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Coupled-cluster theory with single, double, and perturbative triple excitations (CCSD(T))—often considered
the “gold standard” of main-group quantum chemistry—is inapplicable to three-dimensional metals due to an
infrared divergence, preventing its application to many important problems in materials science. We study the
full, nonperturbative inclusion of triple excitations (CCSDT) and propose a new, iterative method, which we
call ring-CCSDT, that resums the essential triple excitations with the same N7 run-time scaling as CCSD(T).
CCSDT and ring-CCSDT are used to calculate the correlation energy of the uniform electron gas at metallic
densities and the structural properties of solid lithium. Inclusion of connected triple excitations is shown to be
essential to achieving high accuracy. We also investigate semiempirical CC methods based on spin-component
scaling and the distinguishable cluster approximation and find that they enhance the accuracy of their parent ab
initio methods.

Introduction. Accurately predicting energetic properties
of metallic solids is crucial in computational materials sci-
ence, with applications in heterogeneous catalysis, electro-
chemistry, and battery science [1–3]. Coupled-cluster theory
with single and double excitations (CCSD) [4, 5] has recently
been shown to provide reasonable energies for the uniform
electron gas (UEG) [6–8] and for atomistic metallic solids,
such as lithium and aluminum [9–12], but it does not reliably
outperform density functional theory (DFT), which is signif-
icantly cheaper—some inclusion of connected triple excita-
tions is clearly required. For non-metallic main-group solids,
CCSD with perturbative triple excitations (CCSD(T)) [13]
is highly accurate for bulk properties [14–18] and surface
chemistry [18–24], mirroring its performance on molecules,
where it commonly yields “chemical accuracy” of about
1 kcal/mol [5]. However, CCSD(T) is not expected to be ap-
plicable to three-dimensional metals: an approximate evalua-
tion of the CCSD(T) energy of the UEG was shown to diverge
in the thermodynamic limit [25], similar to the textbook result
of second-order perturbation theory [26, 27].

Here, we investigate the accuracy of CC theory with non-
perturbative triple excitations (CCSDT) to determine whether
such a theory provides the desired accuracy for metals. Be-
cause the high cost of CCSDT limits its routine application,
we also design and test lower cost alternatives. Below, we
first review diagrammatic results on the ground-state energy
of the UEG, including its high-density expansion, divergences
and necessary resummations, and connections with coupled-
cluster theory including double and triple excitations. An
analysis of the (T) correction for the UEG motivates a new
theory, which nonperturbatively retains the triple excitations
necessary to preclude a divergence and which has the same
N7 computational scaling as CCSD(T). We assess the per-
formance of these methods with applications to the UEG
at metallic densities and to solid lithium. Furthermore, we
test several semiempirical modifications, including the dis-
tinguishable cluster (DC) approximation [28–30] and spin-
component-scaled (SCS) CC theory [31–33], which were de-
signed to approximate the effect of higher excitations without

increasing the computational cost (we use the term “semiem-
pirical” to indicate that, although in some cases the modifica-
tions can be constrained by physical principles, the methods
are not rigorously diagrammatic).

Diagrammatic results on the uniform electron gas. The
UEG, a model of interacting electrons in a uniform positive
background, has been a famous testing ground for new de-
velopments in nonperturbative many-body quantum field the-
ory. Specifically, the total energy of the UEG with electron
density n has been evaluated to leading orders in the Wigner-
Seitz radius rs = (3/(4ωn))1/3 [27, 34, 35], in the absence and
presence of a spin polarization; in this work, we focus on the
upolarized case. The kinetic energy and Hartree-Fock (HF)
exchange energy produce terms of O(r→2

s ) and O(r→1
s ), respec-

tively, and the remaining terms define the correlation energy.
From dimensionality arguments, it is expected that second-

order perturbation theory contributes all terms of O(r0
s ),

which is correct for the second-order exchange energy [27,
36]. The second-order direct (ring) term, whose diagram
is shown in Fig. 1(a), contributes a correlation energy E2,4
↑ r0

s

∫ ↓
0 dq f (q)/q2, where

f (q) =
∫

|k+q|>1
d3k
∫

|p+q|>1
d3 p
ε(1 → k)ε(1 → p)
q2 + (k + p) · q (1)

and all dimensionless momenta k,p, q are normalized to the
Fermi momentum; we use the notation Em,2n from Refs. 34
and 35, where m is the order in perturbation theory and n is
the number of interactions with the same momentum trans-
fer. It can be shown that f (q) ↑ q in the limit q ↔ 0, and
thus the second-order direct term famously diverges logarith-
mically. All higher order terms with the same ring structure
(n rings at order n in perturbation theory), such as the one
shown in Fig. 1(b) (i.e., E3,6) exhibit the strongest divergences
at each order, and their resummation to infinite order defines
the random-phase approximation (RPA) [26, 27, 34, 35, 37–
39], ϑ↗ = E2,4 + E3,6 + E4,8 + · · · . The RPA provides a correla-
tion energy that is correct to O(ln rs) and is therefore exact in
the high-density rs ↔ 0 limit (aside from a constant); the ap-
pearance of terms O(ln rs) in the density expansion signals the
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FIG. 1. Goldstone diagrams discussed in the text, which are in-
cluded at various orders in perturbation theory and various flavors of
CC theory. The dashed red box in (d) and (e) highlights the problem-
atic feature responsible for the divergence of the CCSD(T) correla-
tion energy.

non-analyticity of the correlation energy. As is well-known,
the CCSD energy contains all terms included in the RPA [40–
42], providing a strong theoretical argument for the appli-
cation of CC theories to metallic solids—a research agenda
started more than 40 years ago [40, 41, 43, 44]. As a reminder,
single excitations vanish in the UEG by symmetry, and the
CCSD correlation energy is Ec =

1
4 ↘i j||ab≃tab

i j , where tab
i j is the

double-excitation amplitude that solves the CCSD amplitude
equations. Here and henceforth, i, j, . . . indicate occupied spin
orbitals, a, b, . . . indicate unoccupied spin orbitals, Coulomb
integrals are in ↘12|12≃ notation, the double bar indicates anti-
symmetrized integrals, and summation over repeated indices
is implied.

Third-order perturbation theory produces convergent terms
that are O(rs) (i.e., E3,2), strongly divergent terms with three
rings that are included in the RPA [i.e., Fig. 1(b) or E3,6], and
more weakly divergent terms whose diagrams have only one
ring, such as that shown in Fig. 1(c), which define E3,4. These
latter terms have to be resummed with higher-order divergent
contributions that have analogous structure (n → 2 rings at or-
der n in perturbation theory), ϑ↗↗ = E3,4+E4,8+ · · · , which can

be evaluated to identify a correlation energy that is exact to
O(rs, rs ln rs) [34, 35, 45]. Remarkably, all of these terms are
included in the CCSD correlation energy. Although it has long
been appreciated that CCSD resums the most divergent terms
that define the RPA correlation energy ϑ↗ [40–42], to the best
of our knowledge, it has not been noted that it also resums
these next most divergent terms that define ϑ↗↗. Therefore,
CCSD is exact for the energy of the UEG to O(rs, rs ln rs),
which is one order higher than the RPA, in addition to recov-
ering the correct constant term due to second-order exchange.

As expected, the CCSD energy is missing terms from fourth
order in perturbation theory, including those that yield finite
values of O(r2

s ) or that diverge weakly and must be resummed
with higher-order terms. CCSDT produces an energy that is
exact to fourth order in perturbation theory and includes re-
summations necessary to eliminate fourth-order divergences,
thus providing a potentially powerful theory of the energy of
metals. However, CCSDT has a high computational cost that
scales as N8, which precludes routine application to atomistic
materials. Nonetheless, below we exploit the simplicity of the
UEG and carefully designed composite corrections to provide
the first estimates of the performance of CCSDT for the UEG
in the thermodynamic limit and for solid lithium.

The intermediate theory CCSD(T), with a reduced N7 scal-
ing, is very accurate for many molecules and insulating solids.
However, CCSD(T) yields a divergent energy for metals,
which was demonstrated numerically using an approximate
form in Ref. 25. Here, we provide a diagrammatic analy-
sis of the same behavior to shed more light on the failures
of CCSD(T). Neglecting single excitations, which vanish for
the UEG by symmetry, the energy correction in CCSD(T) is
shown by the diagram in Fig. 1(d) (plus permutations due to
exchange), where the double line indicates tab

i j from CCSD. To
lowest order, the (T) correction is that of bare fourth-order per-
turbation theory, shown in Fig. 1(e), whose analysis elucidates
the (T) divergence. Considering only the contribution with-
out exchange, the problematic process has four interactions
with two pairs of identical momenta exchanged, q and q↗, i.e.,
the correlation energy is Ec ↑ r2

s

∫
d3q
∫

d3q↗ f (q, q↗)/(q4q↗4),
where

f (q, q↗) =
∫

|k+q|>1
d3k
∫

|m+q↗ |>1
d3m
∫

|p+q|>1
|p→q↗ |<1

d3 p
ε(1 → k)ε(1 → p)ε(1 → m)

[q2 + (k + p) · q]2[q2 + (k + p) · q + (m + p) · q↗] . (2)

As usual, the correlation energy integral diverges due to the
behavior of the integrand near q, q↗ = 0. Letting qc be an
infrared cutoff on both momentum integrals, the integrated
result can be checked to diverge as O(q→2

c ln qc), demanding
resummation with higher-order terms.

By replacing the outer Coulomb interactions by tab
i j from

CCSD as in Fig. 1(d), CCSD(T) regularizes the integral over
q, but not q↗. This single ring diagram self-energy insertion,

highlighted with a red box in Figs. 1(d) and (e), is responsible
for the divergence of the CCSD(T) energy for metals. By ana-
lytically performing this regularization, the CCSD(T) energy
can be shown to diverge as O(ln qc), which is naturally weaker
than that of bare fourth-order perturbation theory, but still use-
less for quantitative calculations. This rate of divergence is
exactly the same as that of second-order perturbation theory,
which we exploit in the Supplemental Material (SM) [46] to
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numerically confirm the divergence of CCSD(T), along the
lines of other works [47, 48].

Importantly, this analysis also identifies the minimal
physics necessary to regularize the CCSD(T) approximation
for metals, which is an infinite-order RPA-style resumma-
tion of ring diagrams in the self-energy insertion (like in the
GW approximation [49]), as shown in Fig. 1(f). This can be
achieved approximately by removing many of the terms from
the CCSDT equations, analogous to the equivalence between
(direct) ring-CCD and the RPA. This method, which we call
ring-CCSDT, is implemented as follows. The singles and dou-
bles amplitude equations are exactly as in CCSDT. The triples
amplitude equation is the same as in the CCSDT-1 approxima-
tion [4, 50–53], but is supplemented with direct ring diagrams,
0 = RCCSDT→1 + Rdr,

RCCSDT→1 = P̂(c/ab) fcdtabd
i jk → P̂(k/i j) flktabc

i jl

+ P̂(k/i j|a/bc)↘bc||dk≃tad
i j → P̂(i/ jk|c/ab)↘lc|| jk≃tab

il

(3a)

Rdr = P̂(i/ jk|a/bc) ↘al|id≃ tdbc
l jk + P̂(i/ jk|abc) ↘lb|de≃ tad

il tec
jk

→ P̂(i jk|a/bc) ↘lm|d j≃ tad
il tbc

mk + P̂(i/ jk|a/bc) ↘lm|de≃ tad
il tebc

m jk
(3b)

where P̂(k/i j|a/bc) = [1 → P̂(ik) → P̂( jk)][1 → P̂(ab) → P̂(ac)],
P̂(i j) generates the permutation of i and j, and fpq is a Fock
matrix element. Note that Coulomb integrals in Eq. (3a) are
antisymmetrized, whereas those in Eq. (3b) are not.

Unfortunately, despite its iterative nature, the CCSDT-1 ap-
proximation (without the ring diagrams) is a divergent the-
ory of metals, like CCSD(T), because of the isolated ring dia-
gram highlighted in Figs. 1(d) and (e). In the ring-CCSDT ap-
proximation, not all time-orderings of repeated ring diagrams
are included: all forward (Tamm-Dancoff) time-orderings are
included, which is sufficient to preclude a divergence [40],
and a subset of the non-Tamm-Dancoff time-orderings are
included, but not all those corresponding to the complete
RPA; this is very similar to the diagrammatic content of the
coupled-cluster Green’s function [54, 55]. To include all time-
orderings that define RPA screening would require inclusion
of connected quadruple excitations.

The first and last terms of Rdr exhibit N8 computational
scaling, like the parent CCSDT method. However, the use
of direct (non-antisymmetrized) ring diagrams enables a re-
duction in scaling with the use of density-fitting or Cholesky
decomposition of the Coulomb integrals [56] ↘pq|rs≃ =∑

P LP
prLP

qs, where P is an auxiliary index. For example, the
last term can be constructed as

∑

lmde

↘lm|de≃ tad
il tebc

m jk =
∑

P



∑

ld

LP
ldtad

il






∑

me

LP
metebc

m jk


 . (4)

With such a compression of the Coulomb integrals, ring-
CCSDT is an iterative N7 method, providing an appealing al-
ternative to the CCSD(T) approximation that is applicable to
metals (although the storage of the triple excitation amplitudes
tabc
i jk is a separate bottleneck).

Ec/N (mEh)
N = 14 N = 54 N = 114

CCSD →29.2 →30.2 →36.5
ring-CCSDT →30.9 →32.3 →39.8
CCSDT →31.4 →32.9 →40.7
SCS-CCSD →36.2 →37.3 →44.9
DCSD →30.5 →31.5 →38.9
SCS-DCSD →32.6 →33.9 →41.9
DCSDT →31.5 →33.0 →41.1
CCSDTQ [57] →31.7 → →
ph-AFQMC [58] →31.6 →33.1 →40.7
DMC [59, 60] →31.0 →31.9 →
FCIQMC [61] →31.8 → →

TABLE I. UEG correlation energy per electron for rs = 2 from var-
ious correlated methods at or near the complete basis set limit for
N = 14, 54, and 114 electrons with a Γ-Point centered mesh. The
first seven rows of data are from this work.

Results for the UEG. CC approximations are difficult to
treat semi-analytically, even for the UEG. Therefore, we sim-
ulate a UEG of electron density n via a cubic box of N elec-
trons with volume V = N/n = (4/3)ωr3

s N and a plane-
wave orbital basis. Several correlated methods, especially
CC and quantum Monte Carlo (QMC), have been previously
applied to UEG models containing a finite number of elec-
trons [57, 59, 62, 63]; these models have a gap in their single-
particle spectrum and thus do not suffer from the infrared di-
vergences that arise in the TDL. However, study of these mod-
els enables direct comparison between different levels of the-
ory and can also be viewed as a proxy for performance on
other gapped systems such as molecules or insulating solids.
In Tab. I, we present the correlation energy for N = 14, 54,
and 114 at rs = 2; to allow direct comparison, all results are
at or near the complete basis set limit and are obtained with-
out twisted boundary conditions. Overall, we see that CCSDT
and DCSDT agree with each other and with QMC results to
0.5 mEh or better. The new method ring-CCSDT is a sig-
nificant improvement over CCSD, and achieves sub-mEh ac-
curacy compared to these latter reference methods. A more
thorough comparison at rs = 0.5, 1, 2, and 5 is given in the
SM [46].

Although the accuracy of various CC methods can be
gleaned from these calculations with finite N, in this work we
are primarily concerned with the critical question of their per-
formance in the N ↔ ↓ limit. Specifically, we perform CCSD
and DCSD calculations on systems containing up to N = 1404
electrons and estimate the complete basis set limit using calcu-
lations on smaller system sizes. These results are then used to
extrapolate to the thermodynamic limit assuming that finite-
size errors in the correlation energy decay asymptotically as
N→2/3—a functional form that is derived in the SM [46] and
has also been proposed in recent work [65]. Our final CCSD
correlation energies agree within about 1 mEh with previous
studies that targeted the thermodynamic limit [6, 7], despite
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FIG. 2. Ratio of the coupled-cluster correlation energy to the dif-
fusion Monte Carlo (DMC) correlation energy [64] for the three-
dimensional UEG with rs = 1–5, as given by the methods indicated
in the legend. The methods are separated into those that are purely
diagrammatic (left) and those that are semiempirical (right). Range
of chemical accuracy (±1 kcal/mol or ±1.6 mEh) is shown with a
grey shaded area.

different technical details, providing a validation of our meth-
ods. CCSDT, ring-CCSDT, and DCSDT calculations are per-
formed on systems containing up to N = 156 electrons, and
we calculate the energy difference with respect to DCSD. The
complete basis set limit of this energy difference is estimated
based on smaller values of N and then extrapolated to the ther-
modynamic limit. Additional technical details are given in the
SM [46].

In Fig. 2, we present the correlation energy of the UEG at
metallic densities of rs = 1–5 from various CC theories as
a fraction of the numerically exact result, estimated via re-
cent Slater-Jastrow-backflow diffusion Monte Carlo (DMC)
results [64]; a table of all values is given in the SM [46].
The magnitude of the DMC correlation energy ranges from
60 mEh at rs = 1 to 29 mEh at rs = 5. As expected based on
the density expansion discussed above, the relative accuracy
of diagrammatic methods shown in Fig. 2(a) (CCSD, CCSDT,
and ring-CCSDT) decreases with increasing rs. Compared to
CCSD, which recovers only about 76–92% of the DMC corre-
lation energy, CCSDT performs extremely well and recovers
between 98% (at rs = 1) and 92% (at rs = 5), correspond-
ing to an absolute accuracy of 1.3–2.4 mEh. The good per-
formance of ring-CCSDT, with errors of 1.7–3.2 mEh, shows
that the same ring diagram resummation responsible for cur-
ing the divergence of CCSD(T) is also responsible for most of
the correlation energy associated with connected triple excita-
tions.

The semiempirical CC methods shown in Fig. 2(b) (SCS-
CCSD, DCSD, SCS-DCSD, and DCSDT) typically per-
form better than their parent diagrammatic method. SCS-
CCSD [32] improves over CCSD, except at small rs, demon-
strating that semiempirical modifications can spoil valuable
formal properties like the exactness of CC theories in the
high-density limit. DCSD [28] is better behaved and roughly

halves the error of CCSD over this density range. SCS-
DCSD [33] is a further improvement and provides the best
overall performance of the N6 scaling methods. Remarkably,
DCSDT [29, 30] yields results of extremely high accuracy, re-
covering more than 94% of the DMC correlation energy at all
densities, which corresponds to an error of less than 1.7 mEh,
i.e., about 1 kcal/mol.

Results on solid lithium. Next, we investigate the transfer-
ability of the above performance to a real material. We study
solid lithium, which is a simple metal with a valence electron
density corresponding to rs ⇐ 3.2. We use CCSD, DSCD,
ring-CCSDT, CCSDT, and DCSDT to calculate the equilib-
rium lattice parameter, bulk modulus, and cohesive energy.
All calculations were performed with a development branch
of PySCF [70–72], and all technical details—such as pseu-
dopotentials, basis sets (up to quadruple-zeta Gaussian type
orbitals), and Brillouin zone samplings (up to 64 k-points, plus
extrapolation)—are the same as in our previous work [11]; in
that work, we found that CCSD predictions had significant
room for improvement (at the CCSD level, we find that our
updated finite-size extrapolations cause only small differences
from our previous work, e.g., under 0.1 mEh in the cohesive
energy and under 0.01 Å for the lattice parameter). We es-
timate the ring-CCSDT, CCSDT, and DCSDT energies using
composite corrections, by again considering the differences to
DCSD, based on calculations with small supercells (contain-
ing 8 and 16 Li atoms), frozen core orbitals, and frozen virtual
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FIG. 3. Equilibrium lattice constant a, bulk modulus B, and cohe-
sive energy Ecoh for solid lithium. Results are shown at the indicated
levels of CC theory and compared to experimental results [66–69]
(solid horizontal lines), which have been corrected for zero-point vi-
brational energy using the HSE06 corrections from Ref. 66. DFT
results for the LDA and HSE06 functionals are shown for compari-
son (from Ref. 66)
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natural orbitals [46].
Results are presented in Fig. 3, where they are compared to

low temperature experimental results [66–69] that have been
corrected for zero-point vibrational effects based on HSE06
phonon calculations [66]; a table of all values is given in the
Supplemental Material [46]. Consistent with our results on
the UEG, we see relatively systematic improvement with in-
creasing sophistication of the theory. DCSD, ring-CCSDT,
CCSDT, and DCSDT are all improvements over CCSD and
they achieve accuracies of 0.009–0.022 Å, 0.16–0.28 GPa,
and 4.5–6.6 mEh in the lattice constant, bulk modulus, and
cohesive energy, respectively. It is hard to disentangle the
remaining discrepancies, which likely include some combi-
nation of pseudopotential, basis set, and finite-size error, in-
complete correlation, and experimental uncertainty, including
vibrational corrections. We also compare to DFT results re-
ported in Ref. [66] using the LDA [73] and HSE06 [74–76]
functionals. While the LDA functional does not predict accu-
rate structural properties (despite its exactness for the UEG),
the HSE06 functional performs very well. Importantly, we
see that the improved methods explored in this work clearly
outperform CCSD, bringing CC theory in line with the best
performing DFT functionals.

Conclusion. Despite the apparent simplicity of simple met-
als, including the UEG, achieving high accuracy for the elec-
tron correlation energy with ab initio wavefunction or dia-
grammatic methods is clearly a challenge. By contrast, this
limit is almost trivial for DFT, where the LDA plus gradi-
ent corrections is ideal. We have shown that within the fam-
ily of CC theories, the infinite-order inclusion of connected
triple excitations is essential, although semiempirical treat-
ments of these effects are surprisingly effective. We expect
that the methods explored here, which have been evaluated
for their ability to predict the properties of nearly uniform
systems, will outperform DFT for more heterogeneous and
complex systems, such as those arising in surface chemistry
that require accurate treatments of dispersion interactions and
stretched bonds. Before CC methods are widely used in this
context, their comparatively high computational and storage
costs must be addressed. However, in the meantime, they can
be used to provide predictions of benchmark quality, espe-
cially in the many situations where experimental values can-
not be obtained to the required precision.
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[60] P. López Rı́os, A. Ma, N. D. Drummond, M. D. Towler, and
R. J. Needs, Inhomogeneous backflow transformations in quan-
tum Monte Carlo calculations, Phys. Rev. E 74, 066701 (2006).

[61] J. J. Shepherd, G. H. Booth, and A. Alavi, Investigation of
the full configuration interaction quantum Monte Carlo method
using homogeneous electron gas models, J. Chem. Phys. 136,
244101 (2012).

[62] J. McClain, J. Lischner, T. Watson, D. A. Matthews, E. Ronca,
S. G. Louie, T. C. Berkelbach, and G. K.-L. Chan, Spectral
functions of the uniform electron gas via coupled-cluster the-
ory and comparison to the G W and related approximations,
Phys. Rev. B 93, 235139 (2016).

[63] J. S. Spencer and A. J. W. Thom, Developments in stochastic
coupled cluster theory: The initiator approximation and appli-
cation to the uniform electron gas, J. Chem. Phys. 144, 084108
(2016).

[64] S. Azadi, N. D. Drummond, and S. M. Vinko, Correlation en-
ergy of the paramagnetic electron gas at the thermodynamic
limit, Phys. Rev. B 107, L121105 (2023).

[65] T. N. Mihm, L. Weiler, and J. J. Shepherd, How the Exchange
Energy Can Affect the Power Laws Used to Extrapolate the
Coupled Cluster Correlation Energy to the Thermodynamic
Limit, J. Chem. Theor. Comput. 10.1021/acs.jctc.2c00737
(2023).

[66] G.-X. Zhang, A. M. Reilly, A. Tkatchenko, and M. Scheffler,
Performance of various density-functional approximations for
cohesive properties of 64 bulk solids, New J. Phys. 20, 063020
(2018).

[67] R. Berliner and S. A. Werner, Effect of stacking faults on
diffraction: The structure of lithium metal, Phys. Rev. B 34,
3586 (1986).

[68] R. A. Felice, J. Trivisonno, and D. E. Schuele, Temperature and
pressure dependence of the single-crystal elastic constants of Li
6 and natural lithium, Phys. Rev. B 16, 5173 (1977).

[69] C. Kittel, Introduction to solid state physics, 8th ed. (John Wiley
& Sons, Inc., 2005).

[70] Q. Sun, Libcint: An efficient general integral library for Gaus-
sian basis functions, J. Comput. Chem. 36, 1664 (2015).

[71] Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo,
Z. Li, J. Liu, J. D. McClain, E. R. Sayfutyarova, S. Sharma,
S. Wouters, and G. K.-L. Chan, PySCF: the Python-based sim-
ulations of chemistry framework, WIREs Comput. Mol. Sci. 8,
e1340 (2018).

[72] Q. Sun, X. Zhang, S. Banerjee, P. Bao, M. Barbry, N. S. Blunt,
N. A. Bogdanov, G. H. Booth, J. Chen, Z.-H. Cui, J. J. Eriksen,
Y. Gao, S. Guo, J. Hermann, M. R. Hermes, K. Koh, P. Ko-
val, S. Lehtola, Z. Li, J. Liu, N. Mardirossian, J. D. McClain,
M. Motta, B. Mussard, H. Q. Pham, A. Pulkin, W. Purwanto,
P. J. Robinson, E. Ronca, E. R. Sayfutyarova, M. Scheurer,
H. F. Schurkus, J. E. T. Smith, C. Sun, S.-N. Sun, S. Upad-
hyay, L. K. Wagner, X. Wang, A. White, J. D. Whitfield, M. J.
Williamson, S. Wouters, J. Yang, J. M. Yu, T. Zhu, T. C. Berkel-

bach, S. Sharma, A. Y. Sokolov, and G. K.-L. Chan, Recent
developments in the PySCF program package, J. Chem. Phys.
153, 024109 (2020).

[73] W. Kohn and L. J. Sham, Self-consistent equations includ-
ing exchange and correlation effects, Phys. Rev. 140, A1133
(1965).

[74] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals
based on a screened Coulomb potential, J. Chem. Phys. 118,
8207 (2003).

[75] J. Heyd, G. E. Scuseria, and M. Ernzerhof, Erratum: “Hybrid
functionals based on a screened Coulomb potential” [J. Chem.
Phys. 118, 8207 (2003)], J. Chem. Phys. 124, 219906 (2006).

[76] A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuse-
ria, Influence of the exchange screening parameter on the per-
formance of screened hybrid functionals, J. Chem. Phys. 125,
224106 (2006).

[77] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers,
P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J.
Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk,
M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant, Array programming
with NumPy, Nature 585, 357 (2020).

[78] SciPy 1.0 Contributors, P. Virtanen, R. Gommers, T. E.
Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.
van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, and P. van
Mulbregt, SciPy 1.0: fundamental algorithms for scientific
computing in Python, Nature Methods 17, 261 (2020).

[79] W. McKinney, Data structures for statistical computing in
python, in Proceedings of the 8th Python in Science Confer-
ence, edited by S. van der Walt and J. Millman (2009) pp. 55 –
61.

[80] J. D. Hunter, Matplotlib: A 2d graphics environment, Comput.
Sci. Eng. 9, 90 (2007).

[81] M. L. Waskom, seaborn: statistical data visualization, J. Open
Source Softw. 6, 3021 (2021).

[82] D. Binosi and L. Theußl, JaxoDraw: A graphical user interface
for drawing Feynman diagrams, Comput. Phys. Commun. 161,
76 (2004).

[83] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia:
A Fresh Approach to Numerical Computing, SIAM Rev. 59, 65
(2017).

[84] G. J. R. Aroeira, M. M. Davis, J. M. Turney, and H. F. Schae-
fer III, Fermi.jl: A Modern Design for Quantum Chemistry, J.
Chem. Theor. Comput. 18, 677 (2022).

[85] TensorOperations.jl (), https://github.com/Jutho/TensorOperations.jl,
accessed 2023-02-13.

[86] Tullio.jl (), https://github.com/mcabbott/Tullio.jl, accessed
2023-02-13.

https://doi.org/10.1103/PhysRevResearch.3.033072
https://doi.org/10.1103/PhysRevResearch.3.033072
https://doi.org/10.1103/PhysRevE.74.066701
https://doi.org/10.1063/1.4720076
https://doi.org/10.1063/1.4720076
https://doi.org/10.1103/PhysRevB.93.235139
https://doi.org/10.1063/1.4942173
https://doi.org/10.1063/1.4942173
https://doi.org/10.1103/PhysRevB.107.L121105
https://doi.org/10.1021/acs.jctc.2c00737
https://doi.org/10.1088/1367-2630/aac7f0
https://doi.org/10.1088/1367-2630/aac7f0
https://doi.org/10.1103/PhysRevB.34.3586
https://doi.org/10.1103/PhysRevB.34.3586
https://doi.org/10.1103/PhysRevB.16.5173
https://doi.org/https://doi.org/10.1002/jcc.23981
https://doi.org/https://doi.org/10.1002/wcms.1340
https://doi.org/https://doi.org/10.1002/wcms.1340
https://doi.org/10.1063/5.0006074
https://doi.org/10.1063/5.0006074
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.2204597
https://doi.org/10.1063/1.2404663
https://doi.org/10.1063/1.2404663
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/9.25080/Majora-92bf1922-00a
https://doi.org/9.25080/Majora-92bf1922-00a
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://doi.org/https://doi.org/10.1016/j.cpc.2004.05.001
https://doi.org/https://doi.org/10.1016/j.cpc.2004.05.001
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1021/acs.jctc.1c00719
https://doi.org/10.1021/acs.jctc.1c00719

	Highly accurate electronic structure of metallic solids from coupled-cluster theory with nonperturbative triple excitations
	Abstract
	References


