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Abstract—Multimodal federated learning (FL) targets the
intersection of two promising research directions in Internet of
Things (IoT) scenarios: 1) leveraging complementary multimodal
information to enhance downstream inference performance and
2) conducting distributed training with privacy protection.
However, the majority of existing works primarily focus on
applying different FL. methods in a straightforward manner
after the multimodal feature fusion stage without fundamentally
disentangling the multimodal FL across both the feature space
and the sample space. There still exists an important tradeoff
between the computationally demanding nature of multimodal
information and the limited computing resources in IoT systems.
To tackle this challenge, we propose a hybrid FL algorithm
tailored for multimodal IoT systems (HFM). HFM utilizes
vertical FL (VFL) to distribute computing resources across the
feature space and horizontal FL. (HFL) to distribute computing
resources across the sample space. This innovative algorithm
necessitates consideration of both stale information from the VFL
component and perturbed gradients from the HFL component,
which is not fully understood from a theoretical point. In this
article, we theoretically prove that the convergence of HFM
depends on the frequency of VFL communication and HFL
communication, as well as the number of vertical partitions and
horizontal partitions. Furthermore, we empirically demonstrate
that HFM outperforms three types of baselines based on two
public multimodal data sets, thereby making it practical for
multimodal IoT systems that require rapid and accurate down-
stream inference tasks, such as classification, prediction, etc.

Index Terms—Edge computing, federated learning (FL),
multimodal Internet of Things (IoT), nonconvex optimization.

I. INTRODUCTION

HE Internet of Things (IoT) has undergone a remarkable
Ttransformation by intricately weaving together a vast
array of devices and sensors, thereby facilitating seamless data
exchange and automation across various fields. Within the
realm of multimodal IoT, these IoT devices possess the capa-
bility to capture a diverse range of data types corresponding
to the same sample [1]. Within each silo (e.g., a household
or a factory), each IoT device may contain one or multiple
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Fig. 1.  Multimodal IoT system with problem decomposition across the
feature space and sample space. Each silo contains an edge server with limited
computing resources (such as memory or storage) and multiple multimodal
IoT devices. Each silo encompasses a portion of the horizontally distributed
sample space, while each IoT device covers a portion of the vertically
distributed feature space. Our research aims to optimize the distribution of
computing resources in multimodal IoT systems by conducting distributed
training across both the feature space and the sample space while ensuring
privacy protection.

sensors tasked with collecting different data modalities. For
example, as illustrated in Fig. 1, each [oT device possesses
a single type of sensor, such as a camera for capturing
images or a microphone for recording audio. Subsequently,
these multimodal data are uploaded to the edge server for
feature extraction and downstream inference tasks, such as
classification, prediction, etc. Compared to single-modal data,
multimodal data often offer a more comprehensive array
of complementary features, thereby enhancing downstream
inference performance, which is the predominant research
focus in IoT scenarios [2].

Federated learning (FL) has emerged as another significant
area of interest within the IoT landscape, owing to its ability to
broaden the sample space for model training while safeguard-
ing data privacy [3]. This decentralized learning paradigm
empowers devices to collaboratively train models without the
need to aggregate sensitive data in a central repository. In the
realm of multimodal 10T, characterized by data heterogeneity
and privacy concerns, the adoption of FL holds particular
promise, offering the potential for developing robust and
generalized models across diverse data sources [4].

However, current research on FL in multimodal IoT
scenarios faces constraints, primarily stemming from the
limited computing resources (e.g., memory or storage) of the
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edge server and the incomplete development of computing
capabilities in distributed IoT devices. Although many IoT
devices now possess computational power, most FL approaches
for multimodal IoT systems primarily treat them as sensors for
data collection, relying on centralized data processing (e.g.,
feature extraction) and model training at the edge server [5].
Consequently, they overlook the potential development of
computing resources within distributed [oT devices. Essentially,
most existing methods for multimodal IoT systems, which treat
the multimodal input as a “single-modal” input with richer
features and higher dimensions, fail to address the fundamental
challenge of multimodal FL [6]. Instead of applying FL in
a straightforward manner after the multimodal feature fusion
stage, our objective is to empower distributed IoT devices
not only as sensors for collecting information but also as
edge computing devices for feature extraction and downstream
inference, thereby alleviating the computing burden on the edge
server. Specifically referring to Fig. 1, our research aims to
optimize the distribution of computing resources in multimodal
IoT systems by conducting distributed training across both the
feature space and the sample space.

We have identified two primary bottlenecks impeding the
efficacy of FL in multimodal IoT scenarios. First, the edge
server within individual silos often struggles with limited
computing resources. Memory or storage constraints pose sig-
nificant challenges, particularly in enabling real-time parallel
processing of multimodal data [4]. Second, the limited sample
size within each silo, coupled with the diverse distribution of
multimodal data types, exacerbates the nonindependent and
identically distributed (non-IID) problem in multimodal IoT
scenarios, compromising model performance and hindering
generalization across the entire data set. These bottlenecks
present formidable challenges and require a delicate tradeoff
between the computationally demanding nature of multimodal
information and the limited computing resources, especially
in scenarios that require rapid and accurate downstream
inference within multimodal IoT systems. In light of the above
discussion, two questions arise.

1) How to design an algorithm to optimize the distribution
of computing resources across both feature space and
sample space while ensuring privacy protection?

2) How and why does the convergence performance of the
algorithm change when adjusting parameters under var-
ious constraints in real-world multimodal IoT systems?

To answer the first question, we propose a hybrid FL
algorithm tailored for multimodal IoT systems (HFM), where
computing resources, such as memory and storage, are often
limited. HFM utilizes vertical FL. (VFL) to distribute com-
puting resources across the feature space and horizontal FL
(HFL) to distribute computing resources across the sample
space. This innovative algorithm necessitates consideration
of both stale information from the VFL component and
perturbed gradients from the HFL component, which is not
fully understood from a theoretical point.

To answer the second question, we theoretically prove
that the convergence of HFM depends on the frequency of
VFL communication and HFL communication, as well as
the number of vertical partitions and horizontal partitions.
Besides, we empirically demonstrate that HFM outperforms
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Fig. 2. (a) Multimodal Learning leverages complementary multimodal

information but does not incorporate FL to safeguard privacy. (b) Multimodal
HFL integrates the FL paradigm in a straightforward manner after the stage
of feature fusion but does not fundamentally disentangle multimodalities.
(c) Multimodal VFL faces challenges due to limited sample size in IoT
scenarios.

three types of baselines in terms of convergence rate and
convergence error based on two public multimodal data sets,
thereby making it practical for multimodal IoT systems that
require rapid and accurate downstream inference tasks, such
as classification, prediction, etc.

Our key contributions can be summarized as follows.

1) We formulate the multimodal FL problem and disentan-
gle it across both the feature space and sample space for
IoT systems demanding rapid and accurate inference.

2) We propose a hybrid FL algorithm, named HFM,
specifically designed for multimodal IoT systems. HFM
utilizes VFL to distribute computing resources across the
feature space and HFL to distribute computing resources
across the sample space.

3) We analyze the convergence of the HFM algorithm for
nonconvex objectives and demonstrate its dependency
on the frequency of VFL communication and HFL com-
munication, as well as the number of vertical partitions
and horizontal partitions.

4) We validate the HFM algorithm and theoretical analysis
through extensive experiments involving various objec-
tives based on two public multimodal data sets.

The remainder of this article is structured as follows.
Section II discusses related work on FL for multimodal IoT
systems. Section III mathematically formulates the problem.
Section IV introduces the HFM algorithm, while its theoret-
ical analysis is provided in Section V. Section VI presents
extensive experiments to validate the HFM algorithm and the
theoretical analysis. Finally, Section VII concludes this article.

II. RELATED WORK

Multimodal FL intersects two promising research directions
in IoT scenarios: first, harnessing complementary multimodal
information to improve downstream inference performance,
as shown in Fig. 2(a); second, conducting HFL or VFL with
privacy protection, as illustrated in Fig. 2(b) and (c). In this
section, we delve into related work on FL for IoT systems,
followed by a discussion of recent advancements in FL tailored
for multimodal scenarios.

FL has emerged as a significant area of research within
the IoT domain, presenting a decentralized approach to model
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Fig. 3. (a) HFL addresses horizontally partitioned sample spaces with con-
sistent feature spaces. (b) VFL addresses vertically partitioned feature spaces
with consistent sample spaces. (c¢) Our hybrid FL arises from partitioning both
the sample space and the feature space in multimodal IoT systems.

training across distributed data sets [7]. The literature on FL
for IoT systems can be broadly classified into two main types,
each addressing distinct data distribution patterns [3].

First, HFL focuses on scenarios where data samples are
horizontally partitioned with consistent vertical feature spaces,
as depicted in Fig. 3(a). For instance, various horizontal
silos, such as homes or factories possess limited data sample
sizes while prioritizing privacy preservation, necessitating the
use of the HFL paradigm to improve downstream infer-
ence performance [4]. While some works explore HFL in
multimodal contexts, they integrate the HFL paradigm after
the multimodal feature fusion stage in a straightforward man-
ner [5], [6], [8]. Critically, the multimodal input in these works
can be treated as a single-modal input with richer features and
higher dimensions, failing to disentangle the essence of the
multimodal FL issue across the feature space.

Second, VFL addresses scenarios where the feature space is
vertically partitioned with consistent horizontal sample spaces,
as shown in Fig. 3(b). This aligns with another common
application in IoT scenarios, where different IoT providers
may have data of different features (modalities) of the same
batch of customers [9]. For example, Liu et al. [10] proposed
the FedBCD algorithm, enabling clients to independently con-
duct stochastic gradient algorithms while leveraging vertically
partitioned data features. Furthermore, some VFL works in
multimodal scenarios focus on optimizing communication
latency [11]. For example, Wang et al. [12] introduced the
TVFL algorithm to address communication cost challenges in
VFL settings. However, it is noteworthy that the most general
scenario for multimodal systems is that both the sample space
and the feature space are partitioned, as depicted in Fig. 3(c).
Hence, neither HFL nor VFL alone is adequate to address
the challenges posed by multimodal IoT systems due to their
single-dimensional partitioning paradigm.

While some current multimodal FL. works involve simulta-
neous horizontal and vertical partitioning, such as the work
by Yu et al. [13], who proposed a multilayer SGD algorithm
for FL in E-health, their discussion remains limited to two
modalities and fails to provide insights into the impact of
vertical partitions, while also neglecting the incorporation
of an arbitrary feature fusion model (head) at the server.
Su and Lau [14] introduced a hierarchical FL framework for
hybrid data partitioning; similarly, Das et al. [15] proposed
a tiered decentralized coordinate descent algorithm for two-
tiered networks. However, both of their utilization of HFL at
the bottom of VFL is a natural extension of typical VFL and
does not address the key issue of optimizing the distribution
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TABLE I
ESSENTIAL NOTATIONS
Notation Definition
M Number of horizontal silos.
Ny, Number of samples within the m-th silo, m € [M].
N Number of total samples across M silos, N = Z%:l Nm.
J Number of IoT sensors (modalities), J > K.
K Number of IoT devices (vertical parties). When K = J,
i.e., each IoT device has one sensor, as shown in Fig. 1.
X,y Full dataset across M silos, X,y = {Xm, ym }M_;.
Xm s Ym m-th silo-level dataset, Xm,ym = {X}, Ym }re1-
x’fn k-th vertical party’s data within the m-th silo.
Bm Randomly sampled mini-batch of size Bp,.
n Learning rate.
Q VFL communication frequency (every @ iterations).
RQ HFL communication frequency (every R( iterations).
P The number of total global rounds.
T The number of total iterations, 7' = RQ X P.
e Global model, © = [0°,0%,...,0%, ... 6K].
ok k-th vertical party model, 0% = % nyvle Nmen.
Om m-th silo model, ©,, = [0%,,0L,,...,0% ... 0K].
99” m-th silo edge server model (i.e., head), k£ = 0.
ok, m-th silo k-th vertical party model, k € [K].
hk m-th silo k-th vertical party embedding function.
Lo The set of embeddings that each party would receive at
iteration tg within m-th silo.
o kto The set of embeddings from other vertical parties k' # k
within m-th silo (stale information at iteration t).
@f,{t The set of embeddings used by k-th party within m-th silo,
t
Bl = {5105 h, (05" x5 5 )}
f(©) Global objective, & S"M_ | Ny, fin ().
fm(©m)  m-th silo objective, ﬁ SN L@ xE,; Yl

of computing resources across feature space in multimodal
IoT scenarios. Additionally, several studies have explored
modality heterogeneity and the issue of missing modalities
in multimodal FL [16], [17], but they do not provide any
theoretical analysis, and their personalized FL objective differs
from our global FL objective.

III. PROBLEM FORMULATION

To clarify our problem, we begin by presenting essential
notations, as outlined in Table I. A comprehensive table of
notations for proofs is available in the supplementary material.

We investigate a multimodal IoT system consisting of M
silos, where each silo, indexed by m, contains N, samples,
with m € [M]. The total number of samples across all M
silos is denoted as N = Z%lem. Each silo represents a
household or a factory equipped with an edge server and K
multimodal IoT devices. Each IoT device is furnished with one
or multiple sensors capable of collecting various types of data
modalities, such as images and audio. These K IoT devices
collectively possess J sensors, where J > K, for capturing
data across different J modalities corresponding to the same
sample. When K = J, meaning each IoT device has one type
of sensor (modality), as shown in Fig. 1.

Within the mth silo, the local data set x,, € RNn*/ g
vertically partitioned across K parties (IoT devices) along the
modality axis. It is noteworthy that each party k may contain a
varying number of modalities, where k € [K]. For simplicity,
we assume that each vertical party k contains the same number
of modalities, specifically (J/K) modalities per party. The ith
row of x,, corresponds to a data sample xin. For each sample
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xl . a party k holds a disjoint subset of features, denoted as

m?°
R i i K,i i : :
x&i such that xf, = [xL7, ..., xK7]. Bach x/, is associated with

m >
a corresponding label yﬁn. Let y,, be the vector of all sample
labels within the mth silo. Additionally, let X’,; represent a local
(partial) data set of the kth party within the mth silo, where
the ith row corresponds to data features x%:'.

The objective at the mth silo level is to minimize

S (Om X Yim)
= e i L[0 O i) (65 )iy (D)

where ©,, = [9,9,,9,1,,...,9,’,‘1, ...,Q,I,f] represents the mth
silo model, and L£(-) denotes a loss function that combines
the embeddings % (0X; x%1) from all vertical parties. For
simplicity, we designate k = 0O as the edge server and define
RO 09; xi ) == 69 for all x/, where K0 () is equivalent to
the identity function. Additionally, let 7%, (6% ; xk7) denote the
embedding for the kth party. The partial derivative associated

with the coordinate partition 9,’,‘1 can be expressed as follows:

Vifin (Om: X Ym)
= g L Vo L[09, i (04 x57), - hE (0K xK7): 3] (2)

m>'m > 'm

The stochastic partial derivative of the coordinate partition
6% can be expressed as follows:

Vifi(Om: Bin)
= g ieB, Vor LLOm (O x3"). - Wiy (01 x5 ): v ] (3)

Here, B,, denotes a randomly sampled mini-batch of size

B,. We may omit X, y, X,, and Yy, from f(-) or

fn(-) for brevity. Additionally, we define h¥ (0% x&Pm) =
1 Bm

{HE @ 3k By Rk 0K K5B) as the set of all embed-

dings associated with the mini-batch 5, on party k, where
Bi, denotes the ith sample in the mini-batch B,,. We consider
Vif5, (©m) and Vifs, 160, B, 00 % ™). ... 1K @K x5 Pm)]
equivalent and use them interchangeably. Besides, assuming
that the batch size B,, = B for m € [M], and the same
mini-batch B, is used in every Q iterations within each
silo, we consider B,tﬂ and 3, as equivalent and use them
interchangeably.
Thus, the global objective is to minimize the following:

1 M
HOESS n; Nofon(©) (4)

where © = [6°,0!,...,6%, ..., 6K] denotes the global full
model, and 6% = (1/N) szl N6k denotes the partial model
on the kth vertical party. This global objective evaluates how
well the model fits the whole multimodal data set across K
vertical partitions and M horizontal partitions, setting it apart
from any existing HFL-type [18] or VFL-type [9] problem.

1V. HFM ALGORITHM

In this section, we propose a hybrid FL algorithm, named
HFM, tailored for multimodal IoT systems with limited com-
putational resources, as outlined in Algorithm 1. To elaborate,
we partition the entire procedure into two components: 1) con-
ducting VFL among K vertical parties within each silo and
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Algorithm 1: HFM
Initialize: 60'=0, 0%'=0 vk ¢ [K] Vm € [M] ;

m
forr=0,1,---,T—1do
if t (mod) Q = 0 then
for m=1,2,--- ,M in parallel do
for k=1,2,---,K in parallel do
L IoT device sends embedding

0
hln‘1(9,]fl" ; x]f,;B"‘) to the edge server;

1 < {001 B @Y, - hE @K

Edge server sends Cbiﬂ to all K IoT devices;

if t (mod) RQ = 0 then
for k=0,1,---,K in parallel do
Global server computes
051 = (1/N) Yop_) N
Global server sends 6% to all M silos;

for m=1,2,--- ,M in parallel do
for k=0,1,---,K in parallel do
L ek,t < ek,t.
m 9’

for m=1,2,--- ,M in parallel do
for k=0,1,---,K in parallel do

kat kB
Pt (D5 B Ot X))

By
O = O — Vi (15 ¥ );

2) performing HFL across M horizontal silos, as illustrated in
the training timeline depicted in Fig. 4.

We additionally provide a schematic diagram of HFM in
Fig. 5, which offers a clear comparison with the three methods
discussed in Section II, as illustrated in Fig. 2.

A. VFL Across K Vertical Parties

At the beginning of each VFL round (+ mod 9 = 0)
within the mth silo, designated as #p, a mini-batch B,ﬁ? is
randomly sampled from x,,. Each vertical party k, in parallel,
performs block coordinate stochastic gradient descent on its
local model parameters 9,’; for Q local iterations. Specifically,
for kth vertical party to compute the stochastic partial gradient
with respect to its features across partial modalities, it requires
the embeddings computed by all other parties kK'(k' # k), as
well as its own kth party embeddings /X, (6%"). Within each silo
m, these embeddings owned by IoT devices are shared with
the edge server and subsequently distributed to all K parties.
We define <I>;,k’lO = {hfj;(@,’f; ’to)},[f,;(l) as the set of embeddings
from other vertical parties k’; thus, the set of embe(}dings used
by the kth party is ®51 = (5F0; £k (057 X557}, which
inevitably contains stale information @;lk”o during ¢ > #p in
this round. For each iteration ¢, each party k updates 9,’,‘1 })y

computing the stochastic partial derivatives V;JB;? (<I>’,§f ; yﬁ'g )
and applying a gradient step with step size 7. It is noteworthy
that each party utilizes a stale view of the silo-level model
to compute its gradient during multiple local iterations, as it
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Fig. 4. Our HFM algorithm comprises: 1) Silo-level VFL across K parties
in parallel for m € [M], occurring when ¢+ mod Q = 0 and 2) HFL across M
silos, occurring when  mod RQ = 0. If we run HFM for P global rounds,
i.e., T = RQ x P iterations.

reuses the embeddings received at the start of each round 7. In
Section V, we theoretically prove that HFM converges despite
all IoT devices employing stale information during multiple
local iterations, which may potentially hinder convergence, but
it is unavoidable at this stage.

Remark 1: In addition to the inevitable use of stale
information in multiple local iterations due to the limited com-
munication overhead of HFM, another significant deviation
of HFM from previous VFL algorithms, e.g., FedBCD [10],
lies in its adoption of the edge server model (referred to
as the head [19], denoted as 0,?1) with trainable parameters,
thereby facilitating the integration of arbitrary multimodal
fusion networks. To update such a model through multiple
local iterations, the parameters of the head are distributed
among all involved IoT devices (vertical parties).

Remark 2: During the silo-level VFL process within HFM,
kth ToT device maintains a block of partial model parameters
on the kth vertical party. To compose the full silo-level model,
the partial model parameters of each IoT device can be copied
with the help of the edge server. This process can be performed
periodically with model checkpointing.

Remark 3: Although we assume that both the edge server
and all involved IoT devices (vertical parties) within each silo
have a copy of the labels y,,, we also consider solutions for
scenarios where such ideal conditions may not be met in real-
world IoT systems. In cases where labels are private and only
available to a single party (e.g., only the edge server has the
labels within each silo), the label holder can provide sufficient
information for the parties to compute gradients for certain
classes of model architectures [9].

B. HFL Across M Horizontal Silos

In IoT scenarios, the partial data set held by each silo (e.g., a
household or a factory) is influenced by the modality type and
the number of samples, resulting in significant variations in
sample size and multimodal data distribution among different
silos. Non-IID data sets may cause a silo-level model to fit well
to its local silo data set but not necessarily to the whole data
set across all M silos. To develop a global model that achieves
superior performance when applied to entire multimodal IoT
systems, we employ global HFL across all M silos while
ensuring that it does not interfere with the VFL performed
in parallel in each silo. Specifically, when # mod RQ =
(where R is a positive integer like Q), the global server
performs global model aggregation on all K parties across all
M silos. For the kth party, this aggregation is represented as

\
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Fig. 5. Our HFM presents a novel approach compared to existing methods
in Fig. 2. It thoroughly disentangles multimodal FL problem and optimizes
the distribution of computing resources by employing VFL across K vertical
parties (feature space) and HFL among M horizontal silos (sample space).

okt = (1/N) Z%:l N6kt and then the global server sends
the updated models 6% to all M silos. Notably, the aggregation
here is based on different vertical parties, encompassing differ-
ent modalities (features). In other words, a crucial distinction
between our HFM and previous multimodal FL. methods is that
we fundamentally disentangle multimodal input rather than
incrementally treating the multimodal input as a single-modal
input with richer features and higher dimensions.

Remark 4: Each Q iteration is referred to as a VFL com-
munication round, symbolizing the communication between K
IoT devices and the edge server within each silo. Each RQ
iteration is termed an HFL communication round, indicating
the communication between M edge servers (silos) and the
global server. If we execute HFM for P global rounds, i.e.,
T = RQ x P local iterations.

Remark 5: Although FL already provides privacy benefits
by avoiding the sharing of raw data, we offer additional
and more stringent solutions. Within each silo, IoT devices
(vertical parties) share only embeddings and compute partial
derivatives related to their local models, thereby avoiding
privacy concerns caused by transmitting raw data. Moreover,
we can enhance security against sophisticated attacks using
methods like secure multiparty computation [20] or homomor-
phic encryption [21].

V. THEORETICAL ANALYSIS

In this section, we discuss the theoretical analysis of the
convergence of our proposed Algorithm 1.

Assumption 1: There exist positive constants L < oo and
Ly < oo, for m € [M], k € [K], such that for all ® and @/,
the objective function satisfies

IVfin(©) = V() < LI© — &
IVifn(©) — Vifu (&)1l < Lill© — O]

)
(6)
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Assumption 1 bounds how fast the gradient and partial
derivatives can change. While Assumption 1 does not directly
bound the smoothness of the global objective function f(®),
we can easily deduce this in the supplementary material.

Assumption 2: The stochastic partial derivatives are unbi-
ased for each mini-batch B

E[Vifn(©; B)] = Vifu(©). ©)

Assumption 2 requires that the stochastic partial derivatives
computed by each vertical party k and the edge server
are unbiased estimates of the full-batch partial derivatives.
Assumption 2 can be satisfied in practice by ensuring that
sample IDs for a mini-batch are chosen at random.

Assumption 3: There exist constants o such that the vari-
ance of the stochastic partial derivatives is bounded for a
mini-batch B of size B

E[ Vi (©: B) — Vifi(@))2] < % 8
[1V4f(©: B) = Vifw(©)?] < =L ®)

Assumption 3 bounds the variance between the stochastic
partial derivatives and full-batch partial derivatives.

Assumption 4: There exists a constant § such that the
expected squared Euclidean norm of Vif,,(®; B) is uniformly
bounded for vertical parties KC of size K

2

8
. 2
E[ IVif(®: B)I?| < —. ©)

We note that Assumptions 2 and 3 resemble the IID
assumptions in the convergence analysis of HFL. However,
in the silo-level VFL within HFM, all vertical parties store
identical sample IDs but different modalities (features). Thus,
there is no equivalent notion of a non-IID distribution in silo-
level VFL within HFM.

Now, we present the main theoretical results of the HFM
convergence analysis as follows.

Theorem 1: Suppose Assumptions 1-4 hold,
(1/max{L, Ly}), then the average squared gradient over P
global rounds (i.e., T = RQ x P iterations) of Algorithm 1 is
bounded

3 Yico B[IVF(0")12]

2[f(e%)—f(e%) 2K y2f K1 2,202
= %jLz’? Yico Li\ GrRQ* %

+(k®Q - 07 + (5 + DR2Q?) %)
+nLs; Zf:o(% + %)

where f(©%*) is the optimal value of the global objective (4).
Proof: The proof is given in the supplementary material.

|

Remark 6: The convergence error in Theorem 1 arises
from parallel updates on coordinate blocks in Algorithm I,
dependent on the VFL communication frequency (Q), the HFL
communication frequency (RQ), the number of vertical parties
(K), and the number of horizontal silos (M). The first term is
determined by the disparity between the initial model and the
optimal model, diminishing as the number of global rounds
(P) approaches infinity. The remaining terms indicate errors

n =

(10)
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stemming from multiple local iterations with stale information
in the VFL component and from the variance of stochastic
gradients in the HFL component. We explore this further in
the Theory versus Practice section, as illustrated in Figs. 9—11.

Corollary 1: When K =1 (i.e., there is only one vertical
party) and Q = 1, our proposed HFM reduces to HFL with
R local iterations for M horizontal silos. Then, the average
squared gradient over P global rounds is bounded

7 Xico E[IVA(©)I]
2[F(©°)—f(©* 2
< [( );7P( )]+27’]2L2(R2%%

¥ ((R — 124+ (2 + 1)R2))82)+77Lﬁ<% +52) (11)

where Assumptions 3 and 4 are extended to encompass the
full derivatives rather than the partial derivatives.

Remark 7: If n « (\/A_/I / \/ﬁ) and considering a fixed R, the
convergence rate in Corollary 1 degenerates to O((1/+/MP) +
(M/P)). If P is sufficiently large to satisfy P > M?>, then the
term (M/P) is dominated by the term (1/ «/W), resulting in
the convergence rate degenerating to O(1/+/MP), consistent
with the convergence rate provided in [22] for HFL. Put
differently, when HFM is reduced to HFL, it achieves linear
speed-up with respect to the number of horizontal silos M.

Corollary 2: When M = 1 (i.e., there is only one horizontal
silo) and R = 1, our proposed HFM reduces to VFL with
Q local iterations for K vertical parties. Then, the average
squared gradient over P global rounds is bounded

b X0 ELIVA(©)I?]
< WOVFE] o2 3K 12 (QZ(K + 0%

2 2 2
+Q2(K+2)%>+nLZkK_O(% + %). (12)
Remark 8: If 1 o (1/4/P), the convergence rate in
Corollary 2 degenerates to O(1/+/P), consistent with the
convergence rate obtained in [10] for VFL. This further proves
that the proposed HFM can flexibly coordinate HFL and VFL.

VI. EXPERIMENTS

In this section, we conduct experiments on two publicly
available multimodal data sets (Table II) to validate our HFM
algorithm against three baseline methods. Notably, the data
sets we selected are not confined to 10T scenarios but cover
more complex, general multimodal scenarios.

A. Data Sets

MIMIC-1II: Medical information mart for intensive care
(MIMIC-III) data set [23] contains anonymized information
of patients admitted to critical care units in a hospital. We
follow the data processing steps outlined in [24] to obtain
14 681 training samples and 3236 test samples. Each sample
comprises 48 time steps corresponding to 48 h, with each time
step having 76 features, such as demographic information,
vital signs, medications, etc. The objective is to predict in-
hospital mortality (ihm task) as a binary classification task.

ModelNet40: ModelNet40 comprises images of computer-
aided design (CAD) models depicting various objects [25].
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TABLE II
STATISTICS OF TWO PUBLIC MULTIMODAL DATA SETS

Dataset Train / Test Modality Class
MIMIC-III [23] 14,681 / 3,236 76 (features) 2 (ihm task [24])
ModelNet40 [25] 9,843 / 2,468 12 (views) 40 (objects)

’
ModelNet40 data set demo: Images from 12 different views
corresponding to the same ID with the piano label.

Fig. 6.

Each CAD model is represented by 12 images captured from
different camera views, as shown in Fig. 6. It is noteworthy
that these images are not generated through data augmenta-
tion techniques, such as flipping or adding noise. Therefore,
ModelNet40 is widely utilized as a multimodal data set. The
data set includes 9843 CAD models in the training set and
2468 CAD models in the test set. The objective is multiclass
classification with 40 classes of objects.

B. Implementation and Reproducibility

We employed an internal cluster of 48 compute nodes
running CentOS 7, each with 4x 12-core 2.6 GHz Intel
Xeon Gold 6126 CPUs, 1x NVIDIA Tesla V100 GPU with
32 GB HBM and 128 GB RAM, and 3x NVIDIA Tesla
P100 GPUs. Notably, while the computing resources employed
here may differ from those typically found in IoT systems,
this is due to the complexity of our multimodal data sets,
which far exceed that of typical IoT scenarios. However, our
algorithm can be deployed in multimodal IoT systems by
scaling down to simpler data sets and smaller multimodal
systems simultaneously.

For the MIMIC-III data set, our preprocessing procedure
partitions the MIMIC-III data set into various prediction cases,
with our experiments specifically targeting the prediction of
in-hospital mortality (ihm). During the training process within
each silo, we vertically partition the local data along the
76-features axis into K vertical partitions (e.g., when K = 2,
each partition contains 38 of the 76 features). Each device
trains an LSTM model with a linear layer. The concatenated
embeddings (features) are then fed into the classifier layer
(i.e., head [19]) at the edge server, which utilizes cross-entropy
loss for class prediction. We utilize 5-fold cross validation
for hyperparameter selection, such as performing grid search
for the learning rate within the range [0.001, 0.02]. Due to
the imbalanced nature of the MIMIC-III data set, consisting
of only 16% positive samples, we assess the generalization
performance on the test data set using the F1 score as
an evaluation metric. The F1 score represents the harmonic
mean of precision and recall, calculated for the global model
across the entire test data set. For the ModelNet40 data set,
during the training process within each silo, we vertically
partition the local data along the 12-views axis into K vertical
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@: Global Server (0): Edge Server O O: Multimodal loT Devices

(d)

Fig. 7. Comparison of computing resources (in red), sample sizes (in gray),
and training methods (along the timeline) between HFM and three baselines.
(a) Local. (b) VFL. (c) HFL. (d) Our HFM.

parties (e.g., when K = 4, each partition contains 3 of the
12 views). Then, each device trains a ResNet18 model with a
penultimate layer. The concatenated embeddings (features) are
then fed into the classifier layer (i.e., head) at the edge server,
which utilizes cross-entropy loss for class prediction. We
employ 5-fold cross validation for hyperparameter selection,
such as performing grid search for the learning rate within the
range [0.0001, 0.002]. We use top-5 accuracy as the metric to
evaluate performance on the test data set. In the context of
top-5 accuracy, a prediction is considered correct if any of the
five highest probabilities in the model’s output corresponds to
the correct class label.

C. Comparison With Baselines

Our baseline experiments cover three categories, each
potentially associated with several established multimodal FL
methods. To vividly demonstrate the efficacy of our proposed
HFM, we utilize a red dotted box to emphasize the computa-
tional resources allocated for each type of baseline, and a gray
dotted box to indicate the sample size, along with highlighting
their training differences on the timeline, as depicted in Fig. 7.

Local Training With Multimodal Data: This baseline cor-
responds to the traditional multimodal learning approach for
IoT systems [2], [26]. However, the computing resources of
the (edge) server in the IoT system are limited and cannot
process all multimodal inputs in parallel. For example, when
processing image or video data, the GPU memory might
become fully utilized, leading to delays in processing other
modal data, especially those requiring real-time processing.
This bottleneck may significantly impact downstream infer-
ence performance, necessitating efficient resource allocation
strategies to mitigate such limited memory or storage issues.
Additionally, this baseline fails to expand the training sample
space while ensuring privacy.

VFL With Multimodal Data: This baseline corresponds to
a form of multimodal FL. methods that explores VFL for
distributed training of multimodal data [10], [27]. However,
these methods do not effectively address the challenge of
limited samples (within each silo) in IoT scenarios.

HFL With Multimodal Data: This baseline corresponds to a
form of multimodal FL that does not involve disentangling the
training of multimodal data across feature space [5], [6]. Here,
the multimodal input can be perceived as a single modal input
with richer information. Besides, the computing resources of
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Fig. 8. (a) Comparison of convergence performance on MIMIC-IIL. (b)
Comparison of convergence performance on ModelNet40.

the edge server are limited, thus all multimodal inputs cannot
be processed in parallel.

We denote fvcomm as the VFL communication latency
between the edge server and IoT devices, and fgcomm as
the HFL communication latency between the global server
and edge servers. The local computation latency of each
training step is denoted by fcomp. During training, we consider
VFL communication between IoT devices and edge servers
occurs over mobile Internet, with respective download and
upload speeds of 122.74 Mbps and 10.02 Mbps (the median
country speed in February 2024 [28]). HFL communication
between edge servers and the global server takes place via
fixed broadband, with respective download and upload speeds
of 242.38 Mbps and 30.68 Mbps (the median country speed
in February 2024 [28]). To simplify time accumulation to a
reasonable scale, we initially set fcomm = 1 time unit. Then,
considering the parameter size and communication latency in
our experiments, we scale fycomm = ¥ time units and fcomp = §
time units, respectively. Under our hyperparameter setting, for
the MIMIC-III data set, we reasonably scale r = 2 and s =
2 to simplify time accumulation. For the ModelNet40 data
set, we reasonably scale r = 2 and s =3 to simplify time
accumulation. It is noteworthy that r and s may be influenced
by various factors, including: 1) communication latency under
different distances and regions (e.g., long distance may result
in high latency) [29] [30] and 2) computation time on
different modalities [31], and (3) fine-tuning hyperparameters,
such as 7. Essentially, distributed computing tends to yield
benefits when communication latency has a relatively minor
impact [32].

In order to fairly compare the convergence performance
between HFM and three baselines, we fixed VFL commu-
nication frequency (Q = 5), HFL communication frequency
(RQ = 10), vertical parties (K = 2), horizontal silos (M =
5), and repeated each experiment 10 times. As shown in
the results presented in Fig. 8(a) and Table III based on the
MIMIC-III data set, and in Fig. 8(b) and Table IV based on
the ModelNet40 data set, it is evident that our proposed HFM
and VFL baseline effectively leverage distributed computing
resources from K IoT devices to accelerate convergence com-
pared to the HFL baseline and the Local baseline, respectively.
Additionally, the convergence errors of our proposed HFM
and HFL baseline are smaller than those of the VFL baseline
and Local baseline, respectively, attributed to the use of global
HFL across M horizontal silos.
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TABLE III
TIME UNITS TO ACHIEVE TARGET F{-SCORE FOR THREE BASELINES
AND OUR HFM ON MIMIC-III DATA SET

Time Units to Achieve Target F'-Score

Methods """ o Fy =027 Fi =035

Local 5105+ 858 13365 + 1979 N/A

VFL 2102+ 387 7145+ 896 N/A

HFL 3018+ 595 8023+ 1048 17276 + 1934

Our HFM 11324238 32874779 14605 + 1213
TABLE IV

TIME UNITS TO ACHIEVE TARGET ACCURACY FOR THREE BASELINES
AND OUR HFM ON MODELNET40 DATA SET

Methods Time Units to Achieve Target Accuracy

Acce =04 Acc=0.5 Acc = 0.6
Local 6502 4+ 1867 18427 £ 2479 N/A
VFL 2663 + 845 8906 + 2055 N/A
HFL 4647 + 1032 7175 4+ 1659 18214 4+ 3058
Our HFM 1705 + 452 3122 + 1016 7918 4+ 1565

We also observed that as the accumulated time increases
sufficiently, the convergence error of the HFL baseline tends
to approach that of our proposed HFM. Similarly, the con-
vergence error of the Local baseline tends to approach that
of the VFL baseline. This observation is intuitive because
their respective sample spaces are consistent, as illustrated
in the gray dotted box in Fig. 7. The key distinction lies
in our HFM approach, which optimizes the distribution of
computing resources across all IoT devices and addresses
the challenges posed by limited memory and storage in
multimodal IoT systems through additional distributed training
on these devices.

In sum, on two public multimodal data sets, our proposed
HFM demonstrates improvements over the three types of
baselines in terms of both convergence rate and convergence
error, thereby making it practical for IoT scenarios that
require rapid and accurate downstream inference tasks, such
as classification, prediction, etc.

D. Theory Versus Practice

In this part, we conduct extensive experiments (abla-
tion study) to verify our theoretical analysis in Section V.
Specifically, we explored variations in the communication
frequency of VFL and HFL, as well as the number of
vertical parties in HFM, within the constraints of real-world
multimodal IoT systems. For example, this may involve con-
ducting multiple local iterations with limited communication
costs or performing VFL among predetermined IoT devices
(vertical parties). It is noteworthy that we have not included
extra experimental results regarding the number of horizontal
silos (M). This is because when we fix the total number of
samples N, changing M will also alter the Non-IID degree,
thus making it difficult to fairly observe the impact on
convergence performance.

The Impact of VFL Communication Frequency: From
Fig. 9(a) and (b), it is observed that as the value of Q increases
(indicating less frequent VFL communication), the conver-
gence error increases when the number of iterations is fixed,
as demonstrated in Theorem 1. However, the convergence rate
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improves when we fix the number of VFL communication
rounds, which is intuitive, as devices (within each silo) can
train more with a larger value of Q between VFL communi-
cations. Thus, by appropriately increasing Q with a suitable
learning rate 1, we can improve communication efficiency
by reducing the total number of VFL communication rounds
required for a given level of performance.

The Impact of HFL Communication Frequency: From
Fig. 10(a) and (b), it is observed that as the value of R
increases (indicating less frequent HFL. communication when
Q is fixed), the convergence error increases when the number
of iterations is fixed, as demonstrated in Theorem 1. However,
the convergence rate improves if we fix the number of HFL
communication rounds, which is intuitive, as devices (across
all silos) can train more with a larger value of R between HFL
communications. Thus, by appropriately increasing R with a
suitable learning rate 1, we can enhance communication effi-
ciency by reducing the total number of HFL communication
rounds required for a given level of performance.

The Impact of the Number of Vertical Parties: From
Fig. 11(a) and (b), it is observed that as the value of K
decreases (indicating fewer vertical parties with a fixed number
of modalities), both the convergence error and variance tend
to decrease slightly. This observation aligns with intuition and
the theoretical analysis in Theorem 1, as a smaller K suggests
that data are more pooled together in the feature space. In
practical scenarios, the influence of the K factor is generally
moderate, assuming that the total number of vertical parties is
typically not very large [33].

VII. CONCLUSION

In conclusion, to address the first question posed in
Section I, we propose a hybrid FL algorithm, named HFM,
specifically designed for multimodal IoT systems with con-
strained computational resources. HFM uniquely combines
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VFL and HFL paradigms to distribute computing resources
across feature and sample spaces simultaneously. To tackle
the second question raised in Section I, we theoretically prove
that the convergence of HFM depends on the communication
frequency of VFL and HFL, as well as the number of
vertical partitions and horizontal partitions. Furthermore, we
empirically demonstrate that HFM outperforms three types of
baselines in terms of both convergence rate and convergence
error based on two public multimodal data sets, thereby mak-
ing it practical for multimodal IoT systems that require rapid
and accurate downstream inference, such as classification,
prediction, etc. In future work, we aim to explore the potential
of asynchronous settings due to issues with heterogeneous
modalities or heterogeneous IoT devices in multimodal IoT
systems.
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