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We study the performance of spin-component-scaled second-order Mgller-Plesset perturbation theory (SCS-MP2) for
the prediction of the lattice constant, bulk modulus, and cohesive energy of 12 simple, three-dimensional, covalent
and ionic semiconductors and insulators. We find that SCS-MP2 and the simpler scaled opposite-spin MP2 (SOS-
MP?2) yield predictions that are significantly improved over the already good performance of MP2. Specifically, when
compared to experimental values with zero-point vibrational corrections, SCS-MP2 (SOS-MP2) yields mean absolute
errors of 0.015 (0.017) A for the lattice constant, 3.8 (3.7) GPa for the bulk modulus, and 0.06 (0.08) eV for the cohesive
energy, which are smaller than those of leading density functionals by about a factor of two or more. We consider a
reparameterization of the spin scaling parameters and find that the optimal parameters for these solids are very similar
to those already in common use in molecular quantum chemistry, suggesting good transferability and reliable future

applications to surface chemistry on insulators.

l. INTRODUCTION

In recent years, wavefunction-based methods, popular in
the quantum chemistry community, have begun to be reg-
ularly applied to condensed-phase systems. In particular,
coupled-cluster theories, such as CCSD or CCSD(T)—the so-
called gold standard of molecular quantum chemistry—yield
promising results.'~!! However, due to their high scaling with
system size N, i.e., O(N®) for CCSD and O(N”) for CCSD(T),
their applicability to solids with complex unit cells is limited,
and obtaining results at the thermodynamic limit and the com-
plete basis set limit is challenging.

As a lower cost alternative to coupled-cluster theory,
second-order Mgller-Plesset perturbation theory (MP2) is
widely used in molecular quantum chemistry and has been
increasingly applied to periodic systems.!>>%12-23 Qver a
decade ago, Griineis et al.'"”> demonstrated that, for simple
covalent and ionic solids, ground-state structural and elec-
tronic properties predicted by MP2 are quite good and better
than those predicted by DFT with the popular Perdew-Burke-
Ernzerhof (PBE) exchange correlation functional.”* However,
it is natural to consider improvements to MP2, the limitations
of which are well known in molecular quantum chemistry.

At the same cost, spin-component-scaled (SCS) MP2,2
which semiempirically scales the same-spin and opposite-
spin components of the correlation energy, has been shown
to significantly outperform MP2 for many molecular prop-
erties.>>3? Scaled opposite-spin (SOS) MP2,** which retains
and scales only the opposite-spin component of the correla-
tion energy, shows comparably good performance?’**=* and
can be performed with a reduced O(N*) scaling using density
fitting and a Laplace transform of the energy denominators.
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Both SCS- and SOS-MP2 commonly deliver an accuracy that
is better than CCSD and comparable to CCSD(T), suggesting
that they could be especially promising methods for complex,
insulating solids.

Here, we test periodic SCS/SOS-MP2 for the calculation of
the lattice constant, bulk modulus, and cohesive energy of 12
three-dimensional, covalent and ionic semiconductors and in-
sulators, paying careful attention to the thermodynamic limit
and complete basis set limit. The layout of this paper is as fol-
lows. In Sec. II, we briefly review the formalism of SCS/SOS-
MP2 and provide details of our periodic MP2 calculations, ba-
sis sets, and density fitting. We also present the convergence
of the HF energy and the components of the MP2 correla-
tion energy to the thermodynamic limit and complete basis
set limit, using carbon diamond as an example. In Sec. III, we
present the accuracy of the calculated properties for 12 solids,
including a scan over the spin-scaling parameters. We con-
clude in Sec. IV.

. METHODS

The SCS-MP2 correlation energy can be split into two com-
ponents,

E® = coEQ) + ¢ EY (D

where the spin-scaling parameters co,s = ¢ss = 1 for traditional
MP2. The rescaling of opposite-spin and same-spin contribu-
tions to the correlation energy can be motivated or derived in
several ways,3? but essentially originates from their different
physical character: at the mean-field level of a single Slater
determinant, same-spin electrons experience Pauli repulsion,
but opposite-spin electrons do not, suggesting that they should
be treated differently at the post-mean-field level. Based
on empirical fitting to calculations on molecules, the con-
ventional SCS-MP2 parameters are (cos, css) = (1.2,0.33)%
and the conventional SOS-MP2 parameter is c,s = 1.3 (with
css = 0),* although reoptimization has been explored in a va-
riety of contexts, 303336
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FIG. 1. Thermodynamic limit convergence of electronic energies for
diamond in the cc-pVTZ basis. Shown are the HF energy (a), MP2
correlation energy (b), and the opposite spin (c) and same spin (d)
contributions to the MP2 correlation energy. Extrapolation to the
thermodynamic limit is indicated as a dashed line.

With periodic boundary conditions and Ny, crystal momenta
k sampled from the Brillouin zone, the spin components of the
correlation energy are

’

2 1 kabky - .
EQ = — 3 ) Tt ikak,jkbky),  (2a)
k kik,kky, iajb !
’
E® — 1 Z Z [Tak,,,bk,, _ bky.ak,
ss 3 ik ke ik:.jk;
Ni kibsatoskey faib ' ' (2b)

X (ik;ak,| jk;bky),
where
akabky (ik;ak,| jk jbkp)*

To w0 = 3)
ki, jk; :
TeIBE Eik, + Ejk; — Eak, ~ bk,

Electron repulsion integrals are given in Mulliken (11]22) no-
tation and, as usual, i, j refer to occupied orbitals and a, b re-
fer to unoccupied orbitals in the periodic Hartree-Fock (HF)
determinant, which we assume to be spin-restricted. The
primed summation indicates conservation of crystal momen-
tum, k; + k; — k, — k;, = G, where G is a reciprocal lattice
vector.

All calculations were performed with PySCF.3"3® The
Brillouin zone was sampled with a uniform Monkhorst-
Pack mesh of Nj k-points that includes the I' point. Core
electrons were replaced with correlation-consistent effective-
core potentials (ccECPs) and we used their corresponding
correlation-consistent cc-pVXZ basis sets>*0 (XZ). For Li
and Mg, we used the large-core pseudopotentials ([He] core
and [Ne] core, respectively). Gaussian density fitting with an
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FIG. 2. Basis set convergence of the equation of state (EOS) for
diamond using a 4 X 4 X 4 k-point mesh. Shown are the HF EOS
(a) and MP2 EOS (b), comparing results obtained with the cc-pVDZ
(circles) and cc-pVTZ (diamonds) basis sets to those obtained us-
ing a converged PW basis set for the HF energy and a PW-resolved
cc-pVQZ basis set for the unoccupied orbitals in the calculation of
the MP2 correlation energy (filled squares). For the MP2 EOS (b),
we also show results obtained using X3 DZ/TZ extrapolation of the
MP2 correlation energy (open squares).

even-tempered auxiliary basis set was used for evaluating the
electron repulsion integrals.*!

Due to the compact arrangement of atoms in crystals, lin-
ear dependencies are a common occurrence when using large
atom-centered basis sets.*>** To avoid associated numerical
problems, we removed the most diffuse primitive Gaussians
from the orbital basis set of Mg (exponents < 0.05) and Li
(exponents < 0.1), except in LiCl. From the even-tempered
auxiliary basis set for all systems, we removed diffuse Gaus-
sians with exponents < 0.2. Testing indicated that these mod-
ifications do not affect our results.

To assess our ability to reliably access the thermodynamic
limit (TDL) and complete basis set (CBS) limit, we consider
carbon diamond at its experimental crystal volume, as an il-
lustrative example. (The same behavior is seen in other ma-
terials; in App. A, we present the same study of MgO, whose
ionic character is quite different than the covalent character of
diamond.) In Fig. 1, we show convergence to the TDL us-
ing the TZ basis set and k-point meshes of N; = 3°-6° for
HF and N, = 3’-63 for MP2. To address the divergent ex-
change term in periodic HF, we used a Madelung constant
correction,*7 which yields total energies and orbital en-
ergies that converge to the TDL as Nk’l. Subsequent MP2
correlation energies converge at the same rate because the
orbital pair densities appearing in the electron repulsion in-
tegrals are chargeless by orthogonality of the molecular or-
bitals. We extrapolate the HF energy according to the form
Eup(Ny) = EHF(c>0)+aNk‘1 +bN, 2 and the MP2 correlation en-
ergy according to the form E@(Ny) = E@(c0)+aN; ' (numer-
ically, we found that the inclusion of sub-leading corrections
to the HF energy was most appropriate, as shown in Fig. 1,
although nearly identical results are obtained with b = 0).
We estimate by eye that these extrapolations give results in



the TDL that are accurate to about 0.01 eV. The same-spin
and opposite-spin correlation energies exhibit finite-size er-
rors that are almost identical in magnitude, at least for this
material.

In Fig. 2, we show the HF (a) and MP2 (b) equation of state
(EOS) of diamond using Ny = 4° and the DZ and TZ basis
sets. For the HF EOS, we compare to results obtained using a
plane-wave (PW) basis set, with a kinetic energy cutoff cho-
sen to achieve convergence to better than 1 meV/atom. We see
excellent agreement between the PW result and the TZ result
(better than 0.02 eV/atom), indicating that the latter is near the
CBS limit. For the MP2 energy, which is more expensive to
evaluate in a large PW basis, we compare to a calculation with
virtual orbitals obtained from an approximate PW resolution
of the QZ basis set,”® denoted as PW+QZ. We see more sen-
sitivity to the basis set, as expected. Comparing the TZ and
PW+QZ results, the lattice constant, bulk modulus, and co-
hesive energy differ by 0.003 10\, 3.5 GPa, and 0.15 eV (see
below for details about the calculation of these properties). A
X~3 CBS extrapolation of the DZ and TZ correlation energies
(where X = 2,3) gives an EOS in excellent agreement with
the PW+QZ result; the deviations are 0.0001 A, 1.8 GPa, and
0.009 eV.

To summarize, in all subsequent production calculations,
we use the TZ HF energy and the DZ/TZ CBS-extrapolated
MP2 correlation energy and extrapolate to the TDL using re-
sults obtained with N; = 4°-6> (HF) and N, = 5°-6° (MP2).
With this protocol, our largest calculations (TZ with N = 6°)
require about 8—24 hours with 12-24 cores. Because of the
polynomial scaling, analogous calculations with Ny = 5° are
significantly cheaper, requiring about 1 hour or less.

lll. RESULTS AND DISCUSSION

We studied 12 semiconductors and insulators, with dia-
mond (C and Si), zincblende (SiC, BN, BP, AIN, and AlP),
and rock salt (MgO, MgS, LiH, LiF, and LiCl) crystal struc-
tures. These solids were chosen based on their basis set
availability, relatively simple crystal structures, and nonzero
bandgap, as required for the application of MP2-based meth-
ods. We predicted the lattice constant a, bulk modulus B,
and cohesive energy E.o, of all solids using HE, MP2, and
SCS/SOS-MP2 by calculating the total energy for ten differ-
ent volumes in the range of +10% of the experimental volume.
We then fitted the energies to an equation of state given by a
third-order Birch-Murnaghan form. The cohesive energy is
calculated at the theoretically predicted equilibrium volume
and is defined with respect to the energy of isolated atoms.
Atomic energies of open-shell atoms were calculated with un-
restricted HF and MP2 and the basis set superposition error
was accounted for by adding crystalline basis functions.

As an initial test of our methods and implementation, we
have compared our calculated HF and MP2 results to those of
Griineis et al.,'> who studied 11 of the 12 solids studied here at
the same levels of theory (all except MgS). At the HF level, the
mean absolute deviations in the lattice parameter, bulk modu-
lus, and cohesive energy are 0.010 A, 2.2 GPa, and 0.09 eV. At

TABLE I. Summary of results for the mean absolute error of the lat-
tice constant a, bulk modulus B, and cohesive energy E.on, compared
to experiment. DFT results (PBE, PBEsol, SCAN) and experimental
values, which have been corrected for zero-point motion, are from
Ref. 49, except for those for MgS, which are from Ref. 50.

Method aA) B (GPa) Eeon (€V)
HF [ref 15] 0.059 12.3 1.59
HF 0.057 13.5 1.54
PBE 0.061 12.2 0.19
PBEsol 0.030 78 0.31
SCAN 0.030 7.4 0.19
MP2 [ref 15] 0.021 6.4 0.23
MP2 0.020 52 0.23
SCS-MP2 0.015 3.8 0.06
SOS-MP2 0.017 3.7 0.08

the MP2 level, the same deviations are 0.017 10%, 3.6 GPa, and
0.05 eV. A few of the biggest discrepancies are for the lattice
constant of LiF (0.039 A with HF and 0.036 A with MP2);
the bulk moduli of diamond (5.6 GPa with HF and 16.8 GPa
with MP2), SiC (5.1 GPa with MP2), and MgO (5 GPa with
HF and MP2); and the cohesive energies of SiC (0.37 eV with
HF) and AIP (0.25 eV with HF). Nonetheless, these mean ab-
solute deviations provide a rough estimate of the precision of
our HF and MP2 calculations due to pseudopotential, basis
set, and finite-size errors, complementing the detailed study
of carbon diamond in the previous section. Agreement with
experiment to higher accuracy should be viewed with caution.
Our predicted HF and MP2 properties for each appear mate-
rial are presented in App. B, which can be directly compared
to those of Griineis et al.,'> for a more fine-grained analysis.
To evaluate the performance of HF and MP2-based meth-
ods, we will compare to the experimental values compiled re-
cently in Ref. 50, in which the performance of six DFT func-
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FIG. 3. Errors in the lattice constant a (a), bulk modulus B (b), and
cohesive energy E,, (c) compared to experimental values.
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FIG. 4. MAE for the SCS-MP2 lattice constant (a), bulk modulus (b), cohesive energy (c), and dimensionless average (d) calculated according
to Eq. (4). Indicated points correspond to the scaling parameters for conventional MP2 (blue diamond), SCS-MP2 (purple square), SOS-MP2

(orange triangle), and property-specific optimal SCS-MP2 (green circle).

tionals was evaluated on 64 solids. We compare to experi-
mental results that have been corrected to remove zero-point
energy contributions calculated at the PBE level in the same
work. For AIN and LiH, which are absent in Ref. 50, we
use values from Ref. 51, which were identically corrected for
zero-point energy in that work. For most of the shared mate-
rials, these two references give very similar properties. Three
large outliers are the bulk moduli of BN (differing by 21.7
GPa), BP (8.5 GPa), and MgO (3.2 GPa); otherwise, lattice
constants, bulk moduli, and cohesive energies agree to within
0.003 A, 1 GPa, and 0.02 eV, respectively.

A summary of our results is given in Tab. I, which shows
the mean absolute error (MAE) of various methods for each
property compared to these experimental values; material-
specific predictions for all properties are given in Tabs. II, III,
and IV in App. B. HF predictions are unsurprisingly poor.
MP2 predictions are a significant improvement, exhibiting
MAE:s of 0.020 A, 5.2 GPa, and 0.23 eV. SCS-MP2 predic-
tions are a further improvement, exhibiting MAEs of 0.015 A,
3.8 GPa, and 0.06 eV; the cohesive energy is especially im-
proved. The SOS-MP2 predictions are similarly good, ex-
hibiting MAEs of 0.017 A, 3.7 GPa, and 0.08 eV. We there-
fore conclude that SCS-MP2 and SOS-MP2, using the most
common spin-scaling parameters, perform remarkably well
for the prediction of the structural and energetic properties
of three-dimensional covalent and ionic semiconductors and
insulators.

The performance of MP2-based methods can be broken
down for each material, as shown in Fig. 3. Some of the ap-
parent outliers at the MP2 level of theory are the lattice con-
stant of LiCl, MgO and BP; the bulk modulus of C and MgO;
and the cohesive energy of C, BN, and BP. Generally, we see
that spin scaling yields an increase in the lattice constant, a
decrease in the bulk modulus, and a decrease in the cohesive
energy. The latter, in particular, corrects the tendency of MP2
to overestimate the cohesive energy, as it does for all materials
except LiH.

We finally assess the extent to which further improvement
is possible by a reoptimization of the spin-scaling parameters.
In Fig. 4 we plot the SCS-MP2 MAE with respect to experi-

ment of the lattice constant, bulk modulus, and cohesive en-
ergy as a function of the spin scaling parameters. In addition
to the MP2 and molecular SCS-MP2 parameters, we indicate
the optimal SCS and SOS parameters for each property, and
we see that different properties favor different combinations of
the spin scaling coefficients. Moreover, many of the landscape
valleys are long and narrow, indicating a range of parameters
that deliver comparable performance for a given property. To
identify a globally optimal set of parameters, we calculate a
dimensionless average

1 ( (|Aal) (IAB]) (|AEcon|)
(

(ABYmp2  (|AEconmp2

where (|AO|) indicates the MAE of property O and (-)mp; in-
dicates the MP2 value. The weighting is such that the value
of the cost function is the average error with respect to that
of MP2; of course, different ways of averaging will give dif-
ferent optimal parameters. This average error is plotted in
Fig. 4(d) and identifies the optimal SCS parameters (cos, Css) =
(1.24,0.24) and optimal SOS parameter c,s = 1.36, which are
quite similar to the standard values determined for molecules.
The optimal parameters of the average are very similar to
those of the cohesive energy, in part because the latter’s op-
timal parameters balance the errors of the lattice constant and
the bulk modulus. Moreover, the average error of the standard
SCS and SOS parameters is only marginally higher: the opti-
mal values give 0.568 (SCS) and 0.585 (SOS) while the stan-
dard values give and 0.570 (SCS) and 0.646 (SOS). In other
words, spin-component scaling in any of these nearly optimal
forms yields MAEs that are about 60% those of MP2.

Avg = “4)

3 \(AaDwpa

IV. CONCLUSION

We have studied the performance of periodic SCS- and
SOS-MP2 in the TDL and CBS limit, finding excellent agree-
ment with experimental values. As shown in Tab. I the
performance is significantly better than popular functionals
for solid-state calculations, including PBE,2* PBEsol,”? and
SCAN.>* The performance of SOS-MP2 is only marginally



worse than SCS-MP2, indicating excellent promise as an es-
pecially affordable technique. Our work motivates exploration
of other SCS methods, including those for excited states,
which could be valuable given the mixed success with which
low-order perturbation theories can calculate band gaps of
solids. !>+

Although we have carefully addressed finite-size and basis
set errors, there may be residual pseudopotential errors, which
are harder to remove systematically. For example, preliminary
testing indicates that MP2 calculations on MgO, which here
exhibited atypically large errors in the lattice constant and
bulk modulus, are significantly improved through the use of a
small-core pseudopotential with a [He] core. A careful study
of pseudopotentials and core-correlation effects is in progress
and will be presented elsewhere.>

The conclusions of this work are limited to the class of ma-
terials studied, i.e. three-dimensional covalent and ionic in-
sulators, and future work must assess the extension to sur-
faces, layered materials, and other weakly-bound solids, such
as molecular crystals. An early periodic MP2 study by Del
Ben et al.! observed good SCS-MP2 and double hybrid per-
formance for molecular crystals, and a recent report from our
group?? found that SCS-MP?2 yields a very accurate prediction
of the cohesive energy of the benzene crystal, while SOS-MP2
yields a nonnegligible underestimation. The present work has
demonstrated good performance over a relatively wide range
of spin scaling parameters, indicating that additional systems
or properties can be incorporated in the identification of opti-
mal parameters for condensed phase materials. Perhaps most
importantly, we have found that the standard scaling parame-
ters, which are known to deliver good performance for molec-
ular chemistry, are almost optimal for solid-state properties.
This transferability suggests that surface chemistry on insula-
tors should be accurately described by SCS- and SOS-MP2.
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FIG. 5. The same as in Fig. 1(a), (b), (c), and (d), but for the ionic
crystal MgO.
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FIG. 6. The same as in Fig. 2(a) and (b), but for the ionic crystal
MgO.

Appendix A: Finite-size and basis set convergence of MgO

In Figs. 5 and 6, we show the finite-size convergence and
basis set convergence of the ionic crystal MgO, confirming the
same qualitative behavior as seen in Figs. 1 and 2 for diamond.

Appendix B: Material-specific predicted properties

In Tabs. I, II1, and IV, we provide the material-specific pre-
dictions at the HF, MP2, SCS-MP2, and SOS-MP2 levels of
theory, along with their mean absolute error (MAE) and mean
absolute relative error (MARE) compared to experimental val-
ues.



Lattice constant (A)

Cohesive energy (eV)

Solid HF  MP2 SCS-MP2 SOS-MP2  Exp. Solid HF MP2 SCS-MP2  SOS-MP2  Exp.
C 3.547  3.540 3.550 3.554 3.553 C 538  7.98 7.65 7.50 7.55
Si 5508  5.399 5.425 5.437 5421 Si 3.03 497 4.69 4.56 4.70
SiC 4371 4350 4.358 4.362 4.347 SiC 453 679 6.49 6.35 6.47
BN 3.596  3.596 3.603 3.606 3.593 BN 478  7.13 6.92 6.82 6.76
BP 4.584  4.495 4.517 4.528 4.525 BP 342 558 5.30 5.16 5.14
AIN 4365  4.388 4.389 4.389 4368 AIN 3.86  6.00 5.85 5.78 5.85
AIP 5542 5.444 5.465 5.475 5.448 AIP 271 442 423 4.14 4.31
MgO 4176 4.227 4.224 4.223 4.189 MgO 3.62 537 5.18 5.09 5.19
MgS 5281  5.171 5.191 5.201 5.188 MgS 278 420 3.97 3.86 4.04
LiH 4.094  3.996 4.009 4.015 3.979 LiH 1.85 241 2.45 2.48 2.49
LiF 3.964  3.990 3.992 3.993 3.973 LiF 341 458 4.49 4.44 4.46
LiCl 5253 5.021 5.059 5.078 5.072 LiCl 273 3.69 3.58 3.52 3.58
MAE (A)  0.057 0.020 0.015 0.017 - MAE (eV) 154 023 0.06 0.08 -

MARE (%) 1.1 0.4 0.3 0.3 - MARE (%) 430 64 1.6 24 -

TABLE II. Predicted lattice constants at the indicated level of theory,
including mean absolute error (MAE) and mean absolute relative er-
ror (MARE). Experimental values, which have been corrected for
zero-point motion, are from Ref. 50, except for those for AIN and
LiH, which are from Ref. 51.

Bulk modulus (GPa)

Solid HF MP2 SCS-MP2 SOS-MP2 Exp.

C 500.6 466.8  460.1 456.8 453.3

Si 102.1 99.6 98.2 97.6 100.3
SiC 2427 229.1  227.0 225.9 228.9
BN 430.2 396.5 394.0 392.7  388.5,0410.2°!
BP 174.8 1809 176.2 1741 176.5° 168.0°!
AIN 226.1 200.0 201.3 201.9 206.0
AlP 939 932 92.0 914 87.0
MgO 180.2 157.8  159.5 160.4  173.0,°° 169.8°!
MgS 76.9 83.0 81.4 80.7 81.0
LiH 32.1 36.7 36.0 35.7 40.1

LiF 774 T74.1 74.3 74.3 75.4
LiCl 29.6 382 36.5 35.7 37.3
MAE (GPa) 135 5.2 3.8 3.7 -
MARE (%) 363 13.8 10.3 9.9 -

TABLE III. Predicted bulk moduli at the indicated level of theory,
including mean absolute error (MAE) and mean absolute relative er-
ror (MARE). Experimental values, which have been corrected for
zero-point motion, are from Ref. 50, except for those for AIN and
LiH, which are from Ref. 51. For three large discrepancies (BN, BP,
MgO), we include results from both references.
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