Computing A Well-Representative Summary of Conjunctive
Query Results”

PANKA]J K. AGARWAL, Department of Computer Science, Duke University, USA

ARYAN ESMAILPOUR, Department of Computer Science, University of Illinois Chicago, USA
XIAO HU, Cheriton School of Computer Science, University of Waterloo, Canada

STAVROS SINTOS, Department of Computer Science, University of Illinois Chicago, USA
JUN YANG, Department of Computer Science, Duke University, USA

Data summarization is a powerful approach to deal with large-scale data analytics, which has wide applications
in web search, recommendation systems, approximate query processing, etc. It computes a small, compact
summary that preserves vital properties of the original data. In this paper, we study the data summarization
problem of conjunctive query results, i.e., computing a k-size subset of a conjunctive query output, for any
given k > 0, that optimizes a certain objective. More specifically, we are interested in two commonly studied
objectives: cohesion, which measures the maximum distance between a tuple in the query result tuples and
its closest tuple in the summary (k-center clustering); and diversity, which measures the pairwise distances
between the summary items. A simple approach that computes the entire query output and then applies
existing algorithms on top of these materialized tuples suffers from high computational complexity because
the query output can be large, e.g., for a relational database of N tuples, the number of result tuples can be
NOMW we propose O(1)-approximation algorithms that compute well-representative summaries of size k in
time O(N - k91, or even O(N + k(1)) in some cases,! without computing all result tuples. We also propose
the first efficient (2 + ¢)-approximation algorithm for the k-center clustering problem over relational data.
Our main idea is to formulate a few oracles that enable us to access specific query result tuples with certain
properties, to show how these oracles can be implemented efficiently, and to compute desired summaries with
few invocations of these oracles.

CCS Concepts: » Theory of computation — Data structures and algorithms for data management.
Additional Key Words and Phrases: relational data, conjunctive queries, diversity, coresets, oracles

ACM Reference Format:

Pankaj K. Agarwal, Aryan Esmailpour, Xiao Hu, Stavros Sintos, and Jun Yang. 2024. Computing A Well-
Representative Summary of Conjunctive Query Results. Proc. ACM Manag. Data 2, 5 (PODS), Article 217
(November 2024), 27 pages. https://doi.org/10.1145/3695835

*This work was supported by NSF grants CCF-2223870, 11S-2402823, IIS-2348919, a US-Israel Binational Science Foundation
Grant 2022131, and NSERC Discovery Grant.
'We use O notation to hide log N or log? N factors.

Authors’ Contact Information: Pankaj K. Agarwal, Department of Computer Science, Duke University, Durham, USA,
pankaj@cs.duke.edu; Aryan Esmailpour, Department of Computer Science, University of Illinois Chicago, Chicago, USA,
aesmai2@uic.edu; Xiao Hu, Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada, xiaohu@
uwaterloo.ca; Stavros Sintos, Department of Computer Science, University of Illinois Chicago, Chicago, USA, stavros@uic.
edu; Jun Yang, Department of Computer Science, Duke University, Durham, USA, junyang@cs.duke.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/11-ART217

https://doi.org/10.1145/3695835

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

https://doi.org/10.1145/3695835
https://doi.org/10.1145/3695835

217:2 Pankaj K. Agarwal et al.

1 Introduction

Data summarization is a potent strategy in large-scale data analytics, offering a means to compute a
compact yet comprehensive dataset that preserves vital properties of the original data. A multitude
of data summarization techniques have been developed for diverse applications, encompassing
sampling [12, 23, 40, 53], histograms [47, 48], wavelet-based synopses [29, 39], sketching [5, 27, 28],
coresets [6], and more [29]. The objectives on the quality of the data summaries strongly depend on
the downstream application scenarios. Viewing query result tuples as points in a multi-dimensional
space, two common objectives are cohesion, which measures the maximum distance between a
result tuple and its closest tuple in the summary, and diversity, which measures the minimum or
average pairwise distance between tuples in the summary.

Most past data-summarization algorithms assume they are directly given the data to summarize.
However, one often desires to summarize the output of a query, especially when the query output
is large. In such applications, the simple approach of computing all query result tuples and then
applying a known algorithm is ineffective because of its high computational cost when the query
output size is large (which is why we want to compute a summary in the first place). There
is some recent work on computing summaries of query results [3, 11, 27, 57], but this line of
work has focused on simple queries, such as range queries, where data resides in a single table.
In real-world scenarios, more than 70% of the current data sets are relational [1], where data is
stored in multiple tables, and the desired data is obtained by performing conjunctive queries — the
combination of select, project, and join queries — on these tables. Note that the size of the output of
a conjunctive query can be polynomially larger than the size of the tables. Furthermore, user queries
may have very different local selection predicates. Hence, the challenging question is constructing
a well-representative summary for the output of a given conjunctive query without computing
and materializing its entire output. While there are some recent results on clustering in relational
data [31, 54, 55], there is no result on efficiently computing a well-representative summary in
relational data. Hence, in this paper, we take on this challenging question and investigate how to
construct well-representative summaries for conjunctive query results efficiently.

1.1 Problem Definition

Conjunctive query. Let R denote a database schema and A the set of all attributes. R consists of a
set of m relations {Ry, ..., R}, where each relation R; has a subset of attributes A; C A, satisfying
Uie[m] Ai = A. Let dom(A) denote the domain of attribute A € A. For the simplicity of exposition,
we assume that all attributes have the domain R of reals, though our results can be generalized to
other domains. A database instance I consists of the set {R%} of relational instances, where each Rg
is a set of tuples over the domain R/%:!. Let t € RI4il denote a tuple in R!: for each attribute A € A;,
we use t.A to denote t’s value for attribute A; for each subset of attributes X C A;, we use t.X to
denote t’s projection onto attributes in X. When the context is clear, we will drop the superscript I
and simply refer to relation instance R% as relation R;. We consider conjunctive queries (CQs):

Q = 1ty ((0p,R1) > (0p,Rz) > -+ >4 (0p,,Rm)) , 1)
where y C A defines the set of output attributes, each p; is a Boolean predicate over A;, and x, g, >
are relational projection, selection, and natural join operators. By renaming the attributes, we also

allow self-joins in @, i.e., the same relation can be joined multiple times in Q. Let d = |y|. The
output of Q over database instance I is defined as

QM ={t' eR?| It eRM . ty=t'A(Vie [m]:t.A; € R Api(tA))}.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:3

Query Q filters relation R; by the Boolean predicate p;, joins filtered tuples (one from each relation)
sharing the same values on common attributes, and then projects the resulting tuples onto y. Each
tuple in Q(I) is essentially a point in R,

We say a CQ is full if y = A (i.e., 7y is identity function). A full CQ is also called a join query. In
this paper we mainly focus on acyclic CQs. Recall that a CQ is acyclic [16, 37] if there exists a tree
T, called a join tree of Q, where 1) the nodes of 7~ are Ry, ..., Ry; 2) for each attribute A € A, the
set of nodes whose attributes contain A form an edge-connected subtree of 7. For simplicity, in all
cases we assume all dangling tuples are removed from 1.2

Well-representative summaries for CQs. Given a CQ Q of the form (1), a database I, and a
positive integer k, we refer to a subset S € Q(I) of k distinct tuples from Q(I) as a k-summary of
Q(I). We use two different (though related) objectives to measure the quality of a summary. Let
¢ : RYI x R¥l — R be a distance function.

o The cohesion of S is defined using both Q(I) and S:

5,Q() = in ¢ (ty, t3). 2

p(S, QD) max min ¢ (11, 12) @)

Intuitively, cohesiveness ensures that every result tuple is close to some tuple in the sum-

mary. For any k > 0, let pr (Q(I)) denote the optimal cohesion of any k-summary of Q(I), i.e.,

pr(Q(I)) = i QI??IIS\ . p(S, QD). A k-summary S* is called an optimally cohesive k-summary if
cQ),[S|=

p(S*, Q1)) = pr(Q(I)).For a parameter ¢ > 1,ak-summary S is a-cohesiveif p(S) < a - pr(Q(Y)).
We note that the definition of cohesion is identical to the definition of the cost in the k-center
clustering problem. Hence, an a-cohesive k-summary S is also an a-approximation of k-center
clustering of Q(I) (relational k-center problem).

e The diversity of a set S C RIY! has two variants:

1
Sum-diversity: §(S) = = Z d(x,v); (3)
2
X, YESXS
Min-diversity: 8(S) = min ¢(x,y). (4)
X, YESXS:x#y

Diversity seeks to ensure that summary tuples are far away from each other. For any k > 0, let

1k (Q(D)) denote the optimal diversity of any k-summary of Q(1), i.e., i (Q(I)) = : Qrggrlls‘ . 5(S).
c 1S|=

A k-summary S* is called an optimally diverse k-summary if 5(S*) = p (Q(I)). Given a parameter

a € (0,1), a k-summary S is a-diverse if §(S) > a - p (Q(1)).

Our goal is to compute efficiently well-representative summaries for an input CQ Q and database
instance I. We are interested in the data complexity: i.e., the query size m is a constant, and the
complexity of our algorithms is measured by the input size N = };c [|R}|, and the output size k.

1.2 Related Work

Summaries of a given data set. Computing various summaries for a set P of data points has
been extensively studied in the literature under different objectives. A summary that maximizes
the sum-diversity (3) is known as remote-clique or max-sum problem [59], and that maximizes the
min-diversity (4) is known as remote-edge or max-min problem [64], which is NP-hard.® For the
max-sum problem, there are efficient %—diverse algorithms that work for any distance function [17,

?Dangling tuples are those not participating in any result of the underlying join query, which can be done within O(N)
time for acyclic join queries. See Appendix A.

3The NP-hardness of max-min problem implies the NP-hardness of computing an optimally min-diverse summary. See
Appendix A.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:4 Pankaj K. Agarwal et al.

18, 59]. Better algorithms are proposed for the Euclidean distance, either with better approximation
factors [19-21] or with better time complexity [11]. For the max-min problem, Tamir [64] showed
that a greedy algorithm returns a %-approximation for any metric. A faster algorithm [11] is also
known for the max-min problem the under Euclidean metric. Computing a summary of P that
minimize cohesion,* known as the k-center problem, is NP-hard.> The well-known Gonzalez’s
algorithm [41] returns a 2-cohesive k-summary of a set P in O(k - |P|) time under any metric. Its
running time was improved to O(|P|log k) in [38] (see also [44]). All the problems also have been
studied under fairness constraints [2, 4, 18, 49, 51, 52, 56].

Summaries of selection results. There is some work on computing the summaries of range
query outputs of a set of points P. A near-linear-size index exists [3, 57] that, given any query
rectangle ¢, computes a (2 + ¢)-cohesive summary k-summary of P N ¢ in O(k - polylog(|P|))
time. Subsequently, a similar index was shown to generate O(1)-diverse summaries for P N .
Additionally, summaries have been extensively studied for statistical queries, such as sampling,
sketching, frequent moments, and embedding. We refer interested readers to [30] for details.

Summaries of join results. Computing summaries of the results for a join query is useful to answer
analytical queries while providing provably accuracy guarantees, such as sampling [24, 26, 34, 50,
66, 67], factorization [58] and witness [46]. Recently, the k-means and k-median clustering problems
over relational data have been studied [31, 36, 55]. The coreset for empirical risk minimization
problems over relational data [25] has also been considered. However, the time complexity of their
algorithm for constructing an e-coreset depends on the diameter of the query results. Merkl et
al. [54] studied the hardness of diversity problems over relational data under the Hamming metric.
Under data complexity, they give an expensive algorithm (computing all query results) to construct
an O(k™) (exact) coreset. Arenas et al. [13], also studied the hardness of diversity problems under
the Hamming metric and ultrametrics. Furthermore, they propose polynomial time algorithms for
some diversity problems under ultrametrics (Euclidean and Hamming metrics are not ultrametrics).

1.3 Our Contributions

For a CQ Q with d output attributes, a database I of input size N, and a parameter k, we propose
several O(1)-approximation algorithms that compute cohesive and diverse k-summaries for Q(I)
in O(N - k°W) or O (N +k°(M) time, under the Euclidean or Hamming metric. We include all the
log N factors in the analyses and theorems in the next sections. All our results for acyclic join queries
are shown in Table 1, and the extended results to cyclic join queries and even join-project queries are
discussed in Section 6. In the next sections we use the notation ¢ (-, -) for the Euclidean distance and
¢ (-, -) for the Hamming distance. For two tuples p, g € R%, let ¢(p, q) = (Za,ea(p-Aj— q.A)?)V?
and ¢y (p,q) = X a,ca B(p-A; # q.Aj), where R is the indicator function.

e Cohesive summary (Section 3):
— Euclidean metric (Section 3.1). We design an algorithm to construct a (2 + ¢)-cohesive
k-summary in O(min{k2N, k[4/21*1} 4 kNe~9) time. This result also leads to the first efficient
(2 + ¢)-approximation algorithm for the relational k-center clustering problem. The best
previously known algorithm for the relational k-centering problem has either an additive
approximation factor that depends on the diameter of Q(I) or a relative approximation factor
that depends exponentially on d [25]. In order to derive this result, we first construct two O(1)-
cohesive summaries: (i) a tree-based algorithm that runs in O(Nk?) time using O(N +k?) space,

4For a set P of data points, the cohesion for a k-summary S is similarly defined as p(S) = max mir; o (t1,12).
tyeP b€

>The NP-hardness of the k-center problem implies the NP-hardness of computing an optimally cohesive summary. See
Appendix A.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:5

Summaries | Metric Time Space Approximation | Ref.
k*N + kNe~@ N+ k% +ked 2+¢ §3.1
Euclidean
Cohesive kTd/2141 L keNe=d | N+ kl4/21+1 4 fe=d 2+¢ §3.1
Hamming Nk N +k¢ 2 §3.2
k*N + kNe~ @ N+k%+ked 3¢ §4.1
Euclidean
Min-diverse kTd/21+1 L kNe=d | N + k[4/21+1 4 ged 1-e §4.1
Hamming Nk N +k¢ % §4.2
Euclidean | (N +k)e=(d-1/2 N + ke (d-1/2 3¢ §5.1
Sum-diverse Nk? + k° N+k 1-2 §5.2
Hamming
Nk + k? N+k z §5.2

Table 1. Summary of our results for acyclic join queries. For simplicity, we hide the O(-) notation and
log N or log? N factors. N is the input size of the database, k is the size of the summary, ¢ € (0, 1) is an error
parameter given as input, and d is the number of attributes in the join query.

but whose approximation depends on the number of relations in the join query; (ii) a geometry-
based 6-approximation algorithm that runs in O (N + k[9/21*1) time using O (N + kl4/21+1)
space. We then combine the O(1)-approximation algorithms with a grid-based construction to
derive a e-coreset (formally defined in Section 3.1.3) of O(¢~¢k) centers such that every result
tuple from Q(I) is “near” enough to some center from the coreset. The e-coreset leads to the
construction of a (2 + ¢)-cohesive k-summary in O (min{Nk?, k[4/21*1} + kNe~?) time.

— Hamming metric (Section 3.2). Using an iterative approach that implicitly excludes tuples
close to the selected tuples in the summary, we present an algorithm that constructs a 2-cohesive
k-summary in O (N - k¢) time using O(N + k%) space.

e Min-Diverse summary (Section 4):

- Euclidean metric (Section 4.1). We first show that any cohesive coreset is also a min-diverse
coreset. Hence, using the ideas for constructing cohesive summaries, we design an algorithm
to construct a (3 — £)-min-diverse k-summary in O (min {Nk? k4/21+1} 4 kNe~9) time.

— Hamming metric (Section 4.2). Using ideas for constructing cohesive summaries, we design
an algorithm to construct a 1-min-diverse summary in O(Nk?) time using O(N + k%) space.

e Sum-Diverse summary (Section 5):

— Euclidean metric (Section 5.1). We present a geometric approach using the notion of
e-net that can construct an (% — ¢)-diverse k-summary in o) (N + k)g_(d_l)/z) time using
O (N + ke=(@=1/2) space.

- Hamming metric (Section 5.2). We propose two algorithms to construct sum-diverse sum-
maries. The first one, a local search algorithm, constructs a (1 — 2/k)-sum-diverse k-summary
in O (Nk? +k*) time using O(N + k) space. The second one, a greedy algorithm, constructs a
%-sum-diverse k-summary in O(Nk + k?) time using O(N + k) space.

Main ideas. As mentioned, to summarize the output of a CQ, one could compute all result
tuples first and then directly apply existing algorithms developed for computing summaries for
a given dataset [41, 59, 64]. However, materializing the entire query output is expensive. Instead,
our approach is to formulate appropriate oracles that enable us to access some specific query

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:6 Pankaj K. Agarwal et al.

result tuples with certain properties—including nearest neighbor, farthest neighbor, top-k, and
rectangular lookup—and show how to modify existing algorithms or design new algorithms using
as few invocations of these oracles as possible. One key insight is that our computation can be
modeled as ranked enumeration of query answers. Conceptually, given a CQ @, a set of weight
functions defined on attributes, and a database I, ranked enumeration returns Q(I) in ascending
(or descending) order with respect to their weights, one at a time, with a bounded delay between
consecutive answers. We carefully design weight functions using query and data to apply ranked
enumeration in our settings. We also push selections down as far as possible. Specifically, given a set
of selection predicates, each on an individual attribute, we simply push the selection predicates down
to the base tables first and enumerate all result tuples in Q(I) satisfying the selection predicates
with a bounded delay between consecutive answers.

2 Relational Oracles
We show some relational oracles that will be commonly used throughout the paper.

Ranked enumeration. Let w; : R4l — R be a weight function, which takes as input a tuple
t € R; and outputs a real number. Let w = (wy, wy, -+, wy,) be a set of weight functions. For
a CQ Q, a database I, and a pair of results t1,£, € Q(I), we say t; <j, t if 3 jc(m) Wj(t1.A;) <
2jerm) Wjltz2.Aj).

LEMMA 2.1 ([33]). Foran acyclicjoin Q, a databasel, and a set of weight functions w= {wy, wa,* - -, Wy,
an index of size O(N) can be constructed in O(N) time, such that given any value k € Z*, the top-k
results of Q(I) can be enumerated in ascending or descending order with respect to w within O(log N)
delay using O(k) additional space.

By exploiting the variety of weight functions supported by ranked enumeration, we are able to
define the Euclidean-based oracles and the top-k oracle. For simplicity, let A; = A; — (U i<iAj) be
the set of active attributes for R;, i.e., the attributes in R; that do not appear in a relation R; for j < i.

Euclidean-based oracles. Let 6 € R? be a tuple. The nearest (resp. farthest) neighbor oracle finds a
tuple ¢t € Q(I) that is closest to 8 under the Euclidean metric. For each relation R; and for a tuple

p € R;, we define w;(p) = Z (p-Aj — 0.A;)% Tt is easy to see for any query result ¢ € Q(I),
AjeA;

Z wi(t.A;) = Z Z (tAj—0.A;)% = Z(t.A — 0.A)2 = ¢%(6,1),

i€[m] ie[m] AjeA; AeA

thanks to the decomposability of the squared Euclidean distance. The square (and square root)
function is increasing for non-negative values, so the squared Euclidean distance preserves the
ordering of Euclidean distance.

Top-k oracle. Let u = (uj, up,...,ug) € R4 be a vector. The top-k oracle finds the k tuples from
Q(I) with the largest inner product with u. For each relation R; and for any p € R;, we define

wi(p) = Z (p.Aj) - u;. It is easy to see that for any query result t € Q(I),
AjEAi
Z Wi(t.Ai) = Z Z (t.Aj) cUj = (t,u).
ic[m] i€[m] A;eA,

LEMMA 2.2. Given an acyclic join Q, a database instance I with input size N, and a tuple 0 € RY,
the nearest (resp. farthest) neighbor of 0 in Q(I), under the Euclidean metric, can be computed in
O(N) time. Each tuple in Q(I) can be enumerated in ascending or descending order with respect to its

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:7

distance from 0 within O(log N) delay. Furthermore, given a vector u € R%, the k tuples in Q(I) with
the highest inner product with u can be computed in O(N + klog N) time.

Rectangular oracle. Next, we focus on counting and enumerating the join results that lie in
a rectangle. Let ¥ C R be an axis-parallel rectangle, defined as the product of d intervals, i.e.,
Y =11 X... Xy where ; = [a;,b;] and a;,b; € R. A tuple t lies in / if and only if t.A; € Y; &
aj < t.Aj < bj, for every A; € A. Hence, a rectangle defines a predicate a; < A; < b; for each
attribute A; € A. Given a rectangle ¢/, we can find all tuples in I that pass the predicate in O(N)
time and then apply Yannakakis algorithm [65] to count the number of result tuples in ¥ N Q(I), or
apply the index from [15] to enumerate the result tuples in ¢y N Q(I).

LemMA 2.3. For an acyclic join Q, a database 1 of input size N, and a rectangle y € R?, an index of
size O(N) can be constructed in O(N) time such that i) the number of result tuples in y N Q(I) can
be returned in O(N) time; and ii) all result tuples in y N Q(I) can be enumerated with O(1) delay.

3 Cohesive Summaries

In this section, we present algorithms to construct cohesive k-summaries for the Euclidean and
Hamming metrics. Recall that any algorithm presented in this section is also an algorithm for the
relational k-center clustering problem.

Algorithm 1: CoHESIVEEUCLIDEAN(Q, L k, ¢)

3.1 Euclidean Metric 1 (S,r, B) « ConsTANTAPPROX(@Q, L k);
Our main algorithm for constructing a cohe- 5 P, « CoreseT(Q,LS, 7,5, ¢);

sive summary for Euclidean distance consists 3 §* « FgperGREENE(P,, k) [38];

of three steps. In the first step, we compute a -
cohesive k-summary S for some constant § > 1,
along with a number r such that pr(Q(1)) < p(S,Q(I)) < r < f - pr(Q(I)). Next, S is used to
construct a small set P, C Q(I) (called e-coreset) such that the optimally cohesive k-summary in P,
is an (1 + ¢)-cohesive k-summary in Q(I). In the last step, we run a 2-approximation algorithm
(Feder and Greene algorithm [38]) for the cohesive summary (in the non-relational setting) on
P,, and we derive the final result. Throughout the paper, we use the term non-relational setting to
denote the case where all input data is given in one relation.

The pseudocode of our main algorithm is shown in Algorithm 1. In the next subsections, we show
all three steps in detail. In Subsections 3.1.1 and 3.1.2, we show two different constant approximations
algorithms for the cohesive summary. We can invoke any of them as the ConstantApprox(Q,1 k)
procedure in Algorithm 1. Even though they both return a constant approximation, we present both
because neither dominates the other in terms of running time. The first one runs in roughly O (k?N)
time while the second one runs in O (kN + ko(d)) time. Next, in Subsection 3.1.3, we present the
Coreset(-) procedure that gets as input the output of the previous constant approximation algorithm
and constructs an ¢ coreset P, of size O(¢~%k). Finally, in Subsection 3.1.4, we run a 2-approximation
algorithm for the cohesive summary (in the non-relational setting) on P,, and show the final result.
All missing proofs in this section are given in Appendix B.1.

4 return S§%;

3.1.1 Constant cohesive summary: Tree-based approximation.
In this part, we describe a hierarchical approach for constructing a cohesive summary.

Main ideas. Consider an acyclic join Q and a database I. Let Ay, Ay, C A be two disjoint subsets of
attributes. Let S, C R!4+! be a r,-cohesive k-summary of 74, Q(I), and S, C RlAvl be a ry-cohesive
k-summary of 4, Q(I). We show thata set S C RIAxYAyl of size k can be computed efficiently with

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:8 Pankaj K. Agarwal et al.

small cohesion with respect to 7a,ua,Q(I). Let

§={resixs, 3 € maun, Q. H(41) < V2 max{rery)},

be the set of tuples from the Cartesian product
of two summaries that are “near” to some re-
sult tuple in 75 .ua, (D). If S is a 2-cohesive k-

Algorithm 2: CoNsTANTAPPROX_TREE(Q, L k)
(Sy, ry) <« CompuTEROOT(Q, L k);

[

summary of S, a key property we show is that 2 S 0;
S is a 10V2 max{ry, ry}-cohesive k-summary 3 foreach 0 € S, do
of 7a,ua,Q(I). To construct a cohesive sum- 4 foreach i € [m] do
mary for s, ua, Q(D), it suffices to constructa * foreach p € R; do)
cohesive summary for 75 Q(I) and 74, Q(I) 6 L wi(p) ZA]- ca; (P-Aj - 0.4;)%
separately, further select a few representa- -
tives from the Cartesian product of these two W (Wi, Wy, W) R
8 Z «—index built for Q,I, w as Lemma 2.1;

summaries carefully, and finally return a k-
cohesive summary for those representatives. ° tg « first result enumerated from Z;

. 10 S—SuU{ty};
Our algorithm. Now, we are ready to de- —

scribe our relational algorithm, with pseu- ! while [S| <k do

docode given in Algorithm 2 and a running 2 t « the next result enumerated from Z;
example in Figure 1. Algorithm 2 first calls Al- 13 | if t ¢ SthenS < SU {th

gorithm 3 as a primitive to returnaset S, € R? 14 return S with radius r = 2 - ry;

of size k and a value r, such that the cohesion
p(Sy, Q(1)) is small and the value r, is a sufficiently small upper bound of p(S,, Q(I)). Notice that
S, will not necessarily be a subset of Q(I). Then Algorithm 2 uses S, to construct a set S C Q(I) that
is a O(1)-cohesive k-summary and a value r such that px(Q(I)) < r < apr(Q(1)), for a constant a.

In Algorithm 3, we first construct a complete binary tree 7~ with m leaf nodes, where relation
R; is stored at the i-th leaf node. For each node u € 7", we denote Ay, = g i a descendant of u Ai and
Q, = 7z, Q(T). We visit all nodes in a bottom-up fashion, and for each node u € 7°, we compute i) a
set S,, of k tuples in RI4«! with small cohesion p(S,, Q, (1)), and ii) a sufficiently small upper bound
ru of p(Sy, Q,(1)); see Lemma 3.4. Next, we show how to compute S, and r,, for each node u.

If u is a leaf node that corresponds to relation R;, we compute an approximate k-summary S, for
74, (R;) by invoking the algorithm in [38]. The cohesion of S, is denoted as r, = p(Sy, 74, (R;)). If
u is an internal node, let x, y be the two children of u in 7. Let Sy, S, be the subsets of k tuples we
got from nodes x, y, respectively. Let r* = max {rx, ry}. We construct an approximate k-summary
S, using the tuples in Sx x S;. To check for each tuple 0 € Sy X S, whether there exists any
tuple in @, (I) within distance V2 - r*, we use a nearest-neighbor oracle. For relation R;, we define
the weight function wi(-) as wi(p) = 2a,ca,na, (p.Aj - O.Aj)z , where p € R;. We instantiate the
index, defined by Z, for ranked enumeration from Lemma 2.1 with w = {wy, ..., w;,) as the vector
of weight functions. Let ty be the first result tuple enumerated from Z in ascending order (ty is
the nearest neighbor of 6 in Q,(1)). If ¢(6, tg) < \/Emax{rx, ry}, then we keep 0 in S,; otherwise,
we skip 6. Finally, we find a 2-cohesive k-summary of S, by invoking the Feder-Greene algorithm
[38], denoted as S, and we set the upper bound r, = p(Sy, S,) + V2 max{r, ry}. In the end, the
Algorithm 3 returns the set S, and the upper bound r, for the root node v of 7, to Algorithm 2.

Let v be the root of 7. Recall that S, € Q(I) may not hold. To obtain a valid summary for Q(I),
in Algorithm 2, we visit every tuple 6 € S, and find its nearest neighbor in Q(I) using a similar

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:9

R R:
Algorithm 3: CompuTEROOT(Q, L, k) A, 22 A, i 0
1 Let 7 be a complete binary tree with m leaf nodes; } i 3 :13 J g
2 foreach leaf nodeu € 7 do 2 1(|4 1 AL A, A,
3 Suppose u corresponds to relation R;; 4 1fj1 2 7
. 14
4 Su < k-summary of 74, R; by algorithm)
in [38]; Sy Sy Sy Sy S
A1 Az Ag A1 AgAg A1A2A3 Al AZAS
5| ru < p(Su, ma,Ri); T2(2|[T22|[T22|[T21
6 foreach internal nodeu € 7 in bottom-up way do 2 1j[3 é ? ‘;’ 212jj212
7 X,y « two children of u in 7, S, « 0; 213
8 foreach 0 € 5, X S, do Fig. 1. A running example of Algorithm 3.
9 foreachi € [m] do Let @ = Ri1(A1,A2) ™ Ry(A, A3) with a
10 foreach p € R; do database I as shown. Let k = 2. The com-
2 lete binary tree 7 is also shown with the
11 wi(p)—2a.cana, (P-Aj—0.A; P Y
t i(P) ZAJ eANA (P J J) root v and two leaf nodes x, y, corresponding
12 W e (Wi, Wa, ++, W)]tco R1, Ry respectively. In line Atc, Algorithm 3
13 Z « index built for Q,, I, w as Lemma 2.1; irst computes a 2-summary o Rl, as Sy and
) a 2-summary of 7, Ry as Sy, with ry = 2
14 ty < the first result enumerated from Z; and ry = 1. It next investigates all tuples
15 if ¢(_t9, 0) < V2 - max{ry, ry} then in Sx X Sy, and checks if there exists some
16 L Sy — S, U {0} tuple in Q(I) within distance 2v2. It is easy
- _ . . to see Sy = Sy X Sy.In line 17, it computes a
17 Su = k-sum_mary of S, by algorithm in [38]; 2-summary of S, as Sy. As (2,1,2) € Q(D), it
B | ry — p(SuSu) + V2 - max{re,ry}; adds (2,1,2) to S. As (1,2, 2) ¢ Q(I), it adds

an arbitrary nearest neighbor (1,2,1) to S.

19 return (S,,1,);
(S0, 70) We observe that p(S,Q(I)) = 2v2.

nearest-neighbor oracle as we used before, constructing the index Z. Let S be the set of nearest
neighbors we compute. If |S| < k, we add arbitrary k — || results from Q(I) to S.

Correctness. By Lemma 3.2, and Lemma 3.1, the nearest neighbor queries with any 6 can be
answered correctly.

LEMMA 3.1. For w at line 7 of Algorithm 2, w(t) = ¢2(t, 0) for everyt € Q(I).
LEMMA 3.2. For w at line 12 of Algorithm 3, w(t) = ¢2(t, 0) for everyt € Q,(I).

Approximation. We need the following lemma to show the approximation ratio:
LEMMA 3.3. For any internal node u with children x,y in T, p (Su, Qu (I)) < V2 - max{ry, ry}.

ProoF. For any node x and its parent u in 7 it holds that px (Qx(I)) < px (@, (I)). For any tuple
p € Q. () there exists a tuple p; € Q,(I) such that p;.A, = p. By definition, it also holds that
A, € A,. Hence, pr(Q(I)) < pr(Qu(I)). Consider an arbitrary tuple t € Q,(I). Let 0, € Sy be
the nearest tuple to t.Ay, and 6, € S, be the nearest tuple to ¢t.A,. By definition ¢ (£.A,, 0x) < ry
and ¢ (t.Ay, Qy) < ry. We consider tuple 6 as a concatenation of 0, and 0. Then, o(t,0) =

\/¢2 (t.Ax, GX) + ¢? (t.Ay, 99) < \/r,% + rZ < \/§~max{rx, ry}. Inline 8 of Algorithm 3, we consider
the tuple @ in one of the iterations. Since ¢(t,0) < V2 - max{ry, ry}, the condition in line 15 holds,

because @(ty,0) < ¢(t,0) < V2 - max{ry, ry}. Hence, 0 is added in S,. Overall, for each tuple
t € Q, (1) there exists a tuple in S, within distance V2 - max{ry, ry}, so the result follows. O

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:10 Pankaj K. Agarwal et al.

Next, we point out the invariants that are preserved in the execution of our algorithm:
LEMMA 3.4. Fornodeu € 7 at level ¢, % e (Qu(D) < p (S Qu(D) < 1y < (10V2)" - pr (Qu(D)).

Applying Lemma 3.4 to the root node v, we obtain p(S,, Q(I)) < r, < (10V2)1°8™ . p, (Q(I)) and
2 p(Q() < p(Sy, Q(1)).° From lines 3-10 in Algorithm 2, we have p(S, Q(I)) < 2p(S,, Q(I)).
Hence, we return a set S € Q(I) and a value r such that p(S, Q(I)) < r < 2(10V2)1°¢™ . p(Q(I)).

Complexity. In Algorithm 3, it takes O(N log k) time to invoke the algorithm in [38] at line 4. At
line 8, |Sy x Sy| = O(k?). For each 0 € S, x Sy, it takes O(N) time to construct Z at line 13 and get
the first result tuple tp within O(log N) time. It takes O(k? log k) time to invoke the algorithm in
[38] at line 17. The for-loop at lines 6-18 repeats O(m) times, since there are O(m) nodes in 7. In
Algorithm 2, for each tuple 6 € S, for the root node v, it takes O(N) time to construct Z at line 8
and get the first result tuple ty within O(log N) time. Overall, our algorithm runs in O(Nk?) time
using O(N + k?) space.

Turorem 3.5. For an acyclic join Q of m relations, a database of input size N and a = 2-(10V2)1°8™,
an a-cohesive k-summary of Q(I) under Euclidean metric can be computed in O (Nk?) time using
O (N +k?) space, with r such that p(Q(D)) < r < a - pr(Q(L)).

3.1.2 Constant cohesive summary: Geometry-based approximation.
Next, we exploit the properties of the Euclidean metric to obtain a different approximation algorithm.

Main ideas. Using the intuition from [43],
we design an algorithm in the relational
setting. We compute a summary $’ iter- 1 foreach A; € A do

at?v.ely. Initially, 1et I be a rectangle con- 2 L aj < H}eiinxerfrlin& xand bj r%?xxgi)_(& X
taining all tuples in Q(I) and let S’ = 0. In ! ’
each iteration, we solve a geometric prob- 3 I Xj:AjeA[aj» bjl,h 0,5 < 0,8 < 0;
lem computing the point gy, € T farthest 4 while h < ¢? - k do

Algorithm 4: ConsTANTAPPROX_GEOMETRY(Q, L k)

from the set S’ (in the first iteration, q; is 5 | if h =0 then g;, < an arbitrary tuple in T;
an arbitrary tuple in T'). We next compute 6 else g, « the point in T farthest from S’;
the tuple s, € Q(I) closest to g, and add - foreach i € [m] do

itin §’. Then, we implicitly remove from 3 foreach p € R; do

I' a ball around g; with radius ¢(gp,sp) o L L wi(p) < Zaea, (P-A) - qn-Aj)?;

so that no other tuple could be selected

close to g;. We note that T is not a rectan- 10 W (Wi, wa, W)

gle after the first iteration. Instead, T'is 11 | Z « an index built for L w as Lemma 2.1;
the intersection of a rectangle with the 12 sp < the first result enumerated from Z;
complement of a set of balls. We use the 13 By, < aball centered at g; of radius ¢(qp, sp);
nearest-neighbor oracle to compute the 14 S — S U{sp},T «T =8By, B — BU{By};
tuple in Q(I) that is closest to gp. 15 heh+1;

Our algorithm. We next describe our
algorithm in more detail with the pseu-
docode given in Algorithm 4 and a run-
ning example in Figure 2. We start with a rectangle I' € R? that contains all tuples in Q(I), and
incrementally add points to a set S’ Initially S" = 0. Let 8 = 0 be a set of balls in R? (initially
empty). We repeat the procedure c¢? - k times for a constant c. In the first iteration, we choose an
arbitrary point ¢; in T'. In h-th iteration, for h > 1, we compute the point g, € I' with the farthest

16 S « a k-summary of S’ by algorithm in [38];
17 return S;

%We use log(-) for the logarithmic function with base 2.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:11

45 o
' foe
2] 2 e [°
1 N
1 2>~ 3 4 4 1 2 3 4 A

Fig. 2. The figure illustrates two iterations of Algo- Fig. 3. Coreset construction shown in Algo-
rithm 4. Let Q = 4, a,R1(A1, A2) ™ R2(Az, A3) with rithm 5. Let Q = ”AI,A3R1(A1,A2) X Ry (A, As)
a database I as shown in Figure 1. Even though Algo- with a database I in Figure 1. Black dashed rect-
rithm 4 works for join queries, we consider the pro- angles are non-empty grid cells and red points are
jection on A1 and A3z to show the main idea of the selected tuples in the coreset.

algorithm on the plane.

distance from set S’. Next, by assigning weights w (similarly to Algorithm 2) we construct the
ranked enumeration index Z implementing a nearest-neighbor oracle. We find the nearest tuple in
Q(I) from point gy, denoted as sy, and add sy, into S’. Let B}, be the ball of radius @ (qy, sp) centered
at gy. Set B =B U {By} and T =T — By,. We implicitly remove all result tuples in Q(I) “covered”
by g within radius ¢ (qy, sp). After the procedure above, we get a set S’ of ¢? - k candidate centers.
At last, we compute a cohesive k-center S of S’ by invoking the algorithm in [38].

Correctness. By Lemma 3.6, the nearest neighbor of every point g € Q(I) can be correctly found.

LEMMA 3.6. For w at line 10 of Algorithm 4, w(t) = ¢?(t, q1) for every tuplet € Q(I).

The correctness of our algorithm follows from Lemma 3.6 and [43].

Approximation. From [43], we know p(S’,Q(1)) < 4px(Q(I)). From [38], we know that S is
a 2-cohesive k-summary of §’, i.e., p(S,S") < 2p(S’). Moreover, pr(S’) < pr(Q(I)) since §' C
Q(I). Together, p(S,Q()) < p(S,5) + p(5, Q) < 2px(S”) + 4pr(Q(I)) < 6px(Q(I)). Hence,
Algorithm 4 returns a 6-cohesive k-summary.

Complexity. The initialization phase takes O(N) time. In h-th iteration of the while-loop, it takes
O(N) time to construct Z and get the first result s, within O(log N) time. Furthermore, there are
O(k) balls B;,’s and O(k) points in S. The point g, (farthest point from the current $” in I') can
be computed in O(k!4/21+1) time [8]. At last, invoking the algorithm in [38] takes O(k log k) time,
since |S’| = O(k). It computes the union of k balls in R?, so the total space is O(N + kl4/21),

THEOREM 3.7. For an acyclic join Q with d attributes and a database I of input size N, a 6-cohesive
k-summary in Euclidean metric can be computed in O (Nk+kl%/21*1) time using O (N +k[4/21*1) space.

3.1.3 Coreset.

Coresets for a set of points have been well studied [9], but these algorithms require direct access to
Q(I), which we do not have. Chen et al. [25] constructed coresets for risk minimization problems
over relational data, but its complexity or utility depends on the diameter of the query results in
Q(I). Below, we show how to improve this result.

Definition 3.8 (Coreset). For an acyclic join Q and a database I, an integer k € N*, and a parameter
&> 0,asubset P, C Q(I) is an e-coreset for the cohesive summary if p(S:, Q(I)) < (1+¢) - pr(Q()),
where S} C P, is the optimal cohesive k-summary for P., i.e., p(S;, P;) = pi(P:).

Our algorithm. Let S be an O(1)-cohesive k-summary for Q(I) and r be a small enough quantity
such that p(S, Q(I)) < r. We compute a grid over R? with a sufficiently small diagonal (roughly
¢ - r) and find the set of non-empty cells in the grid. For each such cell O, we run the rectangular

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:12 Pankaj K. Agarwal et al.

oracle (Lemma 2.3) to get a tuple in 0 N Q(I). Finally, we return the set of tuples selected by the
rectangular oracle in the non-empty cells.

We next describe our algorithm in more detail -
with the pseudocode given in Algorithm 5 and Algorithm 5: CoreseT(Q LS, r. f, ¢)
an example in Figure 3. Using Theorem 3.5 (or 1 P, « 0;
Theorem 3.7), we take as input a f-cohesive k- 2 G « a grid in R? with cell diagonal £Z;
summary S for Q(I) for constant § > 1, and a foreach y € S do
value r such that pi(Q(D)) < p(5,Q(D) <r < B, « ball of radius r centered at y;
B pr(Q(1)). We first construct a grid G in R with 5 Gy —{YeG:yNB, # 0
cell diagonal lengt % and find out all non-empty =Y Y ’
cells in G, i.e., those contain at least one tuple in 6 f°r‘?a°h Ve UyeS Gy do
Q(I). Instead of visiting every tuple in Q(I) to ’ ifynQD f 0 then)
locate non-empty cells, which is too expensive, 8 py < arbitrary tuple in y0Q(D);
we resort to the cohesive summary S. Recall that Pe = P: U{py};
for every tuple x € Q(I), there exists some y € S
such that ¢(x,y) < r. For every y € S, let B, be
the ball centered at y of radius r. Let G, C G be the set of cells covered or partially intersected by
By. At last, we visit every cell in |5 Gy and include an arbitrary tuple in the non-empty cells
using the rectangular oracle as its representative. The set of all representatives is the coreset.

w

10 return Pg;

Correctness. Since p(S, Q(I)) < r, Q(I) € Uyes By- Hence, every tuple in Q(I) lies in one cell in
Uyes Gy- As above, let S; C P, be the optimally cohesive k-summary of P,. We have

p(S5QM) < p(SE P + 2 < pre(@Q(D) + % < (1+0) - pr(Q(D),

where the last inequality follows from the fact that r < fp; (Q(I)). Hence, P, is an e-coreset of Q(I).

Complexity. As any ball of radius r covers and partially intersects O (¢~¢) grid cells with diagonal
length er/B, we have |P;| = O (ke~¢). We execute rectangular oracles for O(ke~?) cells. Each query
takes O (N) time. Hence, Algorithm 5 runs in O (kNe~9) time.

THEOREM 3.9. For an acyclic join Q with d attributes, a database 1 of input size N, and a parameter
& > 0, an e-coreset for cohesive summaries under Euclidean distance of O (e_dk) size can be constructed
in O (min {k®N + kNe~? N log? N + kN log(N)e™¢ + k[4/2141}) time,

Remark 1. The min term in the time complexity in Theorem 3.9 depends on the algorithm used
for computing cohesive summaries (Theorem 3.5 or Theorem 3.7).

Remark 2. We note that if the value r is unknown (as in the algorithm of Theorem 3.7), it suffices
to run a binary search on the L, distances of Q(I). For each candidate r’, we check whether the set
of balls {B(y, Vdr’) | y € S} cover all tuples in Q(I) by running rectangular oracles on the grids
intersected by the balls. We repeat this procedure until we find the smallest value r’ that satisfies
the condition. We describe the details in Appendix B.1.

3.1.4 Implications to cohesive summaries and relational k-center clustering.
Let P, be the e-coreset obtained. We simply invoke the Feder-Greene algorithm [38] on P,. Let S*
be the set of k centers returned. By definition p(S*, Q(I)) < (2 + €) pr(Q(I)). We obtain:

THEOREM 3.10. For an acyclic join Q with d attributes, a database 1 of input size N, and a pa-
rameter € > 0, a (2 + ¢)-cohesive k-summary for Q(I) under Euclidean distance can be computed in
O (min {k’N + kNe=9 N log® N + kN log(N)e~? + k[4/21¥1}) time. The same guarantees hold for
the relational k-center clustering problem.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:13

Remark. The space needed by our algorithms in Theorems 3.9 and 3.10 depends on the O(1)-
cohesive k-summary algorithm used for coreset construction. It is O (N + k? + ke~?) (resp. O(N +
kld/21+1 4 ke=d) if the algorithm in Section 3.1.1 (resp. Section 3.1.2) is used.

3.2 Hamming Metric

Flrst, we observe. that it is trivial to ob- Algorithm 6: CORESIVEHAMMING(@, L K)
tain a O(1)-cohesive summary under the I

Hamming metric. The maximum Ham- 1 y « - min min
ming distance between two tuples from ZAJEA x#yel(4))xI(4))
Q(I) is d = O(1). Hence, an algorithm 2 forry €{1,2,...,d} do

lx —yl;

that chooses k arbitrary tuples from Q(I) 3 R 0,50
returns a d-cohesive k-summary. How- ¢ M(R) « decomposition of R;
ever, this approximation ratio is rather 5 forie {1,...,k} do
unsatisfactory. The algorithm in Sec- 6 C < 0;
tion 3.1 does not work for the Hamming 7 foreach c € M(R) with density i do
metric mainly because the coreset con- s if cN Q)| = 1 then C « ¢ and
struction only applies to the Euclidean break;
m'etric. Hence, we n.eed separate’tech— 0 if C = 0 then break:
niques for constructing a ?—coheswe k- 10 ¢t —arbitrary tuple in C N Q(T);
summary under the Hamming metric.

1 S —Su{t}
Main ideas. Suppose the value of |, R,M(R)—UpPDATER(Q, rir, R, M(R), });
pr(Q(T)) is known in advance. We re- -
peat the following step for k iterations: 13 if Z leNQ(D] = 0 then break;
we choose an arbitrary tuple t € Q(I), L ceMR)with density k

add it to the k-summary S, and remove 14 return S;
all items within distance 2p; (Q(I)) from
Q(I). The resulting S is a 2-cohesive summary for Q(I). However, it is expensive to explicitly remove
tuples in Q(I), which requires materializing Q(I). Instead, we compute a set of non-intersecting
rectangles such that any point selected from these rectangles has a distance greater than 2px (Q(1))
(or equivalently at least 2px (Q(I)) + 1) from the previously selected tuples S. For every new tuple ¢
we insert in S, we choose a set R(*) of 0(2%) = O(1) non-intersecting (open) rectangles around
t such that the union of these rectangles defines the points with distance at least 2p; (Q(I)) + 1
from t. Let R = (J,cs R™). In order to decide the next tuple to add in S, we only visit the regions in
R¥ with distance at least 2px (Q(I)) + 1 from all tuples in S. One crucial observation is that these
regions are covered by exactly |S| rectangles in R. We rely on the rectangular oracle in Section 2 to
find tuples from Q(I) that fall into these regions.

Our algorithm. We next describe our algorithm in more detail with the pseudocode given in
Algorithm 6. For an attribute A; € A, let I(4;) = {74,(R;) | Ri € R} and let y be half of the
minimum non-zero difference between two values in I(A;). Let R = 0 be a set of rectangles that
initially is empty. To identify the next tuple to insert in S, we construct a rectangular decomposition
of the union of rectangles in R. The rectangular decomposition [10] of R, denoted M(R), is a
partitioning of the union of the rectangles in R into rectangular contiguous regions, called cells,
such that for each cell 7, every point in 7 lies in the same subset of R.

Since, we do not know the optimum cohesion and pi(Q(1)) € {1,...,d}, we try every value
rg € {1,2,...,d} as a guess for value 2p; (Q(I)) + 1. We repeat the following step for (at most) k
iterations. In the i-th iteration, we visit every cell in M(R) until we find one with density i (a cell
that is contained in exactly i rectangles). Let C be a cell with density i such that |C N Q(I)| > 1. We

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:14 Pankaj K. Agarwal et al.

Algorithm 7: UpDATER(Q, ry, R, M(R),y)
4 ° ° 1 forhe{rg,rgy+1,...,d} do
o 2 foreach X C A with |X| = h do
3 3 foreach Aj € A do
2 ‘e ° 4 if A; ¢ X then
1 > I « [tAj -y, tAj+y];
5 else
I; -0, t.A; —v];
1 e R s s
Fig. 4. All tuples have integer values and 7 RS ’
_ (t) .
y = 0.5.Set R,"’ contains the 4 gray (open) rect- R —RU [(X I-)X (X - It)]
angles around t, [1.5, 2.5] X (—o0, 1.5], [2.5, 00) X s Arexs ayexd 7’)]s
[1.5,2.5], [1.5,2.5] x [2.5,00), (-00,1.5] X 9 | Update M(R);

1.5,2.5]. All tuples/points in the rectangles -
[] Hplesipotnis i € 10 return R, M(R);

RY) have Hamming distance 1 from ¢.

get an arbitrary tuple t € C N Q(I) using the rectangular oracle. If i = 1, C is a rectangle containing
all tuples in Q(I) and ¢ is any arbitrary tuple in Q(I). Next, we construct a set R(*) of O(1) rectangles
that contain points with distance at least rgy from ¢. This is described by Algorithm 7 as a primitive.

For every h = ry, ..., d, we construct the set of rectangles R}(lt) such that if p belongs to a rectangle
in ﬂ}(lt) then ¢p(p, t) = h. In particular, for every subset X C A with |X| = h, we compute a set of
intervals that will be used to create the rectangles in R}(lt). IfA; ¢ X, letl; = [t.Aj -y, t.Aj+v];

otherwise, let I, = (=00,t.Aj—y] and Ij’.r = [t.Aj+y,+00) and let R}, = (XA#XIJ)X(xAjex{Ij‘,I;F}).

We define R}(lt) = Uxcaxj=h Ri. and let R = U, 4 R}(lt). See an example in Figure 4. We
add the set of rectangles R(*) in R, update the decomposition M(R), and proceed with the next
iteration. At the end of Algorithm 6 (line 13), we check whether there is any uncovered point, i.e.,
if a tuple in Q(I) lies in a cell with density k. If no, we return S; otherwise, we proceed with the
next value of rg. Due to space limit, the analysis is shown in Appendix B.2.

THEOREM 3.11. For an acyclic join Q with d attributes and a databasel of input size N, a 2-cohesive
k-summary under Hamming metric can be computed in O (de) time using O(N + k%) space.

4 Min-diverse Summaries

In this section, we show how our ideas for constructing cohesive summaries can be used to design
algorithms for constructing min-diverse summaries under the Euclidean and Hamming metrics.
4.1 Euclidean Metric

It is known that an e-coreset for cohesive summaries is also an e-coreset for min-diverse sum-
maries [64].” After constructing an e-coreset P, for cohesive summaries using the algorithm
described in Section 3.1.3, we run the algorithm from [11], in the non-relational setting, to derive a
min-diverse k-summary over the set P.. This algorithm returns a (% — ¢£)-min-diverse k-summary of
P, in O (|P.|log(|P|) + k(log(|P;|) + £~%)) time. Plugging Theorem 3.9 into this result, we obtain:

7A set P, is an e-coreset for the min-diverse summary problem if the optimal min-diverse k-summary in P, is an (1 — ¢)-min
diverse k-summary in Q(I).

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:15

THEOREM 4.1. For an acyclic join Q of d attributes, a database 1 of input size N, and a param-
etere > 0,a (% — ¢)-min-diverse k-summary of Q(I) under Euclidean metric can be computed in
O (min {k?N + kNe™?, Nlog? N + kN log(N)e~® + k[4/21+11) time.

As in Section 3.1.3, the space used by the algorithm in Theorem 4.1 depends on the algorithm for
computing a O(1)-cohesive summary.

4.2 Hamming Metric

Again, our algorithm in Section 4.1 for the Euclidean metric cannot be applied to the Hamming
metric because the coreset uses properties of the Euclidean metric. However, our algorithm in
Section 3.2 for cohesive summaries under the Hamming metric can be extended to min-diverse
summaries. Let ox (Q(I)) be the minimum pairwise distance of the optimum min-diverse summary
on Q(I). For every new tuple t we add to the returned set S, we compute a set of O(1) non-
intersecting rectangles that contain tuples with distance at least ox (Q(I))/2 from t. There are only
two minor differences with Algorithm 6. i) In line 2, we search for ry, € {[d/2]+1, [d/2]+1-1,...,1}
to find the largest distance that separates the selected tuples. ii) In line 13, instead of checking
whether there is no uncovered tuple, we check whether S has size k. We obtain the next theorem.

THEOREM 4.2. For acyclic join Q with d attributes and a database 1 of input size N, a %—min—diverse
k-summary under Hamming metric can be computed in O (Nk?) time using O (N + k%) space.

5 Sum-diverse Summaries

We now describe the algorithms for constructing sum-diverse summaries under the Euclidean and
Hamming metrics.

5.1 Euclidean Metric

Main ideas. In the non-relational setting, the following iterative algorithm described in [45] returns
an %-sum-diverse k-summary over a set of points P. In each of the k/2 iterations, compute the
farthest pair (py, p2) in P, add {p;, p»} in the summary, remove them from P, and continue with the
next iteration. To the best of our knowledge, there is no efficient algorithm to compute the farthest
pair in Q(I) (in the relational setting). Instead, we use the idea proposed in [11] to approximately
compute the farthest pair among a set of points in the Euclidean setting using the notion of e-net.

Definition 5.1 (e-net). Let S9! be the unit sphere in R%. A centrally symmetric set C C S9! (i.e.,
ifueC,then-u € C)ofr=0 (s_(d_l)/z) unit vectors in R? is an e-net if for every point v € §971,
there exists a point u € C with angle at most cos™! (=) = O (Ve).

1+e
As shown in [7, 22], for any pair of points x, y € R¢, it holds (1—¢)$(x,y) < maxyec{u, x —y) <
¢(x,y). Hence, a (1 — €)-approximation of the maximum pairwise distance in a set of points can
be found by only checking the top-1 points with respect to the vectors in the ¢-net. Agarwal et
al. [11], select the top k points in each vector u € C, and then run the iterative algorithm [45] on
the union of the selected (top k) points to return a (% — ¢)-sum-diverse k-summary.

Our algorithm. We next describe our algorithm in the relational setting with the pseudocode
given in Algorithm 8 and a running example in Figure 5. Let C be a centrally symmetric ¢-net.
We compute the top k tuples in Q(I) for every vector u € C using our relational top-k oracle
proposed in Section 2. More specifically, we define the weight function w;(-) for tuples in R; as
wi(p) = Xa,ca, (p-A)) - uj, where p € R;. We construct the top-k oracle by defining a ranked
enumeration index Z,, with the vector of weight functions w = {wy, ..., wp,). Let P, be the set of k
maximal tuples in Q(I) in direction u, enumerated by Z, in descending order of their weights. At
last, we invoke the iterative algorithm [45] to find a sum-diverse k-summary over | J,cc Pu.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:16 Pankaj K. Agarwal et al.

Algorithm 8: GEOMETRICSUMDIVERSE(Q, L, k)

[

C « a centrally symmetric e-net;
foreach u € C do

foreachi € [m] do

L foreach p € R; do

| wilp) & Zajea, (p-4)))

[2 VR

W (W, Wz, W)
Fig. 5. A centrally symmetric set C with 7 Z, « an index built for , I, w as Lemma 2.1;

8 vectors. Each point represents a tuple in 8 P, « the first k results enumerated from Z,,;
Q(I). Assume k = 2. The top-2 tuples with B
respect to vector u € C are 11, t2. The set
Uuec Pu contains the red points/tuples.

9 S « sum-diverse k-summary over | J,cc Py [45];
10 return S;

Correctness. By the definition of the top-k oracle (Lemma 2.2), the next lemma holds. For
completeness, we also show the straightforward proof in Appendix C.

LEmMA 5.2. Forw at line 6 of Algorithm 8, w(t) = (u, t) for every tuple t € Q(I).

By Lemma 5.2, for any vector u € C, all tuples in Q(I) can be enumerated in a decreasing
ordering of their inner product with u. The correctness follows from [11] and the discussion above.

Complexity. The e-net C can be computed in O(r) time [6]. For each vector u € C, we construct
an index Z, in O(N) time. In total, we can construct | J,cc P, in O(r(N + klog N)) time using
O(N + rk) space. Finally, the algorithm in [45] over the set | J,cc Py (as implemented in [11]) runs
in O(rklog N) time. The algorithm uses O(rk) space to store the top k tuples for every vector in C.

THEOREM 5.3. For an acyclic join Q of d attributes, a database I of input size N, and a parameter
ee(0,1),a (% — ¢)-sum-diverse k-summary of Q(1) under Euclidean metric can be computed in
O((N+k- logN)g_(d_l)/z) time using O (N + ks_(d_l)/z) space.

5.2 Hamming Metric

For the Hamming metric, we propose two algorithms that construct sum-diverse summaries. The
first computes a better sum-diverse k-summary, while the second is faster by a factor of k.

Main ideas. In [21], the authors showed that if a distance is of negative type [62, 63], then a local
search algorithm returns a (1 — 2/k)-sum-diverse k-summary in the non-relational setting.

Definition 5.4 (Negative Type). Let D € R™" be the distance matrix of distance function o. The
function o is of negative type if for any vector x = (x1,...,x,) with 27, x; = 0, xTDx <0.

In Appendix C, we prove that the Hamming distance is of negative type. Hence, we can obtain a
relational version of the local search algorithm. Intuitively, our algorithm starts with a set S of k
arbitrary tuples from Q(I) and then repeats the following step for at most O(k log k) iterations: if
there exists a pair of tuples x € S and y € Q(I) \ S such that replacing x with y in S can increase its
diversity, i.e., 5(S U {y} \ {x}) > §(S), we update S accordingly; Otherwise, we just return S.

Our algorithm. In the relational setting, it is challenging to find the tuples x, y to update the
set S. We next describe our algorithm in more detail with the pseudocode given in Algorithm 9.
Initially, we add k arbitrary tuples from Q(I) to S. For every tuple ¢ € S, we define its diversity as
u(t) = Yyes\(r} Pu(x, 1), ie., its sum of distances with remaining tuples in S. Note that the diversity

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:17

Algorithm 9: LocALSEarcH(Q, L k) Algorithm 10: RerLACE(Q, L S)

1 S « k arbitrary tuples from Q(1); 1 M« —o0, p~ « null, p* « null;

2 foreacht € S do 2 foreach x € S do

3 L u(t) «— Xyes\(r} Pu(xt); 3 foreachi € [m] do

4 A %ZtES u(t); 4 foreach p € R; do

s for j € {12, - ,0(klogk)} do s L wi(p) < o

6 (p~,p*, M) « RerLACE(Q,L S); Lyes\(x} PH (y-Aip.Ai);

7 if A > M then return S; 6 W (Wi Wa e Wi)

8 foreacht € S\ {p~} do 7 Z « index built for Q, I, w as Lemma 2.1;
K L u(t)e= ~ . 8 while true do

u(t)=pu(t, p)+¢u(t, p*); 9 y « aresult enumerated from Z;

10 u(p) «— Dies\(p-y Pu(t.p*); 10 if y ¢ S then break;
m | S <—51U{p+}\{p‘}; 1| Axy < A—ux) + Zicgm) wi(y.Ai)
12 | A g Yesu(d); 12 if A, > M then
13 return S; 13 L M — Ay, (P~ p") « (x,y);

14 return (p~, p*, M);

of S is essentially A = % Y es u(t). We repeat the following step for at most O(k log k) iterations.®
We call Algorithm 10 as a primitive to compute the pair of tuples p~ € S, p* € Q(I) \ S such that
the diversity M = 5(SU {p*} \ {p~}) is maximized. We do it as follows. For each tuple x € S, we
construct an index Z from Lemma 2.1 with the following weight function w. More specifically, for
every tuple p € R;, we define the weight function w;(-) as wi(p) = X yes\(x} P (v-Ai, p-A;). All
tuples in Q(I) will be enumerated from Z in the descending ordering to their sum of distances with
tuples in S \ {x}, until we encounter some tuple y ¢ S. In Algorithm 10 we use the notation A, ,
to maintain the diversity of the set S U {y} \ {x}. If replacing p~ by p* in S does not increase the
diversity (line 7 of Algorithm 9) we stop and return S. Otherwise, we replace p~ by p* in S and
update u(t) for every t € S\ {p~}. Then, we enter into the next iteration.

Finally, in order to compute w;(-) efficiently, we build a binary search tree 7j, initially empty, for
every attribute A; € A;, as follows. For every y € S \ {x}, we check whether the value y.A; exists
in 7;. If not, we add a node u to 7; with value u.value = y.A; along with a counter u.count = 1.
If yes, then let u be the node with u.value = y.A;. We increase the counter u.count by 1. After
constructing T}, for every A; € A;, we visit every tuple p € R; and we search each 7; with key p.A;.
Let u; be the node such that u;.value = p.A;. We compute w;(p) as ZAjeAi(|5| — uj.count).

Correctness. We prove the next lemma.
LEmMA 5.5. For w at line 6 of Algorithm 10, w(t) = ¥ yes\ (x} P (t, y) for every tuple t € Q(I).
ProoF. For t €Q(I), Xjc[m] Wi(t-A)=Dicim) Lyes\(x} PH(EALYA) = Xyes\(x) Pu(ty). O

For x € S, by Lemma 5.5, tuple y € Q(I) \ S that maximizes 6(SU {y} \ {x}) can always be correctly
found. Following [21] and the fact that Hamming distance is of negative type, our algorithm returns
a(l- %)-sum-diverse k-summary for Q(I).

Complexity. Initially, k tuples from Q(I) can be retrieved in O(N + k) time. In every iteration,
for every x € S, it takes O(N log k) = O(N log N) time to assign the weights w; using the binary

8The exact number of iterations is shown in the proof of Corollary 2 in [21].

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:18 Pankaj K. Agarwal et al.

search trees 7;. The index Z is constructed in O(N) time. Each tuple y can be enumerated with
O(log N) delay. In the worst case, it may skip at most k tuples before finding one that does not
belong to S. Overall, for each tuple x, we spend O(N log N + klog N) time.

THEOREM 5.6. For an acyclic join Q and databasel of input size N, a (1— %)—sum-diverse k-summary
under Hamming metric can be computed in O (Nk? log® N + k3 log® N) time using O(N + k) space.

Remark 1. The Euclidean metric is also of negative type. However, due to the square root operations
in the computation of the Euclidean metric, we cannot use the ranked enumeration index to get
the best tuple that improves the diversity in S \ {t}, as we did in the Hamming metric. So, this
algorithm does not apply to the Euclidean metric.

Remark 2. The same high-level idea can be extended to another faster algorithm, but its quality
is slightly worse than Theorem 5.6. Intuitively, we begin with a set S containing one arbitrary
tuple from Q(I), and apply the following greedy strategy for k iterations. In each iteration, we
find the tuple y € Q(I) \ S that maximizes the sum of all pairwise distances with tuples in S,
ie, argmax,.q(y) Lpes $u(p, 1), and add it to S. This greedy approach returns a %—sum—diverse
k-summary for Q(I). Note that the problem of finding the tuple from Q(I) \ S with the maximum
sum of distances from tuples in S is similar to finding the best tuple y € Q(I) \ S to replace a tuple
x € S as we had in the local search algorithm above. Due to the space limit, all details can be found
in Appendix C. Hence, using the same machinery from our previous algorithm, we have:

THEOREM 5.7. For an acyclic join Q and a database I of input size N, a %-sum-diverse k-summary
under Hamming metric can be computed in O ((Nk + k*) log N) time using O(N + k) space.

6 Extensions

From acyclic joins to cyclic joins. All our algorithms can be extended to cyclic join queries by
applying the generalized hypertree decomposition [42], as described in Appendix D. Each cyclic
join is transformed into an acyclic one at the cost of increasing the input size from N to N,
where fhtw is defined as the fractional hypertree width of the input join query which roughly
measures how close is the input query Q from being acyclic (for example, for every acyclic query
fhtw = 1). All our approximation algorithms derived for acyclic joins can be applied without any
modification, but time complexity increases by replacing N with N,

From joins to join-project queries. All our algorithms can be extended to acyclic join-project
queries using indexes for ranked enumeration over join-project queries [32]. Using the generalized
hypertree decomposition [42], the results are also extended to cyclic join-project queries. All ap-
proximation ratios are preserved, but the time complexity for constructing sum-diverse summaries
increases by a factor of O(min{k, N}), since the index [32] for join-project queries can only sup-
port O(N log N)-delay enumeration. The running time for constructing a cohesive or min-diverse
summary remains the same for join-project queries. We show the details in Appendix E.

7 Conclusion

In this paper, we designed efficient algorithms for computing cohesive and diverse summaries for
conjunctive query results under the Euclidean or Hamming metric. There are a few interesting
questions left for future work. (1) General metric: In addition to Euclidean and Hamming metrics, it
is unknown how to compute representative summaries for conjunctive query results under general
metrics. (2) Broader quality functions: beyond cohesion and diversity, it remains to investigate a
general framework of computing good summaries under various quality functions. (3) Dynamic
setting: It is unknown how to maintain representative summaries for conjunctive query results in
the dynamic settings, where input tuples can be inserted or deleted.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:19

References

(1]
(2]

[12]

[13]
[14]
[15]
[16]
[17]
[18]

[19]
[20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]

[28]
[29]

[30]

https://db-engines.com/en/ranking_categories.

Z. Abbassi, V. S. Mirrokni, and M. Thakur. Diversity maximization under matroid constraints. In Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 32-40, 2013.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A. D. Mehrabi. Range-clustering queries. In Proceedings of the
33rd International Symposium on Computational Geometry, pages 5:1-5:16, 2017.

R. Addanki, A. McGregor, A. Meliou, and Z. Moumoulidou. Improved approximation and scalability for fair max-min
diversification. In Range-clustering queries 25th International Conference on Database Theory, pages 7:1-7:21, 2022.

P. K. Agarwal, G. Cormode, Z. Huang,]. M. Phillips, Z. Wei, and K. Yi. Mergeable summaries. ACM Transactions on
Database Systems, 38(4):1-28, 2013.

P. K. Agarwal, S. Har-Peled, and H. Yu. Robust shape fitting via peeling and grating coresets. Discrete & Computational
Geometry, 39(1-3):38-58, 2008.

P. K. Agarwal, J. Matousek, and S. Suri. Farthest neighbors, maximum spanning trees and related problems in higher
dimensions. Computational Geometry, 1(4):189-201, 1992.

P. K. Agarwal, J. Pach, and M. Sharir. State of the union (of geometric objects). pages 9-48. 2008.

P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clustering. Algorithmica, 33:201-226, 2002.
P. K. Agarwal and M. Sharir. Arrangements and their applications. In Handbook of Computational Geometry, pages
49-119. Elsevier, 2000.

P. K. Agarwal, S. Sintos, and A. Steiger. Efficient indexes for diverse top-k range queries. In Proceedings of the 39th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 213-227, 2020.

S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb: queries with bounded errors and
bounded response times on very large data. In Proceedings of the 8th ACM European Conference on Computer Systems,
pages 29-42, 2013.

M. Arenas, T. C. Merkl, R. Pichler, and C. Riveros. Towards tractability of the diversity of query answers: Ultrametrics
to the rescue. arXiv preprint arXiv:2408.01657, 2024.

A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. SIAM Journal on Computing,
42(4):1737-1767, 2013.

G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay enumeration. In Proceedings
of the International Workshop on Computer Science Logic, pages 208-222. Springer, 2007.

C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database schemes. Journal of the ACM,
30(3):479-513, 1983.

B. Birnbaum and K. J. Goldman. An improved analysis for a greedy remote-clique algorithm using factor-revealing lps.
Algorithmica, 55(1):42-59, 2009.

A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversification, monotone submodular functions and dynamic updates. In
Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 155-166, 2012.
A. Cevallos. Approximation algorithms for geometric dispersion. Technical report, EPFL, 2016.

A. Cevallos, F. Eisenbrand, and R. Zenklusen. Local search for max-sum diversification. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 130-142. SIAM, 2017.

A. Cevallos, F. Eisenbrand, and R. Zenklusen. An improved analysis of local search for max-sum diversification.
Mathematics of Operations Research, 44(4):1494-1509, 2019.

T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. In
Proceedings of the 16th Annual Symposium on Computational Geometry, pages 300-309, 2000.

S. Chaudhuri, G. Das, and V. Narasayya. Optimized stratified sampling for approximate query processing. ACM
Transactions on Database Systems, 32(2):9-es, 2007.

S. Chaudhuri, R. Motwani, and V. Narasayya. On random sampling over joins. ACM SIGMOD Record, 28(2):263-274,
1999.

J. Chen, Q. Yang, R. Huang, and H. Ding. Coresets for relational data and the applications. Advances in Neural
Information Processing Systems, 35:434-448, 2022.

Y. Chen and K. Yi. Random sampling and size estimation over cyclic joins. In Proceedings of the 23rd International
Conference on Database Theory, pages 7:1-7:18, 2020.

G. Cormode. Sketch techniques for approximate query processing. Foundations and Trends in Databases. NOW
publishers, page 15, 2011.

G. Cormode. Data sketching. Communications of the ACM, 60(9):48-55, 2017.

G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine, et al. Synopses for massive data: Samples, histograms, wavelets,
sketches. Foundations and Trends® in Databases, 4(1-3):1-294, 2011.

G. Cormode and K. Yi. Small Summaries for Big Data. Cambridge University Press, 2020.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

https://db-engines.com/en/ranking_categories

217:20 Pankaj K. Agarwal et al.

[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]

[51]
[52]
[53]
[54]
[55]
[56]
[57]

[58]

R. Curtin, B. Moseley, H. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. Rk-means: Fast clustering for relational data.
In Proceedings of the International Conference on Artificial Intelligence and Statistics, pages 2742-2752, 2020.

S. Deep, X. Hu, and P. Koutris. Ranked enumeration of join queries with projections. Proceedings of the VLDB
Endowment, 15(5):1024-1037, 2022.

S. Deep and P. Koutris. Ranked enumeration of conjunctive query results. In Proceedings of the 24th International
Conference on Database Theory, pages 5:1-5:19, 2021.

S. Deng, S. Lu, and Y. Tao. On join sampling and hardness of combinatorial output-sensitive join algorithms. In
Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 99-111, 2023.
M. Deza and H. Maehara. Metric transforms and euclidean embeddings. Transactions of the American Mathematical
Society, 317(2):661-671, 1990.

A. Esmailpour and S. Sintos. Improved approximation algorithms for relational clustering. Proceedings of the ACM on
Management of Data, 2(5), 2025.

R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the ACM, 30(3):514-550,
1983.

T. Feder and D. Greene. Optimal algorithms for approximate clustering. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, pages 434-444, 1988.

M. Garofalakis and P. B. Gibbons. Wavelet synopses with error guarantees. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pages 476-487, 2002.

P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving approximate query answers. In
Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pages 331-342, 1998.

T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293-306,
1985.

G. Gottlob, G. Greco, and F. Scarcello. Treewidth and hypertree width. Tractability: Practical Approaches to Hard
Problems, 1, 2014.

S. Har-Peled, N. Kumar, D. M. Mount, and B. Raichel. Space exploration via proximity search. Discrete & Computational
Geometry, 56:357-376, 2016.

S. Har-Peled and B. Raichel. Net and prune: A linear time algorithm for euclidean distance problems. Journal of the
ACM, 62(6):1-35, 2015.

R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dispersion. Operations Research
Letters, 21(3):133-137, 1997.

X. Hu and S. Sintos. Finding smallest witnesses for conjunctive queries. In Proceedings of the 27th International
Conference on Database Theory, pages 24:1-24:20, 2024.

Y. Ioannidis. The history of histograms (abridged). In Proceedings of the 29th International Conference on Very Large
Data Bases, pages 19-30, 2003.

H. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T. Suel. Optimal histograms with quality
guarantees. In Proceedings of the 24rd International Conference on Very Large Data Bases, pages 275-286, 1998.

M. Jones, H. Nguyen, and T. Nguyen. Fair k-centers via maximum matching. In Proceedings of the International
Conference on Machine Learning, pages 4940-4949, 2020.

K. Kim,]J. Ha, G. Fletcher, and W.-S. Han. Guaranteeing the o(agm/out) runtime for uniform sampling and size
estimation over joins. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 113-125, 2023.

M. Kleindessner, P. Awasthi, and J. Morgenstern. Fair k-center clustering for data summarization. In International
Conference on Machine Learning, pages 3448-3457. PMLR, 2019.

Y. Kurkure, M. Shamo, J. Wiseman, S. Galhotra, and S. Sintos. Faster algorithms for fair max-min diversification in R4,
Proceedings of the ACM on Management of Data, 2(3):1-26, 2024.

X. Liang, S. Sintos, Z. Shang, and S. Krishnan. Combining aggregation and sampling (nearly) optimally for approximate
query processing. In Proceedings of the 2021 International Conference on Management of Data, pages 1129-1141, 2021.
T. C. Merk], R. Pichler, and S. Skritek. Diversity of answers to conjunctive queries. In Proceedings of the 26th International
Conference on Database Theory, pages 10:1-10:19, 2023.

B. Moseley, K. Pruhs, A. Samadian, and Y. Wang. Relational algorithms for k-means clustering. In Proceedings of the
48th International Colloquium on Automata, Languages, and Programming, pages 97:1-97:21, 2021.

Z. Moumoulidou, A. McGregor, and A. Meliou. Diverse data selection under fairness constraints. In Proceedings of the
24th International Conference on Database Theory, pages 13:1-13:25, 2021.

E. Oh and H.-K. Ahn. Approximate range queries for clustering. In Proceedings of the 34th International Symposium on
Computational Geometry, pages 62:1-62:14, 2018.

D. Olteanu and J. Zavodny. Factorised representations of query results: size bounds and readability. In Proceedings of
the 15th International Conference on Database Theory, pages 285-298, 2012.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:21

[59] S.S.Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms for dispersion problems. Operations
Research, 42(2):299-310, 1994.

[60] J.S. Salowe. L-infinity interdistance selection by parametric search. Information Processing Letters, 30(1):9-14, 1989.

[61] LJ. Schoenberg. Remarks to Maurice Frechet’s article“sur la definition axiomatique d’une classe d’espace distances
vectoriellement applicable sur I’espace de hilbert. Annals of Mathematics, pages 724-732, 1935.

[62] I.J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics, pages 811-841, 1938.

[63] I.J. Schoenberg. Metric spaces and positive definite functions. Transactions of the American Mathematical Society,
44(3):522-536, 1938.

[64] A. Tamir. Obnoxious facility location on graphs. SIAM Journal on Discrete Mathematics, 4(4):550-567, 1991.

[65] M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the 7th International Conference on Very
Large Data Bases, volume 81, pages 82-94, 1981.

[66] Z.Zhao, R. Christensen, F. Li, X. Hu, and K. Yi. Random sampling over joins revisited. In Proceedings of the 2018 ACM
SIGMOD International Conference on Management of Data, pages 1525-1539, 2018.

[67] Z.Zhao, F. Li, and Y. Liu. Efficient join synopsis maintenance for data warehouse. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, pages 2027-2042, 2020.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:22 Pankaj K. Agarwal et al.

A Missing details from Section 1

Dangling Tuples. Given an acyclic join Q and a database I of input size N, we give the classic
Yannakakis algorithm [65] that can
remove dangling tuples that do not
participate in any join result of Q(I). 1 Let 7 be an arbitrary join tree of Q with root r;
This primitive runs in O(N) time. 2 while visit nodes a bottom-up way (excluding r) do
For a CQ Q and a database [of in- 3 foreach node u visited do

put size N, all dangling tuples can 4 L Rp, < Ry, = R, for the parent node p, of u;
be removed in O (N*"¥) time (Ap- -)
pendix D). 5 while visit nodes a top-down way (excluding leaves) do
Reduction from plain data. The ¢ | foreachnodeu visiteddo

hardness of the problems defined on 7 | Rw < Ry xR, for each child node v’ of u;
plain data points can be carried to o
a relational data setting via the fol-
lowing reduction. Suppose we are given a set P of n points in the d-dimensional space, where
d = |A|, and each point p € P is associated with d values (coordinates) {(p1, ps, - - - , pg)- Moreover,
we give a distinct label pig to every point p € P. We also label the attributes in A, as Aj, Ay, - -+, Ag.
We construct database I as follows.For every point p € P, we add a tuple tf to R; for every relation
R;, where tf’ Aj = (pia, pj) for every Aj € A;. It can be easily checked that there is a one-to-one
mapping between the query results in the join Q(I) and points in P. Let t,, t,» € Q(I) be the query
results corresponding to p, p” € P respectively. The distance between p and p’ is transformed to
the distance between t, and t,. This reduction implies the NP-hardness of computing cohesive
and min-diverse summaries.

Algorithm 11: REMOVEDANGLING(Q, I)

8 return updated [;

Optimality. All lower bounds from non-relational settings hold in our relational setting. First,
the dependency on N in all our algorithms for acyclic join queries is near linear, which is optimal.
Any algorithm for computing summaries needs to read the entire database at least. For Euclidean
cohesive summary, we give (2 + ¢)-approximation algorithms in O(Nk?) or O(Nk + k%) time
(assuming ¢ as a small constant). For the non-relational setting, the best algorithm for 2-cohesive
summary under any general metric runs in O(Nk) time. Hence, the approximation factor and
complexities of our algorithms are close (by, at most, a factor of k) to the optimum algorithms in the
non-relational setting. Exactly the same results and lower bounds hold for min-diversity summaries.
For Euclidean sum-diverse summaries, we give a (% — ¢)-approximation algorithm in O(N +k) time.
For general distances in the non-relational setting, the best algorithm returns a %-approximation in
O(Nk) time, while in the Euclidean metric, the best algorithm returns a (% — ¢)-approximation in
O(N + k) time. Our algorithm for sum-diverse summaries in the Euclidean metric is optimal.

B Missing details from Section 3
B.1 Missing details from Subsection 3.1
PROOF OF LEMMA 3.1. Z wi(t.A) = Z Z (tA; - 0.A,)% = Z (t.A; — 0.4, = ¢2(1,0).

ie[m] ie[m] AjeA; AjeA
PROOF OF LEMMA 3.2. Z w;(t.A;) = Z Z (tA; - 0.A)% = Z (t.A; - 0.A))* = ¢*(1,0).
ie[m] ie[m] AjeA;NA, AjeA,

ProoF oF LEMMa 3.4. We will prove by induction on ¢. In the base case when ¢ = 1, u is a leaf
node. Implied by [25] and the fact that we only keep the non-dangling tuples, S,, is a 2-approximation
of the k-center problem for Q, (I). Hence, p(S,, Q. (I)) = i, < 2+ pr (Qu (1)) < 10V2 - pr (Qu(1)).

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:23

When ¢ > 1, u is an internal node. Let x, y be the two child nodes atlevel £—1. Let r* = max{ry, ry}.
From Algorithm 3, for every tuple 6 € S, (after finishing the loop in lines 8-16), there exists a tuple
t € Q,(I) such that ¢(t,0) < V2 - r*. On the other hand, from Lemma 3.3, for any tuple t € Q,(I),
there exists a tuple 0 € S, such that ¢(¢,0) < V2 - r*. Moreover,

r* < (10V2) 1 - max{pr(Qe(D), pr(Qy (1)} < (10V2)™" - pi(Qu (1)),

where the first inequality holds by our hypothesis on x, y and the second inequality follows from
the observation in the proof of Lemma 3.3.

For an item b and a set of items A, let NN(b, A) denote the nearest neighbor of b in A, i.e.,
NN(b, A) = arg min,. 4 #(b, a). Let O; be the optimum cohesive k-summary of @, (I),i.e., p(O1, Q,(I)) =
pr(Qu (D). For each center p € Oy, let p = NN(p, S,). From Lemma 3.3, it holds that ¢(p, p) < V2r*.
Consider the set of k centers O, = {p | p € O1}. For any tuple x € S, let £ = NN(x, Q,(I)). From
Algorithm 2, it holds that ¢(x,%) < V2r*. So, for an arbitrary tuple s € S, if o = NN(§,0y), it
holds ¢(s,8) < ¢(s,5) + ¢(5,0) + ¢(0,6) < V2r* + pr(Qu(1)) + V2r*. Hence, we have pi(S,) <
pr(Qu(D) + 2 - V2r*. Implied by [38], p(Su, Su) < 2px(S,,). Finally, we come to

P(Sus Qu(D) < p(Sus Su) + V2r* =1, < (5V2(10V2)" ™" +2) - pr(Qu(D)) < (10V2)! pi(Qu(D)).

To show p(Sy,, Q, (1)) = pr(Qu(1))/2, we resort to the generalized cohesive k-summary problem by
relaxing the condition that S € @, (I). Let px(Q,(I)) be the optimal solution of the generalized
cohesive k-summary problem of Q, (I). From the triangle inequality, % cpe(Qu(I)) < pr(@Qu(D)) <
Pk(Qu(1)). By definition, p(Sy, Qu(1)) = pr(Qu(D) = 3 - pi(Qu(D). o

PROOF OF LEMMA 3.6. ie[m] Wi(t-Ai) = Die[m] La, e, (t.A; - qh.Aj)2 =¢%(t,qy). O

B.1.1 Coreset without having an upper bound on the clustering cost.

Let S be a O(1)-cohesive k-summary. We do not know the value of r, however, we know that the
approximation ratio is 5, where f is a constant. The high-level idea of our algorithm is as follows:
We run a binary search over all possible L, distances in Q(I). For a distance ¢ we check whether
all tuples in Q(I) can be covered with balls having centers the points in S and radius Vd¢. In the
end, we find a number r such that pi (Q(I)) < p(S,Q(I)) < r < ¢ fpr(Q(Y)), for a constant c,
and we execute the algorithm from Section 3.1.3. Let A be a sorted array of the values among all
the attributes in the database. We run a binary search on the pairwise distances of A. In [60] the
authors show that the j-th smallest Lo, distance (or equivalently L; distance in R') of n points
on a line can be computed in O(nlogn) time. Let £ be a value we check in the binary search. Let
¢ = Vde. We define the grid G; having grid cells with diagonal ji; = f. For each center s € S, we
define the ball B; of radius ¢ and center s. Let B; = | ;s Bs. We check whether B; covers all tuples
in Q(I). Unfortunately, we cannot visit all tuples in Q(I) and the complexity of constructing the
union of k balls is large Instead, we visit each grid cell g € G; such that g is contained or partially
intersected by B;. Let G be the set of these grid cells. For each g€ G we run a counting query
using Lemma 2.3 to get fg =|g N Q(I)|. We also run an additional counting query in a rectangle
that contains all tuples to find f = |Q(D)|. If)} 9€6; fy = f then we continue the binary search with
smaller values of £. Otherwise, we continue with larger values of £. Let £* be the parameter in the
last iteration of the binary search that CA}{;* covered all tuples in Q(I). We set r = (1 +¢) Vde* and
then we follow the same procedure as in Subsection 3.1.3 to construct P,.

LEmMMA B.1. pr(Q(D) < p(S,Q(D) < r < (1+)VdBpr(Q(D)).

ProoF. For a vector x € R?, let ||x||c be its Lo, norm, and let ||x||; be its L, norm. By definition,
for two vectors x, y € R%, we have ||x—y||, = #(x, y). It is known that for any vector a € R? it holds,

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:24 Pankaj K. Agarwal et al.

llalles < |lallz < Vd||a]|co. For every tuple ¢ € Q(I), it is always true that there exists s, € S with
[lt=s:1]2 < p(S, QD) < Bpr(Q(D). Lett’ € Q(I) be the tuple such that ||s—sy||2 = p(S, Q(I)). Let

t = ||s — s¢||co. From above, it follows that ||s — s;||c0 > ‘)(S’—\%(D). Hence, there exists an Lo, distance

£, in A satisfying £, > p(s’—\%(l)) & Vde, > p(S,Q(I)). Hence, for any £ > £,, we have deééfg =f.
* « 5 P5,Q(0)) - « . p5QM) *

So ¢* < f,. Next, we show that £* > o) Va by contradiction. Assume £* < (e)Va o Vdr <
p(SiTQE(I)). Our grid-based algorithm for checking whether all points in Q(I) lie in the cells GA[?*,
counts all tuples within distance Vd¢* from centers S and might count some tuples within distance

(1 + £)Vdt* from centers in S. Hence, if (1 + £)Vde* < p(S, Q(1)), our algorithm will return
1
Sge6, Jo < f-Overall, —— - p(5,Q(D) < Vdr* < Vde, < Vdp(S,Q(1) < VdBpr(Q(D)). o

Correctness With Lemma B.1 and algorithm in Section 3.1.3, we can construct a desired coreset.

Complexity. For any ¢, there is at most O(¢~%) grid cells with diagonal £Vd¢ that intersect or
fully contained in a ball of radius Vde¢. Hence, in each iteration of the binary search we spend
O(kNe9) to run the counting queries. Using [60] to get the j-th smallest L, distance among A,
we need O(N log2 N) additional time to execute the binary search. Overall, given S, we construct
an e-coreset in O(N log®(N) + kN log(N)e~?) time using O(N + ke™9) space.

B.2 Missing details from Subsection 3.2

Correctness. By definition, for a fixed rg, all rectangles in R(*) are disjoint and p € R*) if and
only if ¢y (t,p) = rg. Indeed, if p € ‘R}(lt), for h > ry, then the tuple p has different values than
t in exactly h attributes. Furthermore, for a fixed ry, the condition in line 13 is satisfied if and
only if p(S,Q(I)) > ry. Indeed, a cell ¥ in M(R) has density k if and only if every point x €
has distance at least ry. Hence, if there is no tuple from Q(I) in these cells, then every tuple in
Q(I) is within distance ry from S, i.e., p(S, Q(I)) < ryg — 1. We show that p(S, Q(I)) < 2px(Q(I)).
Equivalently, we show that for ri = 2px(Q(I)) + 1 the condition in line 13 always holds. Let S*
be the optimally cohesive k-summary of Q(I). For every tuple ¢; € S*, we define the ball 8; with
center t; and radius px(Q(I)). By definition, the union of all such k balls covers all tuples in Q(I).
Let t be the tuple that is selected in lines 10-11 of Algorithm 6 in an iteration i. Without loss
of generality assume that t belongs in the ball 8;. The Hamming distance satisfies the triangle
inequality, so for any p € 8; N Q(I), it holds ¢r (¢, p) < du(t,t;) + du(tj, p) < 2px(Q(I)). In other
words, it holds that for any new tuple ¢t we add in S, the ball 8; with center t and radius 2p; (Q(I))
completely covers a ball from the optimally cohesive k-summary. By definition, the union of the
rectangles in R(?) is the complement of ball B,. After k iterations all optimal k balls are covered by
the balls | J;c5 B, so there is no tuple in Q(I) that lies in the complement of | ;.5 B;. Equivalently,
there is no tuple in Q(I) that lies in a cell of density k in line 13, so the condition is satisfied.

Complexity. The algorithm runs for k iterations. In each iteration i, we add a tuple ¢ in S and
we construct [R(*)| = O(1) rectangles. The decomposition M(R) is updated in k¢ time [10]. The
cells with depth i — 1 can also be found in k°(?) time after updating the decomposition. We run
a rectangular query for every cell of depth i — 1. From Lemma 2.3, each rectangular query takes
O(N) time. Overall, our algorithm runs in O(Nk?) time and uses O(N + k%) space.

C Missing details from Section 5
PrOOF OF LEMMA 5.2. Z w;(t.A;) = Z Z (t.Aj) -uj = Z (t.Aj) -uj=(ut). O

ie[m] i€[m] AjeA; Ajea

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:25

LemMma C.1. The Hamming metric is of negative type.

Proor. Using [35, 61], any distance function o, over a set of n items P € R?, is of negative type
if there exists a mapping from P to P’ € R? for a positive integer d’, such that a(p, q) = o’ (p’, '),
where p,q € P, p’ is the mapping of p (similarly, ¢’ is the mapping of g), and ¢’ is the squared
Euclidean distance.

For the Hamming metric, we map all points in P € R? to points in d’ < n - d* dimensions as
follows. Let L be the ordered list of all distinct values (coordinates) over the points in P. Clearly,
|L| < nd. We use p; to denote the j-th value of point p € P. For every p € P, we create p’ € RILId
as follows. For each j € [d], we create the zero vector XU e RIE such that XU = 0,...,0).
Without loss of generality, assume that p; = L[i], i.e,, the j-th value of p is the i-th element in list
L. We set fi(j) = 1/4/2, i.e., the i-th value of X is set to 1/V2. Then p’ is the concatenation of

all vectors XU) ie., p = [)? .. .,)? (d)]. By definition, it holds that under the Hamming metric
P (P, q) = Zi<nzar) (P, — q;1)2. Intuitively, if two points have different j-th value then the squared

Euclidean will sum up the terms (1/V2 — 0)% + (0 — 1/v2)? = 1. o

Greedy algorithm for Sum-Diverse Sum- Algorithm 12: GREEDYSUMDIVERSE(Q, I, k)
maries. In Algorithm 12, we start with

an arbitrary tuple xp € Q(I) and add it to

=

S « {xo} for an arbitrary tuple x, € Q(I);

S. We repeat the following step until the 2 while |S] < l?do
size of S reaches k. We construct an in- > foreach i € [m] do
dex Z that enumerates the tuples in Q(I) * foreach p € R; do o
in descending order to their sum of dis- ° L wi(p) = Lyes b (p-Aiy-A);
tances with the tuples in S. More specifi- W (Wi, Wy Wi
cally, for every tuple p € Iii ’ We_deﬁne the Z « index built for Q, I, w as Lemma 2.1;
weight w;(p) = Z ¢r (p-Aiy.A;). All tu- while true do

€S
plesin Q(I) are erylumerated from Z in the de- i L y « aresult enumerated from Z;
scending ordering, until we encounter some 10 if y ¢ S then break;
result y ¢ S. We add y to S and continuein 11 | S < SU{y};

the next iteration. return S;

=
N

Correctness. For w at line 6 of Algo-

rithm 12, W(t) = iem) Wi (£-A1) = Dicm] Lyes 91 (1-A1y.Ai) = X yes dr(t,y) for every tuple
t € Q(I). Ravi et al. [59], showed that the greedy algorithm returns a %-sum-diverse k-summary in
the non-relational setting. Algorithm 12 implements the greedy algorithm in the relational setting

s0 it also returns a -sum-diverse k-summary for Q(I).

Complexity. For every tuple p € R;, it takes O(log N) time to compute w;(p). It takes O(N)
time to construct the index Z. For every tuple y returned by Z, it takes O(logk) = O(log N)
time to check if y € S. All tuples can be enumerated from Z within O(log N) delay. We need to
enumerate at most k — 1 results until we find one that does not belong in S. Our algorithm runs in
O(Nklog N + k?log N) time and uses O(N + k) space.

Remark. This algorithm cannot be used for the Euclidean metric because the sum of distances
from a tuple ¢ to set S is a sum of square roots, so we cannot use the squared Euclidean metric as
we did in the algorithms from Section 3 in the ranked enumeration index.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:26 Pankaj K. Agarwal et al.

D Extension to Cyclic Join

Generalized Hypertree Decomposition [42]. We need the following notions to extend our results
to cyclic joins. We also use a triple (A, &,y) to represent a CQ Q, where & = {A1, Ay, -+, A}

Definition D.1 (Generalized Hypertree Decomposition). Given a join Q = (A, &), a GHD of Q is a
pair (7, A), where 7 is a tree as an ordered set of nodesand A : 7~ — 2 isa labeling function which
associates to each node u € 7~ a subset of attributes in A, A, such that the following conditions
are satisfied: (1) For each relation A; € &, there is a node u € 7 such that A; C A,; (2) For each
attribute A € A, the set of nodes {u € 7 : A € A,} forms a connected subtree of 7.

Definition D.2 (Fractional Edge Covering Number of CQ). Given a CQ Q = (A, 8,y), a function
W : [m] — [0, 1] is a fractional edge covering of Q if ’;c(m).aea, W(i) > 1 holds for any attribute
A € A. The weight of W is defined as }.;¢[,,, W (). The fractional edge covering number of Q is
the minimum weight of all possible fractional edge coverings of Q.

Given a GHD (7, A) for a join @, each node u derives a subjoin over attributes A, and relations
&y ={eNu:e e &} The width of each node u € 7 is defined as the fractional edge covering
number of (A, &,). The width of (7, 1) is defined as the maximum width over all nodes in 7.
Then, the fractional hypertree width of a join follows:

Definition D.3 (Fractional Hypertree Width [42]). The fractional hypertree width of a join @,
denoted as fhtw(Q), is fhtw(Q) = (r(n/_l/{l) ma7>g p(Ay, &), i.e., the minimum width over all GHDs.
A) ue

Basically, O(N'™") is an upper bound on the number of join results materialized for each node
in 7, as well as the time complexity of computing the join results [14]. Thus, we can generalize all
our results to cyclic joins. If the runtime of an algorithm for the acyclic join was T(N, k, ¢), it now
becomes T(N™Y k ¢).

E Extension to join-project queries

As we did for join queries, we focus on acyclic join-project queries and then use the well-known
GHD shown in Section 6 and Appendix D that maps any cyclic instance of input size N to an
acyclic instance of input size N, Hence, all our algorithms for acyclic join-project queries can
be extended to cyclic join-project queries with the same approximation guarantees. The running
time changes from O(N - f(k)), where f(-) is a function of k, to O(N"™¥ . £(k)).

We first describe the high-level idea. Recall that y is the set of the output attributes. Recall that
d = |y|. A summary S should be computed with respect to attributes only in y, i.e., S ¢ R?. For a
relation R;, let R} = myna, (R;), the projection of the tuples in R; on the output attributes A} = yNA;.
All our algorithms run almost verbatim using R; instead of R;. Of course, the original relations R;
are still used to identify the joined tuples. In fact, all our algorithms are straightforwardly extended
to join-project queries if we use a nearest neighbor, farthest neighbor, top-k, and rectangular oracles
that work on join-project queries. Next, we introduce such oracles.

Ranked enumeration. For simplicity, let A} = A} — (U ; A)) be the set of active attributes for R

i.e., the set of output attributes that do not appear in any relation before R;. Let w; : RIA 5 R
be a weight function, which takes as input a tuple ¢ € R; and outputs a real number. Let w =
(W1, Wa, - -+, Wp,) be a set of weight functions. For a CQ @, a database I, and a pair of results
t, tp € Q(I), we say t1 <y, tp if X jem) Wj(11.A]) < Xje(m) Wj(t2.A”). We use [32] instead of [33]
to perform ranked enumeration of join-project queries.

LemMma E.1 ([32]). For an acyclic join-project Q, a database 1, and a set of weight functions w =
(w1, Wy, -+ -, Wp,), an index of size O(N) can be constructed in O(N) time, such that given any value

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive Query Results 217:27

k € Z*, the top-k results of Q(I) can be enumerated in ascending or descending order with respect to
w within O(N log N) delay.

We note that the weights in [33] are defined on the attributes rather than on the tuples. However,
from our construction, it is straightforward to also design weight functions on the attributes. Hence,
for simplicity, we follow the definition of weight functions we had in all previous sections.

Euclidean-based oracles. Let 6 € R¥ be a tuple. The nearest neighbor oracle finds a tuple t € Q(I)
such that ¢(0, t) is minimized. The farthest neighbor oracle finds a tuple ¢t € Q(I) such that ¢ (0, t) is
maximized. For each relation R;, we define w;(-) as: w;(p.A]) = ZA,—EA; (p.Aj—0.A;)% where p € R;.
If A} = 0 then w;(p.A}) = 0. Thanks to the decomposability of squared Euclidean distance, for
any query result t € Q(I), Ljc[m) Wi(t-A}) = Ticm] Za,ea (LA; = 0.A)2 = Fpey (1A= 0.4)" =
$?(0,t), The square (and square root) function is increasing for non-negative values, so the order
of the distances with respect to the squared Euclidean distance is the same as the order of the
distances with respect to the Euclidean distance.

Top-k oracle. Let u = (uy,uy,...,uy) be a vector in R?. The top-k oracle finds the k tuples in
Q(I) with the largest inner product with respect to u. For each relation R;, we define w;(-) as:
wi(p.A}) = X a,ear (p-Aj) - uj, where p € R;. It is easy to show that for any query result t € Q(I),
Yietm) Wi(LA]) = Tieim) Zajear (LA)) - u; = (tu).

LemMA E.2. Given an acyclic join-project Q with d output attributes, a database instance I with
input size N, and a tuple € R?, a set of weight functionsw can be constructed in O(N) time, such that
the nearest (resp. farthest) neighbor of 6 in Q(I), arg min, . o) $(0.1) (resp. argmax, .oy #(6.1)),
can be computed in O(N log N) time. Similarly, given a vector u € R%, a set of weight functions w

can be constructed in O(N) time, such that the k tuples in Q(I) with the highest inner product with u
can be computed in O(Nklog N) time.

Rectangular oracle. Similarly to the rectangular oracle in the join queries, we can find all tuples in
I that pass the predicate, defined by the rectangle, and then apply the index from [32] to enumerate
the query results on the surviving tuples.

LemMma E.3. Given an acyclic join-project Q with d output attributes, a database instance I with
input size N, and a rectangle y € R%, an index of size O(N) can be constructed in O(N) time such
that all results in N Q(I) can be enumerated with O(N log N) delay.

Replacing the oracles we used in the main part with the oracles defined in this section, we
conclude with the following results for cohesive and diverse summaries under the Euclidean metric.

CoroLLARY E.4. For an acyclic join-project Q of d output attributes, a database 1 of input size N,
and a parameter ¢ > 0, a (2 + ¢)-cohesive k-summary for Q(I) under the Euclidean metric can be
computed in O (k*N log N + kN log(N)e~%) time.

CoroLLARY E.5. For an acyclic join-project Q of d output attributes, a database 1 of input size N,
and a parameter € > 0, a (% — ¢)-min-diverse k-summary of Q(I) under the Euclidean metric can be
computed in O (k?N log N + kN log(N)e~9) time.

CoroLLARY E.6. For an acyclic join-project Q of d output attributes, a database I of input size N,
and a parameter ¢ € (0, %) a (% — ¢)-sum-diverse k-summary of Q(I) under the Euclidean metric can
be computed in O (kN log(N)e™(@=1/2) time.

Equivalently, using the oracles defined in this section, we can derive the results for constructing
cohesive and diverse summaries under the Hamming metric.

Received May 2024; revised August 2024; accepted September 2024

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

	Abstract
	1 Introduction
	1.1 Problem Definition
	1.2 Related Work
	1.3 Our Contributions

	2 Relational Oracles
	3 Cohesive Summaries
	3.1 Euclidean Metric
	3.2 Hamming Metric

	4 Min-diverse Summaries
	4.1 Euclidean Metric
	4.2 Hamming Metric

	5 Sum-diverse Summaries
	5.1 Euclidean Metric
	5.2 Hamming Metric

	6 Extensions
	7 Conclusion
	References
	A Missing details from Section 1
	B Missing details from Section 3
	B.1 Missing details from Subsection 3.1
	B.2 Missing details from Subsection 3.2

	C Missing details from Section 5
	D Extension to Cyclic Join
	E Extension to join-project queries

