
On Reporting Durable Pa!erns in Temporal Proximity
Graphs∗

PANKAJ K. AGARWAL, Department of Computer Science, Duke University, USA
XIAO HU†, Cheriton School of Computer Science, University of Waterloo, Canada
STAVROS SINTOS, Department of Computer Science, University of Illinois at Chicago, USA
JUN YANG, Department of Computer Science, Duke University, USA

Finding patterns in graphs is a fundamental problem in databases and data mining. In many applications,
graphs are temporal and evolve over time, so we are interested in !nding durable patterns, such as triangles
and paths, which persist over a long time. While there has been work on !nding durable simple patterns,
existing algorithms do not have provable guarantees and run in strictly super-linear time. The paper leverages
the observation that many graphs arising in practice are naturally proximity graphs or can be approximated as
such, where nodes are embedded as points in some high-dimensional space, and two nodes are connected
by an edge if they are close to each other. We work with an implicit representation of the proximity graph,
where nodes are additionally annotated by time intervals, and design near-linear-time algorithms for !nding
(approximately) durable patterns above a given durability threshold. We also consider an interactive setting
where a client experiments with di"erent durability thresholds in a sequence of queries; we show how to
compute incremental changes to result patterns e#ciently in time near-linear to the size of the changes.

CCS Concepts: • Theory of computation→ Data structures and algorithms for data management.

Additional Key Words and Phrases: temporal graph, proximity graph, durability, durable pattern, doubling
dimension, cover tree

ACM Reference Format:
Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang. 2024. On Reporting Durable Patterns in Temporal
Proximity Graphs. Proc. ACM Manag. Data 2, 2 (PODS), Article 81 (May 2024), 26 pages. https://doi.org/10.
1145/3651144

1 INTRODUCTION
Finding patterns in large graphs is a fundamental problem in databases and data mining. In many
practical applications, graphs evolve over time, and we are often more interested in patterns that
are “durable,” i.e., persisting over a long time. Here are two examples of !nding durable patterns in
temporal graphs.

∗This work was partially supported by NSF grants CCF-20-07556, CCF-22-23870, IIS-1814493, IIS-2008107, and by US-Israel
BSF grant 2022131.
†This work was partially done while the author was visiting Simons Institute for the Theory of Computing.

Authors’ addresses: Pankaj K. Agarwal, Department of Computer Science, Duke University, Durham, USA, pankaj@cs.duke.
edu; Xiao Hu, Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada, xiaohu@uwaterloo.ca;
Stavros Sintos, Department of Computer Science, University of Illinois at Chicago, Chicago, USA, stavros@uic.edu; Jun
Yang, Department of Computer Science, Duke University, Durham, USA, junyang@cs.duke.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and the
full citation on the !rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci!c permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/5-ART81
https://doi.org/10.1145/3651144

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

https://doi.org/10.1145/3651144
https://doi.org/10.1145/3651144
https://doi.org/10.1145/3651144

81:2 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Example 1.1. Consider an online forum with social networking features, where users with similar
pro!les are connected as friends. Each user may be active on the forum only for a period of time
during the day. We are interested in !nding cliques of connected users who are simultaneously
active for a su#ciently long time period. Such queries are useful to forum administrators who want
to understand how the social network in$uences user interactions and leverage this knowledge to
promote more interactions.

Example 1.2. Consider a co-authorship graph where two researchers are connected if they have
written at least one paper together. Further suppose that researchers are each associated with a
time period when they remain active in research. Besides researchers with direct co-authorship, we
might be interested in pairs who co-authored with a set of common researchers over a long period
of time. We would not be interested in researchers with a common co-author if the respective
collaborations happened at distant times.

The problem of !nding (durable) patterns, such as triangles, in general graphs is challenging:
known (conditional) lower bounds suggest that it is unlikely to have near-linear algorithms [2, 5, 46].
However, many graphs that arise in practice are naturally proximity graphs, or can be approximated
as such. In proximity graphs, nodes are embedded as points in some high-dimensional space, and
two nodes are connected by an edge if they are close to each other (i.e., their distance is within some
threshold). For example, social networks such as Example 1.1 can be embedded (with small error) in
the space of user pro!les with a low intrinsic dimension [51]. Similarly, in the co-authorship graph,
where two authors nodes are connected if they have written at least𝐿 papers together for some
𝐿 ↑ 1, the nodes can also be embedded in a space with low intrinsic dimension [52]. Generally, for
many graphs arising in a wide range of applications (e.g. social network, transportation network,
Internet), there exist appropriate node embeddings that preserve the structures and shortest paths in
the original graphs [51, 55, 56]. This observation enables us to leverage the properties of proximity
graphs to develop e#cient algorithms for !nding patterns in such graphs, which overcome the
hardness of the problem on arbitrary graphs.

This paper hence tackles the problem of !nding durable patterns in temporal proximity graphs,
for which we are not aware of e#cient algorithms. For simplicity, we assume in this paper that
the embedding of the graph is given – there are e#cient algorithms for computing graph embed-
dings [12, 16, 38, 51, 54]. We work with an implicit representation of the proximity graphs – nodes
represented as points and edges de!ned between pairs of points within a threshold distance in the
embedding space. We never construct the graph itself explicitly. We design e#cient algorithms
whose running time depend on the number of nodes and the intrinsic dimension (doubling di-
mension) of the data. Our approach extends naturally to other classes of graphs including interval
graphs, permutation graphs, and grid graphs. Next, we formally de!ne the problems we study. Our
notation is summarized in Table 1.

1.1 Problem Definitions
Let (𝑀,𝑁) be a metric space over a set of 𝑂 points 𝑀 ↓ R𝐿 , for some 𝑃 ↑ 1, and a metric 𝑁 . For
a parameter 𝑄 > 0, let 𝑅𝑀 (𝑀, 𝑄) = (𝑀, 𝑆) where 𝑆 = {(𝑇,𝑈) | 𝑁 (𝑇,𝑈) ↔ 𝑄 } be a proximity graph,
also called a unit disk graph. For simplicity, we assume 𝑄 = 1 and let 𝑅𝑀 (𝑀) = 𝑅𝑀 (𝑀, 1). Suppose
a function 𝑉 assigns each point 𝑇 ↗ 𝑀 to a time interval called its lifespan, denoted 𝑉𝑁 = [𝑉↘𝑁 , 𝑉+𝑁].
We can interpret the lifespan of 𝑇 as inserting 𝑇 at time-stamp 𝑉↘𝑁 and deleting it at time-stamp
𝑉+𝑁 . We use (𝑀,𝑁, 𝑉) to refer to the temporal proximity graph, or the underlying metric space with
points annotated with interval lifespans. For simplicity, all de!ned problems assume that the query
pattern is triangle. As we point out in Section 1.2, all techniques are extended to more general

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:3

𝑀 point set
𝑂 |𝑀 |
𝑁 distance function
𝑊 doubling dimension
𝑋 distance approximation
𝑌 durability parameter

𝑉𝑁 = [𝑉↘𝑁 , 𝑉+𝑁] lifespan (interval) of point 𝑇
𝑍𝑂 𝑌-durable triangles
𝑍 𝑃
𝑂 𝑌-durable 𝑋-triangles
𝑎𝑃
𝑂 𝑌-SUM durable 𝑋-pairs

𝑎𝑃
𝑂,𝑄 (𝑌,𝑏)-UNION durable 𝑋-pairs

OUT Output size

Table 1. Table of Notations.

patterns. For an interval 𝑉 , we de!ne |𝑉 | as the length of 𝑉 . If 𝑉 is a set of intervals then |𝑉 | is de!ned
as the length of the union of intervals in 𝑉 .
Durable triangles. A triplet (𝑇1, 𝑇2, 𝑇3) ↗ 𝑀 ≃ 𝑀 ≃ 𝑀 forms a triangle in 𝑅𝑀 (𝑀) if 𝑁 (𝑇1, 𝑇2),
𝑁 (𝑇2, 𝑇3), 𝑁 (𝑇1, 𝑇3) ↔ 1. We also introduce an approximate notion of triangles: for a parameter
𝑋 > 0, a triplet (𝑇1, 𝑇2, 𝑇3) forms an (1+𝑋)-approximate triangle, or 𝑋-triangle for brevity, if 𝑁 (𝑇1, 𝑇2),
𝑁 (𝑇2, 𝑇3), 𝑁 (𝑇1, 𝑇3) ↔ 1 + 𝑋. The lifespan of (𝑇1, 𝑇2, 𝑇3) is de!ned as 𝑉 (𝑇1, 𝑇2, 𝑇3) = 𝑉𝑁1 ⇐ 𝑉𝑁2 ⇐ 𝑉𝑁3 . For
a durability parameter 𝑌 > 0, (𝑇1, 𝑇2, 𝑇3) is 𝑌-durable if |𝑉 (𝑇1, 𝑇2, 𝑇3) | ↑ 𝑌 . Let 𝑍𝑂 ,𝑍 𝑃

𝑂 be the set of
𝑌-durable triangles, and 𝑌-durable 𝑋-triangles respectively. Note that 𝑍𝑂 ⇒ 𝑍 𝑃

𝑂 . Given a 𝑌-durable
triangle with three points, the point that anchors the triangle is the one whose lifespan starts the
latest among the three. By convention, we will list the anchor !rst in the triplet; i.e., in a 𝑌-durable
triangle (𝑇,𝑈, 𝑐), we have 𝑉↘𝑁 ↑ max{𝑉↘𝑅 , 𝑉 𝑆𝑇 }.

De!nition 1.3 (DurableTriangle). Given (𝑀,𝑁, 𝑉) and 𝑌 ↑ 0, it asks to report all 𝑌-durable
triangles (or 𝑋-triangles).

Suppose we have embedded the social network in Example 1.1 as a proximity graph where nodes
represent users. The goal is to !nd triplets (or generally cliques) of users who are simultaneously
active on the forum.1

In some use cases, we do not have a clear choice of the durability parameter 𝑌 in mind, and
we may want to explore with di"erent settings. Supporting this mode of querying motivates the
problem of incrementally reporting 𝑌-durable triangles. Here, queries arrive in an online fashion,
each specifying a di"erent durability parameter 𝑌1, 𝑌2, Instead of computing each query 𝑌𝑆+1
from scratch, we want to leverage the previous query result 𝑍𝑂𝐿 and only incrementally compute
what is new. Note that every 𝑌-durable triangle must also be 𝑌 ⇑-durable for every 𝑌 ⇑ ↔ 𝑌 . Therefore,
if 𝑌𝑆+1 ↑ 𝑌𝑆 , we have 𝑍𝑂𝐿+1 ⇒ 𝑍𝑂𝐿 so we simply need to !lter the old results to obtain new ones
(assuming we remember results together with their lifespans). The more interesting case is when
𝑌𝑆+1 < 𝑌𝑆 , so 𝑍𝑂𝐿+1 ⇓ 𝑍𝑂𝐿 , and we need to incrementally report new results.

De!nition 1.4 (IncrDurableTriangle). Given (𝑀,𝑁, 𝑉) and 𝑌⇔ > 𝑌 > 0, it asks to report all
𝑌-durable triangles (or 𝑋-triangles) that are not 𝑌⇔-durable, along with their lifespans.

1While for simplicity of exposition we assume that each node has a single-interval lifespan, it is straightforward to extend
our temporal model consider multiple-interval lifespans, with the complexities of our solutions in the following sections
increased by a factor equal to the maximum number of intervals per lifespan.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:4 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Problem Time complexity in 𝑑̃ (·)
DurableTriangle 𝑂𝑋↘𝑈 (𝑉) +OUT

IncrDurableTriangle 𝑋↘𝑈 (𝑉) · OUT
AggDurablePair–SUM 𝑋↘𝑈 (𝑉) · (𝑂 +OUT)

AggDurablePair–UNION 𝑏𝑋↘𝑈 (𝑉) · (𝑂 +OUT)

Table 2. Summary of our main results. Here, 𝑂 is the input size, i.e., the number of points in 𝑀 ; 𝑊 is the
doubling dimension of (𝑀,𝑁); 𝑌 is the durability parameter; OUT is the output size for the respective problem
(di"erent for each problem); 𝑋 is the approximation ratio; and 𝑒 is the parameter used for (𝑌,𝑏)-UNION
durability. In the complexities reported above, 𝑑̃ (·) hides a polylog𝑂 factor, and the hidden constants in 𝑑 (·)
and 𝑑̃ (·) may depend on 𝑊 , which is assumed to be a constant.

Aggregate-durable pairs. Given a pair (𝑇1, 𝑇2) ↗ 𝑀 ≃ 𝑀 , we consider the set𝑓 of nodes incident
to both 𝑇1 and 𝑇2 and aggregate the lifespans of triplets (𝑔, 𝑇1, 𝑇2). We call𝑓 the witness of (𝑇1, 𝑇2).
There are two natural ways of aggregating over 𝑓 : SUM and UNION. For SUM, we aggregate
by summing up the durabilities of triplet lifespans, i.e., AGG(𝑇1, 𝑇2,𝑓) = ∑

𝑊↗𝑋 |𝑉 (𝑔, 𝑇1, 𝑇2) |. For
UNION, we aggregate by !rst taking the union of the triplet lifespans and then considering its
length, i.e., AGG(𝑇1, 𝑇2,𝑓) = |⋃𝑊↗𝑋 𝑉 (𝑔, 𝑇1, 𝑇2) |. Intuitively, SUM gives higher weights to time
periods when multiple simultaneous connections exist, while UNION only cares about whether a
period is covered at all by any connection. Given durability parameter 𝑌 > 0, a pair (𝑇1, 𝑇2) ↗ 𝑀≃𝑀 is
𝑌-aggregate-durable if𝑁 (𝑇1, 𝑇2) ↔ 1 andAGG(𝑇1, 𝑇2,𝑓) ↑ 𝑌 for𝑓 = {𝑔 ↗ 𝑀 | 𝑁 (𝑇1,𝑔),𝑁 (𝑇2,𝑔) ↔ 1}.
We also de!ne 𝑌-aggregate-durable 𝑋-pairs by relaxing the distance thresholds for 𝑁 (𝑇1, 𝑇2), 𝑁 (𝑇1,𝑔),
and 𝑁 (𝑇2,𝑔) from 1 to 1+𝑋. Let𝑎𝑂 ,𝑎𝑃

𝑂 be the set of all 𝑌-aggregate-durable pairs, 𝑋-pairs respectively.
Notice that 𝑎𝑂 ⇒ 𝑎𝑃

𝑂 .

De!nition 1.5 (AggDurablePair). Given (𝑀,𝑁, 𝑉) and 𝑌 ↑ 0, it asks to report all 𝑌-aggregate-
durable pairs (or 𝑋-pairs).

Suppose we have embedded the co-authorship graph in Example 1.2 as a proximity graph
where nodes represent authors. The goal is to !nd pairs of coauthors 𝑇𝑆 , 𝑇 𝑌 who have collaborated
su#ciently with various others, either in terms of total time over all collaborators (SUM), or over a
large portion of 𝑇𝑆 and 𝑇 𝑌 ’s shared active lifespan (UNION).

1.2 Our Results and Approach
We present algorithms for 𝑋-approximate versions of all three problems, whose time complexity
are summarized in Table 2. In all cases, we report all durable triangles along with some durable
𝑋-triangles. The running time is always near-linear in terms of the input and output size, which is
almost the best one could hope for. Our solutions leverage the observation that proximity graphs in
practice often have bounded spread ω and doubling dimension 𝑊 — Section 2 further reviews these
concepts and the associated assumptions. The complexities in Table 2 assume spread to be 𝑂𝑈 (1)

(hence ω is omitted) and doubling dimension to be constant, but our algorithms also work for more
general cases.

For DurableTriangle (Section 3), our main approach is to construct a hierarchical space
decomposition consisting of a canonical set of balls, via a cover tree. We use the canonical set of balls
to obtain a compact, implicit representation of points within unit distance from each point, and then
use an interval tree along with auxiliary data structures to report durable triangles in linear time.
The algorithm runs in 𝑑̃ (𝑂𝑋↘𝑈 (𝑉) +OUT) time, whereOUT ↗ [|𝑍𝑂 |, |𝑍 𝑃

𝑂 |] is the result size. (The 𝑑̃ (·)
notation hides polylogarithmic factors). For the 𝑕↖ metric, this result can be improved to 𝑑̃ (𝑂 + |𝑍𝑂 |).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:5

Moreover, our data structures can be extended to support delay-guaranteed enumeration as well as
dynamic settings where nodes are inserted or deleted according to their lifespan.

For IncrDurableTriangle (Section 4), to support incremental computation of queries arriving
in an online setting, we additionally maintain an activation threshold for each point with respect
to di"erent durability parameters. In more detail, for each durability parameter 𝑌 , we design an
oracle that can e#ciently !nd the largest value 𝑖 < 𝑌 such that 𝑇 participates in a 𝑖-durable
triangle that is not 𝑌-durable, which is key to achieve near-linear time complexity. Our algorithm
constructs an 𝑑̃ (𝑂)-size data structure in 𝑑̃ (𝑂𝑋↘𝑈 (𝑉)) time, such that given the previous query
parameter 𝑌⇔ and current query parameter 𝑌 < 𝑌⇔, it can report the delta results in 𝑑̃ (𝑋↘𝑈 (𝑉) ·OUT)
time, where OUT ↗

[
|𝑍𝑂 ↘𝑍𝑂⇔ |, |𝑍 𝑃

𝑂 ↘𝑍 𝑃
𝑂⇔ |

]
is the delta result size. Speci!cally, for the 𝑕↖ metric,

IncrDurableTriangle can be solved exactly in 𝑑̃ (|𝑍𝑂𝐿+1 \𝑍𝑂𝐿 |) time.
For AggDurablePair (Section 5), recall that the problem requires aggregating lifespans

over witness set 𝑓 . We build auxiliary data structures to compute the sum or union of intervals
intersecting any given interval. Additionally, we identify a special ordering of 𝑀 such that only a
bounded number of pairs that are not aggregate-durable will be visited, so the linear-time complexity
can be guaranteed. For the SUM version of the problem, we present an 𝑑̃ ((𝑂 +OUT) · 𝑋↘𝑈 (𝑉))-time
algorithm, where OUT ↗

[
𝑎𝑂 ,𝑎𝑃

𝑂

]
is the output size. The UNION version is more challenging

because of the inherent hardness of computing the union of intervals that intersect a query interval.
However, as shown in Section 5.2, we can still get an near-linear-time and output-sensitive algorithm
that reports all 𝑌-UNION-durable pairs along with some (1 ↘ 1/𝑗)𝑌-UNION-durable 𝑋-pairs.
Extensions. Our algorithms also work for every 𝑕𝑍 -metric2 or metric with bounded expansion
constant3. Moreover, all our results for reporting triangles can be extended to reporting cliques,
paths, and star patterns of constant size. See details in Appendix C.
Connection with triangle listing algorithms in general graphs. Consider simple directed
or undirected graphs with 𝑂 vertices and𝐿 edges. The trivial algorithm by listing all triples of
vertices runs in 𝑑 (𝑂3) time. This is worst-case optimal in terms of 𝑂, since a dense graph may
contain ε(𝑂3) triangles. A graph with 𝐿 edges contains ε(𝐿3/2) triangles. It has been shown
that all triangles in a graph of𝐿 edges can be enumerated in 𝑑̃ (𝐿3/2) time [35, 43, 50]. This is
also worst-case optimal, since a graph of𝐿 edges may contain ε(𝐿3/2) triangles. Later, output-
sensitive algorithms for listing triangles were developed using fast matrix multiplication, which run
in 𝑑̃

(
𝑂𝑎 + 𝑂 3(𝑀↘1)

5↘𝑀 · OUT 2(3↘𝑀)
5↘𝑀

)
or 𝑑̃

(
𝐿

2𝑀
𝑀+1 +𝐿 3(𝑀↘1)

𝑀+1 · OUT 3↘𝑀
𝑀+1

)
time, where 𝑑 (𝑂𝑎) is the running

time of 𝑂 ≃𝑂 matrix multiplication and OUT is the number of triangles in the graph [9]. In contrast,
it has been shown [46] that listing 𝐿 triangles in a graph of 𝐿 edges requires 𝐿4/3↘𝑏 (1) time,
assuming the 3SUM conjecture4. A careful inspection of this lower bound construction reveals that
listing 𝑂3/2 triangles in a graph of 𝑂 vertices requires 𝑂2↘𝑏 (1) time, assuming the 3SUM conjecture.
These lower bounds together rule out the possibility of listing triangles in general graphs within
𝑑 (𝐿 + 𝑂 +OUT) time, unless the 3SUM conjecture is refuted.

Existing techniques for listing triangles in general graphs do not yield e#cient algorithms
for our setting and several new ideas are needed to obtain the results of this paper. First, most
traditional techniques for listing triangles do not handle temporal constraints on vertices or edges.

2If 𝑀 is the 𝑐𝑁 -metric then 𝑀 (𝑁,𝑅) =
(∑𝑂

𝑃=1 |𝑁 𝑃 ↘ 𝑅 𝑃 |𝑁
)1/𝑁

, where 𝑁 𝑃 ,𝑅 𝑃 are the 𝑌-th coordinates of points 𝑁 and 𝑅,

respectively.
3Ametric space (𝑑,𝑀) has expansion constant𝑒 if𝑒 is the smallest value such that for every𝑁 ↗ 𝑑 and 𝑓 > 0 |𝑑⇐B(𝑁, 2𝑓) | ↔
𝑒 · |𝑑 ⇐ B(𝑁, 𝑓) |, where B(𝑁, 𝑓) is the ball with center 𝑁 and radius 𝑓 .
4The 3SUM conjecture states that: Given three sets 𝑔,𝑕,𝑖 of 𝑗 elements, any algorithm requires 𝑗2↘𝑄 (1) time to determine
whether there exists a triple (𝑘,𝑙, 𝑚) ↗ 𝑔 ≃ 𝑕 ≃𝑖 such that 𝑘 + 𝑙 + 𝑚 = 0.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:6 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Recently, e#cient algorithms for durable–join with temporal constraints on edges are proposed
in [33]. However, their algorithm requires ϑ(𝐿3/2) time for listing durable triangles, even if the
number of durable triangles is much smaller. Even without temporal constraints, all the worst-case
optimal join algorithms run in super-linear time, in terms of 𝑂 and OUT, for listing triangles in
proximity graphs. Furthermore, in our setting, the input is an implicit representation of a proximity
graph (𝑀,𝑁). To feed (𝑀,𝑁) as input to these algorithm, the number of edges𝐿 can be quadratic
in terms of |𝑀 |, which already requires ϑ(𝑂2) time for processing the input, not to mention the
time for identifying triangles. Our algorithms use novel geometric data structures to identify all
triangles that a point belongs to in time which is linear (ignoring log𝑂 factors) to both input size 𝑂
and output size OUT. Finally, the known algorithms do not handle the incremental or the aggregate
versions of our problem, and we need completely new techniques to further exploit the structure
of proximity graphs.

2 PRELIMINARIES
We start by reviewing some basic concepts and data structures. Building on the basic data structures,
we introduce an oracle that will be frequently used by our algorithms in the ensuing sections.

2.1 Basic concepts and data structures
Spread. The spread of a set 𝑀 under distance metric 𝑁 is the ratio of the maximum and minimum
pairwise distance in 𝑀 . For many data sets that arise in practice, the spread is polynomially bounded
in 𝑂, and this assumption is commonly made in machine learning and data analysis [8, 10, 17, 37].
Doubling dimension. For 𝑘 ↗ R𝐿 and 𝑄 ↑ 0, let B(𝑘, 𝑄) = {𝑙 ↗ R𝐿 | 𝑁 (𝑘,𝑙) ↔ 𝑄 } denote the ball
(under the metric 𝑁) centered at point 𝑘 with radius 𝑄 . A metric space (𝑀,𝑁) has doubling dimension
𝑊 if for every 𝑇 ↗ 𝑀 and 𝑄 > 0, B(𝑇, 𝑄) ⇐ 𝑀 can be covered by the union of at most 2𝑉 balls of radius
𝑄/2. For every 𝑚 > 0, let 𝑕𝑍 be the 𝑚 norm. The metric space (𝑀, 𝑕𝑍) has doubling dimension 𝑃 for
every 𝑀 ↓ R𝐿 , but for speci!c 𝑀 ↓ R𝐿 , the doubling dimension can be much smaller—e.g., points in
3d lying on a 2-dimensional plane or sphere has doubling dimension 2. Doubling dimensions and
their variants are popular approaches for measuring the intrinsic dimension of a data set in high
dimension; see, e.g., [11, 24, 47, 47]. It has been widely shown that graphs arising in practice have
low doubling dimension [18, 25, 42, 49, 51]. Empirical studies in these papers and other sources (e.g.,
[1]) show that the doubling dimension of router graphs, internet latency graphs, citation graphs,
and movie database graphs are less than 15.
Interval tree. Let I be a set of intervals. An interval tree [41] is a tree-based data structure that
can !nd intersections of a query interval 𝑉 with the set of intervals I stored in the interval tree. For
example, it can report or count the number of intervals in I intersected by 𝑉 visiting only 𝑑 (log𝑂)
nodes. It has 𝑑 (𝑂) space and it can be constructed in 𝑑 (𝑂 log𝑂) time.
Cover tree. A cover tree T is a tree-based data structure where each node 𝑔 of T is associated
with a representative point Rep𝑊 ↗ 𝑀 and a ball B𝑊 . Each node belongs to an integer-numbered
level; if a node 𝑔 is at level 𝑛 then its children are at level 𝑛 ↘ 1. Let 𝑜𝑆 be the set of balls associated
with nodes at level 𝑛 . The radius of each ball B𝑊 at level 𝑛 is 2𝑆 (notice that our de!nition allows
level numbers to be positive or negative). Each point 𝑇 ↗ 𝑀 is stored in one of the leaf nodes. The
root consists of a ball that covers the entire data set and its representative point is any point in 𝑀 . A
cover tree satis!es the following constraints:
• (Nesting) If there is a node 𝑔 at level 𝑛 with a representative point Rep𝑊 ↗ 𝑀 , then Rep𝑊 is also a
representative point in a node at level 𝑛 ↘ 1.

• (Covering) For every representative point Rep𝑊 at level 𝑛 ↘ 1, there exists at least one represen-
tative Rep𝑛 at level 𝑛 such that 𝑁 (Rep𝑛,Rep𝑊) < 2𝑆 . We designate 𝑝 as the parent of 𝑔.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:7

• (Separation) For every 𝑔, 𝑝 at level 𝑛 , 𝑁 (Rep𝑊,Rep𝑛) > 2𝑆 .
Traditionally, a cover tree is used mostly for approximate nearest-neighbor queries [8, 31]. We
modify the construction of the cover tree to use it for ball-reporting queries in bounded doubling
spaces. Given a point 𝑇 , let B(𝑇, 𝑄) = {𝑘 ↗ R𝐿 | 𝑁 (𝑘, 𝑇) ↔ 𝑄 } be a ball with radius 𝑄 centered at 𝑇 ,
and let B(𝑇) := B(𝑇, 1). Given a query point 𝑇 , the goal is to report 𝑞(𝑇) ⇐ 𝑀 e#ciently. We modify
the cover tree to answer ball-reporting queries approximately. In each node 𝑔 of the cover tree, we
(implicitly) store 𝑀𝑊 , i.e., the points that lie in the leaf nodes of the subtree rooted at 𝑔. Let 𝑇 be a
query point. We !nd a set of nodes in the cover tree whose associated balls entirely cover B(𝑇)
and might cover some region outside B(𝑇) within distance (1 + 𝑋) from the center of B. The set of
nodes we !nd in the query procedure are called canonical nodes, their corresponding balls are called
canonical balls, and the subsets of points stored in the canonical balls are called canonical subsets.
In the end, we report all points stored in the canonical nodes. More formally, in Appendix A, we
show how to construct a data structure with space 𝑑 (𝑂) in 𝑑 (𝑂 log𝑂) time, while achieving the
following guarantees when the spread is bounded. For a query point 𝑈 ↗ R𝐿 , in 𝑑 (log𝑂 + 𝑋↘𝑈 (𝑉))
time, it returns a set of 𝑑 (𝑋↘𝑈 (𝑉)) canonical balls (corresponding to nodes in the modi!ed cover
tree) of diameter no more than 𝑋, possibly intersecting, such that each point of B(𝑈) ⇐ 𝑀 belongs to
a unique canonical ball. Each canonical ball may contain some points of B(𝑈, 1 + 𝑋) ⇐ 𝑀 .

2.2 Durable ball query
In this subscection, we describe an extension of the ball-reporting query that will be frequently
used by our algorithms. Given (𝑀,𝑁, 𝑉), 𝑌 > 0, and a point 𝑇 with interval 𝑉𝑁 , a 𝑌-durable ball query
!nds all points 𝑈 ↗ 𝑀 such that 𝑁 (𝑇,𝑈) ↔ 1, |𝑉𝑁 ⇐ 𝑉𝑅 | ↑ 𝑌 , and 𝑉↘𝑁 ↗ 𝑉𝑅 . Answering such a query
exactly is inherently expensive even in the Euclidean space, since a near-linear space data structure
has ϑ(𝑂1↘1/𝐿 +OUT) query time [13], where OUT is the output size. If we use such a data structure
for our problem in metrics with bounded doubling dimension, it would lead to a near-quadratic
time algorithm for the DurableTriangleproblem. Instead, we consider the following relaxed version:

De!nition 2.1 (𝑋-approximate 𝑌-durable ball query). Given (𝑀,𝑁, 𝑉), 𝑌 ↑ 0, 𝑋 ↗ (0, 1), and a point
𝑇 with interval 𝑉𝑁 , !nd a subset 𝑟 ⇒ 𝑀 of points such that B(𝑇) ⇐ 𝑀 ⇒ 𝑟 ⇒ B(𝑇, 1 + 𝑋) ⇐ 𝑀 , and for
every 𝑈 ↗ 𝑟 , |𝑉𝑁 ⇐ 𝑉𝑅 | ↑ 𝑌 and 𝑉↘𝑁 ↗ 𝑉𝑅 .

We note that the condition 𝑉↘𝑁 ↗ 𝑉𝑅 is needed to avoid reporting duplicate results, as we will see
in the next sections.
Data structure. Intuitively, we use a multi-level data structure D to handle this query. At the !rst
level, we construct a cover tree CT on 𝑀 to !nd a small number of canonical nodes that contain
the points of B(𝑇) ⇐ 𝑀 (but may also contain some point of B(𝑇, 1 + 𝑋) ⇐ 𝑀). At each node 𝑔 of
the cover tree, we construct an interval tree IT𝑊 over the temporal intervals of 𝑀𝑊 . Using the cover
tree along with interval trees, we can !nd a set of 𝑑 (𝑋↘𝐿) canonical nodes that contain all points 𝑈
within distance 1 from 𝑇 and 𝑉↘𝑁 ↗ 𝑉𝑅 , but they may also contain points within distance 1 + 𝑋 from 𝑇 .
D uses 𝑑 (𝑂 log𝑂) space and can be constructed in 𝑑 (𝑂 log2 𝑂) time.

Let durableBallQ (𝑇, 𝑌, 𝑋) denote the query procedure of D with parameters 𝑇, 𝑌, 𝑋. It answers
the query as follows:
• (step 1) We query CT with point 𝑇 and radius 1, and obtain a set of canonical nodes C =
{𝑔1,𝑔2, . . . ,𝑔𝑜 } for 𝑒 = 𝑑 (𝑋↘𝑈 (𝑉)). From Appendix A, each node in C corresponds to a ball with
diameter no more than 𝑋. For each 𝑔 𝑌 ↗ C, 𝑁 (𝑇,Rep𝑌) ↔ 1 + 𝑋/2.5

• (step 2) For each canonical node 𝑔 𝑌 ↗ C, we query IT𝑊 𝑃 with 𝑉↘𝑁 , and obtain all 𝑈 ↗ IT𝑊 such that
𝑉↘𝑅 + 𝑌 ↔ 𝑉↘𝑁 + 𝑌 ↔ 𝑉+𝑅 .

5For simplicity, we denote the representative point of a node 𝑊𝐿 by Rep𝐿 .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:8 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Algorithm 1: R!"#$%T$&’()*!(D, 𝑇, 𝑌, 𝑋)
1 C𝑁 : {C𝑁,1, C𝑁,2, · · · , C𝑁,𝑜 } ↙ durableBallQ (𝑇, 𝑌, 𝑋/2), with Rep𝑆 denoting the representative

point of the ball for C𝑁,𝑆 ;
2 foreach 𝑠 ↗ [𝑒] do
3 foreach 𝑈, 𝑐 ↗ C𝑁, 𝑌 where 𝑈 precedes 𝑐 do
4 report (𝑇,𝑈, 𝑐);

5 foreach 𝑛, 𝑠 ↗ [𝑒] where 𝑛 < 𝑠 do
6 if 𝑁 (Rep𝑆 , Rep𝑌) ↔ 1 + 𝑃

2 then
7 foreach (𝑈, 𝑐) ↗ C𝑁,𝑆 ≃ C𝑁, 𝑌 do
8 report (𝑇,𝑈, 𝑐);

In the end, durableBallQ returns 𝑑 (𝑒) disjoint result point sets, whose union is the answer to the
𝑋-approximate 𝑌-durable ball query. The grouping of result points into subsets and the implicit
representation of these subsets is an important feature of durableBallQ that we shall exploit in later
sections. Note that durableBallQ might return a point 𝑈 such that 𝑁 (𝑇,𝑈) > 1, but 𝑁 (𝑇,𝑈) ↔ 1 + 𝑋
always holds. Together, we obtain:

L!++’ 2.2. Given a set 𝑀 of 𝑂 points, a data structure can be built in 𝑑 (𝑂 log2 𝑂) time with
𝑑 (𝑂 log𝑂) space, that supports an 𝑋-approximate 𝑌-durable ball query, computing a family of 𝑑 (𝑋↘𝐿)
canonical subsets in 𝑑 (𝑋↘𝐿 log𝑂) time.

Extended data structure with re!ned result partitioning. We de!ne the more involved query
procedure durableBallQ ⇑(𝑇, 𝑌, 𝑌 ⇑, 𝑋), which will be used by our algorithms for IncrDurableTriangle
in Section 4. The goal is to return a subset 𝑟 ⇒ 𝑀 such that B(𝑈) ⇐ 𝑀 ⇒ 𝑟 ⇒ B(𝑈, 1 + 𝑋) ⇐ 𝑀 , and
for every 𝑈 ↗ 𝑟 , 𝑉↘𝑅 + 𝑌 ↔ 𝑉↘𝑁 + 𝑌 ↔ 𝑉+𝑅 (just as for durableBallQ), with the additional constraint that
𝑉+𝑅 ↑ 𝑉↘𝑁 + 𝑌 ⇑. Let D ⇑ be the extended version of D to answer durableBallQ ⇑. It consists of a cover
tree along with two levels of interval trees, one to handle the !rst linear constraint, and the second
to handle the additional linear constraint. The space, construction time and query time of D ⇑ are
increased only by a log𝑂 factor compared with D.

3 REPORTING DURABLE TRIANGLES
This section describes our near-linear time algorithm for the 𝑋-approximate DurableTriangle
problem. As mentioned, our algorithm works for every general metric with constant doubling
dimension. In the full version of the paper [4] we show how to solve the problem exactly for 𝑕↖
metric.
High-level Idea. We visit each point 𝑇 ↗ 𝑀 with |𝑉𝑁 | ↑ 𝑌 (a prerequisite for 𝑇 to be in a 𝑌-durable
triangle), and report all 𝑌-durable triangles that 𝑇 anchors. To !nd all 𝑌-durable triangles anchored
by 𝑇 , we run a 𝑌-durable ball query around 𝑇 on D (Section 2.2) to get an implicit representation
(as a bounded number of canonical subsets) of all points within distance 1 from 𝑇 , where 𝑉↘𝑁 is the
largest left endpoint among their lifespans (𝑇 should be the newest point among the three points
of each triangle we report). Recall that each canonical subset returned consists of points within a
ball of a small diameter, so we can approximate inter-ball distances among points by the distances
among the ball centers. For every pair of balls, if their centers are within distance 1 (plus some
slack), we report all 𝑌-durable triangles consisting of 𝑇 and the Cartesian product of points in the
two balls.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:9

Fig. 1. Illustration of Algorithm 1: 𝑇 is visited. The small (possibly overlapping) balls represent the canonical
nodes returned from D. Each point within distance 1 from 𝑇 lies in exactly one such ball. We report the
triangles formed by 𝑇 and the points in red and blue balls that satisfy the durability constraint. We do not
report triangles formed by 𝑇 and the points in blue and green balls because they are well separated.

Algorithm. As a preprocessing step, we construct the data structure D as described in Section 2.2
over 𝑀 . Our algorithm invokes R!"#$%T$&’()*! (Algorithm 1) for each point 𝑇 ↗ 𝑀 . R!"#$%T$&,
’()*! runs a 𝑌-durable ball query durableBallQ (𝑇, 𝑌, 𝑋/2)—note the use of 𝑋/2 here for technical
reasons—and obtains a family of disjoint result point sets C𝑁 = {C𝑁,1, C𝑁,2, . . . , C𝑁,𝑜 } for some
𝑒 = 𝑑 (𝑋↘𝑉) (see also Figure 1). Each C𝑁, 𝑌 is covered by a cover tree ball in D with diameter of no
more than 𝑋/2, and contains all points therein whose intervals “su#ciently intersect” 𝑉𝑁 , i.e., any 𝑈
in the ball satisfying 𝑉↘𝑅 + 𝑌 ↔ 𝑉↘𝑁 + 𝑌 ↔ 𝑉+𝑅 , as explained in Section 2.2.

Given 𝑇 , all 𝑌-durable triangles (𝑇,𝑈, 𝑐) anchored by 𝑇 can be classi!ed into two types: (1) 𝑈 and
𝑐 belong to the same result point set C𝑁, 𝑌 for some 𝑠 ; and (2) 𝑈 and 𝑐 belong to di"erent sets C𝑁,𝑆
and C𝑁, 𝑌 (where 𝑛 ω 𝑠) that are su#ciently close. To report triangles of the !rst type, we simply
enumerate all pairs of 𝑈 and 𝑐 within C𝑁, 𝑌 , for each 𝑠 . We avoid duplicate reporting of (𝑇,𝑈, 𝑐) and
(𝑇, 𝑐,𝑈) by always picking 𝑈 as the point with the smaller index in C𝑁, 𝑌 . To report triangles of the
second type, we consider (𝑛, 𝑠) pairs where Rep𝑆 and Rep𝑌 , the representative points of the balls
containing C𝑁,𝑆 and C𝑁, 𝑌 , are within distance 1 + 𝑋/2. We simply enumerate the Cartesian product
of C𝑁,𝑆 and C𝑁, 𝑌 . We avoid duplicate reporting of (𝑇,𝑈, 𝑐) and (𝑇, 𝑐,𝑈) by imposing the order 𝑛 < 𝑠 .
Correctness. Let (𝑇,𝑈, 𝑐) be a triangle reported by our algorithm. We show that (𝑇,𝑈, 𝑐) is a
𝑌-durable 𝑋-triangle. From Section 2.2, we know that 𝑁 (𝑇,𝑈) ↔ 1 + 𝑋/2 and 𝑁 (𝑇, 𝑐) ↔ 1 + 𝑋/2,
because 𝑈 and 𝑐 belong in one or two canonical subsets in C𝑁 . If 𝑈 and 𝑐 belong to the same
canonical subset C𝑁,𝑆 then by de!nition 𝑁 (𝑈, 𝑐) ↔ 𝑋/2. If 𝑈 ↗ C𝑁,𝑆 and 𝑐 ↗ C𝑁, 𝑌 for 𝑛 ω 𝑠 , then
𝑁 (𝑈, 𝑐) ↔ 𝑁 (𝑈,Rep𝑆)+𝑁 (𝑐,Rep𝑌)+𝑁 (Rep𝑆 ,Rep𝑌) ↔ 𝑋/4+𝑋/4+(1+𝑋/2) ↔ 1+𝑋. In every case, it is true
that𝑁 (𝑇,𝑈),𝑁 (𝑇, 𝑐),𝑁 (𝑐,𝑈) ↔ 1+𝑋. Hence, (𝑇,𝑈, 𝑐) is an 𝑋-triangle. Next, we show that |𝑉𝑁⇐𝑉𝑅⇐𝑉𝑇 | ↑ 𝑌 .
Recall that by de!nition, |𝑉𝑁 | ↑ 𝑌 . Using the 𝑌-durable ball query durableBallQ (𝑇, 𝑌, 𝑋/2), we have
that |𝑉𝑁 ⇐ 𝑉𝑅 | ↑ 𝑌 , |𝑉𝑁 ⇐ 𝑉𝑇 | ↑ 𝑌 , 𝑉↘𝑁 ↗ 𝑉𝑅 , and 𝑉↘𝑁 ↗ 𝑉𝑇 (see also De!nition 2.1). We can rewrite these
inequalities as 𝑉↘𝑅 +𝑌 ↔ 𝑉↘𝑁 +𝑌 ↔ 𝑉+𝑅 and 𝑉↘𝑇 +𝑌 ↔ 𝑉↘𝑁 +𝑌 ↔ 𝑉+𝑇 . Hence, 𝑉↘𝑁 +𝑌 ↔ min{𝑉+𝑅 , 𝑉+𝑇 }, concluding
that |𝑉𝑁 ⇐ 𝑉𝑅 ⇐ 𝑉𝑇 | ↑ 𝑌 . Each triangle (𝑇,𝑈, 𝑐) is reported only once, in a speci!c vertex order: the
temporal conditions ensure that 𝑇 anchors the triangle, and the ordering of 𝑈 and 𝑐 is consistently
enforced by R!"#$%T$&’()*!. Overall, we showed that if (𝑇,𝑈, 𝑐) is reported, then it is a 𝑌-durable
𝑋-triangle and it is reported exactly once.

Next, we prove that we do not miss any 𝑌-durable triangle. Let (𝑇,𝑈, 𝑐) be a 𝑌-durable tri-
angle. Without loss of generality, assume that 𝑉↘𝑁 ↑ max{𝑉↘𝑅 , 𝑉↘𝑇 }. By de!nition, 𝑁 (𝑇,𝑈) ↔ 1,
𝑁 (𝑇, 𝑐) ↔ 1, and 𝑁 (𝑈, 𝑐) ↔ 1. Hence, after visiting 𝑇 , by the de!nition of the 𝑌-durable ball
query durableBallQ (𝑇, 𝑌, 𝑋/2), there exist indexes 𝑛, 𝑠 such that 𝑈 ↗ C𝑁,𝑆 and 𝑐 ↗ C𝑁, 𝑌 . If 𝑛 = 𝑠 ,
then (𝑇,𝑈, 𝑐) must be reported by Line 4 of R!"#$%T$&’()*!. If 𝑛 ω 𝑠 , note that 𝑁 (Rep𝑆 ,Rep𝑌) ↔

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:10 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

𝑁 (Rep𝑆 ,𝑈) + 𝑁 (𝑈, 𝑐) + 𝑁 (𝑐,Rep𝑌) ↔ 𝑋/4 + 1 + 𝑋/4 ↔ 1 + 𝑋/2; therefore (𝑇,𝑈, 𝑐) must be reported by
Line 8. Overall, we showed that every 𝑌-durable triangle is reported by Algorithm 1.
Time complexity. By Lemma 2.2, we can construct D in time 𝑑 (𝑂 log2 𝑂). For each 𝑇 ↗ 𝑀 , we
run a 𝑌-durable ball query on D in 𝑑 (𝑋↘𝑈 (𝑉) log𝑂) time. Moreover, |C𝑁 | = 𝑑 (𝑋↘𝑈 (𝑉)). Checking
pairs in C in which to search for triangles of Type (2) takes additional 𝑑 (𝑋↘2·𝑈 (𝑉)) time. All pairs
of points examined by R!"#$%T$&’()*! are indeed returned, and together they correspond to all
𝑌-durable triangles plus some 𝑋-triangles involving 𝑇 . Hence, the overall additional time incurred is
𝑑 (OUT) where |𝑍𝑂 | ↔ OUT ↔ |𝑍 𝑃

𝑂 |.
T-!#$!+ 3.1. Given (𝑀,𝑁, 𝑉), 𝑌 > 0, and 𝑋 > 0, 𝑋-approximate DurableTriangle can be solved in

𝑑
(
𝑂(𝑋↘𝑈 (𝑉) log𝑂 + log2 𝑂) + OUT

)
time, where 𝑂 = |𝑀 |, 𝑊 is the doubling dimension of 𝑀 , and OUT is

the number of triangles reported.

Remark 1. For every 𝑕𝑍 norm in R𝐿 , we can simplify the data structure D using a quadtree instead
of a cover tree. The running time and approximation with respect to the overall number of reported
triangles remain the same.
Remark 2. Our algorithm can be extended to support delay-guaran-teed enumeration [3, 7, 34]
of durable patterns, i.e., the time between reporting two consecutive patterns is bounded. After
spending 𝑑 (𝑂(𝑋↘𝑈 (𝑉) log𝑂 + log2 𝑂)) preprocessing time, we can support 𝑑 (𝑋↘𝑈 (𝑉) log𝑂)-delay
enumeration for 𝑋-approximate DurableTriangle.
Remark 3. Using a dynamic cover tree, we can extend our algorithm to the dynamic setting where
we do not have all points upfront. If points are inserted or deleted according to their lifespans,
we support 𝑑 (log3 𝑂) amortized update time. After inserting a point 𝑇 , we can report the new (if
any) triangles that 𝑇 participates in using Algorithm 1) in time near linear to the number of new
triangles reported. We show the details in Appendix B.

4 INCREMENTAL REPORTINGWHEN VARYING 𝑌𝑌𝑌

We next consider reporting durable triangles when queries with di"erent durability parameters
arrive in an online fashion. As discussed in Section 1.1, the problem, IncrDurableTriangle, boils
down to reporting any new result triangles in 𝑍𝑂 \𝑍𝑂⇔ , where 𝑌⇔ > 𝑌 are the previous and current
durability parameters, respectively.

As a starter, we can proceed similarly as in Section 3, reporting durable triangles for each
anchor point 𝑇 , but taking care to ensure that we report only 𝑌-durable triangles that are not 𝑌⇔-
durable. Doing so entails retrieving candidate pairs (𝑈, 𝑐) as in R!"#$%T$&’()*!, but additionally
guaranteeing that at least one of 𝑈 and 𝑐 ends between 𝑉↘𝑁 + 𝑌 and 𝑉↘𝑁 + 𝑌⇔, which leads to 𝑉 (𝑇,𝑈, 𝑐)
having durability between 𝑌 and 𝑌⇔. This additional search condition necessitates the modi!ed data
structure D ⇑ discussed in Section 2.

However, the naive approach above has the following problem. It is possible that we carry out
the search on D ⇑ for 𝑇 , only to realize that in the end no new result triangle needs to be reported.
Ideally, we instead want an output-sensitive algorithm whose running time depends only on the
output size. To this end, we need an e#cient way to test whether 𝑇 should be activated for output;
i.e., there is at least one triangle in𝑍𝑂 \𝑍𝑂⇔ anchored by 𝑇 . This test motivates the idea of activation
thresholds below.

De!nition 4.1 (Activation threshold). Given (𝑀,𝑁, 𝑉) and 𝑌 > 0, the activation threshold of 𝑇 ↗ 𝑀
with respect to 𝑌 is de!ned as:

𝑖𝑂𝑁 = max{𝑌 ⇑ <𝑌 | ∝𝑈, 𝑐 ↗ 𝑀 : 𝑉↘𝑅 ↔ 𝑉↘𝑁 , 𝑉
↘
𝑇 ↔ 𝑉↘𝑁 , and(𝑇,𝑈, 𝑐) is 𝑌 ⇑-durable but not 𝑌-durable}.

We set 𝑖𝑂𝑁 = ↘↖ if no such 𝑌 ⇑ exists. We call 𝑖+↖𝑁 the maximum activation threshold of 𝑇 .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:11

Algorithm 2: R!"#$%D!*%’T$&’()*!(D ⇑, 𝑇, 𝑌, 𝑌⇔, 𝑋)
1 C𝑁 : {C𝑁,1, C𝑁,2, · · · , C𝑁,𝑜 } ↙ durableBallQ ⇑(𝑇, 𝑌, 𝑌⇔, 𝑋/2), with Rep𝑆 as the representative

point of the ball for C𝑁,𝑆 and C𝑁,𝑆 = ϖ𝑁,𝑆 ′ ϖ𝑁,𝑆 ;
2 foreach 𝑠 ↗ [𝑒] do
3 foreach 𝑈, 𝑐 ↗ ϖ𝑁, 𝑌 where 𝑈 precedes 𝑐 do
4 report (𝑇,𝑈, 𝑐);
5 foreach (𝑈, 𝑐) ↗ ϖ𝑁, 𝑌 ≃ ϖ𝑁, 𝑌 do report (𝑇,𝑈, 𝑐) ;
6 foreach 𝑛, 𝑠 ↗ [𝑒] where 𝑛 < 𝑠 do
7 if 𝑁 (Rep𝑆 , Rep𝑌) ↔ 1 + 𝑃

2 then
8 foreach (𝑈, 𝑐) ↗ ϖ𝑁,𝑆 ≃ ϖ𝑁, 𝑌 do report (𝑇,𝑈, 𝑐) ;
9 foreach (𝑈, 𝑐) ↗ ϖ𝑁,𝑆 ≃ ϖ𝑁, 𝑌 do report (𝑇,𝑈, 𝑐) ;

10 foreach (𝑈, 𝑐) ↗ ϖ𝑁,𝑆 ≃ ϖ𝑁, 𝑌 do report (𝑇,𝑈, 𝑐) ;

With activation thresholds, we can easily determine whether to activate 𝑇: the condition is
precisely 𝑖𝑂⇔𝑁 ↑ 𝑌 . If 𝑖𝑂⇔𝑁 < 𝑌 , by de!nition of 𝑖𝑂⇔ , any 𝑌-durable triangle anchored by 𝑇 is already
𝑌⇔-durable and hence does not need to be reported; otherwise, we need to at least report 𝑖𝑂⇔ -durable
triangles anchored by 𝑇 .

In the following subsections, we !rst describe the algorithm for processing each activated
point (Section 4.1), and then address the problem of computing activation thresholds e#ciently
(Section 4.2), which requires maintaining additional data structures across queries to help future
queries. Finally, we summarize our solution and discuss its complexity (Section 4.3). In [4], we
describe the specialized solution for the 𝑕↖-metric.

4.1 Reporting for each activated point
Given an activated point 𝑇 ↗ 𝑀 , for which we have already determined that 𝑖𝑂⇔𝑁 ↑ 𝑌 , we report all 𝑌-
durable triangles anchored by 𝑇 that are not 𝑌⇔-durable, using R!"#$%D!*%’T$&’()*! (Algorithm 2)
explained further below.

As discussed at the beginning of this section, reporting triangles (𝑇,𝑈, 𝑐) that are 𝑌-durable
but not 𝑌⇔-durable entails ensuring that at least one of 𝑈 and 𝑐 ends between 𝑉↘𝑁 + 𝑌 and 𝑉↘𝑁 + 𝑌⇔.
To this end, we use the modi!ed data structure D ⇑ discussed in Section 2. We query D ⇑ using
durableBallQ ⇑(𝑇, 𝑌, 𝑌⇔, 𝑋/2) to get 𝑒 = 𝑑 (𝑋↘𝑈 (𝑉)) canonical balls of the cover tree in D ⇑ with
representative points Rep1,Rep2, . . . ,Rep𝑜 ; durableBallQ

⇑ further partitions the result point set
C𝑁, 𝑌 associated with each ball centered at Rep𝑌 into two subsets

ϖ𝑁, 𝑌 =
{
𝑈 ↗ C𝑁, 𝑌 | 𝑉+𝑅 < 𝑉↘𝑁 + 𝑌⇔

}
, ϖ𝑁, 𝑌 =

{
𝑈 ↗ C𝑁, 𝑌 | 𝑉+𝑅 ↑ 𝑉↘𝑁 + 𝑌⇔

}
.

By de!nition, if 𝑈 ↗ ϖ𝑁, 𝑌 , then 𝑉↘𝑅 ↔ 𝑉↘𝑁 and 𝑉↘𝑁 + 𝑌 ↔ 𝑉+𝑅 < 𝑉+𝑁 + 𝑌⇔, while if 𝑈 ↗ ϖ𝑁, 𝑌 then 𝑉↘𝑅 ↔ 𝑉↘𝑁 and
𝑉+𝑅 ↑ 𝑉↘𝑁 +𝑌⇔. See Figure 2 for an illustration. Recall that durableBallQ ⇑ does not explicitly construct
ϖ𝑁, 𝑌 and ϖ𝑁, 𝑌 ; instead, these subsets correspond to canonical subsets of nodes in the interval trees
within D ⇑.

For (𝑇,𝑈, 𝑐) to be not 𝑌⇔-durable, at least one of 𝑈 and 𝑐 must belong to some ϖ𝑁, 𝑌 instead of
ϖ𝑁, 𝑌 . Therefore, we can divide all triangles (𝑇,𝑈, 𝑐) that are 𝑌-durable but not 𝑌⇔-durable into four
types, which can be computed with the help of the above partitioning: (1) 𝑈, 𝑐 ↗ ϖ𝑁, 𝑌 for some 𝑠 ;
(2) 𝑈 ↗ ϖ𝑁, 𝑌 and 𝑐 ↗ ϖ𝑁, 𝑌 for some 𝑠 ; (3) 𝑈 ↗ ϖ𝑁𝐿 and 𝑐 ↗ ϖ𝑁, 𝑌 for some 𝑛 ω 𝑠 where Rep𝑆 and Rep𝑌
are su#ciently close; (4) 𝑈 ↗ ϖ𝑁𝐿 and 𝑐 ↗ ϖ𝑁, 𝑌 for some 𝑛 ω 𝑠 where Rep𝑆 and Rep𝑌 are su#ciently
close. R!"#$%D!*%’T$&’()*! (Algorithm 2) covers all these cases. As with R!"#$%T$&’()*! in

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:12 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

I�p I+p

I�q1 I+q1

I�q2
I+q2

⌧

⌧�

Fig. 2. An illustration of C𝑁, 𝑌 = ϖ𝑁, 𝑌 ′ ϖ𝑁, 𝑌 . Here 𝑈1 ↗ ϖ𝑁, 𝑌 and 𝑈2 ↗ ϖ𝑁, 𝑌 .

Section 3, we enforce an ordering between 𝑈 and 𝑐 to ensure that only one of (𝑇,𝑈, 𝑐) and (𝑇, 𝑐,𝑈) is
reported. Thanks to the implicit representation of ϖ𝑁, 𝑌 ’s and ϖ𝑁, 𝑌 ’s, R!"#$%D!*%’T$&’()*! avoids
enumerating points in a subset if they do not contribute to any result triangle. For example, if
ϖ𝑁,𝑆 = ∞ (line 10 of Algorithm 2), we short-circuit the computation and avoid enumerating ϖ𝑁, 𝑌 .
Remark. Note that R!"#$%T$&’()*! (Section 3) can be seen as as special case of R!"#$%D!*%’,
T$&’()*! whenever 𝑌⇔ > max𝑁↗𝑑 𝑖+↖𝑁 .

4.2 Computing activation thresholds
We turn to the question of how to compute the activation threshold 𝑖𝑂⇔ given 𝑇 and 𝑌⇔, required
for determining whether to activate 𝑇 . Naively, we can !nd all triangles anchored by 𝑇 (regardless
of durability) and build a map of all activation thresholds for 𝑇 . However, we have a more e#cient
solution that builds on two ideas. First, consider a sequence of queries with durability parameters
𝑌1, 𝑌2, After answering the current query, say 𝑌𝑆 , we compute and remember 𝑖𝑂𝐿𝑁 for each (relevant)
𝑇 , so they are available to help the next query 𝑌𝑆+1. Second, we use a binary search procedure to
look for activation thresholds within a desired range, by exploiting the extended data structure D ⇑

to quickly test existence of thresholds in a range without enumerating result triangles therein. The
second idea is implemented by C#+".%!A/%&0’%&#((Algorithm 3). It runs a binary search making
guesses for the value of 𝑖𝑂𝑁 . For each guess 𝑌 ⇑ of 𝑖𝑂𝑁 , we use a primitive called D!%!/%T$&’()*!
to test whether there exists any triangle anchored by 𝑇 that is 𝑌 ⇑-durable but not 𝑌-durable—in
other words, whether 𝑖𝑂𝑁 ↗ [𝑌 ⇑, 𝑌). D!%!/%T$&’()*! mirrors Algorithm 2, except that it merely
checks the existence of triangles for each type returning true or false instead of reporting them.
Using durableBallQ ⇑ for returning implicit representations for ϖ𝑁, 𝑌 ’s and ϖ𝑁, 𝑌 ’s, it is quick to check
whether their combinations yield a non-empty result set. Given 𝑇 , the search space of activation
thresholds has only 𝑑 (𝑂) possibilities: The lifespan of every triangle (𝑇,𝑈, 𝑐) anchored by 𝑇 is
either in [𝑉↘𝑁 , 𝑉+𝑅] or [𝑉↘𝑁 , 𝑉+𝑇], thus the durability of any triangle anchored by 𝑇 falls into the set
{𝑉+𝑅 ↘ 𝑉↘𝑁 | 𝑈 ↗ 𝑀, 𝑉+𝑅 ↑ 𝑉↘𝑁 }. The number of steps in the binary search and the number of invocations
of D!%!/%T$&’()*! is 𝑑 (log𝑂).

We are now ready to put together the data structures and procedure for computing and main-
taining activation thresholds. We use two simple binary search trees S𝑍 and S𝑝 . S𝑍 indexes all
points 𝑇 ↗ 𝑀 by their maximum activation thresholds 𝑖+↖𝑁 . We precompute S𝑍 by calling C#+".%!,
A/%&0’%&#(for each 𝑇 ↗ 𝑀 . Once constructed, S𝑍 remains unchanged across queries.

S𝑝 indexes points by their activation thresholds with respect to the durability parameter.
Suppose the current query parameter is 𝑌 and the previous one is 𝑌⇔. Before executing the current
query, S𝑝 indexes each point 𝑇 by 𝑖𝑂⇔𝑁 , so the current query can use S𝑝 to !nd 𝑇’s with 𝑖𝑂⇔𝑁 ↑ 𝑌 to
activate. After completing the current query, we update S𝑝 for the next round: as long as there
exists a 𝑌-durable triangle anchored by 𝑇 , S𝑝 indexes 𝑇 by the value of 𝑖𝑂𝑁 . Initially, S𝑝 starts out
as an empty tree, which can be interpreted as having completed an initial query with durability
parameter +↖.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:13

Algorithm 3: C#+".%!A/%&0’%&#((D ⇑, 𝑇, 𝑌, 𝑋)
1 𝑉+ ↙ {𝑉+𝑅 | 𝑈 ↗ 𝑀}, 𝑡 ↙ 𝑂 ↘ 1, 𝑢 ↙ 0, 𝑌ret ↙ ↘↖;
2 while 𝑢 ↔ 𝑡 do
3 𝐿 ↙ ∈(𝑢 + 𝑡)/2∋;
4 if 𝑉+[𝐿] > 𝑉↘𝑁 + 𝑌 then 𝑡 ↙𝐿 ↘ 1;
5 else if 𝑉+[𝐿] < 𝑉↘𝑁 then 𝑢 ↙𝐿 + 1;
6 𝑌 ⇑ ↙ 𝑉+[𝐿] ↘ 𝑉↘𝑁 ;
7 𝑞 ↙ D!%!/%T$&’()*!(𝑌 ⇑, 𝑌);
8 if 𝑞 = true then 𝑌ret ↙ 𝑌 ⇑, 𝑢 ↙𝐿 + 1;
9 else 𝑡 ↙𝐿 ↘ 1;

10 return 𝑌ret;
11 Subroutine D!%!/%T$&’()*!(𝑌1, 𝑌2) begin
12 C𝑁 : {C𝑁,1, C𝑁,2, · · · , C𝑁,𝑜 } ↙ durableBallQ ⇑(𝑇, 𝑌1, 𝑌2, 𝑋/2), with Rep𝑆 denoting the

representative point of the ball for C𝑁,𝑆 and C𝑁,𝑆 = ϖ𝑁,𝑆 ′ ϖ𝑁,𝑆 ;
13 foreach 𝑠 ↗ [𝑒] do
14 if |ϖ𝑁, 𝑌 | ↑ 2 then return true;
15 if |ϖ𝑁, 𝑌 | ↑ 1 and |ϖ𝑁, 𝑌 | ↑ 1 then return true;
16 foreach 𝑛, 𝑠 ↗ [𝑒] where 𝑛 < 𝑠 do
17 if 𝑁 (Rep𝑆 , Rep𝑌) ↔ 1 + 𝑃

2 then
18 if |ϖ𝑁,𝑆 | ↑ 1 and |ϖ𝑁, 𝑌 | ↑ 1 then return true;
19 if |ϖ𝑁,𝑆 | ↑ 1 and |ϖ𝑁, 𝑌 | ↑ 1 then return true;
20 if |ϖ𝑁,𝑆 | ↑ 1 and |ϖ𝑁, 𝑌 | ↑ 1 then return true;

21 return false;

Maintenance of S𝑝 has two cases depending on the current query. First, consider the more
interesting case of 𝑌⇔ > 𝑌 , where we need to potentially report new result triangles. For each 𝑇
activated, i.e., 𝑖𝑂⇔ ↑ 𝑌 , we call C#+".%!A/%&0’%&#((D ⇑, 𝑇, 𝑌, 𝑋) to obtain 𝑖𝑂𝑁 and update 𝑇’s entry
in S𝑝 . This is all we need to do to maintain S𝑝 because, if 𝑇 were not activated for the current
query, we would have 𝑖𝑂⇔ < 𝑌 , and therefore 𝑖𝑂𝑁 = 𝑖𝑂⇔𝑁 .

In the less interesting case of 𝑌 ↑ 𝑌⇔, there are no new result triangles to report, but some
old ones may need to be invalidated. Strategies for maintaining S𝑝 di"er depending on the usage
scenario. In the !rst scenario, suppose that the client issuing the query sequence incrementally
maintains the query result as lists of triangles grouped by anchor points, and triangles within each
list are sorted by durability. When 𝑌 ↑ 𝑌⇔, the client can simply trim its lists according to 𝑌 . During
this process, it can easy obtain and pass information to the server for updating S𝑝 : for each anchor
𝑇 , 𝑖𝑂𝑁 simply takes on the highest durability value removed from 𝑇’s list, or it remains unchanged
if no triangle is removed. In the alternative (and less likely) scenario where the client does not
remember anything, the server can simply rebuild S𝑝 by running C#+".%!A/%&0’%&#(for each
𝑇 ↗ S𝑍 with maximum activation threshold no less than 𝑌 .
Correctness. We !rst show that the values 𝑖𝑂𝑁 are updated correctly in Algorithm 3. Let 𝑌 ⇑ be the
parameter in the binary search that we checked in Algorithm 3. Point 𝑇 can only form a 𝑌 ⇑-durable
𝑋-triangle with points 𝑈 whose intervals 𝑉𝑅 intersect 𝑉↘𝑁 and either 𝑉+𝑅 < 𝑉↘𝑁 +𝑌 or 𝑉+𝑅 ↑ 𝑉↘𝑁 +𝑌 .

⋃
𝑌 ϖ𝑁, 𝑌 is

the set of points satisfying the !rst inequality, and
⋃

𝑌 ϖ𝑁, 𝑌 the set of points in the second inequality.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:14 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

For every pair 𝑈, 𝑐 ↗ ϖ𝑁, 𝑌 , we do not activate point 𝑇 with durability 𝑌 ⇑. If indeed 𝑁 (𝑈, 𝑐) ↔ 1
and 𝑈, 𝑐 ↗ ϖ𝑁, 𝑌 , then (𝑇,𝑈, 𝑐) is a 𝑌-durable triangle. So our algorithm does not activate a point
𝑇 because of a previously reported 𝑌-durable triangle. By de!nition, it is also straightforward to
see that 𝑇 should be activated at durability 𝑌 ⇑ if there is a pair of points 𝑈, 𝑐 ↗ ϖ𝑁, 𝑌 ′ ϖ𝑁, 𝑌 such
as either 𝑈 or 𝑐 belongs in ϖ𝑁, 𝑌 . This is because either 𝑉𝑅 or 𝑉𝑇 does not overlap with 𝑉𝑁 for more
than 𝑌 and overlaps more than 𝑌 ⇑, so (𝑇,𝑈, 𝑐) was not a 𝑌-durable 𝑋 ⇑-triangle for every 𝑋 ⇑ > 0.
Next, let 𝑇 be a point that is activated because of a triangle (𝑇,𝑈, 𝑐). We show that any (𝑇,𝑈, 𝑐)
is a 𝑌 ⇑-durable 𝑋-triangle. As we mentioned, either 𝑉𝑅 or 𝑉𝑇 does not intersect 𝑉𝑁 for more than 𝑌
but intersects 𝑉𝑁 for more than 𝑌 ⇑ so it remains to show that 𝑁 (𝑇,𝑈),𝑁 (𝑇, 𝑐),𝑁 (𝑈, 𝑐) ↔ 1 + 𝑋. By the
de!nition of D ⇑ we have that 𝑁 (𝑇,𝑈) ↔ 1 + 𝑋/2 and 𝑁 (𝑇, 𝑐) ↔ 1 + 𝑋/2. If 𝑈, 𝑐 belong in the same
subset C𝑁, 𝑌 then it also follows that 𝑁 (𝑈, 𝑐) ↔ 𝑋/4 ↔ 1 + 𝑋. If 𝑈 ↗ C𝑁, 𝑌 and 𝑐 ↗ C𝑁,𝑆 for 𝑛 < 𝑠 then
in Algorithm 3 we only consider this triangle if and only if 𝑁 (Rep𝑌 ,Rep𝑆) ↔ 1 + 𝑋/2. We have
𝑁 (𝑈, 𝑐) ↔ 𝑁 (𝑈,Rep𝑌) + 𝑁 (Rep𝑌 ,Rep𝑆) + 𝑁 (Rep𝑆 , 𝑐) ↔ 1 + 𝑋/2 + 𝑋/4 + 𝑋/4 = 1 + 𝑋. So (𝑇,𝑈, 𝑐) is a
𝑌 ⇑-durable 𝑋-triangle that is not 𝑌-durable.

The correctness of Algorithm 2 follows from the same arguments we used to prove the cor-
rectness of Algorithm 3. Overall, Algorithm 2 reports all 𝑌𝑆+1-durable triangles along with some
𝑌𝑆+1-durable 𝑋-triangles, that are not 𝑌𝑆 -durable 𝑋-triangles. Hence, |𝑍𝑂𝐿+1 \𝑍𝑂𝐿 | ↔ OUT ↔ |𝑍 𝑃

𝑂𝐿+1 \𝑍 𝑃
𝑂𝐿 |.

4.3 Solution summary and complexity
In summary, we build the data structure D ⇑ as described in Section 2.2; its size is 𝑑 (𝑂 log2 𝑂),
and it can be constructed in 𝑑 (𝑂 log3 𝑂) time. We also build the index S𝑍 of maximum activation
thresholds, which has size𝑑 (𝑂). To constructS𝑍 , asmentioned, we perform atmost𝑑 (log𝑂) guesses
for each point, and each guess invokes D!%!/%T$&’()*! once, which takes 𝑑 (𝑋↘𝑈 (𝑉) log2 𝑂) time;
therefore, the total construction time for S𝑍 is𝑑 (𝑂𝑋↘𝑈 (𝑉) log3 𝑂). Finally, we maintain the index S𝑝

of activation thresholds for the current durability parameter; its size is𝑑 (𝑂), its initial construction
time is 𝑑 (1), and its maintenance time will be further discussed below.

To report new result triangles when the durability parameter changes from 𝑌⇔ to 𝑌 , we use
S𝑝 to search for points 𝑇 with 𝑖𝑂⇔𝑁 ↑ 𝑌 to activate. Each activated point 𝑇 requires 𝑑 (OUT𝑁 +
𝑋↘𝑈 (𝑉) log2 𝑂) time for R!"#$%D!*%’T$&’()*! to report all new durable triangles anchored by 𝑇 ,
where OUT𝑁 denotes the number of them. Then, to maintain S𝑝 , we need𝑑 (𝑋↘𝑈 (𝑉) log3 𝑂) time for
C#+".%!A/%&0’%&#(, and𝑑 (log𝑂) time to update S𝑝 for each point 𝑇 activated. For each activated
𝑇 , at least one new durable triangle is reported, so the number of calls to C#+".%!A/%&0’%&#(
is bounded by the output size. Overall, we spend 𝑑

(
OUT + 𝑋↘𝑈 (𝑉) log2 𝑂

)
time for reporting and

𝑑 (OUT · 𝑋↘𝑈 (𝑉) log3 𝑂) time for maintenance, where OUT is the number of results reported.

T-!#$!+ 4.2. Given (𝑀,𝑁, 𝑉), and 𝑋 > 0, a data structure of size𝑑 (𝑂 log2 𝑂) can be constructed in
𝑑 (𝑂𝑋↘𝑈 (𝑉) log3 𝑂) time such that, the 𝑋-approximate IncrDurableTriangle problem can be solved in
𝑑
(
OUT · 𝑋↘𝑈 (𝑉) log3 𝑂

)
time, where 𝑂 = |𝑀 |, 𝑊 is the doubling dimension of 𝑀 , and OUT is the number

of results reported.

5 REPORTING AGGREGATE-DURABLE PAIRS
5.1 SUM
We start by describing a data structure that allows us to e#ciently compute the total length of
all intersections between a query interval with a given set of intervals. Then we show how to
use this primitive to report all 𝑌-SUM-durable pairs for AggDurablePair-SUM, along with some
𝑌-SUM-durable 𝑋-pairs (but no other pairs).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:15

Interval-SUM-durability. Given a set of intervals I, we want a primitive that can e#ciently
decide, given any query interval 𝑣 and 𝑌 > 0, whether

∑
𝑞 ↗I |𝑉 ⇐ 𝑣 | ↑ 𝑌 . To this end, we construct a

data structure ITϱ over I, which is a variant of an interval tree where each tree node 𝑝 is annotated
with the following information:
• |𝑝 |, the total number of intervals stored at 𝑝 ;
• ∑

𝑞 ↗𝑛 |𝑉 |, the total length of intervals stored at 𝑝 ;
• ∑

𝑞 ↗𝑛 𝑉
+, the sum of right endpoints of intervals stored at 𝑝 ;

• ∑
𝑞 ↗𝑛 𝑉

↘, the sum of left endpoints of intervals stored at 𝑝 .
Given a query interval 𝑣 , we obtain 𝑑 (log2 𝑂) canonical set of nodes in ITϱ, where each node 𝑝
falls into: (1) every 𝑉 ↗ 𝑝 completely covers 𝑣 ; (2) 𝑣 completely covers every 𝑉 ↗ 𝑝 ; (3) every 𝑉 ↗ 𝑝
partially intersects 𝑣 with 𝑉+ ↗ 𝑣 ; (4) every 𝑉 ↗ 𝑝 partially intersects 𝑣 with 𝑉↘ ↗ 𝑣 . Then, we can
rewrite the SUM-durability of intervals with respect to 𝑣 as follows:

∑
𝑞 ↗I

|𝑉 ⇐ 𝑣 | =
∑
𝑛

∑
𝑞 ↗𝑛

|𝑉 ⇐ 𝑣 | =
∑
𝑛




|𝑝 | · |𝑣 | if (1);∑
𝑞 ↗𝑛 |𝑉 | if (2);∑
𝑞 ↗𝑛 𝑉

+ ↘ |𝑝 | · 𝑣↘ if (3);
|𝑝 | · 𝑣 + ↘∑

𝑞 ↗𝑛 𝑉
↘ if (4).

Note that ITϱ can be constructed in 𝑑 (𝑂 log2 𝑂) time and uses 𝑑 (𝑂 log𝑂) space. This way, we have
a procedure C#+".%!S.+D which, given ITϱ and 𝑣 , returns

∑
𝑞 ↗I |𝑉 ⇐ 𝑣 | in 𝑑 (log2 𝑂) time. The

interval tree ITϱ can also be used to !nd C𝑁 .
Data structure. While ITϱ makes it e#cient to sum durabilities over a set of intervals given
𝑉𝑁 ⇐ 𝑉𝑅 for a candidate pair (𝑇,𝑈), we cannot a"ord to check all possible pairs, and we have not
yet addressed the challenge of obtaining the intervals of interest (which must come from witness
points incident to both 𝑇 and 𝑈) in the !rst place. The high-level idea is to leverage the same space
decomposition from the previous sections to e#ciently obtain canonical subsets of witness points,
in their implicit representation. These canonical subsets of intervals serve as the basis for building
ITϱ structures. In more detail, we construct Dϱ in a similar way as D in Section 2.2. Like D, Dϱ is
a two-level data structure consisting of a cover tree and an interval tree variant (as described above)
for every node of the cover tree. For each cover tree node 𝑔, let C𝑊 denote the subset of points in 𝑀
within the ball of 𝑔 centered at Rep𝑊 . We build ITϱ𝑊 over C𝑊 with SUM annotations, and for each
node in ITϱ𝑊 , we also store points in decreasing order of their right interval endpoints. Overall, we
can construct Dϱ in 𝑑 (𝑂 log3 𝑂) time having 𝑑 (𝑂 log2 𝑂) space.
Algorithm.We report all 𝑌-SUM-durable pairs (𝑇,𝑈) where 𝑉↘𝑁 ↑ 𝑉↘𝑅 (to avoid duplicates); we say
𝑇 anchors the pair. For each 𝑇 ↗ 𝑀 , we invoke R!"#$%SUMP’&$ (Algorithm 4) to report 𝑌-SUM-
durable 𝑋-pairs (𝑇,𝑈) anchored by 𝑇 . To this end, R!"#$%SUMP’&$ runs the 𝑌-durable ball query
durableBallQ (𝑇, 𝑌, 𝑋/2) overDϱ, and obtain a family of result point sets C𝑁,1, C𝑁,2, . . . , C𝑁,𝑜 for some
𝑒 = 𝑑 (𝑋↘𝑉). Each C𝑁, 𝑌 is covered by a cover tree ball in Dϱ with diameter of no more than 𝑋/2,
and contains all points 𝑈 within the ball where 𝑉↘𝑅 + 𝑌 ↔ 𝑉↘𝑁 + 𝑌 ↔ 𝑉+𝑅 , as explained in Section 2.2,
sorted with respect to 𝑉+𝑅 . Let ITϱ𝑁, 𝑌 denote the interval tree for the cover tree node corresponding
to C𝑁, 𝑌 . For each 𝑠 , we go through each point 𝑈 ↗ C𝑁, 𝑌 in decreasing order of right endpoints to
check whether (𝑇,𝑈) is 𝑌-SUM-durable. To do this check, we consider witnesses from point sets
C𝑁,1, C𝑁,2, . . . , C𝑁,𝑜 . We can skip an entire set C𝑁,𝑆 if its ball center Rep𝑆 is too far from Rep𝑌 , because
all points in C𝑁,𝑆 would be too far from 𝑈. Otherwise, we query ITϱ𝑁,𝑆 using interval 𝑉𝑁 ⇐ 𝑉𝑅 to obtain
the sum of durabilities over all witnesses in C𝑁,𝑆 . We compute these partial sums together and
compare the total with 𝑌 + 2 · |𝑉𝑁 ⇐ 𝑉𝑅 | (note that the second term accounts for the fact that the
partial sums include the contributions of 𝑇 and 𝑈 themselves, which should be discounted). If the
total passes the threshold, we report (𝑇,𝑈). If not, we stop consider any remaining point 𝑈⇑ ↗ C𝑁, 𝑌

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:16 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Algorithm 4: R!"#$%SUMP’&$(Dϱ, 𝑇, 𝑌, 𝑋)
1 C𝑁 : {C𝑁,1, C𝑁,2, · · · , C𝑁,𝑜 } ↙ durableBallQ (𝑇, 𝑌, 𝑋/2), with Rep𝑆 as the representative point

of the cover tree node for C𝑁,𝑆 , and ITϱ𝑁,𝑆 as the annotated interval tree for the cover tree
node;

2 foreach 𝑠 ↗ [𝑒] do
3 foreach 𝑈 ↗ C𝑁, 𝑌 in descending order of 𝑉+𝑅 do
4 𝑤 ↙ 0;
5 foreach 𝑛 ↗ [𝑒] do
6 if 𝑁 (Rep𝑆 , Rep𝑌) ↔ 1 + 𝑃

2 then
7 𝑤 ↙ 𝑤 + C#+".%!S.+D(ITϱ𝑁,𝑆 , 𝑉𝑁 ⇐ 𝑉𝑅);

8 if 𝑤 ↑ 𝑌 + 2 · |𝑉𝑁 ⇐ 𝑉𝑅 | then report (𝑇,𝑈) ;
9 else break;

(which has 𝑉+𝑅⇑ < 𝑉+𝑅), since 𝑉𝑁 ⇐ 𝑉𝑅⇑ ↓ 𝑉𝑁 ⇐ 𝑉𝑅 and will surely yield a lower total durability. This is the
key for output-sensitive time.
Correctness. First, each pair (𝑇,𝑈) is reported at most once, as (𝑇,𝑈) is reported if 𝑉↘𝑁 ↑ 𝑉↘𝑅 . Next,
we show that every pair reported must be a 𝑌-SUM-durable 𝑋-triangle. Consider a pair (𝑇,𝑈) that
is reported. Note that our algorithm considers a node 𝑔𝑆 from Dϱ with radius 𝑋/4 if and only if
𝑁 (𝑇,Rep𝑆) ↔ 1 + 𝑋/4. If 𝑈 ↗ 𝑔𝑆 , we have 𝑁 (𝑇,𝑈) ↔ 𝑁 (𝑇,Rep𝑆) + 𝑁 (Rep𝑆 ,𝑈) ↔ 1 + 𝑋/2. Hence, in any
pair (𝑇,𝑈) we return it holds that 𝑁 (𝑇,𝑈) ↔ 1+ 𝑋. Then we only consider points within distance 1+ 𝑋
from both 𝑇,𝑈 to !nd the sum of their corresponding intervals. Indeed, we only consider the pairs
C𝑁,𝑆 , C𝑁, 𝑌 with 𝑁 (Rep𝑆 ,Rep𝑌) ↔ 1 + 𝑋/2. Let 𝑈⇑ be any point from C𝑁,𝑆 . We have 𝑁 (𝑇,𝑈⇑) ↔ 1 + 𝑋/2,
and 𝑁 (𝑈,𝑈⇑) ↔ 𝑁 (Rep𝑆 ,𝑈) + 𝑁 (Rep𝑆 ,Rep𝑌) + 𝑁 (Rep𝑌 ,𝑈

⇑) ↔ 1 + 𝑋. Overall, by showing i) 𝑁 (𝑇,𝑈) ↔ 1,
ii) that we only take the sum of intervals in 𝑉𝑁 ⇐ 𝑉𝑅 among points (witness points) within distance
1+ 𝑋 from both 𝑇,𝑈, and iii) the correctness of the ITϱ data structure, we conclude that the reporting
pair (𝑇,𝑈) is a 𝑌-durable 𝑋-pair.

Finally, we show that every 𝑌-SUM-durable pair will be reported. Let (𝑇,𝑈) be an arbitrary
𝑌-SUM-durable pair. Suppose 𝑈 ↗ 𝑔 𝑌 , where 𝑔 𝑌 is a node of Dϱ of radius at most 𝑋/4, with
representative point Rep𝑌 . Since 𝑁 (𝑇,Rep𝑌) ↔ 𝑁 (𝑇,𝑈) + 𝑁 (𝑈,Rep𝑌) ↔ 1 + 𝑋/4, we have that
𝑔 𝑌 ↗ C𝑁 . Without loss of generality, assume that 𝑈 ↗ C𝑁, 𝑌 . Next, we show that for point 𝑈⇑ ↗ 𝑀 ,
if 𝑁 (𝑇,𝑈⇑) ↔ 1 and 𝑁 (𝑈,𝑈⇑) ↔ 1, we always consider 𝑈⇑ in the witness set. Since 𝑁 (𝑇,𝑈⇑) ↔ 1 we
have that 𝑈⇑ ↗ C𝑁 . Without loss of generality, assume that 𝑈⇑ ↗ C𝑁,𝑆 . In this case, 𝑁 (Rep𝑌 ,Rep𝑆) ↔
𝑁 (Rep𝑌 ,𝑈) + 𝑁 (𝑈,𝑈⇑) + 𝑁 (𝑈⇑,Rep𝑆) ↔ 1 + 𝑋/2, so 𝑈⇑ is included in ITϱ𝑁,𝑆 considered in line 7 of Algo-
rithm 4. It remains to show that if (𝑇,𝑈) is a 𝑌-durable pair, 𝑈 must be visited during the traversal
of points in C𝑁, 𝑌 . We prove it by contradiction. Let𝑥 ↗ C𝑁, 𝑌 be a point such that 𝑉↘𝑟 ↔ 𝑉↘𝑁 ↔ 𝑉+𝑅 ↔ 𝑉+𝑟 .
Suppose after visiting 𝑥 , the traversal of points in C𝑁, 𝑌 stops. Implied by the stopping condi-
tion, (𝑇,𝑥) is not a 𝑌-SUM-durable pair. Meanwhile, as (𝑇,𝑈) is a 𝑌-SUM-durable pair, (𝑇,𝑥)
must also be a 𝑌-SUM-durable pair, implied by 𝑉𝑅 ⇐ 𝑉𝑁 ⇒ 𝑉𝑟 ⇐ 𝑉𝑁 , and the fact that we run the
C#+".%!S.+D(ITϱ𝑁,𝑆 , 𝑉𝑁 ⇐ 𝑉𝑅) query on the same sets C𝑁,𝑆 , coming to a contradiction. Thus, every
𝑌-SUM-durable pair must be reported.
Time Complexity. The construction time of ITϱ is 𝑑 (𝑂 log2 𝑂), so it takes 𝑑 (𝑂 log3 𝑂) time to
constructDϱ. For each 𝑇 , it takes𝑑 (𝑋↘𝑈 (𝑉) + log𝑂) time to derive the canonical set of nodes C𝑁 and
𝑑 (𝑋↘𝑈 (𝑉) log𝑂) time to derive the sorted intervals in every node of C𝑁 . For each (sorted) interval

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:17

𝑉𝑅 in C𝑁,𝑆 we visit 𝑑 (𝑋↘𝑈 (𝑉)) other nodes C𝑁, 𝑌 and we run a 𝑑 (log2 𝑂) time query to !nd the sum
using ITϱ. When we !nd out that 𝑈 does not form a 𝑌-SUM-durable pair with 𝑇 we skip the rest
points in C𝑁,𝑆 so the running time is output-sensitive. Overall, the running time is bounded by
𝑑 (𝑂 log3 𝑂 + (𝑂 +OUT) · 𝑋↘𝑈 (𝑉) log2 𝑂), where 𝑎𝑂 ↔ OUT ↔ 𝑎𝑃

𝑂 .

T-!#$!+ 5.1. Given (𝑀,𝑁, 𝑉), 𝑌 > 0 and 𝑋 > 0, the 𝑋-approximate AggDurablePair-SUM problem
can be solved in𝑑 (𝑂 log3 𝑂+ (𝑂+OUT) ·𝑋↘𝑈 (𝑉) log2 𝑂) time, where 𝑂 = |𝑀 |, 𝑊 is the doubling dimension
of 𝑀 , and OUT is the number of pairs reported.

5.2 UNION
Solving the general AggDurablePair-UNION problem is challenging because of the inherent hard-
ness of computing the union of intervals that intersect a query interval, i.e., we cannot design an
e#cient primitive for UNION as the C#+".%!S.+D primitive for SUM. In practice, even if the size
of the witness set 𝑓 is large, a smaller subset of𝑓 may be all that is required for its union to reach
the durability parameter. With this observation, we approach the problem by designing an algo-
rithm whose performance depends on 𝑏 , a constraint on the size of the witness set. More precisely,
given a durability parameter 𝑌 > 0 and a positive integer 𝑏 ↗ Z+, we say a pair (𝑇1, 𝑇2) ↗ 𝑀 ≃ 𝑀
is (𝑌,𝑏)-UNION-durable if 𝑁 (𝑇1, 𝑇2) ↔ 1 and there exists 𝑓 ⇒ {𝑔 ↗ 𝑀 | 𝑁 (𝑇1,𝑔),𝑁 (𝑇2,𝑔) ↔ 1}
such that |𝑓 | ↔ 𝑏 and |⋃𝑊↗𝑋 𝑉 (𝑔, 𝑇1, 𝑇2) | ↑ 𝑌 . An approximate version is de!ned by replacing
the distance constraint ↔ 1 with ↔ 1 + 𝑋. We present an 𝑑̃ ((𝑂 + OUT) · 𝑏𝑋↘𝑈 (𝑉))-time algorithm
for OUT ↗


|𝑎𝑂,𝑜 |,

𝑎𝑃
(1↘1/𝑠)𝑂,𝑄

 , with 𝑎𝑂,𝑄 denoting the set of (𝑌,𝑏)-UNION durable pairs and
𝑎𝑃
(1↘1/𝑠)𝑂,𝑄 denoting the set of ((1 ↘ 1/𝑗)𝑌,𝑏)-UNION durable 𝑋-pairs.

(𝑌,𝑏)-UNION-durable pair. Next, we focus on !nding (𝑌,𝑏)-UNION-durable pairs for some
known 𝑏, which should work well in practical cases where a handful of witness points are able to
provide su#cient coverage for the pair. The overall algorithm has the high-level idea of leveraging
the space decomposition as the AggDurablePair-SUM case in Section 5.1, but it requires a primitive
di"erent from C#+".%!S.+D and a di"erent way of invoking this primitive across witness subsets.
High-level Idea. Given a set of intervals I and a target interval 𝑣 , our approach is to !nd a
subset of intervals 𝑦 ⇒ I of size 𝑏 that maximizes the UNION-durability with respect to 𝑣 , namely ⋃

𝑞 ↗𝑡 (𝑉 ⇐ 𝑣)
 (to compare with 𝑌). There is an apparent connection to the maximum 𝑏-coverage

problem, where given a family of sets over a set of elements, we want to choose 𝑏 sets to cover the
maximum number of elements. Here, we can regard each set as 𝑉 ⇐ 𝑣 for each 𝑉 ↗ I, and the goal is
to choose 𝑏 such sets to cover as much of 𝑣 as possible. The standard greedy algorithm gives an
(1 ↘ 1/𝑗)-approximation for this problem [32], which inspires us to follow a similar approach. We
leave details on data structures, pseudocode, correctness and complexity analysis to Appendix D.
Our greedy approach chooses one interval at time to cover 𝑣 , and the choice is always the one that
maximizes the resulting increase in coverage. In more detail, let 𝑦 ⇒ I denote the set of intervals
already chosen, which leaves 𝑣 \⋃𝑞 ↗𝑡 𝑉 , the uncovered parts of 𝑣 , as a set 𝑧 of intervals. Consider
the pair (𝑉𝑢 , 𝑉𝑣), where 𝑉𝑢 ↗ I \ 𝑦 , and 𝑉𝑣 ↗ 𝑧 , with the largest overlap, i.e., 𝑉𝑢 ⇐ 𝑉𝑣 ; we greedily
choose 𝑉𝑢 as the next interval to cover 𝑣 .

To implement this greedy approach e#ciently, we build a data structure D′ similarly as Dϱ in
Section 5.1.D′ uses a di"erent variant of the interval tree IT′, which, given a query interval 𝑣 , !nds
the indexed interval with the largest overlap with 𝑣 . The overall algorithm reports all (𝑌,𝑏)-UNION
durable pairs for each anchor point 𝑇 by querying D′, and for each candidate (𝑇,𝑈), performs the
greedy choice 𝑒 times to compute the UNION-durability of (𝑇,𝑈). Each greedy choice involves
querying the IT′ structures for the 𝑑 (𝑋↘𝑈 (𝑉) log2 𝑂) canonical subsets of witness points; some
additional elementary data structures help ensure that the greedy algorithm takes𝑑

(
𝑏𝑋↘𝑈 (𝑉) log2 𝑂

)
Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:18 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

time. In Appendix D, we show that the overall time is 𝑑
(
𝑂 log3 𝑂 + (𝑂 +OUT) · 𝑋↘𝑈 (𝑉)𝑏 log2 𝑂

)
,

where |𝑎𝑂,𝑄 | ↔ OUT ↔
𝑎𝑃

(1↘1/𝑠)𝑂,𝑄

. Putting everything together, we obtain:

T-!#$!+ 5.2. Given (𝑀,𝑁, 𝑉), 𝑌 > 0, 𝑋 > 0, and integer𝑏 ↗ Z+, the 𝑋-approximateAggDurablePair-
UNION problem can be solved in 𝑑 (𝑂 log3 𝑂 + (𝑂 + OUT) · 𝑋↘𝑈 (𝑉)𝑏 log2 𝑂) time, where 𝑂 = |𝑀 |, 𝑊 is
the doubling dimension of 𝑀 , and OUT is the number of pairs reported.

6 RELATEDWORK
In database and data mining, there is a large body of literature on !nding patterns in temporal
graphs [6, 26, 30, 39, 40, 48, 53]. Hu et al. [33] studied the problem of computing temporal join
queries e#ciently; the problem of !nding durable triangles is a special case of the problem they
studied with self-joins. While [33, 53] have provable guarantees, the algorithms are expensive,
requiring time super-linear in the number of edges to report all durable triangles. Recently, Deng
et al. [19] proposed algorithms to report or count triangles (and other simple patterns) in time
super-linear in the graph size. In contrast, we work with an implicit representation of the proximity
graph and design algorithms that run in time near-linear in the number of nodes and output size.

There is another line of work in computational geometry on detecting triangles and other
simple patterns in intersection graphs. Eppstein and Erickson [22] gave an 𝑑 (𝑂 log𝑂) algorithm
to detect if an intersection graph consisting of unit balls in R𝐿 has a constant clique. Kaplan et
al. [36] can detect a triangle in a unit-disk graph in R2 in 𝑑 (𝑂 log𝑂) time where edges can be
weighted. The approach in [14] can detect in 𝑑̃ (𝑂𝐿/2) time if a clique of constant size exists in an
intersection graph of general boxes in R𝐿 . Chan [15] recently improved the results on detecting
cliques, cycles, and other simple patterns in intersection graphs, where the nodes are boxes, general
fat objects in R𝐿 , or segments in R2, and two nodes are connected if the corresponding objects
intersect. For example, if nodes are fat objects, their algorithm can detect a constant cycle or clique
in 𝑑 (𝑂 log𝑂) time. The problems we focus on in this paper have major di"erences with this line of
work: (i) previous methods only worked for detecting whether a pattern exists, while our goal is to
report all patterns; (ii) all previous works focused on non-temporal graphs, while we consider the
more challenging temporal graphs, where nodes have lifespans; (iii) we additionally considered an
incremental reporting setting to support queries with di"erent parameters.

The notion of durability has been studied in other queries, such as durable top-𝑒 queries [27, 28]
and durability prediction [29]. It also has been studied in computational topology, where the goal
is to compute “persistent” (durable) topological features; see [20, 21].

7 CONCLUSION
In this paper, we have studied the problem of reporting durable patterns in proximity graphs. We
work with an implicit representation of the input graph, and propose e#cient algorithms that
run in near-linear time in the number of nodes, under any general metric with bounded doubling
dimension. For future work, we believe that some of our algorithms and data structures can also
be used for counting durable patterns in near-linear time (instead of reporting them). Second,
while we have focused on simple patterns such as triangles and paths, it would be interesting
to explore near-linear time algorithms for more general and complex patterns. Third, we have
considered only the case when nodes have lifespans but otherwise remain stationary; one could
further consider the case when their positions change over time (hence inducing also lifespans on
edges). A possible direction is to use kinetic data structures to maintain the evolving graph topology.
Finally, a challenging question is whether we can extend our approach to a general graph already
with an explicit representation, but without !rst computing an embedding.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:19

REFERENCES
[1] Doubling dimension in real-world graphs. https://slideplayer.com/slide/5331329/. Accessed: 2023-04-24.
[2] A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dynamic problems. In FOCS, pages

434–443. IEEE, 2014.
[3] P. K. Agarwal, X. Hu, S. Sintos, and J. Yang. Dynamic enumeration of similarity joins. In 48th International Colloquium

on Automata, Languages, and Programming (ICALP 2021), 2021.
[4] P. K. Agarwal, X. Hu, S. Sintos, and J. Yang. On reporting durable patterns in temporal proximity graphs. https:

//arxiv.org/abs/2403.16312, 2024.
[5] N. Alon, T. Kaufman, M. Krivelevich, and D. Ron. Testing triangle-freeness in general graphs. SIAM Journal on Discrete

Mathematics, 22(2):786–819, 2008.
[6] M. Araujo, S. Günnemann, S. Papadimitriou, C. Faloutsos, P. Basu, A. Swami, E. E. Papalexakis, and D. Koutra. Discovery

of “comet” communities in temporal and labeled graphs com2. Knowledge and Information Systems, 46(3):657–677,
2016.

[7] C. Berkholz, J. Keppeler, and N. Schweikardt. Answering conjunctive queries under updates. In proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI symposium on Principles of database systems, pages 303–318, 2017.

[8] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proceedings of the 23rd international
conference on Machine learning, pages 97–104, 2006.

[9] A. Björklund, R. Pagh, V. V. Williams, and U. Zwick. Listing triangles. In International Colloquium on Automata,
Languages, and Programming, pages 223–234. Springer, 2014.

[10] M. Borassi, A. Epasto, S. Lattanzi, S. Vassilvitskii, and M. Zadimoghaddam. Better sliding window algorithms to
maximize subadditive and diversity objectives. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 254–268, 2019.

[11] N. H. Bshouty, Y. Li, and P. M. Long. Using the doubling dimension to analyze the generalization of learning algorithms.
Journal of Computer and System Sciences, 75(6):323–335, 2009.

[12] H. Cai, V. W. Zheng, and K. C.-C. Chang. A comprehensive survey of graph embedding: Problems, techniques, and
applications. IEEE transactions on knowledge and data engineering, 30(9):1616–1637, 2018.

[13] T. M. Chan. Optimal partition trees. Discrete & Computational Geometry, 47(4):661–690, 2012.
[14] T. M. Chan. Klee’s measure problem made easy. In 2013 IEEE 54th annual symposium on foundations of computer

science, pages 410–419. IEEE, 2013.
[15] T. M. Chan. Finding triangles and other small subgraphs in geometric intersection graphs. In Proceedings of the 2023

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1777–1805. SIAM, 2023.
[16] J. Chen. Algorithmic graph embeddings. Theoretical Computer Science, 181(2):247–266, 1997.
[17] P. Cunningham and S. J. Delany. k-nearest neighbour classi!ers-a tutorial. ACM computing surveys (CSUR), 54(6):1–25,

2021.
[18] M. Damian, S. Pandit, and S. Pemmaraju. Distributed spanner construction in doubling metric spaces. In Principles of

Distributed Systems: 10th International Conference, OPODIS 2006, Bordeaux, France, December 12-15, 2006. Proceedings 10,
pages 157–171. Springer, 2006.

[19] S. Deng, S. Lu, and Y. Tao. Space-query tradeo"s in range subgraph counting and listing. In 26th International
Conference on Database Theory (ICDT 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[20] T. K. Dey and Y. Wang. Computational topology for data analysis. Cambridge University Press, 2022.
[21] H. Edelsbrunner and J. L. Harer. Computational topology: an introduction. American Mathematical Society, 2022.
[22] D. Eppstein and J. Erickson. Iterated nearest neighbors and !nding minimal polytopes. Discrete & Computational

Geometry, 11(3):321–350, 1994.
[23] J. Erickson. Static-to-dynamic transformations. http://je"e.cs.illinois.edu/teaching/datastructures/notes/01-

statictodynamic.pdf.
[24] E. Facco, M. d’Errico, A. Rodriguez, and A. Laio. Estimating the intrinsic dimension of datasets by a minimal

neighborhood information. Scienti!c reports, 7(1):12140, 2017.
[25] A. E. Feldmann and D. Marx. The parameterized hardness of the k-center problem in transportation networks.

Algorithmica, 82:1989–2005, 2020.
[26] M. Franzke, T. Emrich, A. Zü$e, and M. Renz. Pattern search in temporal social networks. In Proceedings of the 21st

International Conference on Extending Database Technology, 2018.
[27] J. Gao, P. K. Agarwal, and J. Yang. Durable top-k queries on temporal data. Proceedings of the VLDB Endowment,

11(13):2223–2235, 2018.
[28] J. Gao, S. Sintos, P. K. Agarwal, and J. Yang. Durable top-k instant-stamped temporal records with user-speci!ed

scoring functions. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages 720–731. IEEE, 2021.
[29] J. Gao, Y. Xu, P. K. Agarwal, and J. Yang. E#ciently answering durability prediction queries. In Proceedings of the 2021

International Conference on Management of Data, pages 591–604, 2021.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

https://slideplayer.com/slide/5331329/
https://arxiv.org/abs/2403.16312
https://arxiv.org/abs/2403.16312
http://jeffe.cs.illinois.edu/teaching/datastructures/notes/01-statictodynamic.pdf
http://jeffe.cs.illinois.edu/teaching/datastructures/notes/01-statictodynamic.pdf

81:20 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

[30] M.-G. Gong, L.-J. Zhang, J.-J. Ma, and L.-C. Jiao. Community detection in dynamic social networks based on multiob-
jective immune algorithm. Journal of computer science and technology, 27(3):455–467, 2012.

[31] S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics, and their applications. In Proceedings
of the twenty-!rst annual symposium on Computational geometry, pages 150–158, 2005.

[32] D. S. Hochbaum. Approximating covering and packing problems: set cover, vertex cover, independent set, and related
problems. In Approximation algorithms for NP-hard problems, pages 94–143. 1996.

[33] X. Hu, S. Sintos, J. Gao, P. K. Agarwal, and J. Yang. Computing complex temporal join queries e#ciently. In Proceedings
of the 2022 International Conference on Management of Data, pages 2076–2090, 2022.

[34] M. Idris, M. Ugarte, and S. Vansummeren. The dynamic yannakakis algorithm: Compact and e#cient query processing
under updates. In Proceedings of the 2017 ACM International Conference on Management of Data, pages 1259–1274, 2017.

[35] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. In Proceedings of the ninth annual ACM symposium on
Theory of computing, pages 1–10, 1977.

[36] H. Kaplan, K. Klost, W. Mulzer, L. Roditty, P. Seiferth, and M. Sharir. Triangles and girth in disk graphs and transmission
graphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[37] N. Kumar, L. Zhang, and S. Nayar. What is a good nearest neighbors algorithm for !nding similar patches in images?
In Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008,
Proceedings, Part II 10, pages 364–378. Springer, 2008.

[38] A. Kutuzov, M. Dorgham, O. Oliynyk, C. Biemann, and A. Panchenko. Making fast graph-based algorithms with graph
metric embeddings. In ACL 2019-57th Annual Meeting of the Association for Computational Linguistics, Proceedings of
the Conference, pages 3349–3355, 2020.

[39] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. Facetnet: a framework for analyzing communities and their
evolutions in dynamic networks. In Proceedings of the 17th international conference on World Wide Web, pages 685–694,
2008.

[40] G. Locicero, G. Micale, A. Pulvirenti, and A. Ferro. Temporalri: a subgraph isomorphism algorithm for temporal
networks. In Complex Networks & Their Applications IX: Volume 2, Proceedings of the Ninth International Conference on
Complex Networks and Their Applications COMPLEX NETWORKS 2020, pages 675–687. Springer, 2021.

[41] d. B. Mark, C. Otfried, v. K. Marc, and O. Mark. Computational geometry algorithms and applications. Spinger, 2008.
[42] T. E. Ng and H. Zhang. Predicting internet network distance with coordinates-based approaches. In Proceedings.

Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, volume 1, pages 170–179.
IEEE, 2002.

[43] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms. Journal of the ACM (JACM), 65(3):1–40,
2018.

[44] M. Overmars and J. van Leeuwen. Worst-case optimal insertion and deletion methods for decomposable searching
problems. Inf. Process. Lett., 12(4):168–173, 1981.

[45] M. H. Overmars. The design of dynamic data structures, volume 156. Springer Science & Business Media, 1987.
[46] M. Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings of the forty-second ACM

symposium on Theory of computing, pages 603–610, 2010.
[47] P. Pope, C. Zhu, A. Abdelkader, M. Goldblum, and T. Goldstein. The intrinsic dimension of images and its impact on

learning. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021,
2021.

[48] K. Semertzidis and E. Pitoura. Durable graph pattern queries on historical graphs. In 2016 IEEE 32nd International
Conference on Data Engineering (ICDE), pages 541–552. IEEE, 2016.

[49] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction.
science, 290(5500):2319–2323, 2000.

[50] T. L. Veldhuizen. Leapfrog triejoin: A simple, worst-case optimal join algorithm. In Proc. International Conference on
Database Theory, 2014.

[51] K. Verbeek and S. Suri. Metric embedding, hyperbolic space, and social networks. In Proceedings of the thirtieth annual
symposium on Computational geometry, pages 501–510, 2014.

[52] J. Yang and J. Leskovec. De!ning and evaluating network communities based on ground-truth. In Proceedings of the
ACM SIGKDD Workshop on Mining Data Semantics, pages 1–8, 2012.

[53] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. C. Lui. Diversi!ed temporal subgraph pattern mining. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1965–1974, 2016.

[54] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna. Accurate, e#cient and scalable graph embedding. In
2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 462–471. IEEE, 2019.

[55] X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y. Zhao. Orion: shortest path estimation for large social graphs. networks,
1:5, 2010.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:21

[56] X. Zhao, A. Sala, H. Zheng, and B. Y. Zhao. E#cient shortest paths on massive social graphs. In 7th International
Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), pages 77–86.
IEEE, 2011.

A COVER TREE FOR BALL REPORTING QUERIES
We consider the case where the doubling dimension is constant or the expansion constant is
bounded by a constant. Furthermore, we assume that the spread of the items 𝑀 is bounded by a
polynomial on 𝑂. Given a query item 𝑈 and an error threshold 𝑋 the goal is to !nd a family of sets
𝑜 = {𝑜1, . . . ,𝑜𝑤}, with𝐿 = 𝑑 (𝑋↘𝑈 (𝑉)), such that 𝑜𝑆 ⇒ 𝑀 , 𝑜𝑆 ⇐𝑜 𝑌 = ∞, for every item 𝑇 ↗ 𝑀 with
𝑁 (𝑇,𝑈) ↔ 1, 𝑇 ↗ 𝑜 𝑌 , for an index 𝑠 ↔ 𝐿, and for every point 𝑇 ↗ ⋃

𝑆↔𝑤𝑜𝑆 it holds that 𝑁 (𝑇,𝑈) ↔ 1+𝑋.
Finally we require that the distance of any pair of items inside 𝑜𝑆 to be at most 𝑋. When the spread
is bounded, the cover tree consists of𝑑 (log𝑂) levels. Assume that the root has the highest level and
the leaf nodes has the lowest level. Each node 𝑝 in the cover tree is associated with a representative
point Rep𝑛 ↗ 𝑀 . For each node 𝑝 in level 𝑛 of the cover tree it holds that: (i) If 𝑔 is another node
in level 𝑛 then 𝑁 (Rep𝑛,Rep𝑊) > 2𝑆 . (ii) If 𝑝 is not the root node, it always has a parent 𝑥 in level
𝑛 + 1. It holds that 𝑁 (Rep𝑛,Rep𝑟) < 2𝑆+1. (iii) If 𝑝 is not a leaf node, 𝑝 has always a child 𝑥 such
that Rep𝑛 = Rep𝑟 . Assuming that the doubling dimension is 𝑊 we have that each node 𝑝 of the
cover tree has 𝑑 (2𝑈 (𝑉)) = 𝑑 (1) children. The same, constant bound, holds for bounded expansion
constant. The standard cover tree has space 𝑑 (𝑂) and can be constructed in 𝑑 (𝑂 log𝑂) time [8, 31].

Notice that every node in the lowest level contains one item from 𝑀 and each item in 𝑀 appears
in one leaf node. Let 𝑀𝑛 be the set of points stored in (the leaf nodes of) the subtree rooted at node
𝑝 . We do not explicitly store 𝑀𝑛 in every node 𝑝 of the cover tree. Instead, for every node 𝑝 we add a
pointer to the leftmost leaf node in the subtree rooted at 𝑝 . If we also link all the leaf nodes, given a
node 𝑝 , we can report all points in 𝑀𝑛 following the pointers, in 𝑑 (|𝑀𝑛 |) time. Our modi!ed cover
tree has space𝑑 (𝑂) and can be constructed in𝑑 (𝑂 log𝑂) time. For each node 𝑝 in level 𝑛 , let 𝑄𝑛 = 2𝑆
be its separating radius and 𝑗𝑛 = 2𝑆+1 be its covering radius.

L!++’ A.1. If 𝑇 ↗ 𝑀𝑛 , 𝑁 (𝑇, Rep𝑛) < 𝑗𝑛 .

P$##1. It follows by induction on the level of the tree. In the leaf nodes it holds trivially. We
assume that it holds for all nodes in level 𝑛 ↘ 1. We show that it holds for every node at level 𝑛 . Let 𝑝
be a node at level 𝑛 . By de!nition we have that if𝑥 is a child of 𝑝 then 𝑁 (Rep𝑛,Rep𝑟) < 𝑄𝑛 . By the
induction assumption, if 𝑇 ↗ 𝑀𝑟 it holds that 𝑁 (𝑇,Rep𝑟) < 𝑗𝑟 , so 𝑁 (𝑇,Rep𝑛) ↔ 𝑁 (Rep𝑛,Rep𝑟) +
𝑁 (𝑇,Rep𝑟) < 𝑄𝑛 + 𝑗𝑟 = 2𝑆+1 = 𝑗𝑛 . ↭

Query procedure. Given a query point 𝑈 and an error threshold 𝑋, we start the query procedure in
the modi!ed cover tree we constructed above. In each level 𝑛 we visit the nodes 𝑝 such that 𝑄𝑛 > 1
and 𝑁 (𝑈,Rep𝑛) ↔ 1 + 𝑗𝑛 . Let 𝛥𝑆 be the nodes in level 𝑛 we visit such that 𝑄𝑛 = 1 for 𝑝 ↗ 𝛥𝑆 . Then
we consider each of the node 𝑝 ↗ 𝛥𝑆 and we get all nodes 𝑔 in the subtree of 𝑝 with 𝑄𝑊 = 𝑋/4. Let
𝑜 ⇑ be the set of all nodes 𝑔 we found. We go through each node 𝑥 ↗ 𝑜 ⇑ and we check whether
𝑁 (𝑈,Rep𝑟) ↔ 1 + 𝑋/2. If yes, then we add 𝑀𝑟 in 𝑜 . Otherwise, we skip it.
Correctness. Let 𝑇 ↗ 𝑀 be an item such that 𝑁 (𝑈, 𝑇) ↔ 1. We need to show that 𝑇 belongs in a set
in 𝑜 . Let 𝑛 be the level of the node 𝑝 such that 𝑇 ↗ 𝑀𝑛 and 𝑄𝑛 = 1. Since 𝑁 (𝑈, 𝑇) ↔ 1 it also holds that
𝑁 (𝑈,Rep𝑛) ↔ 𝑁 (𝑈, 𝑇) + 𝑁 (𝑇,Rep𝑛) ↔ 1 + 𝑗𝑛 . Hence, we will visit node 𝑝 in the query procedure and
we will add it in set𝛥𝑆 . Since 𝑇 ↗ 𝑀𝑛 and 𝑝 ↗ 𝛥𝑆 , by de!nition, item 𝑇 lies in one of the nodes𝑥 in𝑜 ⇑.
We have 𝑁 (𝑈,Rep𝑟) ↔ 𝑁 (𝑈, 𝑇) +𝑁 (𝑇,Rep𝑟) ↔ 1+𝑋/2. So we will keep𝑥 in𝑜 . Finally, notice that for
each 𝑇 ↗ 𝑀𝑟 for a node𝑥 in 𝑜 , we have 𝑁 (𝑈, 𝑇) ↔ 𝑁 (𝑈,Rep𝑟) + 𝑁 (𝑇,Rep𝑟) ↔ 1 + 𝑋/2 + 𝑋/2 ↔ 1 + 𝑋.
So the query procedure is correct.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:22 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Time Complexity. We !rst bound the number of nodes 𝑝 we visit in level 𝑛 with 𝑄𝑛 = 1. Recall
that we only consider 𝑝 if 𝑁 (𝑈,Rep𝑛) ↔ 1 + 𝑗𝑛 ↔ 3. Equivalently, we can think of a ball B of radius
3 and center 𝑈. Each node 𝑝 de!nes a ball B𝑛 with center Rep𝑛 and radius 1. Also notice that the
centers of any two balls B𝑛,B𝑊 have distance at least 1. The number of nodes we visit in level 𝑛 is
the same as the number of balls B𝑛 that intersect B. Using the bounded doubling dimension, it
is easy to argue that ball B of radius 3 can be covered by at most 𝑑 (2𝑈 (𝑉)) = 𝑑 (1) balls of radius
1 (a similar argument holds for bounded expansion constant). Hence, we can argue that in each
level above 𝑛 we only visit𝑑 (1) number of nodes. So in total we visit𝑑 (log𝑂) nodes until we reach
level 𝑛 with 2𝑆 = 1. Next, since the doubling dimension is 𝑊 each node can have 𝑑 (2𝑈 (𝑉)) children.
It follows that the number of nodes we visit with 𝑄𝑊 = 𝑋/4 in the subtree of any node 𝑝 (with 𝑄𝑛 = 1)
in 𝑜 ⇑ is 𝑑 (𝑋↘𝑈 (𝑉)). Overall, the query time is 𝑑 (log𝑂 + 𝑋↘𝑈 (𝑉)).

B DYNAMIC SETTING
In this setting, we assume that we do not know the point set 𝑀 upfront. We start with an empty
point set 𝑀 ⇑ = ∞, and some input parameters 𝑌, 𝑋. The goal is to construct a data structure such
that, if all points are inserted and deleted according to their lifespans, it supports the following
operations: i) if a point is deleted the data structure is updated e#ciently, and ii) if a point 𝑇 is
inserted, the data structure is updated e#ciently and 𝑌-durable triangles (if any) of the form (𝑇,𝑈, 𝑐)
are reported such that 𝑉↘𝑁 ↑ max{𝑉↘𝑅 , 𝑉↘𝑇 } along with some 𝑌-durable 𝑋-triangles that contain 𝑇 . We
call it the DynamicO"Durable problem.

We note that the data structure we need in this dynamic setting is a dynamic version of D.
In particular, we slightly modify the standard techniques to convert our static data structure to a
dynamic one with amortized update guarantees [23, 44, 45].

We call the new dynamic data structure Ddyn. Let 𝑀 ⇑ be the current instance of 𝑑 (𝑂) “active”
points.Ddyn consists of𝑎 = 𝑑 (log𝑂) subsets of points𝑅1, . . . ,𝑅𝑥 such that for each 𝑛 ↔ 𝑎 ,𝑅𝑆 ⇒ 𝑀 ⇑

and
⋃

𝑆↔𝑥 𝑅𝑆 = 𝑀 ⇑. For each 𝑛 ↔ 𝑎 , we have a static data structure D, called D𝑆 , over 𝑅𝑆 . It holds
that for each 𝑛 ↔ 𝑎 , |𝑅𝑆 | is either 2𝑆 or 0. The total space of the data structure is 𝑑 (𝑂 log𝑂).

Assume that we have to remove 𝑇 ↗ 𝑀 . We identify the group 𝑛 such that 𝑇 ↗ 𝑅𝑆 . We also
identify the leaf node 𝑔 of the cover tree T𝑆 that 𝑇 belongs to. Both of these operations can easily be
executed in 𝑑 (log𝑂) time with some auxiliary data structures. Then we traverse T𝑆 from 𝑔 to the
root removing 𝑇 from the linked interval trees. Notice that the structure of D𝑆 does not change,
instead only the information stored in the nodes of the interval trees containing 𝑇 are updated.

Next, assume that a new point 𝑇 is inserted at time 𝑉↘𝑁 . We !rst place 𝑇 in a temporary min
heap 𝛩 with value 𝑉↘𝑁 + 𝑌 (the time instance that 𝑇 can participate in 𝑌-durable triangles). When
we reach time 𝑉↘𝑁 + 𝑌 , we derive 𝑇 from 𝛩 . At this point 𝑇 is an active point for time more than
𝑌 . We insert 𝑇 in Ddyn as follows. We !nd the smallest 𝑛 such that 𝑅𝑆 = ∞. We move all points
𝛬 =

⋃
𝑌<𝑆 𝑅 𝑌 into𝑅𝑆 and construct D𝑆 over 𝛬 ′ {𝑇}. At this point, we also need run a query to !nd

all 𝑌-durable triangles that contain 𝑇 (having 𝑉↘𝑁 as the largest left endpoint). We run the o%ine
query durableBallQ𝑆 (𝑇, 𝑌, 𝑋/2) in each D𝑆 with 𝑅𝑆 ω ∞. As we had in the o%ine case, for each 𝑛
we get a set of 𝑑 (𝑋↘𝑉) canonical nodes of the cover tree. Each canonical node corresponds a ball
of radius at most 𝑋/4. In the dynamic case there are in total 𝑑 (𝑋↘𝑉 log𝑂) canonical nodes, since
there are 𝑑 (log𝑂) groups. In order to !nd the durable triangles, we run Algorithm 1 from the
o%ine case considering𝑑 (𝑋↘𝑉 log𝑂) canonical nodes instead of𝑑 (𝑋↘𝑉). Hence, the running time is
𝑑 (𝑋↘𝑉 log3 𝑂 + OUT𝑁), where OUT𝑁 is the number of 𝑌-durable triangles anchored by 𝑇 (with 𝑉↘𝑁
being the largest left endpoint) along with a number of additional 𝑌-durable 𝑋-triangles anchored
by 𝑇 . Equivalently, we can argue that OUT𝑁 is the 𝑌-durable triangles that 𝑇 participates in at the

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:23

moment 𝑉↘𝑁 + 𝑌 along with some additional 𝑌-durable 𝑋-triangles that 𝑇 participates in. Finally, we
re-construct Ddyn from scratch after 𝑂/2 updates.

Following the analysis in [23, 44, 45] and observing that each point can change at most𝑑 (log𝑂)
groups and the construction time of the o%ine D is 𝑑 (𝑂 log2 𝑂), we have that the insertion of a
point takes 𝑑 (log3 𝑂) amortized time. The deletion takes 𝑑 (log2 𝑂) time.

T-!#$!+ B.1. Given (𝑀,𝑁, 𝑉), 𝑌 > 0, and 𝑋 > 0, 𝑋-approximate DynamicO!Durable can be solved
using a data structure of 𝑑 (𝑂 log𝑂) space, 𝑑 (log3 𝑂) amortized update time, and 𝑑 (𝑋𝑈 (↘𝑉) log3 𝑂 +
OUT𝑁) time to report all new 𝑌-durable triangles (along with some 𝑋-triangles) anchored by 𝑇 , where
OUT𝑁 is the output size after inserting point 𝑇 , where 𝑂 = |𝑀 |, and 𝑊 is the doubling dimension of 𝑀 .

C EXTENSIONS
We show how we can extend our results in any 𝑕𝑍 norm and we describe how to report other
patterns (except of triangles) of constant size. Furthermore, we show how to report all durable star
patterns. While we only describe the results in the o%ine setting, all of them can be extended to
the online setting using the approach as shown in Section 4.

C.1 𝑕𝑍 metric
In order to !nd all 𝑌-durable triangles in any 𝑕𝑍 metric we use a quadtree T instead of a cover tree
over the input points 𝑀 . Each node𝑔 of the cover tree is associated with a square ↭𝑊 . Let 𝑀𝑊 ↘𝑀 ⇐↭𝑊 .
Given a point 𝑇 ↗ 𝑀 we !nd a set of 𝑑 (log𝑂 + 𝑋↘𝐿) canonical nodes 𝑜 in T such that for every
𝑔 ↗ 𝑜 , the diameter of ↭𝑊 is at most 𝑋/2 and | |𝑇 ↘ ↭𝑊 | |𝑍 ↔ 1 + 𝑋/4. Using the same procedure we
followed for constant doubling dimensions over the canonical subsets C𝑁 , we obtain:

T-!#$!+ C.1. Given (𝑀,𝑁, 𝑉), 𝑋 > 0, and 𝑌 > 0, where 𝑀 is a set of 𝑂 points in R𝐿 and 𝑁 is any
𝑕𝑍 norm, the 𝑋-approximate DurableTriangle can be solved in 𝑑

(
𝑂(𝑋↘𝐿 log𝑂 + 𝑋↘2·𝐿 + log2 𝑂) + OUT

)
time, where OUT is the number of triangles reported, satisfying |𝑍𝑂 | ↔ OUT ↔ |𝑍 𝑃

𝑂 |.

C.2 Other pa!erns
In this subsection we show how we can extend the o%ine algorithm to report i) durable cliques of
constant size, ii) durable paths of constant size, and iii) durable 𝑒-star patters. The algorithms can
also be extended to handle incremental queries, similarly to 𝑤𝛯𝑔-durable triangles.
Cliques. Let 𝛱 ⇒ 𝑀 be a subset of points. 𝛱 is a 𝑌-durable𝐿-clique if i) |𝛱 | =𝐿, ii) for every pair
𝑇,𝑈 ↗ 𝛱 ≃ 𝛱 , 𝑁 (𝑇,𝑈) ↔ 1, and iii) | ⇐𝑁↗𝑦 𝑉𝑁 | ↑ 𝑌 . Similarly, 𝛱 is called a 𝑌-durable 𝑋-𝐿-clique if i, iii
remain the same and for every pair 𝑇,𝑈 ↗ 𝛱 ≃ 𝛱 , 𝑁 (𝑇,𝑈) ↔ 1 + 𝑋.

We consider that 𝐿 = 𝑑 (1). The algorithm to report all 𝑌-durable 𝐿-cliques is similar to
Algorithm 1. The only di"erence is that instead of considering all pairs C𝑁,𝑆 , C𝑁, 𝑌 of the nodes
in the cover tree, we consider all possible subsets of size𝐿. Let C𝑁, 𝑌1 , . . . , C𝑁, 𝑌𝑅 be the family of
𝐿 subsets. If all pairwise distances among the representative points are at most 1 + 𝑋/2 then we
report all𝐿-cliques C𝑁, 𝑌1 ≃ . . . ≃ C𝑁, 𝑌𝑅 . The correctness follows straightforwardly from Section 3. In
particular we report all 𝑌-durable𝐿-cliques and we might also report a few 𝑌-durable 𝑋-𝐿-cliques.
The running time is also asymptotically the same with Algorithm 1.
Paths. Let 𝛱 ⇒ 𝑀 be a subset of points. 𝛱 is a 𝑌-durable𝐿-path if i) |𝛱 | =𝐿, ii) there is an ordering
of the points such that the distance of two consecutive points is at most 1, and iii) | ⇐𝑁↗𝑦 𝑉𝑁 | ↑ 𝑌 .
Similarly, 𝛱 is called a 𝑌-durable 𝑋-𝐿-path if i), iii) remain the same, and the distance between
consecutive points is at most 1 + 𝑋.

We consider that 𝐿 = 𝑑 (1). The algorithm to report all 𝑌-durable 𝐿-cliques is similar to
Algorithm 1. The only di"erence is that instead of considering all pairs C𝑁,𝑆 , C𝑁, 𝑌 of the nodes in the

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:24 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

cover tree, we consider all possible subsets of size𝐿. Let C𝑁, 𝑌1 , . . . , C𝑁, 𝑌𝑅 be the family of𝐿 subsets.
We try all possible 𝑑 (𝐿!) = 𝑑 (1) orderings and we check if we !nd an ordering C𝑁, 𝑌1 , . . . , C𝑁, 𝑌𝑅
such that 𝑁 (Rep𝑌1 ,Rep𝑌2) ↔ 1+𝑋/2, 𝑁 (Rep𝑌2 ,Rep𝑌3) ↔ 1+𝑋/2, . . .𝑁 (Rep𝑌𝑅↘1 ,Rep𝑌𝑅) ↔ 1+𝑋/2. If this
is true then we report all𝐿-paths C𝑁, 𝑌1 ≃ . . .≃C𝑁, 𝑌𝑅 . The correctness follows straightforwardly from
Section 3. In particular we report all 𝑌-durable𝐿-paths and we might also report a few 𝑌-durable
𝑋-𝐿-paths. The running time is also asymptotically the same with Algorithm 1.
𝑒-star patterns. Let 𝛱 ⇒ 𝑀 be a subset of points. 𝛱 is a 𝑌-durable𝐿-star if i) |𝛱 | =𝐿, ii) there is a
central point 𝑇 ↗ 𝛱 such that 𝑁 (𝑇,𝑈) ↔ 1 for every other 𝑈 ↗ 𝛱 , and iii) | ⇐𝑁↗𝑦 𝑉𝑁 | ↑ 𝑌 . Similarly, 𝛱 is
called a 𝑌-durable 𝑋-𝐿-star if i), iii) remain the same, and the distance between 𝑇 and any other
point in 𝛱 is at most 1 + 𝑋.

We consider that 𝐿 = 𝑑 (1). The algorithm to report all 𝑌-durable 𝐿-cliques is similar to
Algorithm 1. For each point 𝑇 ↗ 𝑀 , we run a query durableBallQ (𝑇, 𝑌, 𝑋/2), but instead of querying
points within distance 1 from 𝑇 , i.e., points in ball B(𝑇, 1), we query pints within distance 2 from
𝑇 , i.e., points in ball B(𝑇, 2). We need that change because 𝑇 might belong to an𝐿-star pattern 𝛱
having the largest left endpoint 𝑉↘𝑁 ↑ max𝑅↗𝑦 𝑉↘𝑅 , while not being the central point. In this case, it is
always true that 𝛱 ⇒ 𝑀 ⇐ B(𝑇, 2). Hence, we get C𝑁 = {C𝑁,1, . . . , C𝑁,𝑜 }, for 𝑒 = 𝑑 (𝑋↘𝑈 (𝑉)) canonical
nodes of the cover tree that approximately cover B(𝑇, 2). Then we visit each node C𝑁, 𝑌 . We initialize
a counter 𝛴 = 0. For every other node C𝑁,𝑧 ↗ C𝑁 we check whether 𝑁 (Rep𝑌 ,Rep𝑧) ↔ 1 + 𝑋/2. If
yes then we update 𝛴 = 𝛴 + |C𝑁,𝑧 |. In the end, if 𝛴 > 𝐿 there exist |C𝑁, 𝑌 |,𝐿-star patterns to report.
Hence, for each point 𝑈 ↗ C𝑁, 𝑌 we report 𝑈 as the central point and then we visit all nodes C𝑁,𝑧 with
𝑁 (Rep𝑌 ,Rep𝑧) ↔ 1+ 𝑋/2 to report all points in𝑜𝑁,𝑧 . The correctness follows straightforwardly from
Section 3 and the fact that for each 𝑇 we report all𝐿-star patterns that 𝑇 belongs to (not necessarily
as the central point) having the maximum left endpoint on its corresponding temporal interval. In
particular we report all 𝑌-durable𝐿-star patterns and we might also report a few 𝑌-durable 𝑋-𝐿-star
patterns. The running time is also asymptotically the same with Algorithm 1.

D MISSING MATERIAL IN SECTION 5
D.1 UNION

Algorithm. In Algorithm 5 we show to how to !nd all (𝑌,𝑏)-UNION durable pairs. The high
level idea follows from Algorithm 4. Instead of ITϱ, we have the primitive data structure IT′. Given
a query interval 𝑉𝑆𝑗 the goal is to !nd the interval 𝑉 ↗ I such that |𝑉 ⇐ 𝑉𝑆𝑗 | is maximized, where
I = {𝑉𝑁 | 𝑇 ↗ 𝑀}. This can be found using a variant of the interval tree IT′ as follows: First, among
all intervals that intersect 𝑉↘𝑆𝑗 it !nds the interval 𝑉𝑘 ↗ I with the largest right endpoint. Second,
among all intervals that intersect 𝑉+𝑆𝑗 it !nds the interval 𝑉𝑙 ↗ I with the smallest left endpoint.
Third, among all intervals that lie completely inside 𝑉𝑆𝑗 it !nds the longest interval 𝑉𝑚 ↗ I. In the end,
we return 𝑉 ↗ {𝑉𝑘, 𝑉𝑙, 𝑉𝑚 } with the longest intersection |𝑉 ⇐ 𝑉𝑆𝑗 |. Similarly to ITϱ, the data structure
IT′ has space 𝑑 (𝑂 log𝑂), it can be constructed in 𝑑 (𝑂 log2 𝑂) time, and given a query interval 𝑉𝑆𝑗 ,
it returns 𝑉 in 𝑑 (log2 𝑂) time. Using IT′, we construct D′ similarly to Dϱ. The only di"erence is
that for each node in the cover tree there exist an IT′ data structure (instead of ITϱ). The procedure
C#+".%!M’2U(&#(D(IT′𝑁,𝑆 , 𝑉𝑆𝑗) returns the interval 𝑉𝑆 that has the largest intersection with 𝑉𝑆𝑗
and its corresponding point in 𝑀 lies in C𝑁,𝑆 .

Next, we describe the subroutineM’2I(%!$3!/%&#((𝑉𝑆𝑗). It simply considers all canonical nodes
in C𝑁 runningC#+".%!M’2U(&#(D(IT′𝑁,𝑆 , 𝑉𝑆𝑗) for each C𝑁,𝑆 ↗ C𝑁 such that𝑁 (Rep𝑆 ,Rep𝑌) ↔ 1+𝑋/2.
Hence M’2I(%!$3!/%&#((𝑉𝑆𝑗) visits all canonical nodes that are close to both 𝑇 and 𝑈, and among
these nodes C𝑁,𝑆 , it returns the interval 𝑉 = argmax𝑞𝐿 |𝑉𝑆 ⇐ 𝑉𝑆𝑗 |, i.e., the interval with the largest
intersection with 𝑉𝑆𝑗 . We also notice that C#+".%!M’2U(&#(D can be easily modi!ed so that we

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Pa!erns in Temporal Proximity Graphs 81:25

Algorithm 5: R!"#$%UNIONP’&$(D′, 𝑇, 𝑌, 𝑋,𝑏)
1 C𝑁 : {C𝑁,1, C𝑁,2, · · · , C𝑁,𝑜 } ↙ durableBallQ (𝑇, 𝑌, 𝑋/2), with Rep𝑆 denoting the representative

point of the cover tree node for C𝑁,𝑆 , and IT′𝑁,𝑆 denoting the annotated interval tree for this
cover tree node;

2 foreach 𝑠 ↗ [𝑒] do
3 foreach 𝑈 ↗ C𝑁, 𝑌 in descending order of 𝑉+𝑅 do
4 𝑉 ⇑ ↙ 𝑉𝑅 ⇐ 𝑉𝑅 ;
5 𝑉 ↙ M’2I(%!$3!/%&#((𝑉 ⇑);
6 𝛩 ↙ newHeap({(𝑉 , 𝑉 ⇑, |𝑉 ⇐ 𝑉 ⇑ |)});
7 𝑤 ↙ 0;
8 for 𝛶 = 1 . . .𝑏 do
9 (𝑉𝑢 , 𝑉𝑣, |𝑉𝑢 ⇐ 𝑉𝑣 |) ↙ the top element of 𝛩 ;

10 𝑤 ↙ 𝑤 + |𝑉𝑢 ⇐ 𝑉𝑣 |;
11 foreach 𝑉𝛥 ↗ 𝑉𝑣 \ 𝑉𝑢 do
12 𝑉 ↙ M’2I(%!$3!/%&#((𝑉𝛥);
13 𝛩 .insert(𝑉 , 𝑉𝛥, |𝑉 ⇐ 𝑉𝛥 |);

14 if 𝑤 ↑ (1 ↘ 1/𝑗)𝑌 then report (𝑇,𝑈);
15 else break;

16 Subroutine M’2I(%!$3!/%&#((𝑉𝑆𝑗) begin
17 𝛷 ↙ ↘1;
18 𝑉 ↙ ∞;
19 foreach 𝑛 ↗ [𝑒] do
20 if 𝑁 (Rep𝑆 , Rep𝑌) ↔ 1 + 𝑃

2 then 𝑉𝑆 ↙ C#+".%!M’2U(&#(D(IT′𝑁,𝑆 , 𝑉𝑆𝑗);
21 if |𝑉𝑆 ⇐ 𝑉𝑆𝑗 | > 𝛷 then
22 𝛷 ↙ |𝑉𝑆 ⇐ 𝑉𝑆𝑗 | and 𝑉 ↙ 𝑉𝑆 ;

23 return (𝑉);

always skip 𝑉𝑁 and 𝑉𝑅 from the procedure of !nding the interval in I with the largest intersection
with 𝑉𝑆𝑗 . From the proofs in the previous sections we have that 𝑁 (𝑇,𝑈) ↔ 1 + 𝑋/2 while the witness
set has distance at most 1 + 𝑋 from both 𝑇 and 𝑈. Overall, M’2I(%!$3!/%&#((𝑉𝑆𝑗) !nds an interval
𝑉 = 𝑉𝑇 such that

|𝑉𝑇 ⇐ 𝑉𝑆𝑗 | ↑ max
𝑇⇑ ↗𝑑 :𝑀 (𝑁,𝑇⇑),𝑀 (𝑅,𝑇⇑)↔1

|𝑉𝑇⇑ ⇐ 𝑉𝑆𝑗 |,

and
𝑁 (𝑇, 𝑐),𝑁 (𝑈, 𝑐) ↔ 1 + 𝑋 .

Finally, we describe R!"#$%UNIONP’&$(D′, 𝑇, 𝑌, 𝑋,𝑏). After !nding C𝑁 and for each C𝑁, 𝑌 we
visit 𝑈 ↗ C𝑁, 𝑌 in descending order of 𝑉+𝑅 as we did in Algorithm 4. For each pair (𝑇,𝑈) we check, we
run the greedy algorithm for the max 𝑒-coverage problem. First, we !nd the interval 𝑉 ↗ I that has
the largest intersection with 𝑉 ⇑ = 𝑉𝑁⇐𝑅 . We create a max heap 𝛩 and we insert the pair (𝑉 , 𝑉 ⇑) with
value |𝑉 ⇐ 𝑉 ⇑ |. Then the algorithm proceeds in 𝑏 iterations. In each iteration, it !nds the pair (𝑉𝑢 , 𝑉𝑣)
in the max heap 𝛩 with the maximum |𝑉𝑢 ⇐ 𝑉𝑣 |. 𝑉𝑢 is an interval from I, while 𝑉𝑣 is an uncovered
segment of 𝑉 ⇑. Hence, in each iteration, it !nds the interval 𝑉𝑢 that covers the largest uncovered

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:26 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

area of 𝑉 ⇑. Then we add |𝑉𝑢 ⇐ 𝑉𝑣 | in variable 𝑤 that maintains the overall union the algorithm has
computed. An interval 𝑉𝑢 might split 𝑉𝑣 into two smaller uncovered segments or into one smaller
uncovered segment of 𝑉 ⇑. In each case, 𝑉𝛥 ⇒ 𝑉𝑣 represents one uncovered segment created after
adding 𝑉𝑢 . We run M’2I(%!$3!/%&#((𝑉𝛥) and we !nd the interval 𝑉 ↗ I that covers the largest
portion of 𝑉𝛥 and we insert the pair (𝑉 , 𝑉𝛥) in max heap 𝛩 with value |𝑉 ⇐ 𝑉𝛥 |. We repeat the same
procedure for 𝑏 iteration. In the end we check whether 𝑤 ↑ (1 ↘ 1/𝑗)𝑌 . If yes, we report the pair
(𝑇,𝑈), otherwise we skip C𝑁, 𝑌 and continue with the next canonical node. Overall, this algorithm
gives an implementation of the greedy algorithm for the max 𝑏-coverage problem in our setting,
using e#cient data structure to accelerate the running time.
Correctness. The correctness of this algorithm follows by the correctness of the greedy algorithm
for the max 𝑏-coverage problem, the correctness of M’2I(%!$3!/%&#((𝑉𝑆𝑗), and the correctness of
Algorithm 4. For a pair (𝑇,𝑈) if we !nd that 𝑤 ↑ (1↘1/𝑗)𝑌 , then (𝑇,𝑈) is de!nitely an ((1↘1/𝑗)𝑌,𝑏)-
UNION 𝑋-pair. As we argued in Algorithm 4, assume that for a 𝑈 ↗ C𝑁, 𝑌 we !nd that 𝑤 < (1 ↘ 1/𝑗)𝑌 .
Then it is safe to skip C𝑁, 𝑌 because there is no other (𝑌,𝑏)-UNION durable pair to report. Notice
that the approximation factor for the greedy algorithm is 1 ↘ 1/𝑗 , so if the greedy implementation
returns 𝑤 < (1 ↘ 1/𝑗)𝑌 , we are sure that the pair (𝑇,𝑈) is not (𝑌,𝑏)-UNION durable. Hence, any
other 𝑥 ↗ C𝑁, 𝑌 with 𝑉+𝑟 < 𝑉+𝑅 will also not be (𝑌,𝑏)-UNION durable. In any case, our algorithm
returns all (𝑌,𝑏)-UNION durable pairs and might return some additional ((1 ↘ 1/𝑗)𝑌,𝑏)-UNION
durable 𝑋 pairs. Hence, it holds that |𝑎𝑂,𝑄 | ↔ OUT ↔ |𝑎𝑃

(1↘1/𝑠)𝑂,𝑄 |.
Time Complexity. Next, we analyze the running time of our algorithm. As pointed out, IT′ is
constructed in 𝑑 (𝑂 log2 𝑂) time and it !nds the interval that covers the largest uncovered area of
a query interval in 𝑑 (log2 𝑂) time. Hence, D′ is constructed in 𝑑 (𝑂 log3 𝑂) time. The subroutine
M’2I(%!$3!/%&#((𝑉𝑆𝑗) callsC#+".%!M’2U(&#(D(IT′𝑁,𝑆 , 𝑉𝑆𝑗),𝑑 (𝑋↘𝑈 (𝑉)) times. For each pair (𝑇,𝑈)
we check, the subroutine M’2I(%!$3!/%&#((𝑉𝑆𝑗) is called 𝑑 (𝑏) times, while all update operations
in the max heap 𝛩 takes 𝑑 (𝑏 log𝑂) time. For each point 𝑇 we might check at most 𝑑 (𝑋↘𝑈 (𝑉))
pairs that are not reported, one for each canonical node in C𝑁 . Overall, Algorithm 5 runs in
𝑑 (𝑂 log3 𝑂 + (𝑂 +OUT)𝑋↘𝑈 (𝑉)𝑏 log2 𝑂) time.

Received December 2023; revised February 2024; accepted March 2024

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

	Abstract
	1 Introduction
	1.1 Problem Definitions
	1.2 Our Results and Approach

	2 Preliminaries
	2.1 Basic concepts and data structures
	2.2 Durable ball query

	3 Reporting Durable Triangles
	4 Incremental Reporting When Varying - .4
	4.1 Reporting for each activated point
	4.2 Computing activation thresholds
	4.3 Solution summary and complexity

	5 Reporting Aggregate-Durable Pairs
	5.1 SUM
	5.2 UNION

	6 Related Work
	7 Conclusion
	References
	A Cover tree for ball reporting queries
	B Dynamic Setting
	C Extensions
	C.1 metric
	C.2 Other patterns

	D Missing Material in Section 5
	D.1 UNION

