
Computing A Well-Representative Summary of Conjunctive
!ery Results∗

PANKAJ K. AGARWAL, Department of Computer Science, Duke University, USA
ARYAN ESMAILPOUR, Department of Computer Science, University of Illinois Chicago, USA
XIAO HU, Cheriton School of Computer Science, University of Waterloo, Canada
STAVROS SINTOS, Department of Computer Science, University of Illinois Chicago, USA
JUN YANG, Department of Computer Science, Duke University, USA

Data summarization is a powerful approach to deal with large-scale data analytics, which has wide applications
in web search, recommendation systems, approximate query processing, etc. It computes a small, compact
summary that preserves vital properties of the original data. In this paper, we study the data summarization
problem of conjunctive query results, i.e., computing a 𝐿-size subset of a conjunctive query output, for any
given 𝐿 > 0, that optimizes a certain objective. More speci!cally, we are interested in two commonly studied
objectives: cohesion, which measures the maximum distance between a tuple in the query result tuples and
its closest tuple in the summary (𝐿-center clustering); and diversity, which measures the pairwise distances
between the summary items. A simple approach that computes the entire query output and then applies
existing algorithms on top of these materialized tuples su"ers from high computational complexity because
the query output can be large, e.g., for a relational database of 𝑀 tuples, the number of result tuples can be
𝑀𝐿 (1) . We propose 𝑁 (1)-approximation algorithms that compute well-representative summaries of size 𝐿 in
time 𝑁̃ (𝑀 ·𝐿𝐿 (1)), or even 𝑁̃ (𝑀 +𝐿𝐿 (1)) in some cases,1 without computing all result tuples. We also propose
the !rst e#cient (2 + 𝑂)-approximation algorithm for the 𝐿-center clustering problem over relational data.
Our main idea is to formulate a few oracles that enable us to access speci!c query result tuples with certain
properties, to show how these oracles can be implemented e#ciently, and to compute desired summaries with
few invocations of these oracles.

CCS Concepts: • Theory of computation→ Data structures and algorithms for data management.

Additional Key Words and Phrases: relational data, conjunctive queries, diversity, coresets, oracles

ACM Reference Format:
Pankaj K. Agarwal, Aryan Esmailpour, Xiao Hu, Stavros Sintos, and Jun Yang. 2024. Computing A Well-
Representative Summary of Conjunctive Query Results. Proc. ACM Manag. Data 2, 5 (PODS), Article 217
(November 2024), 27 pages. https://doi.org/10.1145/3695835

∗This work was supported by NSF grants CCF-2223870, IIS-2402823, IIS-2348919, a US-Israel Binational Science Foundation
Grant 2022131, and NSERC Discovery Grant.
1We use 𝐿̃ notation to hide log𝑀 or log2 𝑀 factors.

Authors’ Contact Information: Pankaj K. Agarwal, Department of Computer Science, Duke University, Durham, USA,
pankaj@cs.duke.edu; Aryan Esmailpour, Department of Computer Science, University of Illinois Chicago, Chicago, USA,
aesmai2@uic.edu; Xiao Hu, Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada, xiaohu@
uwaterloo.ca; Stavros Sintos, Department of Computer Science, University of Illinois Chicago, Chicago, USA, stavros@uic.
edu; Jun Yang, Department of Computer Science, Duke University, Durham, USA, junyang@cs.duke.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro!t or commercial advantage and that copies bear this notice and the
full citation on the !rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci!c permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/11-ART217
https://doi.org/10.1145/3695835

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

https://doi.org/10.1145/3695835
https://doi.org/10.1145/3695835

217:2 Pankaj K. Agarwal et al.

1 Introduction
Data summarization is a potent strategy in large-scale data analytics, o"ering a means to compute a
compact yet comprehensive dataset that preserves vital properties of the original data. A multitude
of data summarization techniques have been developed for diverse applications, encompassing
sampling [12, 23, 40, 53], histograms [47, 48], wavelet-based synopses [29, 39], sketching [5, 27, 28],
coresets [6], and more [29]. The objectives on the quality of the data summaries strongly depend on
the downstream application scenarios. Viewing query result tuples as points in a multi-dimensional
space, two common objectives are cohesion, which measures the maximum distance between a
result tuple and its closest tuple in the summary, and diversity, which measures the minimum or
average pairwise distance between tuples in the summary.

Most past data-summarization algorithms assume they are directly given the data to summarize.
However, one often desires to summarize the output of a query, especially when the query output
is large. In such applications, the simple approach of computing all query result tuples and then
applying a known algorithm is ine"ective because of its high computational cost when the query
output size is large (which is why we want to compute a summary in the !rst place). There
is some recent work on computing summaries of query results [3, 11, 27, 57], but this line of
work has focused on simple queries, such as range queries, where data resides in a single table.
In real-world scenarios, more than 70% of the current data sets are relational [1], where data is
stored in multiple tables, and the desired data is obtained by performing conjunctive queries – the
combination of select, project, and join queries – on these tables. Note that the size of the output of
a conjunctive query can be polynomially larger than the size of the tables. Furthermore, user queries
may have very di"erent local selection predicates. Hence, the challenging question is constructing
a well-representative summary for the output of a given conjunctive query without computing
and materializing its entire output. While there are some recent results on clustering in relational
data [31, 54, 55], there is no result on e#ciently computing a well-representative summary in
relational data. Hence, in this paper, we take on this challenging question and investigate how to
construct well-representative summaries for conjunctive query results e#ciently.

1.1 Problem Definition
Conjunctive query. Let R denote a database schema and A the set of all attributes. R consists of a
set of𝑃 relations {𝑄1, . . . ,𝑄𝑁}, where each relation 𝑄𝑂 has a subset of attributes A𝑂 ↑ A, satisfying⋃

𝑂↓ [𝑁] A𝑂 = A. Let dom(𝑅) denote the domain of attribute 𝑅 ↓ A. For the simplicity of exposition,
we assume that all attributes have the domain R of reals, though our results can be generalized to
other domains. A database instance I consists of the set {𝑄I

𝑂 } of relational instances, where each 𝑄I
𝑂

is a set of tuples over the domain R |A𝐿 | . Let 𝑆 ↓ R |A𝐿 | denote a tuple in 𝑄I
𝑂 : for each attribute 𝑅 ↓ A𝑂 ,

we use 𝑆 .𝑅 to denote 𝑆 ’s value for attribute 𝑅; for each subset of attributes 𝑇 ↑ A𝑂 , we use 𝑆 .𝑇 to
denote 𝑆 ’s projection onto attributes in 𝑇 . When the context is clear, we will drop the superscript I
and simply refer to relation instance 𝑄I

𝑂 as relation 𝑄𝑂 . We consider conjunctive queries (CQs):

Q := 𝑈y
(
(𝑉p1𝑄1) ! (𝑉p2𝑄2) ! · · · ! (𝑉p𝑀𝑄𝑁)

)
, (1)

where y ↑ A de!nes the set of output attributes, each p𝑂 is a Boolean predicate over A𝑂 , and 𝑈,𝑉,!
are relational projection, selection, and natural join operators. By renaming the attributes, we also
allow self-joins in Q, i.e., the same relation can be joined multiple times in Q. Let 𝑊 = |y|. The
output of Q over database instance I is de!ned as

Q(I) =
{
𝑆 ↔ ↓ R𝑃

%% ↗𝑆 ↓ R |A | : 𝑆 .y = 𝑆 ↔ ↘ (≃𝑋 ↓ [𝑃] : 𝑆 .A𝑂 ↓ 𝑄I
𝑂 ↘ p𝑂 (𝑆 .A𝑂))

}
.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:3

Query Q !lters relation 𝑄𝑂 by the Boolean predicate p𝑂 , joins !ltered tuples (one from each relation)
sharing the same values on common attributes, and then projects the resulting tuples onto y. Each
tuple in Q(I) is essentially a point in R𝑃 .

We say a CQ is full if y = A (i.e., 𝑈y is identity function). A full CQ is also called a join query. In
this paper we mainly focus on acyclic CQs. Recall that a CQ is acyclic [16, 37] if there exists a tree
T , called a join tree of Q, where 1) the nodes of T are 𝑄1, . . . ,𝑄𝑁 ; 2) for each attribute 𝑅 ↓ A, the
set of nodes whose attributes contain 𝑅 form an edge-connected subtree of T . For simplicity, in all
cases we assume all dangling tuples are removed from I.2

Well-representative summaries for CQs. Given a CQ Q of the form (1), a database I, and a
positive integer 𝐿 , we refer to a subset 𝑌 ↑ Q(I) of 𝐿 distinct tuples from Q(I) as a k-summary of
Q(I). We use two di"erent (though related) objectives to measure the quality of a summary. Let
𝑍 : R |y | ⇐ R |y | → R⇒0 be a distance function.
• The cohesion of 𝑌 is de!ned using both Q(I) and 𝑌 :

𝑎 (𝑌,Q(I)) = max
𝑄2↓Q(I)

min
𝑄1↓𝑅

𝑍 (𝑆1, 𝑆2). (2)

Intuitively, cohesiveness ensures that every result tuple is close to some tuple in the sum-
mary. For any 𝐿 > 0, let 𝑎𝑆 (Q(I)) denote the optimal cohesion of any 𝐿-summary of Q(I), i.e.,
𝑎𝑆 (Q(I)) = min

𝑅↑Q(I), |𝑅 |=𝑆
𝑎 (𝑌,Q(I)). A 𝐿-summary 𝑌⇑ is called an optimally cohesive 𝐿-summary if

𝑎 (𝑌⇑,Q(I)) = 𝑎𝑆 (Q(I)). For a parameter𝑏 > 1, a𝐿-summary 𝑌 is𝑏-cohesive if 𝑎 (𝑌) ⇓ 𝑏 · 𝑎𝑆 (Q(I)).
We note that the de!nition of cohesion is identical to the de!nition of the cost in the 𝐿-center
clustering problem. Hence, an 𝑏-cohesive 𝐿-summary 𝑌 is also an 𝑏-approximation of 𝐿-center
clustering of Q(I) (relational 𝐿-center problem).

• The diversity of a set 𝑌 ⇔ R |y | , has two variants:

Sum-diversity: 𝑐 (𝑌) = 1
2

∑
𝑇,𝑈↓𝑅⇐𝑅

𝑍 (𝑑,𝑒); (3)

Min-diversity: 𝑐 (𝑌) = min
𝑇,𝑈↓𝑅⇐𝑅 :𝑇ω𝑈

𝑍 (𝑑,𝑒). (4)

Diversity seeks to ensure that summary tuples are far away from each other. For any 𝐿 > 0, let
𝑓𝑆 (Q(I)) denote the optimal diversity of any 𝐿-summary ofQ(I), i.e., 𝑓𝑆 (Q(I)) = min

𝑅↑Q(I), |𝑅 |=𝑆
𝑐 (𝑌).

A 𝐿-summary 𝑌⇑ is called an optimally diverse 𝐿-summary if 𝑐 (𝑌⇑) = 𝑓𝑆 (Q(I)). Given a parameter
𝑏 ↓ (0, 1), a 𝐿-summary 𝑌 is 𝑏-diverse if 𝑐 (𝑌) ⇒ 𝑏 · 𝑓𝑆 (Q(I)).
Our goal is to compute e#ciently well-representative summaries for an input CQ Q and database

instance I. We are interested in the data complexity: i.e., the query size𝑃 is a constant, and the
complexity of our algorithms is measured by the input size 𝑀 =

∑
𝑂↓ [𝑁] |𝑄I

𝑂 |, and the output size 𝐿 .

1.2 Related Work
Summaries of a given data set. Computing various summaries for a set 𝑔 of data points has
been extensively studied in the literature under di"erent objectives. A summary that maximizes
the sum-diversity (3) is known as remote-clique or max-sum problem [59], and that maximizes the
min-diversity (4) is known as remote-edge or max-min problem [64], which is NP-hard.3 For the
max-sum problem, there are e#cient 1

2 -diverse algorithms that work for any distance function [17,

2Dangling tuples are those not participating in any result of the underlying join query, which can be done within𝐿 (𝑀)
time for acyclic join queries. See Appendix A.
3The NP-hardness of max-min problem implies the NP-hardness of computing an optimally min-diverse summary. See
Appendix A.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:4 Pankaj K. Agarwal et al.

18, 59]. Better algorithms are proposed for the Euclidean distance, either with better approximation
factors [19–21] or with better time complexity [11]. For the max-min problem, Tamir [64] showed
that a greedy algorithm returns a 1

2 -approximation for any metric. A faster algorithm [11] is also
known for the max-min problem the under Euclidean metric. Computing a summary of 𝑔 that
minimize cohesion,4 known as the k-center problem, is NP-hard.5 The well-known Gonzalez’s
algorithm [41] returns a 2-cohesive 𝐿-summary of a set 𝑔 in 𝑁 (𝐿 · |𝑔 |) time under any metric. Its
running time was improved to 𝑁 (|𝑔 | log𝐿) in [38] (see also [44]). All the problems also have been
studied under fairness constraints [2, 4, 18, 49, 51, 52, 56].
Summaries of selection results. There is some work on computing the summaries of range
query outputs of a set of points 𝑔 . A near-linear-size index exists [3, 57] that, given any query
rectangle 𝑕 , computes a (2 + 𝑂)-cohesive summary 𝐿-summary of 𝑔 ↖ 𝑕 in 𝑁 (𝐿 · polylog(|𝑔 |))
time. Subsequently, a similar index was shown to generate 𝑁 (1)-diverse summaries for 𝑔 ↖ 𝑕 .
Additionally, summaries have been extensively studied for statistical queries, such as sampling,
sketching, frequent moments, and embedding. We refer interested readers to [30] for details.
Summaries of join results.Computing summaries of the results for a join query is useful to answer
analytical queries while providing provably accuracy guarantees, such as sampling [24, 26, 34, 50,
66, 67], factorization [58] and witness [46]. Recently, the 𝐿-means and 𝐿-median clustering problems
over relational data have been studied [31, 36, 55]. The coreset for empirical risk minimization
problems over relational data [25] has also been considered. However, the time complexity of their
algorithm for constructing an 𝑂-coreset depends on the diameter of the query results. Merkl et
al. [54] studied the hardness of diversity problems over relational data under the Hamming metric.
Under data complexity, they give an expensive algorithm (computing all query results) to construct
an 𝑁 (𝐿𝑁) (exact) coreset. Arenas et al. [13], also studied the hardness of diversity problems under
the Hamming metric and ultrametrics. Furthermore, they propose polynomial time algorithms for
some diversity problems under ultrametrics (Euclidean and Hamming metrics are not ultrametrics).

1.3 Our Contributions
For a CQ Q with 𝑊 output attributes, a database I of input size 𝑀 , and a parameter 𝐿 , we propose
several 𝑁 (1)-approximation algorithms that compute cohesive and diverse 𝐿-summaries for Q(I)
in 𝑁̃ (𝑀 · 𝐿𝐿 (1)) or 𝑁̃

(
𝑀 + 𝐿𝐿 (1)) time, under the Euclidean or Hamming metric. We include all the

log𝑀 factors in the analyses and theorems in the next sections. All our results for acyclic join queries
are shown in Table 1, and the extended results to cyclic join queries and even join-project queries are
discussed in Section 6. In the next sections we use the notation 𝑍 (·, ·) for the Euclidean distance and
𝑍𝑉 (·, ·) for the Hamming distance. For two tuples 𝑖,𝑗 ↓ R𝑃 , let 𝑍 (𝑖,𝑗) = (∑𝑊 𝑁 ↓A (𝑖 .𝑅 𝑋 ↙𝑗.𝑅 𝑋)2)1/2
and 𝑍𝑉 (𝑖,𝑗) =

∑
𝑊 𝑁 ↓A (𝑖 .𝑅 𝑋 ω 𝑗.𝑅 𝑋), where is the indicator function.

• Cohesive summary (Section 3):
– Euclidean metric (Section 3.1). We design an algorithm to construct a (2 + 𝑂)-cohesive
𝐿-summary in 𝑁̃ (min{𝐿2𝑀 ,𝐿 ∝𝑃/2′+1} + 𝐿𝑀𝑂↙𝑃) time. This result also leads to the !rst e#cient
(2 + 𝑂)-approximation algorithm for the relational 𝐿-center clustering problem. The best
previously known algorithm for the relational 𝐿-centering problem has either an additive
approximation factor that depends on the diameter of Q(I) or a relative approximation factor
that depends exponentially on 𝑊 [25]. In order to derive this result, we !rst construct two𝑁 (1)-
cohesive summaries: (i) a tree-based algorithm that runs in𝑁 (𝑀𝐿2) time using𝑁 (𝑀 +𝐿2) space,

4For a set 𝑌 of data points, the cohesion for a 𝑆-summary 𝑅 is similarly de!ned as 𝑍 (𝑅) = max
𝑂2↓𝑃

min
𝑂1↓𝑄

𝑎 (𝑄1, 𝑄2) .
5The NP-hardness of the k-center problem implies the NP-hardness of computing an optimally cohesive summary. See
Appendix A.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:5

Summaries Metric Time Space Approximation Ref.

Cohesive
Euclidean

𝐿2𝑀 + 𝐿𝑀𝑂↙𝑃 𝑀 + 𝐿2 + 𝐿𝑂↙𝑃 2 + 𝑂 §3.1

𝐿 ∝𝑃/2′+1 + 𝐿𝑀𝑂↙𝑃 𝑀 + 𝐿 ∝𝑃/2′+1 + 𝐿𝑂↙𝑃 2 + 𝑂 §3.1

Hamming 𝑀𝐿𝑃 𝑀 + 𝐿𝑃 2 §3.2

Min-diverse
Euclidean

𝐿2𝑀 + 𝐿𝑀𝑂↙𝑃 𝑀 + 𝐿2 + 𝐿𝑂↙𝑃 1
2 ↙ 𝑂 §4.1

𝐿 ∝𝑃/2′+1 + 𝐿𝑀𝑂↙𝑃 𝑀 + 𝐿 ∝𝑃/2′+1 + 𝐿𝑂↙𝑃 1
2 ↙ 𝑂 §4.1

Hamming 𝑀𝐿𝑃 𝑀 + 𝐿𝑃 1
2 §4.2

Sum-diverse

Euclidean (𝑀 + 𝐿)𝑂↙ (𝑃↙1)/2 𝑀 + 𝐿𝑂↙ (𝑃↙1)/2 1
2 ↙ 𝑂 §5.1

Hamming
𝑀𝐿2 + 𝐿3 𝑀 + 𝐿 1 ↙ 2

𝑆 §5.2

𝑀𝐿 + 𝐿2 𝑀 + 𝐿 1
2 §5.2

Table 1. Summary of our results for acyclic join queries. For simplicity, we hide the 𝑁 (·) notation and
log𝑀 or log2 𝑀 factors. 𝑀 is the input size of the database, 𝐿 is the size of the summary, 𝑂 ↓ (0, 1) is an error
parameter given as input, and 𝑊 is the number of a"ributes in the join query.

but whose approximation depends on the number of relations in the join query; (ii) a geometry-
based 6-approximation algorithm that runs in 𝑁

(
𝑀 + 𝐿 ∝𝑃/2′+1) time using 𝑁

(
𝑀 + 𝐿 ∝𝑃/2′+1)

space. We then combine the 𝑁 (1)-approximation algorithms with a grid-based construction to
derive a 𝑂-coreset (formally de!ned in Section 3.1.3) of 𝑁 (𝑂↙𝑃𝐿) centers such that every result
tuple from Q(I) is “near” enough to some center from the coreset. The 𝑂-coreset leads to the
construction of a (2 + 𝑂)-cohesive 𝐿-summary in 𝑁̃

(
min{𝑀𝐿2,𝐿 ∝𝑃/2′+1} + 𝐿𝑀𝑂↙𝑃

)
time.

– Hamming metric (Section 3.2). Using an iterative approach that implicitly excludes tuples
close to the selected tuples in the summary, we present an algorithm that constructs a 2-cohesive
𝐿-summary in 𝑁

(
𝑀 · 𝐿𝑃

)
time using 𝑁 (𝑀 + 𝐿𝑃) space.

• Min-Diverse summary (Section 4):
– Euclidean metric (Section 4.1).We !rst show that any cohesive coreset is also a min-diverse
coreset. Hence, using the ideas for constructing cohesive summaries, we design an algorithm
to construct a (12 ↙ 𝑂)-min-diverse 𝐿-summary in 𝑁̃

(
min

{
𝑀𝐿2,𝐿 ∝𝑃/2′+1} + 𝐿𝑀𝑂↙𝑃

)
time.

– Hamming metric (Section 4.2). Using ideas for constructing cohesive summaries, we design
an algorithm to construct a 1

2 -min-diverse summary in 𝑁
(
𝑀𝐿𝑃

)
time using 𝑁

(
𝑀 + 𝐿𝑃

)
space.

• Sum-Diverse summary (Section 5):
– Euclidean metric (Section 5.1). We present a geometric approach using the notion of
𝑂-net that can construct an (12 ↙ 𝑂)-diverse 𝐿-summary in 𝑁̃

(
(𝑀 + 𝐿)𝑂↙ (𝑃↙1)/2) time using

𝑁
(
𝑀 + 𝐿𝑂↙ (𝑃↙1)/2) space.

– Hamming metric (Section 5.2). We propose two algorithms to construct sum-diverse sum-
maries. The !rst one, a local search algorithm, constructs a (1 ↙ 2/𝐿)-sum-diverse 𝐿-summary
in 𝑁̃

(
𝑀𝐿2 + 𝐿3

)
time using 𝑁 (𝑀 + 𝐿) space. The second one, a greedy algorithm, constructs a

1
2 -sum-diverse 𝐿-summary in 𝑁̃ (𝑀𝐿 + 𝐿2) time using 𝑁 (𝑀 + 𝐿) space.

Main ideas. As mentioned, to summarize the output of a CQ, one could compute all result
tuples !rst and then directly apply existing algorithms developed for computing summaries for
a given dataset [41, 59, 64]. However, materializing the entire query output is expensive. Instead,
our approach is to formulate appropriate oracles that enable us to access some speci!c query

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:6 Pankaj K. Agarwal et al.

result tuples with certain properties—including nearest neighbor, farthest neighbor, top-𝐿 , and
rectangular lookup—and show how to modify existing algorithms or design new algorithms using
as few invocations of these oracles as possible. One key insight is that our computation can be
modeled as ranked enumeration of query answers. Conceptually, given a CQ Q, a set of weight
functions de!ned on attributes, and a database I, ranked enumeration returns Q(I) in ascending
(or descending) order with respect to their weights, one at a time, with a bounded delay between
consecutive answers. We carefully design weight functions using query and data to apply ranked
enumeration in our settings. We also push selections down as far as possible. Speci!cally, given a set
of selection predicates, each on an individual attribute, we simply push the selection predicates down
to the base tables !rst and enumerate all result tuples in Q(I) satisfying the selection predicates
with a bounded delay between consecutive answers.

2 Relational Oracles
We show some relational oracles that will be commonly used throughout the paper.
Ranked enumeration. Let 𝑘𝑂 : R |A𝐿 | → R be a weight function, which takes as input a tuple
𝑆 ↓ 𝑄𝑂 and outputs a real number. Let ∞𝑘 = ∈𝑘1,𝑘2, · · · ,𝑘𝑁∋ be a set of weight functions. For
a CQ Q, a database I, and a pair of results 𝑆1, 𝑆2 ↓ Q(I), we say 𝑆1 ⇓ ∞𝑏 𝑆2 if

∑
𝑋↓ [𝑁] 𝑘 𝑋 (𝑆1.A𝑋) ⇓∑

𝑋↓ [𝑁] 𝑘 𝑋 (𝑆2.A𝑋).

L!""# 2.1 ([33]). For an acyclic joinQ, a database I, and a set of weight functions ∞𝑘 = ∈𝑘1,𝑘2,· · ·,𝑘𝑁∋,
an index of size 𝑁 (𝑀) can be constructed in 𝑁 (𝑀) time, such that given any value 𝐿 ↓ Z+, the top-𝐿
results of Q(I) can be enumerated in ascending or descending order with respect to ∞𝑘 within𝑁 (log𝑀)
delay using 𝑁 (𝐿) additional space.

By exploiting the variety of weight functions supported by ranked enumeration, we are able to
de!ne the Euclidean-based oracles and the top-𝐿 oracle. For simplicity, let Ā𝑂 = A𝑂 ↙ (⋃𝑋<𝑂 A𝑋) be
the set of active attributes for 𝑄𝑂 , i.e., the attributes in 𝑄𝑂 that do not appear in a relation 𝑄 𝑋 for 𝑙 < 𝑋 .
Euclidean-based oracles. Let 𝑚 ↓ R𝑃 be a tuple. The nearest (resp. farthest) neighbor oracle !nds a
tuple 𝑆 ↓ Q(I) that is closest to 𝑚 under the Euclidean metric. For each relation 𝑄𝑂 and for a tuple
𝑖 ↓ 𝑄𝑂 , we de!ne𝑘𝑂 (𝑖) =

∑
𝑊 𝑁 ↓Ā𝐿

(𝑖 .𝑅 𝑋 ↙ 𝑚 .𝑅 𝑋)2. It is easy to see for any query result 𝑆 ↓ Q(I),

∑
𝑂↓ [𝑁]

𝑘𝑂 (𝑆 .A𝑂) =
∑

𝑂↓ [𝑁]

∑
𝑊 𝑁 ↓Ā𝐿

(𝑆 .𝑅 𝑋 ↙ 𝑚 .𝑅 𝑋)2 =
∑
𝑊↓A

(𝑆 .𝑅 ↙ 𝑚 .𝑅)2 = 𝑍2 (𝑚 , 𝑆),

thanks to the decomposability of the squared Euclidean distance. The square (and square root)
function is increasing for non-negative values, so the squared Euclidean distance preserves the
ordering of Euclidean distance.
Top-𝐿 oracle. Let 𝑛 = ∈𝑛1,𝑛2, . . . ,𝑛𝑃∋ ↓ R𝑃 be a vector. The top-𝐿 oracle !nds the 𝐿 tuples from
Q(I) with the largest inner product with 𝑛. For each relation 𝑄𝑂 and for any 𝑖 ↓ 𝑄𝑂 , we de!ne
𝑘𝑂 (𝑖) =

∑
𝑊 𝑁 ↓Ā𝐿

(
𝑖 .𝑅 𝑋

)
· 𝑛 𝑋 . It is easy to see that for any query result 𝑆 ↓ Q(I),

∑
𝑂↓ [𝑁]

𝑘𝑂 (𝑆 .A𝑂) =
∑

𝑂↓ [𝑁]

∑
𝑊 𝑁 ↓Ā𝐿

(
𝑆 .𝑅 𝑋

)
· 𝑛 𝑋 = ∈𝑆,𝑛∋.

L!""# 2.2. Given an acyclic join Q, a database instance I with input size 𝑀 , and a tuple 𝑚 ↓ R𝑃 ,
the nearest (resp. farthest) neighbor of 𝑚 in Q(I), under the Euclidean metric, can be computed in
𝑁 (𝑀) time. Each tuple in Q(I) can be enumerated in ascending or descending order with respect to its

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:7

distance from 𝑚 within 𝑁 (log𝑀) delay. Furthermore, given a vector 𝑛 ↓ R𝑃 , the 𝐿 tuples in Q(I) with
the highest inner product with 𝑛 can be computed in 𝑁 (𝑀 + 𝐿 log𝑀) time.

Rectangular oracle. Next, we focus on counting and enumerating the join results that lie in
a rectangle. Let 𝑕 ↑ R𝑃 be an axis-parallel rectangle, de!ned as the product of 𝑊 intervals, i.e.,
𝑕 = 𝑕1 ⇐ . . . ⇐𝑕𝑃 , where𝑕 𝑋 = [𝑜 𝑋 ,𝑝 𝑋] and 𝑜 𝑋 ,𝑝 𝑋 ↓ R. A tuple 𝑆 lies in𝑕 if and only if 𝑆 .𝑅 𝑋 ↓ 𝑕 𝑋 △
𝑜 𝑋 ⇓ 𝑆 .𝑅 𝑋 ⇓ 𝑝 𝑋 , for every 𝑅 𝑋 ↓ A. Hence, a rectangle𝑕 de!nes a predicate 𝑜 𝑋 ⇓ 𝑅 𝑋 ⇓ 𝑝 𝑋 for each
attribute 𝑅 𝑋 ↓ A. Given a rectangle𝑕 , we can !nd all tuples in I that pass the predicate in 𝑁 (𝑀)
time and then apply Yannakakis algorithm [65] to count the number of result tuples in𝑕 ↖Q(I), or
apply the index from [15] to enumerate the result tuples in𝑕 ↖ Q(I).

L!""# 2.3. For an acyclic join Q, a database I of input size 𝑀 , and a rectangle𝑕 ↓ R𝑃 , an index of
size 𝑁 (𝑀) can be constructed in 𝑁 (𝑀) time such that i) the number of result tuples in𝑕 ↖ Q(I) can
be returned in 𝑁 (𝑀) time; and ii) all result tuples in𝑕 ↖ Q(I) can be enumerated with 𝑁 (1) delay.

3 Cohesive Summaries
In this section, we present algorithms to construct cohesive 𝐿-summaries for the Euclidean and
Hamming metrics. Recall that any algorithm presented in this section is also an algorithm for the
relational 𝐿-center clustering problem.

3.1 Euclidean Metric
Algorithm1:C$%!&’(!E)*+’,!#-(Q, I,𝐿, 𝑂)
1 (𝑌, 𝑞 , 𝑟) ▽ C$-&.#-.A//0$1(Q, I,𝐿);
2 𝑔𝑐 ▽ C$0!&!.(Q, I, 𝑌, 𝑞 , 𝑟, 𝑂);
3 𝑌⇑ ▽ F!,!0G0!!-!(𝑔𝑐 ,𝐿) [38];
4 return 𝑌⇑;

Our main algorithm for constructing a cohe-
sive summary for Euclidean distance consists
of three steps. In the !rst step, we compute a 𝑟-
cohesive 𝐿-summary 𝑌 for some constant 𝑟 ⇒ 1,
along with a number 𝑞 such that 𝑎𝑆 (Q(I)) ⇓ 𝑎 (𝑌,Q(I)) ⇓ 𝑞 ⇓ 𝑟 · 𝑎𝑆 (Q(I)). Next, 𝑌 is used to
construct a small set 𝑔𝑐 ↑ Q(I) (called 𝑂-coreset) such that the optimally cohesive 𝐿-summary in 𝑔𝑐
is an (1 + 𝑂)-cohesive 𝐿-summary in Q(I). In the last step, we run a 2-approximation algorithm
(Feder and Greene algorithm [38]) for the cohesive summary (in the non-relational setting) on
𝑔𝑐 , and we derive the !nal result. Throughout the paper, we use the term non-relational setting to
denote the case where all input data is given in one relation.

The pseudocode of our main algorithm is shown in Algorithm 1. In the next subsections, we show
all three steps in detail. In Subsections 3.1.1 and 3.1.2, we show two di"erent constant approximations
algorithms for the cohesive summary. We can invoke any of them as the ConstantApprox(Q, I,𝐿)
procedure in Algorithm 1. Even though they both return a constant approximation, we present both
because neither dominates the other in terms of running time. The !rst one runs in roughly𝑁

(
𝐿2𝑀

)
time while the second one runs in 𝑁

(
𝐿𝑀 + 𝐿𝐿 (𝑃)) time. Next, in Subsection 3.1.3, we present the

Coreset(·) procedure that gets as input the output of the previous constant approximation algorithm
and constructs an 𝑂 coreset 𝑔𝑐 of size𝑁 (𝑂↙𝑃𝐿). Finally, in Subsection 3.1.4, we run a 2-approximation
algorithm for the cohesive summary (in the non-relational setting) on 𝑔𝑐 , and show the !nal result.
All missing proofs in this section are given in Appendix B.1.

3.1.1 Constant cohesive summary: Tree-based approximation.
In this part, we describe a hierarchical approach for constructing a cohesive summary.

Main ideas. Consider an acyclic join Q and a database I. Let A𝑇 ,A𝑈 ↑ A be two disjoint subsets of
attributes. Let 𝑌𝑇 ⇔ R |A𝑅 | be a 𝑞𝑇 -cohesive 𝐿-summary of 𝑈A𝑅Q(I), and 𝑌𝑈 ⇔ R |A𝑆 | be a 𝑞𝑈-cohesive
𝐿-summary of 𝑈A𝑆Q(I). We show that a set 𝑌 ⇔ R |A𝑅̸A𝑆 | of size 𝐿 can be computed e#ciently with

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:8 Pankaj K. Agarwal et al.

small cohesion with respect to 𝑈A𝑅̸A𝑆Q(I). Let

𝑌 =
{
𝑆 ↓ 𝑌𝑇 ⇐ 𝑌𝑈 : ↗𝑆 ↔ ↓ 𝑈A𝑅̸A𝑆Q(I),𝑍 (𝑆, 𝑆 ↔) ⇓

↦
2 ·max{𝑞𝑇 , 𝑞𝑈}

}
,

be the set of tuples from the Cartesian product Algorithm2:C$-&.#-.A//0$1_T0!!(Q, I,𝐿)
1 (𝑌𝑑, 𝑞𝑑) ▽ C$"/).!R$$.(Q, I,𝐿);
2 𝑌 ▽ ∀;
3 foreach 𝑚 ↓ 𝑌𝑑 do
4 foreach 𝑋 ↓ [𝑃] do
5 foreach 𝑖 ↓ 𝑄𝑂 do
6 𝑘𝑂 (𝑖)▽

∑
𝑊 𝑁 ↓Ā𝐿

(
𝑖 .𝑅 𝑋 ↙ 𝑚 .𝑅 𝑋

)2;
7 ∞𝑘 ▽ ∈𝑘1,𝑘2, · · · ,𝑘𝑁∋;
8 𝑠▽index built for Q, I, ∞𝑘 as Lemma 2.1;
9 𝑆𝑒 ▽ !rst result enumerated from 𝑠 ;

10 𝑌 ▽ 𝑌 ̸ {𝑆𝑒 };
11 while |𝑌 | < 𝐿 do
12 𝑆 ▽ the next result enumerated from 𝑠 ;
13 if 𝑆 ε 𝑌 then 𝑌 ▽ 𝑌 ̸ {𝑆};
14 return 𝑌 with radius 𝑞 = 2 · 𝑞𝑑 ;

of two summaries that are “near” to some re-
sult tuple in 𝑈A𝑅̸A𝑆Q(I). If 𝑌 is a 2-cohesive 𝐿-
summary of 𝑌 , a key property we show is that
𝑌 is a 10

↦
2max{𝑞𝑇 , 𝑞𝑈}-cohesive 𝐿-summary

of 𝑈A𝑅̸A𝑆Q(I). To construct a cohesive sum-
mary for 𝑈A𝑅̸A𝑆Q(I), it su#ces to construct a
cohesive summary for 𝑈A𝑅Q(I) and 𝑈A𝑆Q(I)
separately, further select a few representa-
tives from the Cartesian product of these two
summaries carefully, and !nally return a 𝐿-
cohesive summary for those representatives.

Our algorithm. Now, we are ready to de-
scribe our relational algorithm, with pseu-
docode given in Algorithm 2 and a running
example in Figure 1. Algorithm 2 !rst calls Al-
gorithm 3 as a primitive to return a set 𝑌𝑑 ⇔ R𝑃
of size 𝐿 and a value 𝑞𝑑 such that the cohesion
𝑎 (𝑌𝑑,Q(I)) is small and the value 𝑞𝑑 is a su#ciently small upper bound of 𝑎 (𝑌𝑑,Q(I)). Notice that
𝑌𝑑 will not necessarily be a subset of Q(I). Then Algorithm 2 uses 𝑌𝑑 to construct a set 𝑌 ↑ Q(I) that
is a𝑁 (1)-cohesive 𝐿-summary and a value 𝑞 such that 𝑎𝑆 (Q(I)) ⇓ 𝑞 ⇓ 𝑏𝑎𝑆 (Q(I)), for a constant 𝑏 .

In Algorithm 3, we !rst construct a complete binary tree T with𝑃 leaf nodes, where relation
𝑄𝑂 is stored at the 𝑋-th leaf node. For each node 𝑛 ↓ T , we denote Ā𝑓 =

⋃
𝑔𝐿 is a descendant of 𝑓 Ā𝑂 and

Q𝑓 = 𝑈Ā𝑇
Q(I). We visit all nodes in a bottom-up fashion, and for each node 𝑛 ↓ T , we compute i) a

set 𝑌𝑓 of 𝐿 tuples in R |Ā𝑇 | with small cohesion 𝑎 (𝑌𝑓,Q𝑓 (I)), and ii) a su#ciently small upper bound
𝑞𝑓 of 𝑎 (𝑌𝑓,Q𝑓 (I)); see Lemma 3.4. Next, we show how to compute 𝑌𝑓 and 𝑞𝑓 for each node 𝑛.

If 𝑛 is a leaf node that corresponds to relation 𝑄𝑂 , we compute an approximate 𝐿-summary 𝑌𝑓 for
𝑈Ā𝐿

(𝑄𝑂) by invoking the algorithm in [38]. The cohesion of 𝑌𝑓 is denoted as 𝑞𝑓 = 𝑎 (𝑌𝑓, 𝑈Ā𝐿
(𝑄𝑂)). If

𝑛 is an internal node, let 𝑑,𝑒 be the two children of 𝑛 in T . Let 𝑌𝑇 , 𝑌𝑈 be the subsets of 𝐿 tuples we
got from nodes 𝑑,𝑒, respectively. Let 𝑞 ⇑ = max

{
𝑞𝑇 , 𝑞𝑈

}
. We construct an approximate 𝐿-summary

𝑌𝑓 using the tuples in 𝑌𝑇 ⇐ 𝑌𝑈 . To check for each tuple 𝑚 ↓ 𝑌𝑇 ⇐ 𝑌𝑈 , whether there exists any
tuple in Q𝑓 (I) within distance

↦
2 · 𝑞 ⇑, we use a nearest-neighbor oracle. For relation 𝑄𝑂 , we de!ne

the weight function𝑘𝑂 (·) as𝑘𝑂 (𝑖) =
∑

𝑊 𝑁 ↓Ā𝐿↖Ā𝑇

(
𝑖 .𝑅 𝑋 ↙ 𝑚 .𝑅 𝑋

)2 , where 𝑖 ↓ 𝑄𝑂 . We instantiate the
index, de!ned by 𝑠 , for ranked enumeration from Lemma 2.1 with ∞𝑘 = ∈𝑘1, . . . ,𝑘𝑁∋ as the vector
of weight functions. Let 𝑆𝑒 be the !rst result tuple enumerated from 𝑠 in ascending order (𝑆𝑒 is
the nearest neighbor of 𝑚 in Q𝑓 (I)). If 𝑍 (𝑚 , 𝑆𝑒) ⇓

↦
2max{𝑞𝑇 , 𝑞𝑈}, then we keep 𝑚 in 𝑌𝑓 ; otherwise,

we skip 𝑚 . Finally, we !nd a 2-cohesive 𝐿-summary of 𝑌𝑓 by invoking the Feder-Greene algorithm
[38], denoted as 𝑌𝑓 , and we set the upper bound 𝑞𝑓 = 𝑎 (𝑌𝑓, 𝑌𝑓) +

↦
2max{𝑞𝑇 , 𝑞𝑈}. In the end, the

Algorithm 3 returns the set 𝑌𝑑 and the upper bound 𝑞𝑑 , for the root node 𝑡 of T , to Algorithm 2.
Let 𝑡 be the root of T . Recall that 𝑌𝑑 ↑ Q(I) may not hold. To obtain a valid summary for Q(I),

in Algorithm 2, we visit every tuple 𝑚 ↓ 𝑌𝑑 and !nd its nearest neighbor in Q(I) using a similar

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:9

Algorithm 3: C$"/).!R$$.(Q, I,𝐿)
1 Let T be a complete binary tree with𝑃 leaf nodes;
2 foreach leaf node 𝑛 ↓ T do
3 Suppose 𝑛 corresponds to relation 𝑄𝑂 ;
4 𝑌𝑓 ▽ 𝐿-summary of 𝑈Ā𝐿

𝑄𝑂 by algorithm
in [38];

5 𝑞𝑓 ▽ 𝑎 (𝑌𝑓, 𝑈Ā𝐿
𝑄𝑂);

6 foreach internal node 𝑛 ↓ T in bottom-up way do
7 𝑑,𝑒 ▽ two children of 𝑛 in T , 𝑌𝑓 ▽ ∀;
8 foreach 𝑚 ↓ 𝑌𝑇 ⇐ 𝑌𝑈 do
9 foreach 𝑋 ↓ [𝑃] do
10 foreach 𝑖 ↓ 𝑄𝑂 do
11 𝑘𝑂 (𝑖)▽

∑
𝑊 𝑁 ↓Ā𝐿↖Ā𝑇

(
𝑖 .𝑅 𝑋 ↙ 𝑚 .𝑅 𝑋

)2
12 ∞𝑘 ▽ ∈𝑘1,𝑘2, · · · ,𝑘𝑁∋;
13 𝑠 ▽ index built for Q𝑓, I, ∞𝑘 as Lemma 2.1;
14 𝑆𝑒 ▽ the !rst result enumerated from 𝑠 ;
15 if 𝑍 (𝑆𝑒 , 𝑚) ⇓

↦
2 ·max{𝑞𝑇 , 𝑞𝑈} then

16 𝑌𝑓 ▽ 𝑌𝑓 ̸ {𝑚 };

17 𝑌𝑓 ▽ 𝐿-summary of 𝑌𝑓 by algorithm in [38];
18 𝑞𝑓 ▽ 𝑎 (𝑌𝑓, 𝑌𝑓) +

↦
2 ·max{𝑞𝑇 , 𝑞𝑈};

19 return (𝑌𝑑, 𝑞𝑑);

2
3

1 2 2

2 1 2
2 1 3

R1 R2

Sx Sy S̄v Sv S

A1A2 A2A3

1 2
41
1
1

2
4

2 1
2 3
4 1
1 2
1 4

A1A2

1 2
12

A3 A1A2A3

1 2 3
1 2 2
2 1 2

A1A2A3

2 1 2
1 2 1
A1A2A3

v

A1, A2 A3

x y

Fig. 1. A running example of Algorithm 3.
Let Q = 𝑄1 (𝑅1,𝑅2) ! 𝑄2 (𝑅2,𝑅3) with a
database I as shown. Let 𝐿 = 2. The com-
plete binary tree T is also shown with the
root 𝑡 and two leaf nodes 𝑑,𝑒, corresponding
to 𝑄1,𝑄2 respectively. In line 4, Algorithm 3
first computes a 2-summary of 𝑄1 as 𝑌𝑇 and
a 2-summary of 𝑈𝑊3𝑄2 as 𝑌𝑈 , with 𝑞𝑇 = 2
and 𝑞𝑈 = 1. It next investigates all tuples
in 𝑌𝑇 ⇐ 𝑌𝑈 , and checks if there exists some
tuple in Q(I) within distance 2

↦
2. It is easy

to see 𝑌𝑑 = 𝑌𝑇 ⇐ 𝑌𝑈 . In line 17, it computes a
2-summary of 𝑌𝑑 as 𝑌𝑑 . As (2, 1, 2) ↓ Q(I), it
adds (2, 1, 2) to 𝑌 . As (1, 2, 2) ε Q(I), it adds
an arbitrary nearest neighbor (1, 2, 1) to 𝑌 .
We observe that 𝑎 (𝑌,Q(I)) = 2

↦
2.

nearest-neighbor oracle as we used before, constructing the index 𝑠 . Let 𝑌 be the set of nearest
neighbors we compute. If |𝑌 | < 𝐿 , we add arbitrary 𝐿 ↙ |𝑌 | results from Q(I) to 𝑌 .
Correctness. By Lemma 3.2, and Lemma 3.1, the nearest neighbor queries with any 𝑚 can be
answered correctly.

L!""# 3.1. For ∞𝑘 at line 7 of Algorithm 2, ∞𝑘 (𝑆) = 𝑍2 (𝑆, 𝑚) for every 𝑆 ↓ Q(I).
L!""# 3.2. For ∞𝑘 at line 12 of Algorithm 3, ∞𝑘 (𝑆) = 𝑍2 (𝑆, 𝑚) for every 𝑆 ↓ Q𝑓 (I).

Approximation. We need the following lemma to show the approximation ratio:

L!""# 3.3. For any internal node 𝑛 with children 𝑑,𝑒 in T , 𝑎
(
𝑌𝑓,Q𝑓 (I)

)
⇓
↦
2 ·max{𝑞𝑇 , 𝑞𝑈}.

P0$$2. For any node 𝑑 and its parent 𝑛 in T it holds that 𝑎𝑆 (Q𝑇 (I)) ⇓ 𝑎𝑆 (Q𝑓 (I)). For any tuple
𝑖 ↓ Q𝑇 (I) there exists a tuple 𝑖𝑄 ↓ Q𝑓 (I) such that 𝑖𝑄 .Ā𝑇 = 𝑖 . By de!nition, it also holds that
Ā𝑇 ↑ Ā𝑓 . Hence, 𝑎𝑆 (Q𝑇 (I)) ⇓ 𝑎𝑆 (Q𝑓 (I)). Consider an arbitrary tuple 𝑆 ↓ Q𝑓 (I). Let 𝑚𝑇 ↓ 𝑌𝑇 be
the nearest tuple to 𝑆 .Ā𝑇 , and 𝑚𝑈 ↓ 𝑌𝑈 be the nearest tuple to 𝑆 .Ā𝑈 . By de!nition 𝑍

(
𝑆 .Ā𝑇 , 𝑚𝑇

)
⇓ 𝑞𝑇

and 𝑍
(
𝑆 .Ā𝑈, 𝑚𝑈

)
⇓ 𝑞𝑈 . We consider tuple 𝑚 as a concatenation of 𝑚𝑇 and 𝑚𝑈 . Then, 𝑍 (𝑆, 𝑚) =√

𝑍2 (𝑆 .Ā𝑇 , 𝑚𝑇
)
+ 𝑍2 (𝑆 .Ā𝑈, 𝑚𝑈

)
⇓
√
𝑞 2𝑇 + 𝑞 2𝑈 ⇓

↦
2 ·max{𝑞𝑇 , 𝑞𝑈}. In line 8 of Algorithm 3, we consider

the tuple 𝑚 in one of the iterations. Since 𝑍 (𝑆, 𝑚) ⇓
↦
2 ·max{𝑞𝑇 , 𝑞𝑈}, the condition in line 15 holds,

because 𝑍 (𝑆𝑒 , 𝑚) ⇓ 𝑍 (𝑆, 𝑚) ⇓
↦
2 · max{𝑞𝑇 , 𝑞𝑈}. Hence, 𝑚 is added in 𝑌𝑓 . Overall, for each tuple

𝑆 ↓ Q𝑓 (I) there exists a tuple in 𝑌𝑓 within distance
↦
2 ·max{𝑞𝑇 , 𝑞𝑈}, so the result follows. ↭

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:10 Pankaj K. Agarwal et al.

Next, we point out the invariants that are preserved in the execution of our algorithm:

L!""# 3.4. For node 𝑛 ↓ T at level 𝑢 , 12 · 𝑎𝑆 (Q𝑓 (I)) ⇓ 𝑎 (𝑌𝑓,Q𝑓 (I)) ⇓ 𝑞𝑓 ⇓ (10
↦
2)𝑕 · 𝑎𝑆 (Q𝑓 (I)).

Applying Lemma 3.4 to the root node 𝑡 , we obtain 𝑎 (𝑌𝑑,Q(I)) ⇓ 𝑞𝑑 ⇓ (10
↦
2)log𝑁 · 𝑎𝑆 (Q(I)) and

1
2 · 𝑎𝑆 (Q(I)) ⇓ 𝑎 (𝑌𝑑,Q(I)).6 From lines 3-10 in Algorithm 2, we have 𝑎 (𝑌,Q(I)) ⇓ 2𝑎 (𝑌𝑑,Q(I)).
Hence, we return a set 𝑌 ↑ Q(I) and a value 𝑞 such that 𝑎 (𝑌,Q(I)) ⇓ 𝑞 ⇓ 2(10

↦
2)log𝑁 · 𝑎𝑆 (Q(I)).

Complexity. In Algorithm 3, it takes 𝑁 (𝑀 log𝐿) time to invoke the algorithm in [38] at line 4. At
line 8, |𝑌𝑇 ⇐ 𝑌𝑈 | = 𝑁 (𝐿2). For each 𝑚 ↓ 𝑌𝑇 ⇐ 𝑌𝑈 , it takes 𝑁 (𝑀) time to construct 𝑠 at line 13 and get
the !rst result tuple 𝑆𝑒 within 𝑁 (log𝑀) time. It takes 𝑁 (𝐿2 log𝐿) time to invoke the algorithm in
[38] at line 17. The for-loop at lines 6-18 repeats 𝑁 (𝑃) times, since there are 𝑁 (𝑃) nodes in T . In
Algorithm 2, for each tuple 𝑚 ↓ 𝑌𝑑 for the root node 𝑡 , it takes 𝑁 (𝑀) time to construct 𝑠 at line 8
and get the !rst result tuple 𝑆𝑒 within 𝑁 (log𝑀) time. Overall, our algorithm runs in 𝑁 (𝑀𝐿2) time
using 𝑁 (𝑀 + 𝐿2) space.

T%!$0!" 3.5. For an acyclic joinQ of𝑃 relations, a database I of input size𝑀 and𝑏 = 2·(10
↦
2)log𝑁 ,

an 𝑏-cohesive 𝐿-summary of Q(I) under Euclidean metric can be computed in 𝑁
(
𝑀𝐿2

)
time using

𝑁
(
𝑀 + 𝐿2

)
space, with 𝑞 such that 𝑎𝑆 (Q(I)) ⇓ 𝑞 ⇓ 𝑏 · 𝑎𝑆 (Q(I)).

3.1.2 Constant cohesive summary: Geometry-based approximation.
Next, we exploit the properties of the Euclideanmetric to obtain a di"erent approximation algorithm.

Algorithm4:C$-&.#-.A//0$1_G!$"!.03(Q, I,𝐿)
1 foreach 𝑅 𝑋 ↓ A do
2 𝑜 𝑋 ▽ min

𝑔𝐿
min

𝑇↓𝑖𝑈𝑁 𝑔𝐿
𝑑 and 𝑝 𝑋 ▽ max

𝑔𝐿
max

𝑇↓𝑖𝑈𝑁 𝑔𝐿
𝑑 ;

3 ω ▽ ⇐𝑋 :𝑊 𝑁 ↓A [𝑜 𝑋 ,𝑝 𝑋], 𝑣 ▽ 0, 𝑌 ↔ ▽ ∀, B ▽ ∀;
4 while 𝑣 ⇓ 𝑤𝑃 · 𝐿 do
5 if 𝑣 = 0 then 𝑗𝑗 ▽ an arbitrary tuple in ω;
6 else 𝑗𝑗 ▽ the point in ω farthest from 𝑌 ↔;
7 foreach 𝑋 ↓ [𝑃] do
8 foreach 𝑖 ↓ 𝑄𝑂 do
9 𝑘𝑂 (𝑖) ▽

∑
𝑊 𝑁 ↓Ā𝐿

(𝑖 .𝑅 𝑋 ↙ 𝑗𝑗 .𝑅 𝑋)2;

10 ∞𝑘 ▽ ∈𝑘1,𝑘2, · · · ,𝑘𝑁∋;
11 𝑠 ▽ an index built for Q, I, ∞𝑘 as Lemma 2.1;
12 𝑥𝑗 ▽ the !rst result enumerated from 𝑠 ;
13 B𝑗 ▽ a ball centered at 𝑗𝑂 of radius 𝑍 (𝑗𝑗, 𝑥𝑗);
14 𝑌 ↔ ▽ 𝑌 ↔ ̸ {𝑥𝑗}, ω ▽ ω ↙B𝑗 , B ▽ B ̸ {B𝑗};
15 𝑣 ▽ 𝑣 + 1;
16 𝑌 ▽ a 𝐿-summary of 𝑌 ↔ by algorithm in [38];
17 return 𝑌 ;

Main ideas. Using the intuition from [43],
we design an algorithm in the relational
setting. We compute a summary 𝑌 ↔ iter-
atively. Initially, let ω be a rectangle con-
taining all tuples inQ(I) and let 𝑌 ↔ = ∀. In
each iteration, we solve a geometric prob-
lem computing the point 𝑗𝑗 ↓ ω farthest
from the set 𝑌 ↔ (in the !rst iteration, 𝑗1 is
an arbitrary tuple in ω). We next compute
the tuple 𝑥𝑗 ↓ Q(I) closest to 𝑗𝑗 and add
it in 𝑌 ↔. Then, we implicitly remove from
ω a ball around 𝑗𝑂 with radius 𝑍 (𝑗𝑗, 𝑥𝑗)
so that no other tuple could be selected
close to 𝑗𝑂 . We note that ω is not a rectan-
gle after the !rst iteration. Instead, ω is
the intersection of a rectangle with the
complement of a set of balls. We use the
nearest-neighbor oracle to compute the
tuple in Q(I) that is closest to 𝑗𝑗 .
Our algorithm. We next describe our
algorithm in more detail with the pseu-
docode given in Algorithm 4 and a run-
ning example in Figure 2. We start with a rectangle ω ↓ R𝑃 that contains all tuples in Q(I), and
incrementally add points to a set 𝑌 ↔. Initially 𝑌 ↔ = ∀. Let B = ∀ be a set of balls in R𝑃 (initially
empty). We repeat the procedure 𝑤𝑃 · 𝐿 times for a constant 𝑤 . In the !rst iteration, we choose an
arbitrary point 𝑗1 in ω. In 𝑣-th iteration, for 𝑣 > 1, we compute the point 𝑗𝑗 ↓ ω with the farthest

6We use log(·) for the logarithmic function with base 2.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:11

Fig. 2. The figure illustrates two iterations of Algo-
rithm 4. Let Q = 𝑈𝑊1,𝑊3𝑄1 (𝑅1,𝑅2) ! 𝑄2 (𝑅2,𝑅3) with
a database I as shown in Figure 1. Even though Algo-
rithm 4 works for join queries, we consider the pro-
jection on 𝑅1 and 𝑅3 to show the main idea of the
algorithm on the plane.

Fig. 3. Coreset construction shown in Algo-
rithm 5. Let Q = 𝑈𝑊1,𝑊3𝑄1 (𝑅1,𝑅2) ! 𝑄2 (𝑅2,𝑅3)
with a database I in Figure 1. Black dashed rect-
angles are non-empty grid cells and red points are
selected tuples in the coreset.

distance from set 𝑌 ↔. Next, by assigning weights ∞𝑘 (similarly to Algorithm 2) we construct the
ranked enumeration index 𝑠 implementing a nearest-neighbor oracle. We !nd the nearest tuple in
Q(I) from point 𝑗𝑗 , denoted as 𝑥𝑗 , and add 𝑥𝑗 into 𝑌 ↔. Let B𝑗 be the ball of radius 𝑍 (𝑗𝑗, 𝑥𝑗) centered
at 𝑗𝑗 . Set B = B ̸ {B𝑗} and ω = ω ↙ B𝑗 . We implicitly remove all result tuples in Q(I) “covered”
by 𝑗𝑗 within radius 𝑍 (𝑗𝑗, 𝑥𝑗). After the procedure above, we get a set 𝑌 ↔ of 𝑤𝑃 · 𝐿 candidate centers.
At last, we compute a cohesive 𝐿-center 𝑌 of 𝑌 ↔ by invoking the algorithm in [38].
Correctness. By Lemma 3.6, the nearest neighbor of every point 𝑗𝑗 ↓ Q(I) can be correctly found.

L!""# 3.6. For ∞𝑘 at line 10 of Algorithm 4, ∞𝑘 (𝑆) = 𝑍2 (𝑆,𝑗𝑗) for every tuple 𝑆 ↓ Q(I).
The correctness of our algorithm follows from Lemma 3.6 and [43].

Approximation. From [43], we know 𝑎 (𝑌 ↔,Q(I)) ⇓ 4𝑎𝑆 (Q(I)). From [38], we know that 𝑌 is
a 2-cohesive 𝐿-summary of 𝑌 ↔, i.e., 𝑎 (𝑌, 𝑌 ↔) ⇓ 2𝑎𝑆 (𝑌 ↔). Moreover, 𝑎𝑆 (𝑌 ↔) ⇓ 𝑎𝑆 (Q(I)) since 𝑌 ↔ ↑
Q(I). Together, 𝑎 (𝑌,Q(I)) ⇓ 𝑎 (𝑌, 𝑌 ↔) + 𝑎 (𝑌 ↔,Q(I)) ⇓ 2𝑎𝑆 (𝑌 ↔) + 4𝑎𝑆 (Q(I)) ⇓ 6𝑎𝑆 (Q(I)). Hence,
Algorithm 4 returns a 6-cohesive 𝐿-summary.
Complexity. The initialization phase takes𝑁 (𝑀) time. In 𝑣-th iteration of the while-loop, it takes
𝑁 (𝑀) time to construct 𝑠 and get the !rst result 𝑥𝑗 within 𝑁 (log𝑀) time. Furthermore, there are
𝑁 (𝐿) balls B𝑗’s and 𝑁 (𝐿) points in 𝑌 . The point 𝑗𝑗 (farthest point from the current 𝑌 ↔ in ω) can
be computed in 𝑁 (𝐿 ∝𝑃/2′+1) time [8]. At last, invoking the algorithm in [38] takes 𝑁 (𝐿 log𝐿) time,
since |𝑌 ↔ | = 𝑁 (𝐿). It computes the union of 𝐿 balls in R𝑃 , so the total space is 𝑁 (𝑀 + 𝐿 ∝𝑃/2′).

T%!$0!" 3.7. For an acyclic join Q with 𝑊 attributes and a database I of input size 𝑀 , a 6-cohesive
𝐿-summary in Euclidean metric can be computed in𝑁

(
𝑀𝐿+𝐿 ∝𝑃/2′+1) time using𝑁

(
𝑀 +𝐿 ∝𝑃/2′+1) space.

3.1.3 Coreset.
Coresets for a set of points have been well studied [9], but these algorithms require direct access to
Q(I), which we do not have. Chen et al. [25] constructed coresets for risk minimization problems
over relational data, but its complexity or utility depends on the diameter of the query results in
Q(I). Below, we show how to improve this result.

De!nition 3.8 (Coreset). For an acyclic join Q and a database I, an integer 𝐿 ↓ N+, and a parameter
𝑂 > 0, a subset 𝑔𝑐 ↑ Q(I) is an 𝑂-coreset for the cohesive summary if 𝑎 (𝑌⇑𝑐 ,Q(I)) ⇓ (1+𝑂) ·𝑎𝑆 (Q(I)),
where 𝑌⇑𝑐 ↑ 𝑔𝑐 is the optimal cohesive 𝐿-summary for 𝑔𝑐 , i.e., 𝑎 (𝑌⇑𝑐 , 𝑔𝑐) = 𝑎𝑆 (𝑔𝑐).

Our algorithm. Let 𝑌 be an 𝑁 (1)-cohesive 𝐿-summary for Q(I) and 𝑞 be a small enough quantity
such that 𝑎 (𝑌,Q(I)) ⇓ 𝑞 . We compute a grid over R𝑃 with a su#ciently small diagonal (roughly
𝑂 · 𝑞) and !nd the set of non-empty cells in the grid. For each such cell ↭, we run the rectangular

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:12 Pankaj K. Agarwal et al.

oracle (Lemma 2.3) to get a tuple in ↭ ↖ Q(I). Finally, we return the set of tuples selected by the
rectangular oracle in the non-empty cells.

Algorithm 5: C$0!&!.(Q, I, 𝑌, 𝑞 , 𝑟, 𝑂)
1 𝑔𝑐 ▽ ∀;
2 𝑦 ▽ a grid in R𝑃 with cell diagonal 𝑐 ·𝑘

𝑙 ;
3 foreach 𝑒 ↓ 𝑌 do
4 B𝑈 ▽ ball of radius 𝑞 centered at 𝑒;
5 𝑦𝑈 ▽ {𝑕 ↓ 𝑦 : 𝑕 ↖ B𝑈 ω ∀};
6 foreach𝑕 ↓ ⋃

𝑈↓𝑅 𝑦𝑈 do
7 if 𝑕 ↖ Q(I) ω ∀ then
8 𝑖𝑚 ▽ arbitrary tuple in𝑕↖Q(I);
9 𝑔𝑐 ▽ 𝑔𝑐 ̸ {𝑖𝑚 };

10 return 𝑔𝑐 ;

We next describe our algorithm in more detail
with the pseudocode given in Algorithm 5 and
an example in Figure 3. Using Theorem 3.5 (or
Theorem 3.7), we take as input a 𝑟-cohesive 𝐿-
summary 𝑌 for Q(I) for constant 𝑟 > 1, and a
value 𝑞 such that 𝑎𝑆 (Q(I)) ⇓ 𝑎 (𝑌,Q(I)) ⇓ 𝑞 ⇓
𝑟 ·𝑎𝑆 (Q(I)). We !rst construct a grid𝑦 in R𝑃 with
cell diagonal length 𝑐 ·𝑘

𝑙 and !nd out all non-empty
cells in 𝑦 , i.e., those contain at least one tuple in
Q(I). Instead of visiting every tuple in Q(I) to
locate non-empty cells, which is too expensive,
we resort to the cohesive summary 𝑌 . Recall that
for every tuple 𝑑 ↓ Q(I), there exists some 𝑒 ↓ 𝑌
such that 𝑍 (𝑑,𝑒) ⇓ 𝑞 . For every 𝑒 ↓ 𝑌 , let B𝑈 be
the ball centered at 𝑒 of radius 𝑞 . Let 𝑦𝑈 ↑ 𝑦 be the set of cells covered or partially intersected by
B𝑈 . At last, we visit every cell in

⋃
𝑈↓𝑅 𝑦𝑈 and include an arbitrary tuple in the non-empty cells

using the rectangular oracle as its representative. The set of all representatives is the coreset.
Correctness. Since 𝑎 (𝑌,Q(I)) ⇓ 𝑞 , Q(I) ↑ ⋃

𝑈↓𝑅 B𝑈 . Hence, every tuple in Q(I) lies in one cell in⋃
𝑈↓𝑅 𝑦𝑈 . As above, let 𝑌⇑𝑐 ↑ 𝑔𝑐 be the optimally cohesive 𝐿-summary of 𝑔𝑐 . We have

𝑎 (𝑌⇑𝑐 ,Q(I)) ⇓ 𝑎 (𝑌⇑𝑐 , 𝑔𝑐) +
𝑂𝑞

𝑟
⇓ 𝑎𝑆 (Q(I)) + 𝑂𝑞

𝑟
⇓ (1 + 𝑂) · 𝑎𝑆 (Q(I)),

where the last inequality follows from the fact that 𝑞 ⇓ 𝑟𝑎𝑆 (Q(I)). Hence, 𝑔𝑐 is an 𝑂-coreset of Q(I).
Complexity. As any ball of radius 𝑞 covers and partially intersects𝑁

(
𝑂↙𝑃

)
grid cells with diagonal

length 𝑂𝑞/𝑟 , we have |𝑔𝑐 | = 𝑁
(
𝐿𝑂↙𝑃

)
. We execute rectangular oracles for𝑁 (𝐿𝑂↙𝑃) cells. Each query

takes 𝑁 (𝑀) time. Hence, Algorithm 5 runs in 𝑁
(
𝐿𝑀𝑂↙𝑃

)
time.

T%!$0!" 3.9. For an acyclic join Q with 𝑊 attributes, a database I of input size 𝑀 , and a parameter
𝑂 > 0, an 𝑂-coreset for cohesive summaries under Euclidean distance of𝑁

(
𝑂↙𝑃𝐿

)
size can be constructed

in 𝑁
(
min

{
𝐿2𝑀 + 𝐿𝑀 𝑂↙𝑃 ,𝑀 log2 𝑀 + 𝐿𝑀 log(𝑀)𝑂↙𝑃 + 𝐿 ∝𝑃/2′+1}) time.

Remark 1. The min term in the time complexity in Theorem 3.9 depends on the algorithm used
for computing cohesive summaries (Theorem 3.5 or Theorem 3.7).
Remark 2. We note that if the value 𝑞 is unknown (as in the algorithm of Theorem 3.7), it su#ces
to run a binary search on the 𝑧∃ distances of Q(I). For each candidate 𝑞 ↔, we check whether the set
of balls {B(𝑒,

↦
𝑊𝑞 ↔) | 𝑒 ↓ 𝑌} cover all tuples in Q(I) by running rectangular oracles on the grids

intersected by the balls. We repeat this procedure until we !nd the smallest value 𝑞 ↔ that satis!es
the condition. We describe the details in Appendix B.1.

3.1.4 Implications to cohesive summaries and relational 𝐿-center clustering.
Let 𝑔𝑐 be the 𝑂-coreset obtained. We simply invoke the Feder-Greene algorithm [38] on 𝑔𝑐 . Let 𝑌⇑
be the set of 𝐿 centers returned. By de!nition 𝑎 (𝑌⇑,Q(I)) ⇓ (2 + 𝑂)𝑎𝑆 (Q(I)). We obtain:

T%!$0!" 3.10. For an acyclic join Q with 𝑊 attributes, a database I of input size 𝑀 , and a pa-
rameter 𝑂 > 0, a (2 + 𝑂)-cohesive 𝐿-summary for Q(I) under Euclidean distance can be computed in
𝑁
(
min

{
𝐿2𝑀 + 𝐿𝑀 𝑂↙𝑃 ,𝑀 log2 𝑀 + 𝐿𝑀 log(𝑀)𝑂↙𝑃 + 𝐿 ∝𝑃/2′+1}) time. The same guarantees hold for

the relational 𝐿-center clustering problem.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:13

Remark. The space needed by our algorithms in Theorems 3.9 and 3.10 depends on the 𝑁 (1)-
cohesive 𝐿-summary algorithm used for coreset construction. It is 𝑁

(
𝑀 + 𝐿2 + 𝐿𝑂↙𝑃

)
(resp. 𝑁 (𝑀 +

𝐿 ∝𝑃/2′+1 + 𝐿𝑂↙𝑃) if the algorithm in Section 3.1.1 (resp. Section 3.1.2) is used.

3.2 Hamming Metric

Algorithm 6: C$%!&’(!H#""’-4(Q, I,𝐿)

1 𝛥 ▽ 1
2
min
𝑊 𝑁 ↓A

min
𝑇ω𝑈↓I(𝑊 𝑁)⇐I(𝑊 𝑁)

|𝑑 ↙ 𝑒 |;

2 for 𝑞𝑉 ↓ {1, 2, . . . ,𝑊} do
3 R ▽ ∀, 𝑌 ▽ ∀;
4 M(R) ▽ decomposition of R;
5 for 𝑋 ↓ {1, . . . ,𝐿} do
6 𝛩 ▽ ∀;
7 foreach 𝑤 ↓ M(R) with density 𝑋 do
8 if |𝑤 ↖ Q(I) | ⇒ 1 then 𝛩 ▽ 𝑤 and

break;
9 if 𝛩 = ∀ then break;

10 𝑆▽arbitrary tuple in 𝛩 ↖ Q(I);
11 𝑌 ▽ 𝑌 ̸ {𝑆};
12 R,M(R)▽U/,#.!R(Q, 𝑞𝑉 ,R,M(R),𝛥);
13 if

∑
𝑛↓M(R)with density 𝑆

|𝑤 ↖ Q(I) | = 0 then break;

14 return 𝑌 ;

First, we observe that it is trivial to ob-
tain a 𝑁 (1)-cohesive summary under the
Hamming metric. The maximum Ham-
ming distance between two tuples from
Q(I) is 𝑊 = 𝑁 (1). Hence, an algorithm
that chooses 𝐿 arbitrary tuples from Q(I)
returns a 𝑊-cohesive 𝐿-summary. How-
ever, this approximation ratio is rather
unsatisfactory. The algorithm in Sec-
tion 3.1 does not work for the Hamming
metric mainly because the coreset con-
struction only applies to the Euclidean
metric. Hence, we need separate tech-
niques for constructing a 2-cohesive 𝐿-
summary under the Hamming metric.
Main ideas. Suppose the value of
𝑎𝑆 (Q(I)) is known in advance. We re-
peat the following step for 𝐿 iterations:
we choose an arbitrary tuple 𝑆 ↓ Q(I),
add it to the 𝐿-summary 𝑌 , and remove
all items within distance 2𝑎𝑆 (Q(I)) from
Q(I). The resulting 𝑌 is a 2-cohesive summary forQ(I). However, it is expensive to explicitly remove
tuples in Q(I), which requires materializing Q(I). Instead, we compute a set of non-intersecting
rectangles such that any point selected from these rectangles has a distance greater than 2𝑎𝑆 (Q(I))
(or equivalently at least 2𝑎𝑆 (Q(I)) + 1) from the previously selected tuples 𝑌 . For every new tuple 𝑆
we insert in 𝑌 , we choose a set R(𝑄) of 𝑁 (2𝑃) = 𝑁 (1) non-intersecting (open) rectangles around
𝑆 such that the union of these rectangles de!nes the points with distance at least 2𝑎𝑆 (Q(I)) + 1
from 𝑆 . Let R =

⋃
𝑄 ↓𝑅 R(𝑄) . In order to decide the next tuple to add in 𝑌 , we only visit the regions in

R𝑃 with distance at least 2𝑎𝑆 (Q(I)) + 1 from all tuples in 𝑌 . One crucial observation is that these
regions are covered by exactly |𝑌 | rectangles in R. We rely on the rectangular oracle in Section 2 to
!nd tuples from Q(I) that fall into these regions.
Our algorithm. We next describe our algorithm in more detail with the pseudocode given in
Algorithm 6. For an attribute 𝑅 𝑋 ↓ A, let I(𝑅 𝑋) = {𝑈𝑊 𝑁 (𝑄𝑂) | 𝑄𝑂 ↓ R} and let 𝛥 be half of the
minimum non-zero di"erence between two values in I(𝑅 𝑋). Let R = ∀ be a set of rectangles that
initially is empty. To identify the next tuple to insert in 𝑌 , we construct a rectangular decomposition
of the union of rectangles in R. The rectangular decomposition [10] of R, denoted M(R), is a
partitioning of the union of the rectangles in R into rectangular contiguous regions, called cells,
such that for each cell 𝛬 , every point in 𝛬 lies in the same subset of R.
Since, we do not know the optimum cohesion and 𝑎𝑆 (Q(I)) ↓ {1, . . . ,𝑊}, we try every value

𝑞𝑉 ↓ {1, 2, . . . ,𝑊} as a guess for value 2𝑎𝑆 (Q(I)) + 1. We repeat the following step for (at most) 𝐿
iterations. In the 𝑋-th iteration, we visit every cell in M(R) until we !nd one with density 𝑋 (a cell
that is contained in exactly 𝑋 rectangles). Let𝛩 be a cell with density 𝑋 such that |𝛩 ↖ Q(I) | ⇒ 1. We

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:14 Pankaj K. Agarwal et al.

Fig. 4. All tuples have integer values and
𝛥 = 0.5. SetR(𝑄)

1 contains the 4 gray (open) rect-
angles around 𝑆 , [1.5, 2.5]⇐(↙∃, 1.5], [2.5,∃)⇐
[1.5, 2.5], [1.5, 2.5] ⇐ [2.5,∃), (↙∃, 1.5] ⇐
[1.5, 2.5]. All tuples/points in the rectangles
R(𝑄)
1 have Hamming distance 1 from 𝑆 .

Algorithm 7: U/,#.!R(Q, 𝑞𝑉 ,R,M(R),𝛥)
1 for 𝑣 ↓ {𝑞𝑉 , 𝑞𝑉 + 1, . . . ,𝑊} do
2 foreach 𝑇 ↑ A with |𝑇 | = 𝑣 do
3 foreach 𝑅 𝑋 ↓ A do
4 if 𝑅 𝑋 ε 𝑇 then

𝛯 𝑋 ▽ [𝑆 .𝑅 𝑋 ↙ 𝛥, 𝑆 .𝑅 𝑋 + 𝛥];
5 else
6 𝛯↙𝑋 ▽ (↙∃, 𝑆 .𝑅 𝑋 ↙ 𝛥];
7 𝛯+𝑋 ▽ [𝑆 .𝑅 𝑋 + 𝛥, +∃);

8 R▽R̸
[(
⇐𝑊 𝑁ε𝑜 𝛯 𝑋

)
⇐
(
⇐𝑊 𝑁 ↓𝑜 {𝛯↙𝑋 , 𝛯+𝑋 }

)]
;

9 Update M(R);

10 return R,M(R);

get an arbitrary tuple 𝑆 ↓ 𝛩 ↖ Q(I) using the rectangular oracle. If 𝑋 = 1,𝛩 is a rectangle containing
all tuples inQ(I) and 𝑆 is any arbitrary tuple inQ(I). Next, we construct a setR(𝑄) of𝑁 (1) rectangles
that contain points with distance at least 𝑞𝑉 from 𝑆 . This is described by Algorithm 7 as a primitive.
For every 𝑣 = 𝑞𝑉 , . . . ,𝑊 , we construct the set of rectangles R(𝑄)

𝑗 such that if 𝑖 belongs to a rectangle
in R(𝑄)

𝑗 then 𝑍𝑉 (𝑖, 𝑆) = 𝑣. In particular, for every subset 𝑇 ↑ A with |𝑇 | = 𝑣, we compute a set of
intervals that will be used to create the rectangles in R(𝑄)

𝑗 . If 𝑅 𝑋 ε 𝑇 , let 𝛯 𝑋 = [𝑆 .𝑅 𝑋 ↙ 𝛥, 𝑆 .𝑅 𝑋 + 𝛥];
otherwise, let 𝛯↙𝑋 = (↙∃, 𝑆 .𝑅 𝑋 ↙𝛥] and 𝛯+𝑋 = [𝑆 .𝑅 𝑋 +𝛥, +∃) and letR𝑄

𝑜 =
(
⇐𝑊 𝑁ε𝑜 𝛯 𝑋

)
⇐
(
⇐𝑊 𝑁 ↓𝑜 {𝛯↙𝑋 , 𝛯+𝑋 }

)
.

We de!ne R(𝑄)
𝑗 =

⋃
𝑜 ↑A, |𝑜 |=𝑗 R𝑄

𝑜 , and let R(𝑄) =
⋃

𝑗=𝑘𝑉 ,...,𝑃 R(𝑄)
𝑗 . See an example in Figure 4. We

add the set of rectangles R(𝑄) in R, update the decompositionM(R), and proceed with the next
iteration. At the end of Algorithm 6 (line 13), we check whether there is any uncovered point, i.e.,
if a tuple in Q(I) lies in a cell with density 𝐿 . If no, we return 𝑌 ; otherwise, we proceed with the
next value of 𝑞𝑉 . Due to space limit, the analysis is shown in Appendix B.2.

T%!$0!" 3.11. For an acyclic join Q with 𝑊 attributes and a database I of input size 𝑀 , a 2-cohesive
𝐿-summary under Hamming metric can be computed in 𝑁

(
𝑀𝐿𝑃

)
time using 𝑁 (𝑀 + 𝐿𝑃) space.

4 Min-diverse Summaries
In this section, we show how our ideas for constructing cohesive summaries can be used to design
algorithms for constructing min-diverse summaries under the Euclidean and Hamming metrics.

4.1 Euclidean Metric
It is known that an 𝑂-coreset for cohesive summaries is also an 𝑂-coreset for min-diverse sum-
maries [64].7 After constructing an 𝑂-coreset 𝑔𝑐 for cohesive summaries using the algorithm
described in Section 3.1.3, we run the algorithm from [11], in the non-relational setting, to derive a
min-diverse 𝐿-summary over the set 𝑔𝑐 . This algorithm returns a (12 ↙ 𝑂)-min-diverse 𝐿-summary of
𝑔𝑐 in 𝑁

(
|𝑔𝑐 | log(|𝑔𝑐 |) + 𝐿 (log(|𝑔𝑐 |) + 𝑂↙𝑃)

)
time. Plugging Theorem 3.9 into this result, we obtain:

7A set 𝑌𝑊 is an 𝑐-coreset for the min-diverse summary problem if the optimal min-diverse 𝑆-summary in 𝑌𝑊 is an (1↙ 𝑐)-min
diverse 𝑆-summary in Q(I) .

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:15

T%!$0!" 4.1. For an acyclic join Q of 𝑊 attributes, a database I of input size 𝑀 , and a param-
eter 𝑂 > 0, a

(1
2 ↙ 𝑂

)
-min-diverse 𝐿-summary of Q(I) under Euclidean metric can be computed in

𝑁
(
min

{
𝐿2𝑀 + 𝐿𝑀 𝑂↙𝑃 ,𝑀 log2 𝑀 + 𝐿𝑀 log(𝑀)𝑂↙𝑃 + 𝐿 ∝𝑃/2′+1}) time.

As in Section 3.1.3, the space used by the algorithm in Theorem 4.1 depends on the algorithm for
computing a 𝑁 (1)-cohesive summary.

4.2 Hamming Metric
Again, our algorithm in Section 4.1 for the Euclidean metric cannot be applied to the Hamming
metric because the coreset uses properties of the Euclidean metric. However, our algorithm in
Section 3.2 for cohesive summaries under the Hamming metric can be extended to min-diverse
summaries. Let 𝑉𝑆 (Q(I)) be the minimum pairwise distance of the optimum min-diverse summary
on Q(I). For every new tuple 𝑆 we add to the returned set 𝑌 , we compute a set of 𝑁 (1) non-
intersecting rectangles that contain tuples with distance at least 𝑉𝑆 (Q(I))/2 from 𝑆 . There are only
twominor di"erences with Algorithm 6. i) In line 2, we search for 𝑞𝑗 ↓ {∝𝑊/2′+1, ∝𝑊/2′+1↙1, . . . , 1}
to !nd the largest distance that separates the selected tuples. ii) In line 13, instead of checking
whether there is no uncovered tuple, we check whether 𝑌 has size 𝐿 . We obtain the next theorem.

T%!$0!" 4.2. For acyclic join Q with 𝑊 attributes and a database I of input size 𝑀 , a 1
2 -min-diverse

𝐿-summary under Hamming metric can be computed in 𝑁
(
𝑀𝐿𝑃

)
time using 𝑁

(
𝑀 + 𝐿𝑃

)
space.

5 Sum-diverse Summaries
We now describe the algorithms for constructing sum-diverse summaries under the Euclidean and
Hamming metrics.

5.1 Euclidean Metric
Main ideas. In the non-relational setting, the following iterative algorithm described in [45] returns
an 1

2 -sum-diverse 𝐿-summary over a set of points 𝑔 . In each of the 𝐿/2 iterations, compute the
farthest pair (𝑖1, 𝑖2) in 𝑔 , add {𝑖1, 𝑖2} in the summary, remove them from 𝑔 , and continue with the
next iteration. To the best of our knowledge, there is no e#cient algorithm to compute the farthest
pair in Q(I) (in the relational setting). Instead, we use the idea proposed in [11] to approximately
compute the farthest pair among a set of points in the Euclidean setting using the notion of 𝑂-net.

De!nition 5.1 (𝑂-net). Let S𝑃↙1 be the unit sphere in R𝑃 . A centrally symmetric set C ↑ S𝑃↙1 (i.e.,
if 𝑛 ↓ C, then ↙𝑛 ↓ C) of 𝑞 = 𝑁

(
𝑂↙ (𝑃↙1)/2) unit vectors in R𝑃 is an 𝑂-net if for every point 𝑡 ↓ S𝑃↙1,

there exists a point 𝑛 ↓ C with angle at most cos↙1
(1
1+𝑐

)
= 𝑁

(↦
𝑂
)
.

As shown in [7, 22], for any pair of points 𝑑,𝑒 ↓ R𝑃 , it holds (1↙ 𝑂)𝑍 (𝑑,𝑒) ⇓ max𝑓↓C ∈𝑛, 𝑑 ↙𝑒∋ ⇓
𝑍 (𝑑,𝑒). Hence, a (1 ↙ 𝑂)-approximation of the maximum pairwise distance in a set of points can
be found by only checking the top-1 points with respect to the vectors in the 𝑂-net. Agarwal et
al. [11], select the top 𝐿 points in each vector 𝑛 ↓ C, and then run the iterative algorithm [45] on
the union of the selected (top 𝐿) points to return a (12 ↙ 𝑂)-sum-diverse 𝐿-summary.
Our algorithm. We next describe our algorithm in the relational setting with the pseudocode
given in Algorithm 8 and a running example in Figure 5. Let C be a centrally symmetric 𝑂-net.
We compute the top 𝐿 tuples in Q(I) for every vector 𝑛 ↓ C using our relational top-𝐿 oracle
proposed in Section 2. More speci!cally, we de!ne the weight function 𝑘𝑂 (·) for tuples in 𝑄𝑂 as
𝑘𝑂 (𝑖) =

∑
𝑊 𝑁 ↓Ā𝐿

(
𝑖 .𝑅 𝑋

)
· 𝑛 𝑋 , where 𝑖 ↓ 𝑄𝑂 . We construct the top-𝐿 oracle by de!ning a ranked

enumeration index 𝑠𝑓 with the vector of weight functions ∞𝑘 = ∈𝑘1, . . . ,𝑘𝑁∋. Let 𝑔𝑓 be the set of 𝐿
maximal tuples in Q(I) in direction 𝑛, enumerated by 𝑠𝑓 in descending order of their weights. At
last, we invoke the iterative algorithm [45] to !nd a sum-diverse 𝐿-summary over

⋃
𝑓↓C 𝑔𝑓 .

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:16 Pankaj K. Agarwal et al.

Fig. 5. A centrally symmetric set C with
8 vectors. Each point represents a tuple in
Q(I). Assume 𝐿 = 2. The top-2 tuples with
respect to vector 𝑛 ↓ C are 𝑆1, 𝑆2. The set⋃
𝑓↓C 𝑔𝑓 contains the red points/tuples.

Algorithm 8: G!$"!.0’*SUMD’(!0&!(Q, I,𝐿)
1 C ▽ a centrally symmetric 𝑂-net;
2 foreach 𝑛 ↓ C do
3 foreach 𝑋 ↓ [𝑃] do
4 foreach 𝑖 ↓ 𝑄𝑂 do
5 𝑘𝑂 (𝑖) ▽

∑
𝑊 𝑁 ↓Ā𝐿

(
𝑖 .𝑅 𝑋

)
· 𝑛 𝑋

6 ∞𝑘 ▽ ∈𝑘1,𝑘2, · · · ,𝑘𝑁∋;
7 𝑠𝑓 ▽ an index built for Q, I, ∞𝑘 as Lemma 2.1;
8 𝑔𝑓 ▽ the !rst 𝐿 results enumerated from 𝑠𝑓 ;
9 𝑌 ▽ sum-diverse 𝐿-summary over

⋃
𝑓↓C 𝑔𝑓 [45];

10 return 𝑌 ;

Correctness. By the de!nition of the top-𝐿 oracle (Lemma 2.2), the next lemma holds. For
completeness, we also show the straightforward proof in Appendix C.

L!""# 5.2. For ∞𝑘 at line 6 of Algorithm 8, ∞𝑘 (𝑆) = ∈𝑛, 𝑆∋ for every tuple 𝑆 ↓ Q(I).

By Lemma 5.2, for any vector 𝑛 ↓ C, all tuples in Q(I) can be enumerated in a decreasing
ordering of their inner product with 𝑛. The correctness follows from [11] and the discussion above.
Complexity. The 𝑂-net C can be computed in 𝑁 (𝑞) time [6]. For each vector 𝑛 ↓ C, we construct
an index 𝑠𝑓 in 𝑁 (𝑀) time. In total, we can construct

⋃
𝑓↓C 𝑔𝑓 in 𝑁 (𝑞 (𝑀 + 𝐿 log𝑀)) time using

𝑁 (𝑀 + 𝑞𝐿) space. Finally, the algorithm in [45] over the set
⋃

𝑓↓C 𝑔𝑓 (as implemented in [11]) runs
in𝑁 (𝑞𝐿 log𝑀) time. The algorithm uses𝑁 (𝑞𝐿) space to store the top 𝐿 tuples for every vector in C.

T%!$0!" 5.3. For an acyclic join Q of 𝑊 attributes, a database I of input size 𝑀 , and a parameter
𝑂 ↓ (0, 12), a

(1
2 ↙ 𝑂

)
-sum-diverse 𝐿-summary of Q(I) under Euclidean metric can be computed in

𝑁
(
(𝑀 + 𝐿 · log𝑀)𝑂↙ (𝑃↙1)/2) time using 𝑁

(
𝑀 + 𝐿𝑂↙ (𝑃↙1)/2) space.

5.2 Hamming Metric
For the Hamming metric, we propose two algorithms that construct sum-diverse summaries. The
!rst computes a better sum-diverse 𝐿-summary, while the second is faster by a factor of 𝐿 .
Main ideas. In [21], the authors showed that if a distance is of negative type [62, 63], then a local
search algorithm returns a (1 ↙ 2/𝐿)-sum-diverse 𝐿-summary in the non-relational setting.

De!nition 5.4 (Negative Type). Let D ↓ R𝑝⇐𝑝 be the distance matrix of distance function 𝑉 . The
function 𝑉 is of negative type if for any vector 𝑑 = (𝑑1, . . . , 𝑑𝑝) with

∑𝑝
𝑂=1 𝑑𝑂 = 0, 𝑑¬D𝑑 ⇓ 0.

In Appendix C, we prove that the Hamming distance is of negative type. Hence, we can obtain a
relational version of the local search algorithm. Intuitively, our algorithm starts with a set 𝑌 of 𝐿
arbitrary tuples from Q(I) and then repeats the following step for at most 𝑁 (𝐿 log𝐿) iterations: if
there exists a pair of tuples 𝑑 ↓ 𝑌 and 𝑒 ↓ Q(I) \ 𝑌 such that replacing 𝑑 with 𝑒 in 𝑌 can increase its
diversity, i.e., 𝑐 (𝑌 ̸ {𝑒} \ {𝑑}) > 𝑐 (𝑌), we update 𝑌 accordingly; Otherwise, we just return 𝑌 .

Our algorithm. In the relational setting, it is challenging to !nd the tuples 𝑑,𝑒 to update the
set 𝑌 . We next describe our algorithm in more detail with the pseudocode given in Algorithm 9.
Initially, we add 𝐿 arbitrary tuples from Q(I) to 𝑌 . For every tuple 𝑆 ↓ 𝑌 , we de!ne its diversity as
𝑛 (𝑆) = ∑

𝑇↓𝑅\{𝑄 } 𝑍𝑉 (𝑑, 𝑆), i.e., its sum of distances with remaining tuples in 𝑌 . Note that the diversity

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:17

Algorithm 9: L$*#+S!#0*%(Q, I,𝐿)
1 𝑌 ▽ 𝐿 arbitrary tuples from Q(I);
2 foreach 𝑆 ↓ 𝑌 do
3 𝑛 (𝑆) ▽ ∑

𝑇↓𝑅\{𝑄 } 𝑍𝑉 (𝑑, 𝑆);
4 ε ▽ 1

2
∑

𝑄 ↓𝑅 𝑛 (𝑆);
5 for 𝑙 ↓ {1, 2, · · · ,𝑁 (𝐿 log𝐿)} do
6 (𝑖↙, 𝑖+,𝛱) ▽ R!/+#*!(Q, I, 𝑌);
7 if ε > 𝛱 then return 𝑌 ;
8 foreach 𝑆 ↓ 𝑌 \ {𝑖↙} do
9 𝑛 (𝑆)▽

𝑛 (𝑆)↙𝑍𝑉 (𝑆, 𝑖↙)+𝑍𝑉 (𝑆, 𝑖+);
10 𝑛 (𝑖+) ▽ ∑

𝑄 ↓𝑅\{𝑞↙ } 𝑍𝑉 (𝑆, 𝑖+);
11 𝑌 ▽ 𝑌 ̸ {𝑖+} \ {𝑖↙};
12 ε ▽ 1

2
∑

𝑄 ↓𝑅 𝑛 (𝑆);
13 return 𝑌 ;

Algorithm 10: R!/+#*!(Q, I, 𝑌)
1 𝛱 ▽ ↙∃, 𝑖↙ ▽ null, 𝑖+ ▽ null;
2 foreach 𝑑 ↓ 𝑌 do
3 foreach 𝑋 ↓ [𝑃] do
4 foreach 𝑖 ↓ 𝑄𝑂 do
5 𝑘𝑂 (𝑖) ▽∑

𝑈↓𝑅\{𝑇 } 𝑍𝑉
(
𝑒 .Ā𝑂 , 𝑖 .Ā𝑂

)
;

6 ∞𝑘 ▽ ∈𝑘1,𝑘2, · · · ,𝑘𝑁∋;
7 𝑠 ▽ index built for Q, I, ∞𝑘 as Lemma 2.1;
8 while true do
9 𝑒 ▽ a result enumerated from 𝑠 ;

10 if 𝑒 ε 𝑌 then break;
11 ε𝑇,𝑈 ▽ ε ↙ 𝑛 (𝑑) +∑

𝑂↓ [𝑁] 𝑘𝑂 (𝑒 .A𝑂) ;
12 if ε𝑇,𝑈 > 𝛱 then
13 𝛱 ▽ ε𝑇,𝑈 , (𝑖↙, 𝑖+) ▽ (𝑑,𝑒);

14 return (𝑖↙, 𝑖+,𝛱);

of 𝑌 is essentially ε = 1
2
∑

𝑄 ↓𝑅 𝑛 (𝑆). We repeat the following step for at most 𝑁 (𝐿 log𝐿) iterations.8
We call Algorithm 10 as a primitive to compute the pair of tuples 𝑖↙ ↓ 𝑌, 𝑖+ ↓ Q(I) \ 𝑌 such that
the diversity𝛱 = 𝑐 (𝑌 ̸ {𝑖+} \ {𝑖↙}) is maximized. We do it as follows. For each tuple 𝑑 ↓ 𝑌 , we
construct an index 𝑠 from Lemma 2.1 with the following weight function ∞𝑘 . More speci!cally, for
every tuple 𝑖 ↓ 𝑄𝑂 , we de!ne the weight function 𝑘𝑂 (·) as 𝑘𝑂 (𝑖) =

∑
𝑈↓𝑅\{𝑇 } 𝑍𝑉

(
𝑒 .Ā𝑂 , 𝑖 .Ā𝑂

)
. All

tuples in Q(I) will be enumerated from 𝑠 in the descending ordering to their sum of distances with
tuples in 𝑌 \ {𝑑}, until we encounter some tuple 𝑒 ε 𝑌 . In Algorithm 10 we use the notation ε𝑇,𝑈

to maintain the diversity of the set 𝑌 ̸ {𝑒} \ {𝑑}. If replacing 𝑖↙ by 𝑖+ in 𝑌 does not increase the
diversity (line 7 of Algorithm 9) we stop and return 𝑌 . Otherwise, we replace 𝑖↙ by 𝑖+ in 𝑌 and
update 𝑛 (𝑆) for every 𝑆 ↓ 𝑌 \ {𝑖↙}. Then, we enter into the next iteration.

Finally, in order to compute𝑘𝑂 (·) e#ciently, we build a binary search tree T𝑋 , initially empty, for
every attribute 𝑅 𝑋 ↓ Ā𝑂 , as follows. For every 𝑒 ↓ 𝑌 \ {𝑑}, we check whether the value 𝑒 .𝑅 𝑋 exists
in T𝑋 . If not, we add a node 𝑛 to T𝑋 with value 𝑛 .value = 𝑒.𝑅 𝑋 along with a counter 𝑛 .count = 1.
If yes, then let 𝑛 be the node with 𝑛 .value = 𝑒.𝑅 𝑋 . We increase the counter 𝑛 .count by 1. After
constructing𝛴𝑋 , for every 𝑅 𝑋 ↓ Ā𝑂 , we visit every tuple 𝑖 ↓ 𝑄𝑂 and we search each T𝑋 with key 𝑖 .𝑅 𝑋 .
Let 𝑛 𝑋 be the node such that 𝑛 𝑋 .value = 𝑖 .𝑅 𝑋 . We compute𝑘𝑂 (𝑖) as

∑
𝑊 𝑁 ↓Ā𝐿

(|𝑌 | ↙ 𝑛 𝑋 .count).
Correctness. We prove the next lemma.

L!""# 5.5. For ∞𝑘 at line 6 of Algorithm 10, ∞𝑘 (𝑆) = ∑
𝑈↓𝑅\{𝑇 } 𝑍𝑉 (𝑆,𝑒) for every tuple 𝑆 ↓ Q(I).

P0$$2. For 𝑆 ↓Q(I), ∑𝑂↓ [𝑁] 𝑘𝑂 (𝑆 .A𝑂)=
∑

𝑂↓ [𝑁]
∑

𝑈↓𝑅\{𝑇 } 𝑍𝑉 (𝑆 .Ā𝑂 ,𝑒.Ā𝑂) =
∑

𝑈↓𝑅\{𝑇 } 𝑍𝑉 (𝑆,𝑒). ↭

For 𝑑 ↓ 𝑌 , by Lemma 5.5, tuple 𝑒 ↓ Q(I) \𝑌 that maximizes 𝑐 (𝑌 ̸ {𝑒} \ {𝑑}) can always be correctly
found. Following [21] and the fact that Hamming distance is of negative type, our algorithm returns
a (1 ↙ 2

𝑆)-sum-diverse 𝐿-summary for Q(𝛯).
Complexity. Initially, 𝐿 tuples from Q(I) can be retrieved in 𝑁 (𝑀 + 𝐿) time. In every iteration,
for every 𝑑 ↓ 𝑌 , it takes 𝑁 (𝑀 log𝐿) = 𝑁 (𝑀 log𝑀) time to assign the weights𝑘𝑂 using the binary

8The exact number of iterations is shown in the proof of Corollary 2 in [21].

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:18 Pankaj K. Agarwal et al.

search trees T𝑋 . The index 𝑠 is constructed in 𝑁 (𝑀) time. Each tuple 𝑒 can be enumerated with
𝑁 (log𝑀) delay. In the worst case, it may skip at most 𝐿 tuples before !nding one that does not
belong to 𝑌 . Overall, for each tuple 𝑑 , we spend 𝑁 (𝑀 log𝑀 + 𝐿 log𝑀) time.

T%!$0!" 5.6. For an acyclic joinQ and database I of input size𝑀 , a (1↙ 2
𝑆)-sum-diverse𝐿-summary

under Hamming metric can be computed in 𝑁
(
𝑀𝐿2 log2 𝑀 + 𝐿3 log2 𝑀

)
time using 𝑁 (𝑀 + 𝐿) space.

Remark 1. The Euclideanmetric is also of negative type. However, due to the square root operations
in the computation of the Euclidean metric, we cannot use the ranked enumeration index to get
the best tuple that improves the diversity in 𝑌 \ {𝑆}, as we did in the Hamming metric. So, this
algorithm does not apply to the Euclidean metric.
Remark 2. The same high-level idea can be extended to another faster algorithm, but its quality
is slightly worse than Theorem 5.6. Intuitively, we begin with a set 𝑌 containing one arbitrary
tuple from Q(I), and apply the following greedy strategy for 𝐿 iterations. In each iteration, we
!nd the tuple 𝑒 ↓ Q(I) \ 𝑌 that maximizes the sum of all pairwise distances with tuples in 𝑌 ,
i.e., argmax𝑄 ↓Q(I)

∑
𝑞↓𝑅 𝑍𝑉 (𝑖, 𝑆), and add it to 𝑌 . This greedy approach returns a 1

2 -sum-diverse
𝐿-summary for Q(I). Note that the problem of !nding the tuple from Q(I) \ 𝑌 with the maximum
sum of distances from tuples in 𝑌 is similar to !nding the best tuple 𝑒 ↓ Q(I) \ 𝑌 to replace a tuple
𝑑 ↓ 𝑌 as we had in the local search algorithm above. Due to the space limit, all details can be found
in Appendix C. Hence, using the same machinery from our previous algorithm, we have:

T%!$0!" 5.7. For an acyclic join Q and a database I of input size 𝑀 , a 1
2 -sum-diverse 𝐿-summary

under Hamming metric can be computed in 𝑁
(
(𝑀𝐿 + 𝐿2) log𝑀

)
time using 𝑁 (𝑀 + 𝐿) space.

6 Extensions
From acyclic joins to cyclic joins. All our algorithms can be extended to cyclic join queries by
applying the generalized hypertree decomposition [42], as described in Appendix D. Each cyclic
join is transformed into an acyclic one at the cost of increasing the input size from 𝑀 to 𝑀 fhtw,
where fhtw is de!ned as the fractional hypertree width of the input join query which roughly
measures how close is the input query Q from being acyclic (for example, for every acyclic query
fhtw = 1). All our approximation algorithms derived for acyclic joins can be applied without any
modi!cation, but time complexity increases by replacing 𝑀 with 𝑀 fhtw.
From joins to join-project queries. All our algorithms can be extended to acyclic join-project
queries using indexes for ranked enumeration over join-project queries [32]. Using the generalized
hypertree decomposition [42], the results are also extended to cyclic join-project queries. All ap-
proximation ratios are preserved, but the time complexity for constructing sum-diverse summaries
increases by a factor of 𝑁 (min{𝐿,𝑀 }), since the index [32] for join-project queries can only sup-
port 𝑁 (𝑀 log𝑀)-delay enumeration. The running time for constructing a cohesive or min-diverse
summary remains the same for join-project queries. We show the details in Appendix E.

7 Conclusion
In this paper, we designed e#cient algorithms for computing cohesive and diverse summaries for
conjunctive query results under the Euclidean or Hamming metric. There are a few interesting
questions left for future work. (1) General metric: In addition to Euclidean and Hamming metrics, it
is unknown how to compute representative summaries for conjunctive query results under general
metrics. (2) Broader quality functions: beyond cohesion and diversity, it remains to investigate a
general framework of computing good summaries under various quality functions. (3) Dynamic
setting: It is unknown how to maintain representative summaries for conjunctive query results in
the dynamic settings, where input tuples can be inserted or deleted.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:19

References
[1] https://db-engines.com/en/ranking_categories.
[2] Z. Abbassi, V. S. Mirrokni, and M. Thakur. Diversity maximization under matroid constraints. In Proceedings of the

19th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 32–40, 2013.
[3] M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A. D. Mehrabi. Range-clustering queries. In Proceedings of the

33rd International Symposium on Computational Geometry, pages 5:1–5:16, 2017.
[4] R. Addanki, A. McGregor, A. Meliou, and Z. Moumoulidou. Improved approximation and scalability for fair max-min

diversi!cation. In Range-clustering queries 25th International Conference on Database Theory, pages 7:1–7:21, 2022.
[5] P. K. Agarwal, G. Cormode, Z. Huang, J. M. Phillips, Z. Wei, and K. Yi. Mergeable summaries. ACM Transactions on

Database Systems, 38(4):1–28, 2013.
[6] P. K. Agarwal, S. Har-Peled, and H. Yu. Robust shape !tting via peeling and grating coresets. Discrete & Computational

Geometry, 39(1-3):38–58, 2008.
[7] P. K. Agarwal, J. Matou$ek, and S. Suri. Farthest neighbors, maximum spanning trees and related problems in higher

dimensions. Computational Geometry, 1(4):189–201, 1992.
[8] P. K. Agarwal, J. Pach, and M. Sharir. State of the union (of geometric objects). pages 9–48. 2008.
[9] P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clustering. Algorithmica, 33:201–226, 2002.
[10] P. K. Agarwal and M. Sharir. Arrangements and their applications. In Handbook of Computational Geometry, pages

49–119. Elsevier, 2000.
[11] P. K. Agarwal, S. Sintos, and A. Steiger. E#cient indexes for diverse top-k range queries. In Proceedings of the 39th

ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 213–227, 2020.
[12] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. Blinkdb: queries with bounded errors and

bounded response times on very large data. In Proceedings of the 8th ACM European Conference on Computer Systems,
pages 29–42, 2013.

[13] M. Arenas, T. C. Merkl, R. Pichler, and C. Riveros. Towards tractability of the diversity of query answers: Ultrametrics
to the rescue. arXiv preprint arXiv:2408.01657, 2024.

[14] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational joins. SIAM Journal on Computing,
42(4):1737–1767, 2013.

[15] G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay enumeration. In Proceedings
of the International Workshop on Computer Science Logic, pages 208–222. Springer, 2007.

[16] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database schemes. Journal of the ACM,
30(3):479–513, 1983.

[17] B. Birnbaum and K. J. Goldman. An improved analysis for a greedy remote-clique algorithm using factor-revealing lps.
Algorithmica, 55(1):42–59, 2009.

[18] A. Borodin, H. C. Lee, and Y. Ye. Max-sum diversi!cation, monotone submodular functions and dynamic updates. In
Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 155–166, 2012.

[19] A. Cevallos. Approximation algorithms for geometric dispersion. Technical report, EPFL, 2016.
[20] A. Cevallos, F. Eisenbrand, and R. Zenklusen. Local search for max-sum diversi!cation. In Proceedings of the Twenty-

Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 130–142. SIAM, 2017.
[21] A. Cevallos, F. Eisenbrand, and R. Zenklusen. An improved analysis of local search for max-sum diversi!cation.

Mathematics of Operations Research, 44(4):1494–1509, 2019.
[22] T. M. Chan. Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. In

Proceedings of the 16th Annual Symposium on Computational Geometry, pages 300–309, 2000.
[23] S. Chaudhuri, G. Das, and V. Narasayya. Optimized strati!ed sampling for approximate query processing. ACM

Transactions on Database Systems, 32(2):9–es, 2007.
[24] S. Chaudhuri, R. Motwani, and V. Narasayya. On random sampling over joins. ACM SIGMOD Record, 28(2):263–274,

1999.
[25] J. Chen, Q. Yang, R. Huang, and H. Ding. Coresets for relational data and the applications. Advances in Neural

Information Processing Systems, 35:434–448, 2022.
[26] Y. Chen and K. Yi. Random sampling and size estimation over cyclic joins. In Proceedings of the 23rd International

Conference on Database Theory, pages 7:1–7:18, 2020.
[27] G. Cormode. Sketch techniques for approximate query processing. Foundations and Trends in Databases. NOW

publishers, page 15, 2011.
[28] G. Cormode. Data sketching. Communications of the ACM, 60(9):48–55, 2017.
[29] G. Cormode, M. Garofalakis, P. J. Haas, C. Jermaine, et al. Synopses for massive data: Samples, histograms, wavelets,

sketches. Foundations and Trends® in Databases, 4(1–3):1–294, 2011.
[30] G. Cormode and K. Yi. Small Summaries for Big Data. Cambridge University Press, 2020.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

https://db-engines.com/en/ranking_categories

217:20 Pankaj K. Agarwal et al.

[31] R. Curtin, B. Moseley, H. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. Rk-means: Fast clustering for relational data.
In Proceedings of the International Conference on Arti!cial Intelligence and Statistics, pages 2742–2752, 2020.

[32] S. Deep, X. Hu, and P. Koutris. Ranked enumeration of join queries with projections. Proceedings of the VLDB
Endowment, 15(5):1024–1037, 2022.

[33] S. Deep and P. Koutris. Ranked enumeration of conjunctive query results. In Proceedings of the 24th International
Conference on Database Theory, pages 5:1–5:19, 2021.

[34] S. Deng, S. Lu, and Y. Tao. On join sampling and hardness of combinatorial output-sensitive join algorithms. In
Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 99–111, 2023.

[35] M. Deza and H. Maehara. Metric transforms and euclidean embeddings. Transactions of the American Mathematical
Society, 317(2):661–671, 1990.

[36] A. Esmailpour and S. Sintos. Improved approximation algorithms for relational clustering. Proceedings of the ACM on
Management of Data, 2(5), 2025.

[37] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the ACM, 30(3):514–550,
1983.

[38] T. Feder and D. Greene. Optimal algorithms for approximate clustering. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, pages 434–444, 1988.

[39] M. Garofalakis and P. B. Gibbons. Wavelet synopses with error guarantees. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pages 476–487, 2002.

[40] P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving approximate query answers. In
Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data, pages 331–342, 1998.

[41] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293–306,
1985.

[42] G. Gottlob, G. Greco, and F. Scarcello. Treewidth and hypertree width. Tractability: Practical Approaches to Hard
Problems, 1, 2014.

[43] S. Har-Peled, N. Kumar, D. M. Mount, and B. Raichel. Space exploration via proximity search. Discrete & Computational
Geometry, 56:357–376, 2016.

[44] S. Har-Peled and B. Raichel. Net and prune: A linear time algorithm for euclidean distance problems. Journal of the
ACM, 62(6):1–35, 2015.

[45] R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms for maximum dispersion. Operations Research
Letters, 21(3):133–137, 1997.

[46] X. Hu and S. Sintos. Finding smallest witnesses for conjunctive queries. In Proceedings of the 27th International
Conference on Database Theory, pages 24:1–24:20, 2024.

[47] Y. Ioannidis. The history of histograms (abridged). In Proceedings of the 29th International Conference on Very Large
Data Bases, pages 19–30, 2003.

[48] H. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevcik, and T. Suel. Optimal histograms with quality
guarantees. In Proceedings of the 24rd International Conference on Very Large Data Bases, pages 275–286, 1998.

[49] M. Jones, H. Nguyen, and T. Nguyen. Fair k-centers via maximum matching. In Proceedings of the International
Conference on Machine Learning, pages 4940–4949, 2020.

[50] K. Kim, J. Ha, G. Fletcher, and W.-S. Han. Guaranteeing the o(agm/out) runtime for uniform sampling and size
estimation over joins. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 113–125, 2023.

[51] M. Kleindessner, P. Awasthi, and J. Morgenstern. Fair k-center clustering for data summarization. In International
Conference on Machine Learning, pages 3448–3457. PMLR, 2019.

[52] Y. Kurkure, M. Shamo, J. Wiseman, S. Galhotra, and S. Sintos. Faster algorithms for fair max-min diversi!cation in 𝑔𝑋 .
Proceedings of the ACM on Management of Data, 2(3):1–26, 2024.

[53] X. Liang, S. Sintos, Z. Shang, and S. Krishnan. Combining aggregation and sampling (nearly) optimally for approximate
query processing. In Proceedings of the 2021 International Conference on Management of Data, pages 1129–1141, 2021.

[54] T. C. Merkl, R. Pichler, and S. Skritek. Diversity of answers to conjunctive queries. In Proceedings of the 26th International
Conference on Database Theory, pages 10:1–10:19, 2023.

[55] B. Moseley, K. Pruhs, A. Samadian, and Y. Wang. Relational algorithms for k-means clustering. In Proceedings of the
48th International Colloquium on Automata, Languages, and Programming, pages 97:1–97:21, 2021.

[56] Z. Moumoulidou, A. McGregor, and A. Meliou. Diverse data selection under fairness constraints. In Proceedings of the
24th International Conference on Database Theory, pages 13:1–13:25, 2021.

[57] E. Oh and H.-K. Ahn. Approximate range queries for clustering. In Proceedings of the 34th International Symposium on
Computational Geometry, pages 62:1–62:14, 2018.

[58] D. Olteanu and J. Závodnỳ. Factorised representations of query results: size bounds and readability. In Proceedings of
the 15th International Conference on Database Theory, pages 285–298, 2012.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:21

[59] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms for dispersion problems. Operations
Research, 42(2):299–310, 1994.

[60] J. S. Salowe. L-in!nity interdistance selection by parametric search. Information Processing Letters, 30(1):9–14, 1989.
[61] I. J. Schoenberg. Remarks to Maurice Frechet’s article“sur la de!nition axiomatique d’une classe d’espace distances

vectoriellement applicable sur l’espace de hilbert. Annals of Mathematics, pages 724–732, 1935.
[62] I. J. Schoenberg. Metric spaces and completely monotone functions. Annals of Mathematics, pages 811–841, 1938.
[63] I. J. Schoenberg. Metric spaces and positive de!nite functions. Transactions of the American Mathematical Society,

44(3):522–536, 1938.
[64] A. Tamir. Obnoxious facility location on graphs. SIAM Journal on Discrete Mathematics, 4(4):550–567, 1991.
[65] M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the 7th International Conference on Very

Large Data Bases, volume 81, pages 82–94, 1981.
[66] Z. Zhao, R. Christensen, F. Li, X. Hu, and K. Yi. Random sampling over joins revisited. In Proceedings of the 2018 ACM

SIGMOD International Conference on Management of Data, pages 1525–1539, 2018.
[67] Z. Zhao, F. Li, and Y. Liu. E#cient join synopsis maintenance for data warehouse. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data, pages 2027–2042, 2020.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:22 Pankaj K. Agarwal et al.

A Missing details from Section 1

Dangling Tuples. Given an acyclic join Q and a database I of input size 𝑀 , we give the classic

Algorithm 11: R!"$(!D#-4+’-4(Q, I)
1 Let T be an arbitrary join tree of Q with root 𝑞 ;
2 while visit nodes a bottom-up way (excluding 𝑞) do
3 foreach node 𝑛 visited do
4 𝑄𝑞𝑇 ▽ 𝑄𝑞𝑇 ⊋ 𝑄𝑓 for the parent node 𝑖𝑓 of 𝑛;

5 while visit nodes a top-down way (excluding leaves) do
6 foreach node 𝑛 visited do
7 𝑄𝑓↔ ▽ 𝑄𝑓↔ ⊋ 𝑄𝑓 for each child node 𝑛↔ of 𝑛;

8 return updated I;

Yannakakis algorithm [65] that can
remove dangling tuples that do not
participate in any join result of Q(𝛯).
This primitive runs in 𝑁 (𝑀) time.
For a CQ Q and a database I of in-
put size 𝑀 , all dangling tuples can
be removed in 𝑁

(
𝑀 fhtw) time (Ap-

pendix D).
Reduction from plain data. The
hardness of the problems de!ned on
plain data points can be carried to
a relational data setting via the fol-
lowing reduction. Suppose we are given a set 𝑔 of 𝛶 points in the 𝑊-dimensional space, where
𝑊 = |A|, and each point 𝑖 ↓ 𝑔 is associated with 𝑊 values (coordinates) ∈𝑖1, 𝑖2, · · · , 𝑖𝑃∋. Moreover,
we give a distinct label 𝑖id to every point 𝑖 ↓ 𝑔 . We also label the attributes in A, as 𝑅1,𝑅2, · · · ,𝑅𝑃 .
We construct database I as follows.For every point 𝑖 ↓ 𝑔 , we add a tuple 𝑆𝑞𝑂 to 𝑄𝑂 for every relation
𝑄𝑂 , where 𝑆

𝑞
𝑂 .𝑅 𝑋 = (𝑖id, 𝑖 𝑋) for every 𝑅 𝑋 ↓ A𝑂 . It can be easily checked that there is a one-to-one

mapping between the query results in the join Q(I) and points in 𝑔 . Let 𝑆𝑞 , 𝑆𝑞↔ ↓ Q(I) be the query
results corresponding to 𝑖, 𝑖↔ ↓ 𝑔 respectively. The distance between 𝑖 and 𝑖↔ is transformed to
the distance between 𝑆𝑞 and 𝑆𝑞↔ . This reduction implies the NP-hardness of computing cohesive
and min-diverse summaries.
Optimality. All lower bounds from non-relational settings hold in our relational setting. First,
the dependency on 𝑀 in all our algorithms for acyclic join queries is near linear, which is optimal.
Any algorithm for computing summaries needs to read the entire database at least. For Euclidean
cohesive summary, we give (2 + 𝑂)-approximation algorithms in 𝑁̃ (𝑀𝐿2) or 𝑁̃ (𝑀𝐿 + 𝐿𝑃) time
(assuming 𝑂 as a small constant). For the non-relational setting, the best algorithm for 2-cohesive
summary under any general metric runs in 𝑁 (𝑀𝐿) time. Hence, the approximation factor and
complexities of our algorithms are close (by, at most, a factor of 𝐿) to the optimum algorithms in the
non-relational setting. Exactly the same results and lower bounds hold for min-diversity summaries.
For Euclidean sum-diverse summaries, we give a (12 ↙ 𝑂)-approximation algorithm in 𝑁̃ (𝑀 +𝐿) time.
For general distances in the non-relational setting, the best algorithm returns a 1

2 -approximation in
𝑁 (𝑀𝐿) time, while in the Euclidean metric, the best algorithm returns a (12 ↙ 𝑂)-approximation in
𝑁̃ (𝑀 + 𝐿) time. Our algorithm for sum-diverse summaries in the Euclidean metric is optimal.

B Missing details from Section 3
B.1 Missing details from Subsection 3.1

P0$$2 $2 L!""# 3.1.
∑

𝑂↓ [𝑁]
𝑘𝑂 (𝑆 .A𝑂) =

∑
𝑂↓ [𝑁]

∑
𝑊 𝑁 ↓Ā𝐿

(𝑆 .𝑅 𝑋 ↙ 𝑚 .𝑅 𝑋)2 =
∑
𝑊 𝑁 ↓A

(𝑆 .𝑅 𝑋 ↙ 𝑚 .𝑅 𝑋)2 = 𝑍2 (𝑆, 𝑚).

P0$$2 $2 L!""# 3.2.
∑

𝑂↓ [𝑁]
𝑘𝑂 (𝑆 .A𝑂)=

∑
𝑂↓ [𝑁]

∑
𝑊 𝑁 ↓Ā𝐿↖Ā𝑇

(𝑆 .𝑅 𝑋 ↙ 𝑚 .𝑅 𝑋)2 =
∑

𝑊 𝑁 ↓Ā𝑇

(𝑆 .𝑅 𝑋 ↙ 𝑚 .𝑅 𝑋)2 = 𝑍2 (𝑆, 𝑚).

P0$$2 $2 L!""# 3.4. We will prove by induction on 𝑢 . In the base case when 𝑢 = 1, 𝑛 is a leaf
node. Implied by [25] and the fact that we only keep the non-dangling tuples, 𝑌𝑓 is a 2-approximation
of the 𝐿-center problem for Q𝑓 (I). Hence, 𝑎 (𝑌𝑓,Q𝑓 (I)) = 𝑞𝑓 ⇓ 2 · 𝑎𝑆 (Q𝑓 (I)) ⇓ 10

↦
2 · 𝑎𝑆 (Q𝑓 (I)) .

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:23

When 𝑢 > 1,𝑛 is an internal node. Let 𝑑,𝑒 be the two child nodes at level 𝑢↙1. Let 𝑞 ⇑ = max{𝑞𝑇 , 𝑞𝑈}.
From Algorithm 3, for every tuple 𝑚 ↓ 𝑌𝑓 (after !nishing the loop in lines 8-16), there exists a tuple
𝑆 ↓ Q𝑓 (I) such that 𝑍 (𝑆, 𝑚) ⇓

↦
2 · 𝑞 ⇑. On the other hand, from Lemma 3.3, for any tuple 𝑆 ↓ Q𝑓 (I),

there exists a tuple 𝑚 ↓ 𝑌𝑓 such that 𝑍 (𝑆, 𝑚) ⇓
↦
2 · 𝑞 ⇑. Moreover,

𝑞 ⇑ ⇓ (10
↦
2)𝑕↙1 ·max{𝑎𝑆 (Q𝑇 (I)), 𝑎𝑆 (Q𝑈 (I))} ⇓ (10

↦
2)𝑕↙1 · 𝑎𝑆 (Q𝑓 (I)),

where the !rst inequality holds by our hypothesis on 𝑑,𝑒 and the second inequality follows from
the observation in the proof of Lemma 3.3.
For an item 𝑝 and a set of items 𝑅, let NN(𝑝,𝑅) denote the nearest neighbor of 𝑝 in 𝑅, i.e.,

NN(𝑝,𝑅) = argmin𝑟↓𝑊 𝑍 (𝑝,𝑜). Let𝑁1 be the optimum cohesive𝐿-summary ofQ𝑓 (I), i.e., 𝑎 (𝑁1,Q𝑓 (I)) =
𝑎𝑆 (Q𝑓 (I)). For each center 𝑖 ↓ 𝑁1, let 𝑖 = NN(𝑖, 𝑌𝑓). From Lemma 3.3, it holds that 𝑍 (𝑖, 𝑖) ⇓

↦
2𝑞 ⇑.

Consider the set of 𝐿 centers 𝑁2 = {𝑖 | 𝑖 ↓ 𝑁1}. For any tuple 𝑑 ↓ 𝑌𝑓 , let 𝑑 = NN(𝑑,Q𝑓 (I)). From
Algorithm 2, it holds that 𝑍 (𝑑, 𝑑) ⇓

↦
2𝑞 ⇑. So, for an arbitrary tuple 𝑥 ↓ 𝑌𝑓 , if 𝛷 = NN(𝑥,𝑁1), it

holds 𝑍 (𝑥,𝛷) ⇓ 𝑍 (𝑥, 𝑥) + 𝑍 (𝑥,𝛷) + 𝑍 (𝛷,𝛷) ⇓
↦
2𝑞 ⇑ + 𝑎𝑆 (Q𝑓 (I)) +

↦
2𝑞 ⇑. Hence, we have 𝑎𝑆 (𝑌𝑓) ⇓

𝑎𝑆 (Q𝑓 (I)) + 2 ·
↦
2𝑞 ⇑ . Implied by [38], 𝑎 (𝑌𝑓, 𝑌𝑓) ⇓ 2𝑎𝑆 (𝑌𝑓). Finally, we come to

𝑎 (𝑌𝑓,Q𝑓 (I)) ⇓ 𝑎 (𝑌𝑓, 𝑌𝑓) +
↦
2𝑞 ⇑ = 𝑞𝑓 ⇓ (5

↦
2(10

↦
2)𝑕↙1 + 2) · 𝑎𝑆 (Q𝑓 (I)) < (10

↦
2)𝑕𝑎𝑆 (Q𝑓 (I)).

To show 𝑎 (𝑌𝑓,Q𝑓 (I)) ⇒ 𝑎𝑆 (Q𝑓 (I))/2, we resort to the generalized cohesive 𝐿-summary problem by
relaxing the condition that 𝑌 ↑ Q𝑓 (I). Let 𝑎𝑆 (Q𝑓 (I)) be the optimal solution of the generalized
cohesive 𝐿-summary problem of Q𝑓 (I). From the triangle inequality, 1

2 · 𝑎𝑆 (Q𝑓 (I)) ⇓ 𝑎𝑆 (Q𝑓 (I)) ⇓
𝑎𝑆 (Q𝑓 (I)). By de!nition, 𝑎 (𝑌𝑓,Q𝑓 (I)) ⇒ 𝑎𝑆 (Q𝑓 (I)) ⇒ 1

2 · 𝑎𝑆 (Q𝑓 (I)) . ↭

P0$$2 $2 L!""# 3.6.
∑

𝑂↓ [𝑁] 𝑘𝑂 (𝑆 .A𝑂) =
∑

𝑂↓ [𝑁]
∑

𝑊 𝑁 ↓Ā𝐿

(
𝑆 .𝑅 𝑋 ↙ 𝑗𝑗 .𝑅 𝑋

)2 = 𝑍2 (𝑆,𝑗𝑗). ↭

B.1.1 Coreset without having an upper bound on the clustering cost.
Let 𝑌 be a𝑁 (1)-cohesive 𝐿-summary. We do not know the value of 𝑞 , however, we know that the

approximation ratio is 𝑟 , where 𝑟 is a constant. The high-level idea of our algorithm is as follows:
We run a binary search over all possible 𝑧∃ distances in Q(I). For a distance 𝑢 we check whether
all tuples in Q(I) can be covered with balls having centers the points in 𝑌 and radius

↦
𝑊𝑢 . In the

end, we !nd a number 𝑞 such that 𝑎𝑆 (Q(I)) ⇓ 𝑎 (𝑌,Q(I)) ⇓ 𝑞 ⇓ 𝑤 · 𝑟𝑎𝑆 (Q(I)), for a constant 𝑤 ,
and we execute the algorithm from Section 3.1.3. Let 𝑅 be a sorted array of the values among all
the attributes in the database. We run a binary search on the pairwise distances of 𝑅. In [60] the
authors show that the 𝑙-th smallest 𝑧∃ distance (or equivalently 𝑧1 distance in R1) of 𝛶 points
on a line can be computed in 𝑁 (𝛶 log𝛶) time. Let 𝑢 be a value we check in the binary search. Let
𝑢 =

↦
𝑊𝑢 . We de!ne the grid 𝑦𝑕 having grid cells with diagonal 𝑓𝑕 = 𝑂𝑢 . For each center 𝑥 ↓ 𝑌 , we

de!ne the ball 𝛹𝑠 of radius 𝑢 and center 𝑥 . Let 𝛹𝑕 =
⋃

𝑠↓𝑅 𝛹𝑠 . We check whether 𝛹𝑕 covers all tuples
in Q(I). Unfortunately, we cannot visit all tuples in Q(I) and the complexity of constructing the
union of 𝐿 balls is large. Instead, we visit each grid cell 𝛺 ↓ 𝑦𝑕 such that 𝛺 is contained or partially
intersected by 𝛹𝑕 . Let 𝑦𝑕 be the set of these grid cells. For each 𝛺 ↓ 𝑦𝑕 we run a counting query
using Lemma 2.3 to get 𝛻𝑡 = |𝛺 ↖ Q(I) |. We also run an additional counting query in a rectangle
that contains all tuples to !nd 𝛻 = |Q(I) |. If ∑𝑡↓𝑢̂𝑌

𝛻𝑡 = 𝛻 then we continue the binary search with
smaller values of 𝑢 . Otherwise, we continue with larger values of 𝑢 . Let 𝑢⇑ be the parameter in the
last iteration of the binary search that 𝑦𝑕⇑ covered all tuples in Q(I). We set 𝑞 = (1 + 𝑂)

↦
𝑊𝑢⇑ and

then we follow the same procedure as in Subsection 3.1.3 to construct 𝑔𝑐 .

L!""# B.1. 𝑎𝑆 (Q(I)) ⇓ 𝑎 (𝑌,Q(I)) ⇓ 𝑞 ⇓ (1 + 𝑂)
↦
𝑊𝑟𝑎𝑆 (Q(I)).

P0$$2. For a vector 𝑑 ↓ R𝑃 , let | |𝑑 | |∃ be its 𝑧∃ norm, and let | |𝑑 | |2 be its 𝑧2 norm. By de!nition,
for two vectors 𝑑,𝑒 ↓ R𝑃 , we have | |𝑑↙𝑒 | |2 = 𝑍 (𝑑,𝑒). It is known that for any vector 𝑜 ↓ R𝑃 it holds,

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:24 Pankaj K. Agarwal et al.

| |𝑜 | |∃ ⇓ | |𝑜 | |2 ⇓
↦
𝑊 | |𝑜 | |∃. For every tuple 𝑆 ↓ Q(I), it is always true that there exists 𝑥𝑄 ↓ 𝑌 with

| |𝑆 ↙𝑥𝑄 | |2 ⇓ 𝑎 (𝑌,Q(I)) ⇓ 𝑟𝑎𝑆 (Q(I)). Let 𝑆 ↔ ↓ Q(I) be the tuple such that | |𝑥↙𝑥𝑄 ↔ | |2 = 𝑎 (𝑌,Q(I)). Let
𝑢 = | |𝑥 ↙𝑥𝑄 ↔ | |∃. From above, it follows that | |𝑥 ↙𝑥𝑄 ↔ | |∃ ⇒ 𝑍 (𝑅,Q(I))↦

𝑃
. Hence, there exists an 𝑧∃ distance

𝑢𝑟 in 𝑅 satisfying 𝑢𝑟 ⇒ 𝑍 (𝑅,Q(I))↦
𝑃

△
↦
𝑊𝑢𝑟 ⇒ 𝑎 (𝑌,Q(I)). Hence, for any 𝑢 ⇒ 𝑢𝑟 , we have

∑
𝑡↓𝑢̂𝑌

𝛻𝑡 = 𝛻 .

So 𝑢⇑ ⇓ 𝑢𝑟 . Next, we show that 𝑢⇑ ⇒ 𝑍 (𝑅,Q(I))
(1+𝑐)

↦
𝑃

by contradiction. Assume 𝑢⇑ < 𝑍 (𝑅,Q(I))
(1+𝑐)

↦
𝑃

△
↦
𝑊𝑢⇑ <

𝑍 (𝑅,Q(I))
1+𝑐 . Our grid-based algorithm for checking whether all points in Q(I) lie in the cells 𝑦𝑕⇑ ,

counts all tuples within distance
↦
𝑊𝑢⇑ from centers 𝑌 and might count some tuples within distance

(1 + 𝑂)
↦
𝑊𝑢⇑ from centers in 𝑌 . Hence, if (1 + 𝑂)

↦
𝑊𝑢⇑ < 𝑎 (𝑌,Q(I)), our algorithm will return∑

𝑡↓𝑢̂𝑌
𝛻𝑡 < 𝛻 . Overall,

1
1 + 𝑂

· 𝑎 (𝑌,Q(I)) ⇓
↦
𝑊𝑢⇑ ⇓

↦
𝑊𝑢𝑟 ⇓

↦
𝑊𝑎 (𝑌,Q(I)) ⇓

↦
𝑊𝑟𝑎𝑆 (Q(I)). ↭

Correctness With Lemma B.1 and algorithm in Section 3.1.3, we can construct a desired coreset.
Complexity. For any 𝑢 , there is at most 𝑁 (𝑂↙𝑃) grid cells with diagonal 𝑂

↦
𝑊𝑢 that intersect or

fully contained in a ball of radius
↦
𝑊𝑢 . Hence, in each iteration of the binary search we spend

𝑁 (𝐿𝑀 𝑂↙𝑃) to run the counting queries. Using [60] to get the 𝑙-th smallest 𝑧∃ distance among 𝑅,
we need 𝑁 (𝑀 log2 𝑀) additional time to execute the binary search. Overall, given 𝑌 , we construct
an 𝑂-coreset in 𝑁 (𝑀 log2 (𝑀) + 𝐿𝑀 log(𝑀)𝑂↙𝑃) time using 𝑁 (𝑀 + 𝐿𝑂↙𝑃) space.

B.2 Missing details from Subsection 3.2
Correctness. By de!nition, for a !xed 𝑞𝑉 , all rectangles in R(𝑄) are disjoint and 𝑖 ↓ R(𝑄) if and
only if 𝑍𝑉 (𝑆, 𝑖) ⇒ 𝑞𝑉 . Indeed, if 𝑖 ↓ R(𝑄)

𝑗 , for 𝑣 ⇒ 𝑞𝑉 , then the tuple 𝑖 has di"erent values than
𝑆 in exactly 𝑣 attributes. Furthermore, for a !xed 𝑞𝑉 , the condition in line 13 is satis!ed if and
only if 𝑎 (𝑌,Q(I)) ⇒ 𝑞𝑉 . Indeed, a cell 𝑕 in M(R) has density 𝐿 if and only if every point 𝑑 ↓ 𝑕
has distance at least 𝑞𝑉 . Hence, if there is no tuple from Q(I) in these cells, then every tuple in
Q(I) is within distance 𝑞𝑉 from 𝑌 , i.e., 𝑎 (𝑌,Q(I)) ⇓ 𝑞𝑉 ↙ 1. We show that 𝑎 (𝑌,Q(I)) ⇓ 2𝑎𝑆 (Q(I)).
Equivalently, we show that for 𝑞𝑉 = 2𝑎𝑆 (Q(I)) + 1 the condition in line 13 always holds. Let 𝑌⇑
be the optimally cohesive 𝐿-summary of Q(I). For every tuple 𝑆 𝑋 ↓ 𝑌⇑, we de!ne the ball B𝑋 with
center 𝑆 𝑋 and radius 𝑎𝑆 (Q(I)). By de!nition, the union of all such 𝐿 balls covers all tuples in Q(I).
Let 𝑆 be the tuple that is selected in lines 10-11 of Algorithm 6 in an iteration 𝑋 . Without loss
of generality assume that 𝑆 belongs in the ball B𝑋 . The Hamming distance satis!es the triangle
inequality, so for any 𝑖 ↓ B𝑋 ↖Q(I), it holds 𝑍𝑉 (𝑆, 𝑖) ⇓ 𝑍𝑉 (𝑆, 𝑆 𝑋) +𝑍𝑉 (𝑆 𝑋 , 𝑖) ⇓ 2𝑎𝑆 (Q(I)). In other
words, it holds that for any new tuple 𝑆 we add in 𝑌 , the ball B↔

𝑄 with center 𝑆 and radius 2𝑎𝑆 (Q(I))
completely covers a ball from the optimally cohesive 𝐿-summary. By de!nition, the union of the
rectangles in R(𝑄) is the complement of ball B↔

𝑄 . After 𝐿 iterations all optimal 𝐿 balls are covered by
the balls

⋃
𝑄 ↓𝑅 B↔

𝑄 , so there is no tuple in Q(I) that lies in the complement of
⋃

𝑄 ↓𝑅 B↔
𝑄 . Equivalently,

there is no tuple in Q(I) that lies in a cell of density 𝐿 in line 13, so the condition is satis!ed.
Complexity. The algorithm runs for 𝐿 iterations. In each iteration 𝑋 , we add a tuple 𝑆 in 𝑌 and
we construct |R (𝑄) | = 𝑁 (1) rectangles. The decompositionM(R) is updated in 𝐿𝑃 time [10]. The
cells with depth 𝑋 ↙ 1 can also be found in 𝐿𝐿 (𝑃) time after updating the decomposition. We run
a rectangular query for every cell of depth 𝑋 ↙ 1. From Lemma 2.3, each rectangular query takes
𝑁 (𝑀) time. Overall, our algorithm runs in 𝑁 (𝑀𝐿𝑃) time and uses 𝑁 (𝑀 + 𝐿𝑃) space.

C Missing details from Section 5

P0$$2 $2 L!""# 5.2.
∑

𝑂↓ [𝑁]
𝑘𝑂 (𝑆 .A𝑂) =

∑
𝑂↓ [𝑁]

∑
𝑊 𝑁 ↓Ā𝐿

(𝑆 .𝑅 𝑋) · 𝑛 𝑋 =
∑
𝑊 𝑁 ↓A

(𝑆 .𝑅 𝑋) · 𝑛 𝑋 = ∈𝑛, 𝑆∋. ↭

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:25

L!""# C.1. The Hamming metric is of negative type.

P0$$2. Using [35, 61], any distance function 𝑉 , over a set of 𝛶 items 𝑔 ↓ R𝑃 , is of negative type
if there exists a mapping from 𝑔 to 𝑔 ↔ ↓ R𝑃 ↔ for a positive integer 𝑊 ↔, such that 𝑉 (𝑖,𝑗) = 𝑉 ↔ (𝑖↔,𝑗↔),
where 𝑖,𝑗 ↓ 𝑔 , 𝑖↔ is the mapping of 𝑖 (similarly, 𝑗↔ is the mapping of 𝑗), and 𝑉 ↔ is the squared
Euclidean distance.
For the Hamming metric, we map all points in 𝑔 ↓ R𝑃 to points in 𝑊 ↔ ⇓ 𝛶 · 𝑊2 dimensions as

follows. Let 𝑧 be the ordered list of all distinct values (coordinates) over the points in 𝑔 . Clearly,
|𝑧 | ⇓ 𝛶𝑊 . We use 𝑖 𝑋 to denote the 𝑙-th value of point 𝑖 ↓ 𝑔 . For every 𝑖 ↓ 𝑔 , we create 𝑖↔ ↓ R |𝑣 |𝑃

as follows. For each 𝑙 ↓ [𝑊], we create the zero vector ∞𝑇 (𝑋) ↓ R |𝑣 | , such that ∞𝑇 (𝑋) = (0, . . . , 0).
Without loss of generality, assume that 𝑖 𝑋 = 𝑧[𝑋], i.e., the 𝑙-th value of 𝑖 is the 𝑋-th element in list
𝑧. We set ∞𝑇 (𝑋)

𝑂 = 1/
↦
2, i.e., the 𝑋-th value of ∞𝑇 (𝑋) is set to 1/

↦
2. Then 𝑖↔ is the concatenation of

all vectors ∞𝑇 (𝑋) , i.e., 𝑖↔ = [∞𝑇 (1) , . . . , ∞𝑇 (𝑃)]. By de!nition, it holds that under the Hamming metric
𝑍𝑉 (𝑖,𝑗) =

∑
1⇓𝑗⇓𝑃 |𝑣 | (𝑖↔𝑗 ↙𝑗↔𝑗)2. Intuitively, if two points have di"erent 𝑙-th value then the squared

Euclidean will sum up the terms (1/
↦
2 ↙ 0)2 + (0 ↙ 1/

↦
2)2 = 1. ↭

Algorithm 12: G0!!,3SUMD’(!0&!(Q, I,𝐿)
1 𝑌 ▽ {𝑑0} for an arbitrary tuple 𝑑0 ↓ Q(I);
2 while |𝑌 | ⇓ 𝐿 do
3 foreach 𝑋 ↓ [𝑃] do
4 foreach 𝑖 ↓ 𝑄𝑂 do
5 𝑘𝑂 (𝑖) =

∑
𝑈↓𝑅 𝑍𝑉

(
𝑖 .Ā𝑂 ,𝑒.Ā𝑂

)
;

6 ∞𝑘 ▽ ∈𝑘1,𝑘2, · · · ,𝑘𝑁∋;
7 𝑠 ▽ index built for Q, I, ∞𝑘 as Lemma 2.1;
8 while true do
9 𝑒 ▽ a result enumerated from 𝑠 ;

10 if 𝑒 ε 𝑌 then break;
11 𝑌 ▽ 𝑌 ̸ {𝑒};
12 return 𝑌 ;

Greedy algorithm for Sum-Diverse Sum-
maries. In Algorithm 12, we start with
an arbitrary tuple 𝑑0 ↓ Q(I) and add it to
𝑌 . We repeat the following step until the
size of 𝑌 reaches 𝐿 . We construct an in-
dex 𝑠 that enumerates the tuples in Q(I)
in descending order to their sum of dis-
tances with the tuples in 𝑌 . More speci!-
cally, for every tuple 𝑖 ↓ 𝑄𝑂 , we de!ne the
weight 𝑘𝑂 (𝑖) =

∑
𝑈↓𝑅

𝑍𝑉
(
𝑖 .Ā𝑂 ,𝑒 .Ā𝑂

)
. All tu-

ples inQ(I) are enumerated from𝑠 in the de-
scending ordering, until we encounter some
result 𝑒 ε 𝑌 . We add 𝑒 to 𝑌 and continue in
the next iteration.

Correctness. For ∞𝑘 at line 6 of Algo-
rithm 12, ∞𝑘 (𝑆) = ∑

𝑂↓ [𝑁] 𝑘𝑂 (𝑆 .A𝑂) =
∑

𝑂↓ [𝑁]
∑

𝑈↓𝑅 𝑍𝑉
(
𝑆 .Ā𝑂 ,𝑒.Ā𝑂

)
=
∑

𝑈↓𝑅 𝑍𝑉 (𝑆,𝑒) for every tuple
𝑆 ↓ Q(I). Ravi et al. [59], showed that the greedy algorithm returns a 1

2 -sum-diverse 𝐿-summary in
the non-relational setting. Algorithm 12 implements the greedy algorithm in the relational setting
so it also returns a 1

2 -sum-diverse 𝐿-summary for Q(I).

Complexity. For every tuple 𝑖 ↓ 𝑄𝑂 , it takes 𝑁 (log𝑀) time to compute 𝑘𝑂 (𝑖). It takes 𝑁 (𝑀)
time to construct the index 𝑠 . For every tuple 𝑒 returned by 𝑠 , it takes 𝑁 (log𝐿) = 𝑁 (log𝑀)
time to check if 𝑒 ↓ 𝑌 . All tuples can be enumerated from 𝑠 within 𝑁 (log𝑀) delay. We need to
enumerate at most 𝐿 ↙ 1 results until we !nd one that does not belong in 𝑌 . Our algorithm runs in
𝑁 (𝑀𝐿 log𝑀 + 𝐿2 log𝑀) time and uses 𝑁 (𝑀 + 𝐿) space.

Remark. This algorithm cannot be used for the Euclidean metric because the sum of distances
from a tuple 𝑆 to set 𝑌 is a sum of square roots, so we cannot use the squared Euclidean metric as
we did in the algorithms from Section 3 in the ranked enumeration index.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

217:26 Pankaj K. Agarwal et al.

D Extension to Cyclic Join
GeneralizedHypertreeDecomposition [42].Weneed the following notions to extend our results
to cyclic joins. We also use a triple (A, E, y) to represent a CQ Q, where E = {A1,A2, · · · ,A𝑁}.

De!nition D.1 (Generalized Hypertree Decomposition). Given a join Q = (A, E), a GHD of Q is a
pair (T , 𝛼), where T is a tree as an ordered set of nodes and 𝛼 : T → 2A is a labeling function which
associates to each node 𝑛 ↓ T a subset of attributes in A, 𝛼𝑓 , such that the following conditions
are satis!ed: (1) For each relation A𝑂 ↓ E, there is a node 𝑛 ↓ T such that A𝑂 ↑ 𝛼𝑓 ; (2) For each
attribute 𝑅 ↓ A, the set of nodes {𝑛 ↓ T : 𝑅 ↓ 𝛼𝑓} forms a connected subtree of T .

De!nition D.2 (Fractional Edge Covering Number of CQ). Given a CQ Q = (A, E, y), a function
𝛽 : [𝑃] → [0, 1] is a fractional edge covering of Q if

∑
𝑂↓ [𝑁]:𝑊↓A𝐿

𝛽 (𝑋) ⇒ 1 holds for any attribute
𝑅 ↓ A. The weight of𝛽 is de!ned as

∑
𝑂↓ [𝑁]𝛽 (𝑋). The fractional edge covering number of Q is

the minimum weight of all possible fractional edge coverings of Q.

Given a GHD (T , 𝛼) for a join Q, each node 𝑛 derives a subjoin over attributes 𝛼𝑓 and relations
E𝑓 = {𝛾 ↖ 𝑛 : 𝛾 ↓ E}. The width of each node 𝑛 ↓ T is de!ned as the fractional edge covering
number of (A𝑓, E𝑓). The width of (T , 𝛼) is de!ned as the maximum width over all nodes in T .
Then, the fractional hypertree width of a join follows:

De!nition D.3 (Fractional Hypertree Width [42]). The fractional hypertree width of a join Q,
denoted as fhtw(Q), is fhtw(Q) = min

(T,𝑤)
max
𝑓↓T

𝑎 (𝛼𝑓, E𝑓), i.e., the minimum width over all GHDs.

Basically, 𝑁 (𝑀 fhtw) is an upper bound on the number of join results materialized for each node
in T , as well as the time complexity of computing the join results [14]. Thus, we can generalize all
our results to cyclic joins. If the runtime of an algorithm for the acyclic join was 𝛴 (𝑀 ,𝐿, 𝑂), it now
becomes 𝛴 (𝑀 fhtw,𝐿, 𝑂).

E Extension to join-project queries
As we did for join queries, we focus on acyclic join-project queries and then use the well-known
GHD shown in Section 6 and Appendix D that maps any cyclic instance of input size 𝑀 to an
acyclic instance of input size 𝑀 fhtw. Hence, all our algorithms for acyclic join-project queries can
be extended to cyclic join-project queries with the same approximation guarantees. The running
time changes from 𝑁 (𝑀 · 𝛻 (𝐿)), where 𝛻 (·) is a function of 𝐿 , to 𝑁 (𝑀 fhtw · 𝛻 (𝐿)).

We !rst describe the high-level idea. Recall that y is the set of the output attributes. Recall that
𝑊 = |y|. A summary 𝑌 should be computed with respect to attributes only in y, i.e., 𝑌 ⇔ R𝑃 . For a
relation 𝑄𝑂 , let 𝑄↔

𝑂 = 𝑈y↖A𝐿 (𝑄𝑂), the projection of the tuples in 𝑄𝑂 on the output attributes A↔
𝑂 = y↖A𝑂 .

All our algorithms run almost verbatim using 𝑄↔
𝑂 instead of 𝑄𝑂 . Of course, the original relations 𝑄𝑂

are still used to identify the joined tuples. In fact, all our algorithms are straightforwardly extended
to join-project queries if we use a nearest neighbor, farthest neighbor, top-𝐿 , and rectangular oracles
that work on join-project queries. Next, we introduce such oracles.
Ranked enumeration. For simplicity, let Ā↔

𝑂 = A↔
𝑂 ↙ (⋃𝑋<𝑂 A↔

𝑋) be the set of active attributes for 𝑄↔
𝑂

i.e., the set of output attributes that do not appear in any relation before 𝑄↔
𝑂 . Let 𝑘𝑂 : R |A𝐿 | → R

be a weight function, which takes as input a tuple 𝑆 ↓ 𝑄𝑂 and outputs a real number. Let ∞𝑘 =
∈𝑘1,𝑘2, · · · ,𝑘𝑁∋ be a set of weight functions. For a CQ Q, a database I, and a pair of results
𝑆1, 𝑆2 ↓ Q(I), we say 𝑆1 ⇓ ∞𝑏 𝑆2 if

∑
𝑋↓ [𝑁] 𝑘 𝑋 (𝑆1.A↔

𝑋) ⇓
∑

𝑋↓ [𝑁] 𝑘 𝑋 (𝑆2 .A↔
𝑋). We use [32] instead of [33]

to perform ranked enumeration of join-project queries.

L!""# E.1 ([32]). For an acyclic join-project Q, a database I, and a set of weight functions ∞𝑘 =
∈𝑘1,𝑘2, · · · ,𝑘𝑁∋, an index of size 𝑁 (𝑀) can be constructed in 𝑁 (𝑀) time, such that given any value

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

Computing A Well-Representative Summary of Conjunctive!ery Results 217:27

𝐿 ↓ Z+, the top-𝐿 results of Q(I) can be enumerated in ascending or descending order with respect to
∞𝑘 within 𝑁 (𝑀 log𝑀) delay.
We note that the weights in [33] are de!ned on the attributes rather than on the tuples. However,

from our construction, it is straightforward to also design weight functions on the attributes. Hence,
for simplicity, we follow the de!nition of weight functions we had in all previous sections.
Euclidean-based oracles. Let 𝑚 ↓ R𝑃 be a tuple. The nearest neighbor oracle !nds a tuple 𝑆 ↓ Q(I)
such that 𝑍 (𝑚 , 𝑆) is minimized. The farthest neighbor oracle !nds a tuple 𝑆 ↓ Q(I) such that 𝑍 (𝑚 , 𝑆) is
maximized. For each relation 𝑄𝑂 , we de!ne𝑘𝑂 (·) as:𝑘𝑂 (𝑖 .A↔

𝑂) =
∑

𝑊 𝑁 ↓Ā↔
𝐿
(𝑖 .𝑅 𝑋 ↙𝑚 .𝑅 𝑋)2,where 𝑖 ↓ 𝑄𝑂 .

If Ā↔
𝑂 = ∀ then 𝑘𝑂 (𝑖 .A↔

𝑂) = 0. Thanks to the decomposability of squared Euclidean distance, for
any query result 𝑆 ↓ Q(I), ∑𝑂↓ [𝑁] 𝑘𝑂 (𝑆 .A↔

𝑂) =
∑

𝑂↓ [𝑁]
∑

𝑊 𝑁 ↓Ā↔
𝐿
(𝑆 .𝑅 𝑋 ↙ 𝑚 .𝑅 𝑋)2 =

∑
𝑊↓y (𝑆 .𝑅 ↙ 𝑚 .𝑅)2 =

𝑍2 (𝑚 , 𝑆), The square (and square root) function is increasing for non-negative values, so the order
of the distances with respect to the squared Euclidean distance is the same as the order of the
distances with respect to the Euclidean distance.
Top-𝐿 oracle. Let 𝑛 = ∈𝑛1,𝑛2, . . . ,𝑛𝑃∋ be a vector in R𝑃 . The top-𝐿 oracle !nds the 𝐿 tuples in
Q(I) with the largest inner product with respect to 𝑛. For each relation 𝑄𝑂 , we de!ne 𝑘𝑂 (·) as:
𝑘𝑂 (𝑖 .A↔

𝑂) =
∑

𝑊 𝑁 ↓Ā↔
𝐿

(
𝑖 .𝑅 𝑋

)
· 𝑛 𝑋 , where 𝑖 ↓ 𝑄𝑂 . It is easy to show that for any query result 𝑆 ↓ Q(I),∑

𝑂↓ [𝑁] 𝑘𝑂 (𝑆 .A↔
𝑂) =

∑
𝑂↓ [𝑁]

∑
𝑊 𝑁 ↓Ā↔

𝐿

(
𝑆 .𝑅 𝑋

)
· 𝑛 𝑋 = ∈𝑆,𝑛∋.

L!""# E.2. Given an acyclic join-project Q with 𝑊 output attributes, a database instance I with
input size 𝑀 , and a tuple 𝑚 ↓ R𝑃 , a set of weight functions ∞𝑘 can be constructed in𝑁 (𝑀) time, such that
the nearest (resp. farthest) neighbor of 𝑚 in Q(I), argmin𝑄 ↓Q(I) 𝑍 (𝑚 , 𝑆) (resp. argmax𝑄 ↓Q(I) 𝑍 (𝑚 , 𝑆)),
can be computed in 𝑁 (𝑀 log𝑀) time. Similarly, given a vector 𝑛 ↓ R𝑃 , a set of weight functions ∞𝑘
can be constructed in 𝑁 (𝑀) time, such that the 𝐿 tuples in Q(I) with the highest inner product with 𝑛
can be computed in 𝑁 (𝑀𝐿 log𝑀) time.

Rectangular oracle. Similarly to the rectangular oracle in the join queries, we can !nd all tuples in
I that pass the predicate, de!ned by the rectangle, and then apply the index from [32] to enumerate
the query results on the surviving tuples.
L!""# E.3. Given an acyclic join-project Q with 𝑊 output attributes, a database instance I with

input size 𝑀 , and a rectangle𝑕 ↓ R𝑃 , an index of size 𝑁 (𝑀) can be constructed in 𝑁 (𝑀) time such
that all results in𝑕 ↖ Q(I) can be enumerated with 𝑁 (𝑀 log𝑀) delay.
Replacing the oracles we used in the main part with the oracles de!ned in this section, we

conclude with the following results for cohesive and diverse summaries under the Euclidean metric.
C0++#03 E.4. For an acyclic join-project Q of 𝑊 output attributes, a database I of input size 𝑀 ,

and a parameter 𝑂 > 0, a (2 + 𝑂)-cohesive 𝐿-summary for Q(I) under the Euclidean metric can be
computed in 𝑁

(
𝐿2𝑀 log𝑀 + 𝐿𝑀 log(𝑀)𝑂↙𝑃

)
time.

C0++#03 E.5. For an acyclic join-project Q of 𝑊 output attributes, a database I of input size 𝑀 ,
and a parameter 𝑂 > 0, a

(1
2 ↙ 𝑂

)
-min-diverse 𝐿-summary of Q(I) under the Euclidean metric can be

computed in 𝑁
(
𝐿2𝑀 log𝑀 + 𝐿𝑀 log(𝑀)𝑂↙𝑃

)
time.

C0++#03 E.6. For an acyclic join-project Q of 𝑊 output attributes, a database I of input size 𝑀 ,
and a parameter 𝑂 ↓ (0, 12), a

(1
2 ↙ 𝑂

)
-sum-diverse 𝐿-summary of Q(I) under the Euclidean metric can

be computed in 𝑁
(
𝐿𝑀 log(𝑀)𝑂↙ (𝑃↙1)/2) time.

Equivalently, using the oracles de!ned in this section, we can derive the results for constructing
cohesive and diverse summaries under the Hamming metric.

Received May 2024; revised August 2024; accepted September 2024

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.

	Abstract
	1 Introduction
	1.1 Problem Definition
	1.2 Related Work
	1.3 Our Contributions

	2 Relational Oracles
	3 Cohesive Summaries
	3.1 Euclidean Metric
	3.2 Hamming Metric

	4 Min-diverse Summaries
	4.1 Euclidean Metric
	4.2 Hamming Metric

	5 Sum-diverse Summaries
	5.1 Euclidean Metric
	5.2 Hamming Metric

	6 Extensions
	7 Conclusion
	References
	A Missing details from Section 1
	B Missing details from Section 3
	B.1 Missing details from Subsection 3.1
	B.2 Missing details from Subsection 3.2

	C Missing details from Section 5
	D Extension to Cyclic Join
	E Extension to join-project queries

