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Abstract—Multimodal federated learning (FL) targets the
intersection of two promising research directions in Internet of
Things (IoT) scenarios: 1) leveraging complementary multimodal
information to enhance downstream inference performance and
2) conducting distributed training with privacy protection.
However, the majority of existing works primarily focus on
applying different FL methods in a straightforward manner
after the multimodal feature fusion stage without fundamentally
disentangling the multimodal FL across both the feature space
and the sample space. There still exists an important tradeoff
between the computationally demanding nature of multimodal
information and the limited computing resources in IoT systems.
To tackle this challenge, we propose a hybrid FL algorithm
tailored for multimodal IoT systems (HFM). HFM utilizes
vertical FL (VFL) to distribute computing resources across the
feature space and horizontal FL (HFL) to distribute computing
resources across the sample space. This innovative algorithm
necessitates consideration of both stale information from the VFL
component and perturbed gradients from the HFL component,
which is not fully understood from a theoretical point. In this
article, we theoretically prove that the convergence of HFM
depends on the frequency of VFL communication and HFL
communication, as well as the number of vertical partitions and
horizontal partitions. Furthermore, we empirically demonstrate
that HFM outperforms three types of baselines based on two
public multimodal data sets, thereby making it practical for
multimodal IoT systems that require rapid and accurate down-
stream inference tasks, such as classification, prediction, etc.

Index Terms—Edge computing, federated learning (FL),
multimodal Internet of Things (IoT), nonconvex optimization.

I. INTRODUCTION

T
HE Internet of Things (IoT) has undergone a remarkable

transformation by intricately weaving together a vast

array of devices and sensors, thereby facilitating seamless data

exchange and automation across various fields. Within the

realm of multimodal IoT, these IoT devices possess the capa-

bility to capture a diverse range of data types corresponding

to the same sample [1]. Within each silo (e.g., a household

or a factory), each IoT device may contain one or multiple
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Fig. 1. Multimodal IoT system with problem decomposition across the
feature space and sample space. Each silo contains an edge server with limited
computing resources (such as memory or storage) and multiple multimodal
IoT devices. Each silo encompasses a portion of the horizontally distributed
sample space, while each IoT device covers a portion of the vertically
distributed feature space. Our research aims to optimize the distribution of
computing resources in multimodal IoT systems by conducting distributed
training across both the feature space and the sample space while ensuring
privacy protection.

sensors tasked with collecting different data modalities. For

example, as illustrated in Fig. 1, each IoT device possesses

a single type of sensor, such as a camera for capturing

images or a microphone for recording audio. Subsequently,

these multimodal data are uploaded to the edge server for

feature extraction and downstream inference tasks, such as

classification, prediction, etc. Compared to single-modal data,

multimodal data often offer a more comprehensive array

of complementary features, thereby enhancing downstream

inference performance, which is the predominant research

focus in IoT scenarios [2].

Federated learning (FL) has emerged as another significant

area of interest within the IoT landscape, owing to its ability to

broaden the sample space for model training while safeguard-

ing data privacy [3]. This decentralized learning paradigm

empowers devices to collaboratively train models without the

need to aggregate sensitive data in a central repository. In the

realm of multimodal IoT, characterized by data heterogeneity

and privacy concerns, the adoption of FL holds particular

promise, offering the potential for developing robust and

generalized models across diverse data sources [4].

However, current research on FL in multimodal IoT

scenarios faces constraints, primarily stemming from the

limited computing resources (e.g., memory or storage) of the
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edge server and the incomplete development of computing

capabilities in distributed IoT devices. Although many IoT

devices now possess computational power, most FL approaches

for multimodal IoT systems primarily treat them as sensors for

data collection, relying on centralized data processing (e.g.,

feature extraction) and model training at the edge server [5].

Consequently, they overlook the potential development of

computing resources within distributed IoT devices. Essentially,

most existing methods for multimodal IoT systems, which treat

the multimodal input as a “single-modal” input with richer

features and higher dimensions, fail to address the fundamental

challenge of multimodal FL [6]. Instead of applying FL in

a straightforward manner after the multimodal feature fusion

stage, our objective is to empower distributed IoT devices

not only as sensors for collecting information but also as

edge computing devices for feature extraction and downstream

inference, thereby alleviating the computing burden on the edge

server. Specifically referring to Fig. 1, our research aims to

optimize the distribution of computing resources in multimodal

IoT systems by conducting distributed training across both the

feature space and the sample space.

We have identified two primary bottlenecks impeding the

efficacy of FL in multimodal IoT scenarios. First, the edge

server within individual silos often struggles with limited

computing resources. Memory or storage constraints pose sig-

nificant challenges, particularly in enabling real-time parallel

processing of multimodal data [4]. Second, the limited sample

size within each silo, coupled with the diverse distribution of

multimodal data types, exacerbates the nonindependent and

identically distributed (non-IID) problem in multimodal IoT

scenarios, compromising model performance and hindering

generalization across the entire data set. These bottlenecks

present formidable challenges and require a delicate tradeoff

between the computationally demanding nature of multimodal

information and the limited computing resources, especially

in scenarios that require rapid and accurate downstream

inference within multimodal IoT systems. In light of the above

discussion, two questions arise.

1) How to design an algorithm to optimize the distribution

of computing resources across both feature space and

sample space while ensuring privacy protection?

2) How and why does the convergence performance of the

algorithm change when adjusting parameters under var-

ious constraints in real-world multimodal IoT systems?

To answer the first question, we propose a hybrid FL

algorithm tailored for multimodal IoT systems (HFM), where

computing resources, such as memory and storage, are often

limited. HFM utilizes vertical FL (VFL) to distribute com-

puting resources across the feature space and horizontal FL

(HFL) to distribute computing resources across the sample

space. This innovative algorithm necessitates consideration

of both stale information from the VFL component and

perturbed gradients from the HFL component, which is not

fully understood from a theoretical point.

To answer the second question, we theoretically prove

that the convergence of HFM depends on the frequency of

VFL communication and HFL communication, as well as

the number of vertical partitions and horizontal partitions.

Besides, we empirically demonstrate that HFM outperforms

(a) (b) (c)

Fig. 2. (a) Multimodal Learning leverages complementary multimodal
information but does not incorporate FL to safeguard privacy. (b) Multimodal
HFL integrates the FL paradigm in a straightforward manner after the stage
of feature fusion but does not fundamentally disentangle multimodalities.
(c) Multimodal VFL faces challenges due to limited sample size in IoT
scenarios.

three types of baselines in terms of convergence rate and

convergence error based on two public multimodal data sets,

thereby making it practical for multimodal IoT systems that

require rapid and accurate downstream inference tasks, such

as classification, prediction, etc.

Our key contributions can be summarized as follows.

1) We formulate the multimodal FL problem and disentan-

gle it across both the feature space and sample space for

IoT systems demanding rapid and accurate inference.

2) We propose a hybrid FL algorithm, named HFM,

specifically designed for multimodal IoT systems. HFM

utilizes VFL to distribute computing resources across the

feature space and HFL to distribute computing resources

across the sample space.

3) We analyze the convergence of the HFM algorithm for

nonconvex objectives and demonstrate its dependency

on the frequency of VFL communication and HFL com-

munication, as well as the number of vertical partitions

and horizontal partitions.

4) We validate the HFM algorithm and theoretical analysis

through extensive experiments involving various objec-

tives based on two public multimodal data sets.

The remainder of this article is structured as follows.

Section II discusses related work on FL for multimodal IoT

systems. Section III mathematically formulates the problem.

Section IV introduces the HFM algorithm, while its theoret-

ical analysis is provided in Section V. Section VI presents

extensive experiments to validate the HFM algorithm and the

theoretical analysis. Finally, Section VII concludes this article.

II. RELATED WORK

Multimodal FL intersects two promising research directions

in IoT scenarios: first, harnessing complementary multimodal

information to improve downstream inference performance,

as shown in Fig. 2(a); second, conducting HFL or VFL with

privacy protection, as illustrated in Fig. 2(b) and (c). In this

section, we delve into related work on FL for IoT systems,

followed by a discussion of recent advancements in FL tailored

for multimodal scenarios.

FL has emerged as a significant area of research within

the IoT domain, presenting a decentralized approach to model
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(a) (b) (c)

Fig. 3. (a) HFL addresses horizontally partitioned sample spaces with con-
sistent feature spaces. (b) VFL addresses vertically partitioned feature spaces
with consistent sample spaces. (c) Our hybrid FL arises from partitioning both
the sample space and the feature space in multimodal IoT systems.

training across distributed data sets [7]. The literature on FL

for IoT systems can be broadly classified into two main types,

each addressing distinct data distribution patterns [3].

First, HFL focuses on scenarios where data samples are

horizontally partitioned with consistent vertical feature spaces,

as depicted in Fig. 3(a). For instance, various horizontal

silos, such as homes or factories possess limited data sample

sizes while prioritizing privacy preservation, necessitating the

use of the HFL paradigm to improve downstream infer-

ence performance [4]. While some works explore HFL in

multimodal contexts, they integrate the HFL paradigm after

the multimodal feature fusion stage in a straightforward man-

ner [5], [6], [8]. Critically, the multimodal input in these works

can be treated as a single-modal input with richer features and

higher dimensions, failing to disentangle the essence of the

multimodal FL issue across the feature space.

Second, VFL addresses scenarios where the feature space is

vertically partitioned with consistent horizontal sample spaces,

as shown in Fig. 3(b). This aligns with another common

application in IoT scenarios, where different IoT providers

may have data of different features (modalities) of the same

batch of customers [9]. For example, Liu et al. [10] proposed

the FedBCD algorithm, enabling clients to independently con-

duct stochastic gradient algorithms while leveraging vertically

partitioned data features. Furthermore, some VFL works in

multimodal scenarios focus on optimizing communication

latency [11]. For example, Wang et al. [12] introduced the

TVFL algorithm to address communication cost challenges in

VFL settings. However, it is noteworthy that the most general

scenario for multimodal systems is that both the sample space

and the feature space are partitioned, as depicted in Fig. 3(c).

Hence, neither HFL nor VFL alone is adequate to address

the challenges posed by multimodal IoT systems due to their

single-dimensional partitioning paradigm.

While some current multimodal FL works involve simulta-

neous horizontal and vertical partitioning, such as the work

by Yu et al. [13], who proposed a multilayer SGD algorithm

for FL in E-health, their discussion remains limited to two

modalities and fails to provide insights into the impact of

vertical partitions, while also neglecting the incorporation

of an arbitrary feature fusion model (head) at the server.

Su and Lau [14] introduced a hierarchical FL framework for

hybrid data partitioning; similarly, Das et al. [15] proposed

a tiered decentralized coordinate descent algorithm for two-

tiered networks. However, both of their utilization of HFL at

the bottom of VFL is a natural extension of typical VFL and

does not address the key issue of optimizing the distribution

TABLE I
ESSENTIAL NOTATIONS

of computing resources across feature space in multimodal

IoT scenarios. Additionally, several studies have explored

modality heterogeneity and the issue of missing modalities

in multimodal FL [16], [17], but they do not provide any

theoretical analysis, and their personalized FL objective differs

from our global FL objective.

III. PROBLEM FORMULATION

To clarify our problem, we begin by presenting essential

notations, as outlined in Table I. A comprehensive table of

notations for proofs is available in the supplementary material.

We investigate a multimodal IoT system consisting of M

silos, where each silo, indexed by m, contains Nm samples,

with m ∈ [M]. The total number of samples across all M

silos is denoted as N =
∑M

m=1 Nm. Each silo represents a

household or a factory equipped with an edge server and K

multimodal IoT devices. Each IoT device is furnished with one

or multiple sensors capable of collecting various types of data

modalities, such as images and audio. These K IoT devices

collectively possess J sensors, where J ≥ K, for capturing

data across different J modalities corresponding to the same

sample. When K = J, meaning each IoT device has one type

of sensor (modality), as shown in Fig. 1.

Within the mth silo, the local data set xm ∈ R
Nm×J is

vertically partitioned across K parties (IoT devices) along the

modality axis. It is noteworthy that each party k may contain a

varying number of modalities, where k ∈ [K]. For simplicity,

we assume that each vertical party k contains the same number

of modalities, specifically (J/K) modalities per party. The ith

row of xm corresponds to a data sample xi
m. For each sample
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xi
m, a party k holds a disjoint subset of features, denoted as

xk,i
m , such that xi

m = [x1,i
m , . . . , xK,i

m ]. Each xi
m is associated with

a corresponding label yi
m. Let ym be the vector of all sample

labels within the mth silo. Additionally, let xk
m represent a local

(partial) data set of the kth party within the mth silo, where

the ith row corresponds to data features xk,i
m .

The objective at the mth silo level is to minimize

fm(�m; xm; ym)

:= 1
Nm

∑Nm

i=1 L
[

θ0
m, h1

m

(

θ1
m; x1,i

m

)

, . . . , hK
m

(

θK
m ; xK,i

m

)

; yi
m

]

(1)

where �m = [θ0
m, θ1

m, . . . , θk
m, . . . , θK

m ] represents the mth

silo model, and L(·) denotes a loss function that combines

the embeddings hk
m(θk

m; xk,i
m ) from all vertical parties. For

simplicity, we designate k = 0 as the edge server and define

h0
m(θ0

m; xi
m) := θ0

m for all xi, where h0
m(·) is equivalent to

the identity function. Additionally, let hk
m(θk

m; xk,i
m ) denote the

embedding for the kth party. The partial derivative associated

with the coordinate partition θk
m can be expressed as follows:

∇kfm(�m; xm; ym)

:= 1
Nm

∑Nm

i=1 ∇θk
m
L

[

θ0
m, h1

m

(

θ1
m; x1,i

m

)

, . . . , hK
m

(

θK
m ; xK,i

m

)

; yi
m

]

. (2)

The stochastic partial derivative of the coordinate partition

θk
m can be expressed as follows:

∇kfm(�m;Bm)

:= 1
Bm

∑

i∈Bm
∇θk

m
L

[

θ0
m, h1

m

(

θ1
m; x1,i

m

)

, . . . , hK
m

(

θK
m ; xK,i

m

)

; yi
m

]

. (3)

Here, Bm denotes a randomly sampled mini-batch of size

Bm. We may omit x, y, xm, and ym from f (·) or

fm(·) for brevity. Additionally, we define hk
m(θk

m; x
k,Bm
m ) :=

{hk
m(θk

m; x
k,B1

m
m ), . . . , hk

m(θk
m; x

k,B
Bm
m

m )} as the set of all embed-

dings associated with the mini-batch Bm on party k, where

Bi
m denotes the ith sample in the mini-batch Bm. We consider

∇kfBm
(�m) and ∇kfBm

[θ0
m, h1

m(θ1
m; x

1,Bm
m ), . . . , hK

m(θK
m ; x

K,Bm
m )]

equivalent and use them interchangeably. Besides, assuming

that the batch size Bm = B for m ∈ [M], and the same

mini-batch Bm is used in every Q iterations within each

silo, we consider B
t0
m and Bm as equivalent and use them

interchangeably.

Thus, the global objective is to minimize the following:

f (�) :=
1

N

M
∑

m=1

Nmfm(�) (4)

where � = [θ0, θ1, . . . , θk, . . . , θK] denotes the global full

model, and θk = (1/N)
∑M

m=1 Nmθk
m denotes the partial model

on the kth vertical party. This global objective evaluates how

well the model fits the whole multimodal data set across K

vertical partitions and M horizontal partitions, setting it apart

from any existing HFL-type [18] or VFL-type [9] problem.

IV. HFM ALGORITHM

In this section, we propose a hybrid FL algorithm, named

HFM, tailored for multimodal IoT systems with limited com-

putational resources, as outlined in Algorithm 1. To elaborate,

we partition the entire procedure into two components: 1) con-

ducting VFL among K vertical parties within each silo and

Algorithm 1: HFM

Initialize: θ0,t=0
m , θk,t=0

m ∀k ∈ [K] ∀m ∈ [M] ;

for t = 0, 1, · · · , T − 1 do

if t (mod) Q = 0 then

for m = 1, 2, · · · , M in parallel do

for k = 1, 2, · · · , K in parallel do
IoT device sends embedding

hk
m(θk,t

m ; x
k,B

t0
m

m ) to the edge server;

�
t0
m ← {θ0,t

m , h1
m(θ1,t

m ), · · · , hK
m(θK,t

m )};
Edge server sends �

t0
m to all K IoT devices;

if t (mod) RQ = 0 then

for k = 0, 1, · · · , K in parallel do
Global server computes

θk,t = (1/N)
∑M

m=1 Nmθk,t
m ;

Global server sends θk,t to all M silos;

for m = 1, 2, · · · , M in parallel do

for k = 0, 1, · · · , K in parallel do

θk,t
m ← θk,t;

for m = 1, 2, · · · , M in parallel do

for k = 0, 1, · · · , K in parallel do

�k,t
m ← {�−k,t0

m ; hk
m(θk,t

m ; x
k,B

t0
m

m )};
θk,t+1

m ← θk,t
m − η∇kf

B
t0
m
(�k,t

m ; y
B

t0
m

m );

2) performing HFL across M horizontal silos, as illustrated in

the training timeline depicted in Fig. 4.

We additionally provide a schematic diagram of HFM in

Fig. 5, which offers a clear comparison with the three methods

discussed in Section II, as illustrated in Fig. 2.

A. VFL Across K Vertical Parties

At the beginning of each VFL round (t mod Q = 0)

within the mth silo, designated as t0, a mini-batch B
t0
m is

randomly sampled from xm. Each vertical party k, in parallel,

performs block coordinate stochastic gradient descent on its

local model parameters θk
m for Q local iterations. Specifically,

for kth vertical party to compute the stochastic partial gradient

with respect to its features across partial modalities, it requires

the embeddings computed by all other parties k′(k′ 	= k), as

well as its own kth party embeddings hk
m(θk,t

m ). Within each silo

m, these embeddings owned by IoT devices are shared with

the edge server and subsequently distributed to all K parties.

We define �
−k,t0
m = {hk′

m(θ
k′,t0
m )}K−1

k′=0
as the set of embeddings

from other vertical parties k′; thus, the set of embeddings used

by the kth party is �k,t
m = {�−k,t0

m ; hk
m(θk,t

m ; x
k,B

t0
m

m )}, which

inevitably contains stale information �
−k,t0
m during t > t0 in

this round. For each iteration t, each party k updates θk
m by

computing the stochastic partial derivatives ∇kf
B

t0
m
(�k,t

m ; y
B

t0
m

m )

and applying a gradient step with step size η. It is noteworthy

that each party utilizes a stale view of the silo-level model

to compute its gradient during multiple local iterations, as it
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Fig. 4. Our HFM algorithm comprises: 1) Silo-level VFL across K parties
in parallel for m ∈ [M], occurring when t mod Q = 0 and 2) HFL across M

silos, occurring when t mod RQ = 0. If we run HFM for P global rounds,
i.e., T = RQ × P iterations.

reuses the embeddings received at the start of each round t0. In

Section V, we theoretically prove that HFM converges despite

all IoT devices employing stale information during multiple

local iterations, which may potentially hinder convergence, but

it is unavoidable at this stage.

Remark 1: In addition to the inevitable use of stale

information in multiple local iterations due to the limited com-

munication overhead of HFM, another significant deviation

of HFM from previous VFL algorithms, e.g., FedBCD [10],

lies in its adoption of the edge server model (referred to

as the head [19], denoted as θ0
m) with trainable parameters,

thereby facilitating the integration of arbitrary multimodal

fusion networks. To update such a model through multiple

local iterations, the parameters of the head are distributed

among all involved IoT devices (vertical parties).

Remark 2: During the silo-level VFL process within HFM,

kth IoT device maintains a block of partial model parameters

on the kth vertical party. To compose the full silo-level model,

the partial model parameters of each IoT device can be copied

with the help of the edge server. This process can be performed

periodically with model checkpointing.

Remark 3: Although we assume that both the edge server

and all involved IoT devices (vertical parties) within each silo

have a copy of the labels ym, we also consider solutions for

scenarios where such ideal conditions may not be met in real-

world IoT systems. In cases where labels are private and only

available to a single party (e.g., only the edge server has the

labels within each silo), the label holder can provide sufficient

information for the parties to compute gradients for certain

classes of model architectures [9].

B. HFL Across M Horizontal Silos

In IoT scenarios, the partial data set held by each silo (e.g., a

household or a factory) is influenced by the modality type and

the number of samples, resulting in significant variations in

sample size and multimodal data distribution among different

silos. Non-IID data sets may cause a silo-level model to fit well

to its local silo data set but not necessarily to the whole data

set across all M silos. To develop a global model that achieves

superior performance when applied to entire multimodal IoT

systems, we employ global HFL across all M silos while

ensuring that it does not interfere with the VFL performed

in parallel in each silo. Specifically, when t mod RQ = 0

(where R is a positive integer like Q), the global server

performs global model aggregation on all K parties across all

M silos. For the kth party, this aggregation is represented as

Fig. 5. Our HFM presents a novel approach compared to existing methods
in Fig. 2. It thoroughly disentangles multimodal FL problem and optimizes
the distribution of computing resources by employing VFL across K vertical
parties (feature space) and HFL among M horizontal silos (sample space).

θk,t = (1/N)
∑M

m=1 Nmθk,t
m , and then the global server sends

the updated models θk,t to all M silos. Notably, the aggregation

here is based on different vertical parties, encompassing differ-

ent modalities (features). In other words, a crucial distinction

between our HFM and previous multimodal FL methods is that

we fundamentally disentangle multimodal input rather than

incrementally treating the multimodal input as a single-modal

input with richer features and higher dimensions.

Remark 4: Each Q iteration is referred to as a VFL com-

munication round, symbolizing the communication between K

IoT devices and the edge server within each silo. Each RQ

iteration is termed an HFL communication round, indicating

the communication between M edge servers (silos) and the

global server. If we execute HFM for P global rounds, i.e.,

T = RQ × P local iterations.

Remark 5: Although FL already provides privacy benefits

by avoiding the sharing of raw data, we offer additional

and more stringent solutions. Within each silo, IoT devices

(vertical parties) share only embeddings and compute partial

derivatives related to their local models, thereby avoiding

privacy concerns caused by transmitting raw data. Moreover,

we can enhance security against sophisticated attacks using

methods like secure multiparty computation [20] or homomor-

phic encryption [21].

V. THEORETICAL ANALYSIS

In this section, we discuss the theoretical analysis of the

convergence of our proposed Algorithm 1.

Assumption 1: There exist positive constants L < ∞ and

Lk < ∞, for m ∈ [M], k ∈ [K], such that for all � and �′,
the objective function satisfies

‖∇fm(�) − ∇fm
(

�′)‖ ≤ L‖� − �′‖ (5)

‖∇kfm(�) − ∇kfm
(

�′)‖ ≤ Lk‖� − �′‖. (6)
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Assumption 1 bounds how fast the gradient and partial

derivatives can change. While Assumption 1 does not directly

bound the smoothness of the global objective function f (�),

we can easily deduce this in the supplementary material.

Assumption 2: The stochastic partial derivatives are unbi-

ased for each mini-batch B

E
[

∇kfm(�;B)
]

= ∇kfm(�). (7)

Assumption 2 requires that the stochastic partial derivatives

computed by each vertical party k and the edge server

are unbiased estimates of the full-batch partial derivatives.

Assumption 2 can be satisfied in practice by ensuring that

sample IDs for a mini-batch are chosen at random.

Assumption 3: There exist constants σk such that the vari-

ance of the stochastic partial derivatives is bounded for a

mini-batch B of size B

E

[

‖∇kfm(�;B) − ∇kfm(�)‖2
]

≤
σ 2

k

B
. (8)

Assumption 3 bounds the variance between the stochastic

partial derivatives and full-batch partial derivatives.

Assumption 4: There exists a constant δ such that the

expected squared Euclidean norm of ∇kfm(�;B) is uniformly

bounded for vertical parties K of size K

E

[

‖∇kfm(�;B)‖2
]

≤
δ2

K
. (9)

We note that Assumptions 2 and 3 resemble the IID

assumptions in the convergence analysis of HFL. However,

in the silo-level VFL within HFM, all vertical parties store

identical sample IDs but different modalities (features). Thus,

there is no equivalent notion of a non-IID distribution in silo-

level VFL within HFM.

Now, we present the main theoretical results of the HFM

convergence analysis as follows.

Theorem 1: Suppose Assumptions 1–4 hold, η ≤
(1/max{L, Lk}), then the average squared gradient over P

global rounds (i.e., T = RQ × P iterations) of Algorithm 1 is

bounded

1
P

∑P−1
t=0 E

[

‖∇f
(

�t
)

‖2
]

≤ 2
[

f
(

�0
)

−f(�∗)
]

ηP
+ 2η2

∑K
k=0 L2

k

(

K+1
M

R2Q2 σ 2
k

B

+
(

K(RQ − Q)2 + (K+1
M

+ 1)R2Q2
)

δ2

K

)

+ηL 1
M

∑K
k=0

(

σ 2
k

B
+ δ2

K

)

(10)

where f (�∗) is the optimal value of the global objective (4).

Proof: The proof is given in the supplementary material.

Remark 6: The convergence error in Theorem 1 arises

from parallel updates on coordinate blocks in Algorithm 1,

dependent on the VFL communication frequency (Q), the HFL

communication frequency (RQ), the number of vertical parties

(K), and the number of horizontal silos (M). The first term is

determined by the disparity between the initial model and the

optimal model, diminishing as the number of global rounds

(P) approaches infinity. The remaining terms indicate errors

stemming from multiple local iterations with stale information

in the VFL component and from the variance of stochastic

gradients in the HFL component. We explore this further in

the Theory versus Practice section, as illustrated in Figs. 9–11.

Corollary 1: When K = 1 (i.e., there is only one vertical

party) and Q = 1, our proposed HFM reduces to HFL with

R local iterations for M horizontal silos. Then, the average

squared gradient over P global rounds is bounded

1
P

∑P−1
t=0 E

[

‖∇f
(

�t
)

‖2
]

≤ 2
[

f
(

�0
)

−f(�∗)
]

ηP
+ 2η2L2

(

R2 2
M

σ 2

B

+
(

(R − 1)2 + ( 2
M

+ 1)R2)

)

δ2
)

+ηL 1
M

(

σ 2

B
+ δ2

)

(11)

where Assumptions 3 and 4 are extended to encompass the

full derivatives rather than the partial derivatives.

Remark 7: If η ∝ (
√

M/
√

P) and considering a fixed R, the

convergence rate in Corollary 1 degenerates to O((1/
√

MP)+
(M/P)). If P is sufficiently large to satisfy P > M3, then the

term (M/P) is dominated by the term (1/
√

MP), resulting in

the convergence rate degenerating to O(1/
√

MP), consistent

with the convergence rate provided in [22] for HFL. Put

differently, when HFM is reduced to HFL, it achieves linear

speed-up with respect to the number of horizontal silos M.

Corollary 2: When M = 1 (i.e., there is only one horizontal

silo) and R = 1, our proposed HFM reduces to VFL with

Q local iterations for K vertical parties. Then, the average

squared gradient over P global rounds is bounded

1
P

∑P−1
t=0 E

[

‖∇f
(

�t
)

‖2
]

≤ 2
[

f
(

�0
)

−f(�∗)
]

ηP
+ 2η2

∑K
k=0 L2

k

(

Q2(K + 1)
σ 2

k

B

+Q2(K + 2) δ2

K

)

+ηL
∑K

k=0

(

σ 2
k

B
+ δ2

K

)

. (12)

Remark 8: If η ∝ (1/
√

P), the convergence rate in

Corollary 2 degenerates to O(1/
√

P), consistent with the

convergence rate obtained in [10] for VFL. This further proves

that the proposed HFM can flexibly coordinate HFL and VFL.

VI. EXPERIMENTS

In this section, we conduct experiments on two publicly

available multimodal data sets (Table II) to validate our HFM

algorithm against three baseline methods. Notably, the data

sets we selected are not confined to IoT scenarios but cover

more complex, general multimodal scenarios.

A. Data Sets

MIMIC-III: Medical information mart for intensive care

(MIMIC-III) data set [23] contains anonymized information

of patients admitted to critical care units in a hospital. We

follow the data processing steps outlined in [24] to obtain

14 681 training samples and 3236 test samples. Each sample

comprises 48 time steps corresponding to 48 h, with each time

step having 76 features, such as demographic information,

vital signs, medications, etc. The objective is to predict in-

hospital mortality (ihm task) as a binary classification task.

ModelNet40: ModelNet40 comprises images of computer-

aided design (CAD) models depicting various objects [25].
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TABLE II
STATISTICS OF TWO PUBLIC MULTIMODAL DATA SETS

Fig. 6. ModelNet40 data set demo: Images from 12 different views
corresponding to the same ID with the piano label.

Each CAD model is represented by 12 images captured from

different camera views, as shown in Fig. 6. It is noteworthy

that these images are not generated through data augmenta-

tion techniques, such as flipping or adding noise. Therefore,

ModelNet40 is widely utilized as a multimodal data set. The

data set includes 9843 CAD models in the training set and

2468 CAD models in the test set. The objective is multiclass

classification with 40 classes of objects.

B. Implementation and Reproducibility

We employed an internal cluster of 48 compute nodes

running CentOS 7, each with 4× 12-core 2.6 GHz Intel

Xeon Gold 6126 CPUs, 1× NVIDIA Tesla V100 GPU with

32 GB HBM and 128 GB RAM, and 3× NVIDIA Tesla

P100 GPUs. Notably, while the computing resources employed

here may differ from those typically found in IoT systems,

this is due to the complexity of our multimodal data sets,

which far exceed that of typical IoT scenarios. However, our

algorithm can be deployed in multimodal IoT systems by

scaling down to simpler data sets and smaller multimodal

systems simultaneously.

For the MIMIC-III data set, our preprocessing procedure

partitions the MIMIC-III data set into various prediction cases,

with our experiments specifically targeting the prediction of

in-hospital mortality (ihm). During the training process within

each silo, we vertically partition the local data along the

76-features axis into K vertical partitions (e.g., when K = 2,

each partition contains 38 of the 76 features). Each device

trains an LSTM model with a linear layer. The concatenated

embeddings (features) are then fed into the classifier layer

(i.e., head [19]) at the edge server, which utilizes cross-entropy

loss for class prediction. We utilize 5-fold cross validation

for hyperparameter selection, such as performing grid search

for the learning rate within the range [0.001, 0.02]. Due to

the imbalanced nature of the MIMIC-III data set, consisting

of only 16% positive samples, we assess the generalization

performance on the test data set using the F1 score as

an evaluation metric. The F1 score represents the harmonic

mean of precision and recall, calculated for the global model

across the entire test data set. For the ModelNet40 data set,

during the training process within each silo, we vertically

partition the local data along the 12-views axis into K vertical

(a) (b) (c) (d)

Fig. 7. Comparison of computing resources (in red), sample sizes (in gray),
and training methods (along the timeline) between HFM and three baselines.
(a) Local. (b) VFL. (c) HFL. (d) Our HFM.

parties (e.g., when K = 4, each partition contains 3 of the

12 views). Then, each device trains a ResNet18 model with a

penultimate layer. The concatenated embeddings (features) are

then fed into the classifier layer (i.e., head) at the edge server,

which utilizes cross-entropy loss for class prediction. We

employ 5-fold cross validation for hyperparameter selection,

such as performing grid search for the learning rate within the

range [0.0001, 0.002]. We use top-5 accuracy as the metric to

evaluate performance on the test data set. In the context of

top-5 accuracy, a prediction is considered correct if any of the

five highest probabilities in the model’s output corresponds to

the correct class label.

C. Comparison With Baselines

Our baseline experiments cover three categories, each

potentially associated with several established multimodal FL

methods. To vividly demonstrate the efficacy of our proposed

HFM, we utilize a red dotted box to emphasize the computa-

tional resources allocated for each type of baseline, and a gray

dotted box to indicate the sample size, along with highlighting

their training differences on the timeline, as depicted in Fig. 7.

Local Training With Multimodal Data: This baseline cor-

responds to the traditional multimodal learning approach for

IoT systems [2], [26]. However, the computing resources of

the (edge) server in the IoT system are limited and cannot

process all multimodal inputs in parallel. For example, when

processing image or video data, the GPU memory might

become fully utilized, leading to delays in processing other

modal data, especially those requiring real-time processing.

This bottleneck may significantly impact downstream infer-

ence performance, necessitating efficient resource allocation

strategies to mitigate such limited memory or storage issues.

Additionally, this baseline fails to expand the training sample

space while ensuring privacy.

VFL With Multimodal Data: This baseline corresponds to

a form of multimodal FL methods that explores VFL for

distributed training of multimodal data [10], [27]. However,

these methods do not effectively address the challenge of

limited samples (within each silo) in IoT scenarios.

HFL With Multimodal Data: This baseline corresponds to a

form of multimodal FL that does not involve disentangling the

training of multimodal data across feature space [5], [6]. Here,

the multimodal input can be perceived as a single modal input

with richer information. Besides, the computing resources of
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(a) (b)

Fig. 8. (a) Comparison of convergence performance on MIMIC-III. (b)
Comparison of convergence performance on ModelNet40.

the edge server are limited, thus all multimodal inputs cannot

be processed in parallel.

We denote tVcomm as the VFL communication latency

between the edge server and IoT devices, and tHcomm as

the HFL communication latency between the global server

and edge servers. The local computation latency of each

training step is denoted by tcomp. During training, we consider

VFL communication between IoT devices and edge servers

occurs over mobile Internet, with respective download and

upload speeds of 122.74 Mbps and 10.02 Mbps (the median

country speed in February 2024 [28]). HFL communication

between edge servers and the global server takes place via

fixed broadband, with respective download and upload speeds

of 242.38 Mbps and 30.68 Mbps (the median country speed

in February 2024 [28]). To simplify time accumulation to a

reasonable scale, we initially set tHcomm = 1 time unit. Then,

considering the parameter size and communication latency in

our experiments, we scale tVcomm = r time units and tcomp = s

time units, respectively. Under our hyperparameter setting, for

the MIMIC-III data set, we reasonably scale r = 2 and s =
2 to simplify time accumulation. For the ModelNet40 data

set, we reasonably scale r = 2 and s = 3 to simplify time

accumulation. It is noteworthy that r and s may be influenced

by various factors, including: 1) communication latency under

different distances and regions (e.g., long distance may result

in high latency) [29] [30] and 2) computation time on

different modalities [31], and (3) fine-tuning hyperparameters,

such as η. Essentially, distributed computing tends to yield

benefits when communication latency has a relatively minor

impact [32].

In order to fairly compare the convergence performance

between HFM and three baselines, we fixed VFL commu-

nication frequency (Q = 5), HFL communication frequency

(RQ = 10), vertical parties (K = 2), horizontal silos (M =
5), and repeated each experiment 10 times. As shown in

the results presented in Fig. 8(a) and Table III based on the

MIMIC-III data set, and in Fig. 8(b) and Table IV based on

the ModelNet40 data set, it is evident that our proposed HFM

and VFL baseline effectively leverage distributed computing

resources from K IoT devices to accelerate convergence com-

pared to the HFL baseline and the Local baseline, respectively.

Additionally, the convergence errors of our proposed HFM

and HFL baseline are smaller than those of the VFL baseline

and Local baseline, respectively, attributed to the use of global

HFL across M horizontal silos.

TABLE III
TIME UNITS TO ACHIEVE TARGET F1-SCORE FOR THREE BASELINES

AND OUR HFM ON MIMIC-III DATA SET

TABLE IV
TIME UNITS TO ACHIEVE TARGET ACCURACY FOR THREE BASELINES

AND OUR HFM ON MODELNET40 DATA SET

We also observed that as the accumulated time increases

sufficiently, the convergence error of the HFL baseline tends

to approach that of our proposed HFM. Similarly, the con-

vergence error of the Local baseline tends to approach that

of the VFL baseline. This observation is intuitive because

their respective sample spaces are consistent, as illustrated

in the gray dotted box in Fig. 7. The key distinction lies

in our HFM approach, which optimizes the distribution of

computing resources across all IoT devices and addresses

the challenges posed by limited memory and storage in

multimodal IoT systems through additional distributed training

on these devices.

In sum, on two public multimodal data sets, our proposed

HFM demonstrates improvements over the three types of

baselines in terms of both convergence rate and convergence

error, thereby making it practical for IoT scenarios that

require rapid and accurate downstream inference tasks, such

as classification, prediction, etc.

D. Theory Versus Practice

In this part, we conduct extensive experiments (abla-

tion study) to verify our theoretical analysis in Section V.

Specifically, we explored variations in the communication

frequency of VFL and HFL, as well as the number of

vertical parties in HFM, within the constraints of real-world

multimodal IoT systems. For example, this may involve con-

ducting multiple local iterations with limited communication

costs or performing VFL among predetermined IoT devices

(vertical parties). It is noteworthy that we have not included

extra experimental results regarding the number of horizontal

silos (M). This is because when we fix the total number of

samples N, changing M will also alter the Non-IID degree,

thus making it difficult to fairly observe the impact on

convergence performance.

The Impact of VFL Communication Frequency: From

Fig. 9(a) and (b), it is observed that as the value of Q increases

(indicating less frequent VFL communication), the conver-

gence error increases when the number of iterations is fixed,

as demonstrated in Theorem 1. However, the convergence rate
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(a) (b)

Fig. 9. (a) Impact of Q on MIMIC-III. (b) Impact of Q on ModelNet40.

(a) (b)

Fig. 10. (a) Impact of R on MIMIC-III. (b) Impact of R on ModelNet40.

improves when we fix the number of VFL communication

rounds, which is intuitive, as devices (within each silo) can

train more with a larger value of Q between VFL communi-

cations. Thus, by appropriately increasing Q with a suitable

learning rate η, we can improve communication efficiency

by reducing the total number of VFL communication rounds

required for a given level of performance.

The Impact of HFL Communication Frequency: From

Fig. 10(a) and (b), it is observed that as the value of R

increases (indicating less frequent HFL communication when

Q is fixed), the convergence error increases when the number

of iterations is fixed, as demonstrated in Theorem 1. However,

the convergence rate improves if we fix the number of HFL

communication rounds, which is intuitive, as devices (across

all silos) can train more with a larger value of R between HFL

communications. Thus, by appropriately increasing R with a

suitable learning rate η, we can enhance communication effi-

ciency by reducing the total number of HFL communication

rounds required for a given level of performance.

The Impact of the Number of Vertical Parties: From

Fig. 11(a) and (b), it is observed that as the value of K

decreases (indicating fewer vertical parties with a fixed number

of modalities), both the convergence error and variance tend

to decrease slightly. This observation aligns with intuition and

the theoretical analysis in Theorem 1, as a smaller K suggests

that data are more pooled together in the feature space. In

practical scenarios, the influence of the K factor is generally

moderate, assuming that the total number of vertical parties is

typically not very large [33].

VII. CONCLUSION

In conclusion, to address the first question posed in

Section I, we propose a hybrid FL algorithm, named HFM,

specifically designed for multimodal IoT systems with con-

strained computational resources. HFM uniquely combines

(a) (b)

Fig. 11. (a) Impact of K on MIMIC-III. (b) Impact of K on ModelNet40.

VFL and HFL paradigms to distribute computing resources

across feature and sample spaces simultaneously. To tackle

the second question raised in Section I, we theoretically prove

that the convergence of HFM depends on the communication

frequency of VFL and HFL, as well as the number of

vertical partitions and horizontal partitions. Furthermore, we

empirically demonstrate that HFM outperforms three types of

baselines in terms of both convergence rate and convergence

error based on two public multimodal data sets, thereby mak-

ing it practical for multimodal IoT systems that require rapid

and accurate downstream inference, such as classification,

prediction, etc. In future work, we aim to explore the potential

of asynchronous settings due to issues with heterogeneous

modalities or heterogeneous IoT devices in multimodal IoT

systems.
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