 assumes the falsity of a, from which the truth of b and the falsity of c can be inferred.
spock [7] makes use of tagging techniques [12] to translate the input program into a new program

whose answer sets can be used to debug the original program. The information reported to the user
includes rules whose body is true (applicable rules), rules whose body is false (blocked rules) and
abnormality tags associated with completion and loop formulas. For Πrw and the answer set {b},
spock detects the fact that the third rule is applicable, and that the other rules are blocked; the exact
reason for which a rule is blocked is not reported. Within this respect, our approach is simpler and
focuses on easy-to-understand inference rules that can be clearly visualized via a DAG like the one
in Figure 22.

DWASP [13] is aimed at identifying a set of rules that are responsible for the absence of an expected
answer set. It combines the grounder gringo [14] and an extension of the ASP solver WASP [1],
and introduces the gringo-wrapper to “disable” some grounding simplifications. The expected,
absent answer set is encoded as a set of constraints, so that its combination with the input program has
no answer set at all, and minimal unsatisfiable subsets (MUSes) can be computed. Some questions
are asked to the user so to select one MUS that makes more sense to investigate for the absence of
the answer set; in fact, at that point the user has a hopefully small set of rules to investigate for bugs.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

The XAI System for Answer Set Programming xASP2 1523

Explanation graphs can be given in terms of off-line justifications [25, 30], possibly containing
cycles among false atoms [25]. For example, given Πf = { a ← b. b ← a. } and the answer
set ∅, [25] explains the falsity of a by a cycle between a and b; xASP2 and [30], instead, use the
fact that a is false in the well-founded model of Πf. We also observe that [30] fixes the assumption
set to the false atoms that are left undefined by the well-founded model. On-line justifications are
produced by ASPeRiX [4], which implements a search procedure based on the selection of rules
rather than literals. In this case the explanation is produced while searching an answer set, and it
is not possible to specify an answer set of interest. Other approaches relying on justifications and
resulting in possibly cyclic explanation graphs are based on assumption-based argumentation, like
LABAS [26], or on trees of systems, as proposed in [20]. Interestingly, [20] deals with aggregates;
however, a system implementing the approach of [20] is not discussed or released.

Finally, comparing xASP2 with the previous version of xASP that lacks support for extended
language constructs such as aggregates, we observe that xASP2 was completely redesigned by
replacing several algorithms implemented in procedural programming languages and Prolog with
more declarative meta-encoding programming powered by mainstream ASP engines. As can be seen
from Table 2, our system is capable of providing explanations for false atoms and does not lead
to cyclic argumentation in the explanation. xASP2 is the only system that tackles a program that
includes both aggregates and constraints. Moreover, the explanation DAGs produced by xASP2 can
be visualized in an interactive web user interface that we expect to describe in future publications.

8 Conclusion

We formalized and implemented a system for XAI targeting the ASP language and powered by
ASP engines. The presence or absence of an atom in an answer set is explained in terms of
easy-to-understand inferences originating from a hopefully small set of atoms assumed false. The
explanation is shown as a DAG rooted at the atom to be explained, and can be computed in a
few seconds in our test cases. DAGs are shown in the form of an interactive representation in
a web browser, and can be easily shared by sending the URL in the address bar of the browser.
The automation of the program rewriting to enrich the generated explanation DAGs constitutes an
interesting line of future research.

Acknowledgements

Mario Alviano is member of Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale di Alta
Matematica (GNCS-INdAM).

Funding

Portions of this publication and research effort are made possible through the help and support
of NIST via cooperative agreement 70NANB21H167. T.C.S. was also partially supported by NSF
awards #1757207, #1914635 and #2151254. M.A. was partially supported by Italian Ministry of
University and Research (MUR) under PRIN project PRODE “Probabilistic declarative process
mining”, CUP H53D23 003420006 under PNRR project FAIR “Future AI Research”, CUP
H23C22000860006, under PNRR project Tech4You “Technologies for climate change adaptation
and quality of life improvement”, CUP H23C22000370006 and under PNRR project SERICS
“SEcurity and RIghts in the CyberSpace”, CUP H73C22000880001; by Italian Ministry of Health
(MSAL) under POS projects CAL.HUB.RIA (CUP H53C22000800006) and RADIOAMICA (CUP

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

1524 The XAI System for Answer Set Programming xASP2

H53C22000650006); by Italian Ministry of Enterprises and Made in Italy under project STROKE
5.0 (CUP B29J23000430005); and by the LAIA lab (part of the SILA labs).

References

[1] M. Alviano, C. Dodaro, N. Leone and F. Ricca. Advances in WASP. In International
Conference on Logic Programming and Nonmonotonic Reasoning, pp. 40–54. Springer, 2015.

[2] M. Alviano, L. L. Trieu, T. Son and M. Balduccini, et al. Advancements in xASP, an
XAI system for answer set programming. In Proceedings of the 38th Italian Conference on
Computational Logic, CEUR Workshop Proceedings, 2023.

[3] J. Arias, M. Carro, Z. Chen and G. Gupta. Justifications for goal–irected constraint answer set
programming. Electronic Proceedings in Theoretical Computer Science, 325, 59–72, 2020.

[4] C. Béatrix, C. Lefèvre, L. Garcia and I. Stéphan. Justifications and blocking sets in a rule-based
answer set computation. In Technical Communications of the 32nd International Conference on
Logic Programming (ICLP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[5] M. Bostock, V. Ogievetsky and J. Heer. D3 data–driven documents. IEEE Transactions on
Visualization and Computer Graphics, 17, 2301–2309, 2011.

[6] P. Bourhis, J. L. Reutter, F. Suárez and D. Vrgoč. Json: Data model, query languages and
schema specification. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems, PODS ’17, pp. 123–135. Association for Computing
Machinery, New York, NY, USA, 2017.

[7] M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits and S. Woltran. That is illogical captain!
The debugging support tool spock for answer-set programs: system description. In Proceedings
of the Workshop on Software Engineering for Answer Set Programming (SEA’07), pp. 71–85,
2007.

[8] P. Cabalar, J. Fandinno and B. Muñiz. A system for explainable answer set programming.
Electronic Proceedings in Theoretical Computer Science, 325, 124–136, 2020.

[9] P. Cabalar and B. Muñiz. Explanation graphs for stable models of labelled logic programs.
In Proceedings of the International Conference on Logic Programming 2023 Workshops co-
located with the 39th International Conference on Logic Programming (ICLP 2023), London,
United Kingdom, July 9 and 10, 2023.

[10] P. Cabalar and B. Muñiz. Model explanation via support graphs. Theory and Practice of Logic
Programming, 1–14, 2024.

[11] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, M.
Maratea, F. Ricca and T. Schaub. ASP-core-2 input language format. Theory and Practice of
Logic Programming, 20, 294–309, 2020.

[12] J. P. Delgrande, T. Schaub and H. Tompits. A framework for compiling preferences in logic
programs. Theory and Practice of Logic Programming, 3, 129–187, 2003.

[13] C. Dodaro, P. Gasteiger, K. Reale, F. Ricca and K. Schekotihin. Debugging non-ground ASP
programs: Technique and graphical tools. Theory and Practice of Logic Programming, 19,
290–316, 2019.

[14] M. Gebser, R. Kaminski, A. König and T. Schaub. Advances in gringo series 3. In International
Conference on Logic Programming and Nonmonotonic Reasoning, pp. 345–351. Springer,
2011.

[15] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Logic Programming:
Proc. of the Seventh International Conference, D. Warren and P. Szeredi., eds, pp. 579–597,
1990.

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

The XAI System for Answer Set Programming xASP2 1525

[16] R. Kaminski, J. Romero, T. Schaub and P. Wanko. How to build your own ASP-based system?
Theory and Practice of Logic Programming, 23, 299–361, 2023.

[17] F. Li, H. Wang, K. Basu, E. Salazar and G. Gupta. DiscASP: A graph-based ASP system for
finding relevant consistent concepts with applications to conversational socialbots. Electronic
Proceedings in Theoretical Computer Science, 345, 205–218, 2021.

[18] C.-C. Lin and H.-C. Yen. A new force-directed graph drawing method based on edge–edge
repulsion. Journal of Visual Languages & Computing, 23, 29–42, 2012.

[19] V. Marek and M. Truszczyński. Stable models and an alternative logic programming paradigm.
In The Logic Programming Paradigm: A 25-Year Perspective, pp. 375–398, 1999.

[20] S. Marynissen, J. Heyninck, B. Bogaerts and M. Denecker. On nested justification systems (full
version). Theory and Practice of Logic Programming, 22, 641–657, 2022.

[21] V. Nguyen, S. L. Vasileiou, T. C. Son and W. Yeoh. Explainable planning using answer set
programming. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, pp. 662–666, 2020.

[22] I. Niemelä. Logic programming with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence, 25, 241–273, 1999.

[23] N. Pelov, M. Denecker and M. Bruynooghe. Well-founded and stable semantics of logic
programs with aggregates. Theory and Practice of Logic Programming, 7, 301–353, 2007.

[24] S. Perri, F. Ricca, G. Terracina, D. Cianni and P. Veltri. An integrated graphic tool for
developing and testing dlv programs. In Proceedings of the Workshop on Software Engineering
for Answer Set Programming (SEA’07), pp. 86–100, 2007.

[25] E. Pontelli, T. C. Son and O. Elkhatib. Justifications for logic programs under answer set
semantics. Theory and Practice of Logic Programming, 9, 1–56, 2009.

[26] C. Schulz and F. Toni. Justifying answer sets using argumentation. Theory and Practice of Logic
Programming, 16, 59–110, 2016.

[27] K. Sugiyama, S. Tagawa and M. Toda. Methods for visual understanding of hierarchical system
structures. IEEE Transactions on Systems, Man, and Cybernetics, 11, 109–125, 1981.

[28] L. Trieu, L. Son and T. C. Balduccini. xASP: An explanation generation system for answer
set programming. In International Conference on Logic Programming and Nonmonotonic
Reasoning, pp. 363–369. Springer, 2022.

[29] T.-D. Tripon, G. A. Gabor and E. V. Moisi. Angular and svelte frameworks: a comparative
analysis. In the 16th International Conference on Engineering of Modern Electric Systems
(EMES), pp. 1–4, 2021.

[30] C. Damásio, V. Analyti and A. Antoniou. Justifications for logic programming. In Logic
Programming and Nonmonotonic Reasoning: 12th International Conference, LPNMR 2013,
Corunna, Spain, September 15–19, 2013. Proc. 12, pp. 530–542. Springer, 2013.

Received 13 November 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/logcom

/article/34/8/1500/7721286 by N
ew

 M
exico State U

niversity user on 17 July 2025

	 The XAI system for answer set programming xASP2
	 1Introduction
	 2Background
	 3Explanations
	 4Existence of Minimal Assumption Sets
	 5Generation via Meta-Programming
	 6Implementation and Experiment
	 7Related Work
	 8Conclusion

