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Abstract

Attaining kJ/mol accuracy in cohesive energy for molecular crystals is a persistent

challenge in computational materials science. In this study, we evaluate second-order

Møller-Plesset perturbation theory (MP2) and its spin-component scaled models for

calculating cohesive energies for 23 molecular crystals (X23 dataset). Using periodic

boundary conditions and Brillouin zone sampling, we converge results to the ther-

modynamic and complete basis set limits, achieving an accuracy of about 2 kJ/mol

(0.5 kcal/mol), which is rarely achieved in previous MP2 calculations for molecular

crystals. When compared to experimental data, our results have a mean absolute er-

ror of 12.9 kJ/mol, comparable to Density Functional Theory (DFT) with the PBE

functional and TS dispersion correction. By separately scaling the opposite-spin and

same-spin correlation energy components, using predetermined parameters, we reduce

the mean absolute error to 9.5 kJ/mol. Further fine-tuning of these scaling parameters

specifically for the X23 dataset brings the mean absolute error down to 7.5 kJ/mol.
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Molecular crystals are periodic arrangements of molecules bound by weak, noncovalent

interactions. They play an important role in the pharmaceutical industry, and their unique

electronic and optical properties are of interest for the development of molecular optoelec-

tronics1. The small energy scale of their interactions gives rise to polymorphism, where

one molecule crystallizes into more than one structure, which have di!erent properties such

as their stability or solubility1,2. The prediction of relative stabilities of competing crystal

structures is a computational grand challenge due to the chemical nature and magnitude

of the competing molecular interactions, and a successful methodology would have major

impact on basic and applied research.

Density functional theory (DFT)3,4 is among the most popular methods for predicting

material properties from first-principles due to its low cost and widely available implementa-

tion in popular software packages. However, DFT with the commonly employed semi-local5

or hybrid functionals6–8 does not accurately capture non-covalent interactions such as dis-

persion, which are essential for molecular crystals. E!orts to address this deficiency include

the empirical ‘-D’ corrections of Grimme9, the exchange-hole dipole moment (XDM) method

of Becke and Johnson10, and the van der Waals C6 model of Tkatchenko and Sche”er11.

An alternative to DFT is a wave-function based approach, which naturally includes dis-

persion interactions at the post-Hartree-Fock (HF) level and which is, in principle, sys-

tematically improvable. Among such methods, second-order Møller-Plesset perturbation

theory (MP2)12 is the simplest correlation method and its accuracy can be significantly im-

proved by the separate scaling of the spin components of its correlation energy (at least,

for molecules)9,13–15. Despite the increasing use of periodic MP2 due to its relatively low

cost, there are few systematic and complete reports on its performance16–23, especially in the

computationally demanding complete basis set (CBS)24–29 limit and thermodynamic limit

(TDL)30–32.

Recently, our group reported such a study for semiconductors and insulators with strong

covalent or ionic bonds33, finding that MP2 yields reasonable predictions for lattice con-
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stants, bulk moduli, and cohesive energies. For example, the mean absolute error of the

cohesive energy, compared to experimental values, was 22 kJ/mol; with separate scaling of

the spin components, the error was reduced to 6 kJ/mol, which is better than that of good

DFT functionals like PBEsol or SCAN. In these strongly bound solids, the HF cohesive

energy is qualitatively correct and constitutes about 60–70% of the MP2 cohesive energy. In

contrast, in many weakly bound molecular crystals, the HF cohesive energy is qualitatively

incorrect—predicting the wrong sign or only a small fraction of the true cohesive energy—and

thus molecular crystals provide a more challenging test of approximate theories of electron

correlation.

Recently, our group reported a periodic MP2 study of the benzene crystal34, showing

promising results and addressing potential basis set incompleteness and finite-size errors

in literature MP2 values. We found that MP2 overestimated the magnitude of the cohesive

energy by about 18 kJ/mol and, again, that spin scaling could reduce the error to 3–5 kJ/mol.

Here, we extend this work and report tightly converged periodic MP2 calculations of the

cohesive energies of the 23 molecular crystals contained in the X23 dataset of Reilly and

Tkatchenko35, which is an extension of the X16 dataset36 and built on the C21 dataset of

Otero-de-la-Roza and Johnson37.

The crystals in the X23 dataset exhibit diverse bonding types, including dipole interac-

tions, pure dispersion, and hydrogen bonding. For select molecular crystals, coupled-cluster

theory with single, double, and perturbative triple excitations [CCSD(T)] has achieved

kJ/mol accuracy in calculated cohesive energies38,39, but its high cost—scaling as N7 with

system size N—precludes routine application to systems with large unit cells. Fifteen

years ago, DiStasio and Head-Gordon targeted CCSD(T) accuracy with MP2 cost by opti-

mizing the MP2 spin-scaling coe#cients specifically for intermolecular interaction energies

[SCS(MI)-MP2]15 using the S22 dataset40 of non-covalently bonded model complexes. In

the CBS limit, spin scaling reduced the mean absolute error with respect to CCSD(T)

from 3.3 kJ/mol to less than 1 kJ/mol and reduced the maximum error from 12 kJ/mol to
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2 kJ/mol. In this work, we test the transferability of this and other spin-scaling prescriptions

for molecular crystals, whose many-body and long-range interactions may not be reflected

in the dimers included in the S22 dataset.

Our calculations were performed using PySCF41,42 with the all-electron cc-pVXZ (X=D,T,Q)

basis sets43 and periodic Gaussian density fitting of electron repulsion integrals44–46 with cor-

responding JKFIT auxiliary basis sets. Core electrons were kept frozen during MP2 calcula-

tions. For a fixed k-point mesh containing Nk points sampled uniformly from the Brillouin

zone, the MP2 correlation energy per unit cell is E(2) = E(2)

os + E(2)

ss , with the opposite-spin

and same-spin components,

E(2)

os
= ↑

1

N3

k

∑→

kikakjkb

∑

iajb

T aka,bkb
iki,jkj

(ikiaka |jkjbkb) (1a)

E(2)

ss
= ↑

1

N3

k

∑→

kikakjkb

∑

iajb

[T aka,bkb
iki,jkj

↑ T bkb,aka

iki,jkj
](ikiaka |jkjbkb), (1b)

where

T aka,bkb
iki,jkj

=
(ik1ak2 |jk3bk4)↑

ωka
a ↑ ωki

i + ωkb
b ↑ ω

kj

j

, (2)

(ik1ak2 |jk3bk4) are electron repulsion integrals, and ωki
i are HF orbital energies. The primed

summation indicates conservation of crystal momentum such that ki + kj ↑ ka ↑ kb = G,

where G is a reciprocal lattice vector.

For each Nk, we have verified that the HF energy is converged at the QZ level and we

extrapolate the MP2 correlation energy. Specifically, we perform a series of MP2 calculations

with increasing X, and we extrapolate the correlation energy to the CBS limit using the two-

point X↓3 form8,47,48,

E(2)(Nk,CBS) =
X3E(2)(Nk, XZ) ↑ Y 3E(2)(Nk, Y Z)

X3 ↑ Y 3
, (3)

where X = 3, 4 (i.e., TZ and QZ). The CBS HF and MP2 energies are then extrapolated to
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Figure 1: Thermodynamic limit convergence of energies of the ammonia crystal using dif-
ferent basis sets. HF cohesive energies and MP2 correlation contributions to the cohesive
energies are shown in panels (a) and (c), respectively, with zoomed-in views shown in (b)
and (d). Hollow square in (d) indicates the estimate obtained from the composite correction
scheme described in the text, which is accurate to about 0.5 kJ/mol.

the TDL assuming finite-size errors that decay as N↓1

k ,

E(TDL,CBS) =
Nk,1E(Nk,1,CBS) ↑ Nk,2E(Nk,2,CBS)

Nk,1 ↑ Nk,2
(4)

which is consistent with our use of a Madelung constant correction for the integrable diver-

gence in the HF exchange8,47,48.

The k-point meshes used for extrapolation are chosen commensurate with the shape of

the unit cell. For example, rhombohedral cells with lattice parameters a = b = c suggest

meshes like Nk = 111, 222, 333, while hexagonal cells with a = b > c suggests meshes like

Nk = 221, 332, 443 (we write Nk = abc as shorthand for a ↓ b ↓ c). Optimal k-point mesh

pairs are determined by exploration of several appropriate k-point mesh pairs with a cheap

minimal basis set.

An example of the CBS and TDL extrapolations is shown in figure 1 for the ammonia
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crystal. In this particular example, we chose Nk = 222, 333 as the pair of k-point meshes

for production calculations, as it provides a small error when compared to results obtained

with larger meshes but smaller basis sets; for example, in figure 1, we also present results

with Nk = 444 in the DZ basis set, showing that extrapolation with Nk = 222, 333 is in good

agreement with that from Nk = 333, 444.

Large systems in the X23 dataset required special attention because their high compu-

tational costs precludes study of appropriately large basis sets and k-point meshes. For

example, the largest unit cell in the dataset, pyrazole, contains 80 atoms and 5872 basis

functions at the QZ level. Therefore, for large systems like these, we employed a composite

correction scheme to estimate the TDL/CBS limit,

E(TDL,CBS) ↔ E(TDL,TZ) + [E(Nk,CBS) ↑ E(Nk,TZ)] , (5)

the accuracy of which is illustrated in figure 1 for ammonia and explored in more details for

other crystals in the Supporting Information. We use periodic density fitting, and the storage

requirement for 3-index Coulomb integrals is O(N2

knauxn2

AO
). For large systems demanding

over 2000 GB of storage, exceeding the available disk space, we used the integral-direct

algorithm implemented in PySCF34,42. In the Supporting Information, we provide further

details on our TDL and CBS extrapolations, including the composite correction; based on

testing, we conclude the uncertainty in our final numbers is around 2 kJ/mol.

Finally, we report the counterpoise corrected cohesive energy,

↑Ecoh =
Ecell

Nmol

↑ Ecrystal

mol+ghost
+
(
Ecrystal

mol
↑ Egas

mol

)
(6)

where Ecell is the total crystal energy per cell, Ecrystal

mol+ghost
is the energy of the molecule in its

crystal geometry including basis functions from its first nearest-neighbor shell of ghost atoms,

and the final term in parentheses (a molecular relaxation energy) is the energy di!erence

between the molecule in the crystal geometry and its most stable gas phase geometry (without
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Table 1: Comparison of the cohesive energy (kJ/mol) of selected molecular
crystals at the MP2 level of theory, including local MP2 (LMP2) and the hy-
brid QM/MM many-body interaction (HMBI) model51. The MBE results from
Ref.52 include the monomer relaxation energy from our own calculations as ex-
plained in the main text.

ammonia CO2 benzene

this work (PBE-TS structs.) 38.3 27.8 76.6
this work (CSD structs.) 33.6 28.6 72.8
MBE(2B)-MP2/CBS52 33.4 28.9 72.3
LMP2/CBS16 35.6 29.8 –
HMBI-MP2/CBS51 39.3 29.1 61.6
MP2/CBS18 33.9 26.1 58.7
MP2/CBS53 35.1 29.4 –
LMP2/p-aug-6-31G(d,p)19 34.1 22.7 57.5

any ghost atoms). We note our sign convention is such that the cohesive energy Ecoh is the

(positive) energy required to dissociate the crystal into its constituent molecules.

All geometries used are obtained from the original X23 paper35, where all geometries

(including cell parameters for crystals) were optimized with DFT using the PBE functional

and the TS dispersion correction (PBE-TS)11. Because these geometries are the ones pre-

sented in the original X23 paper, we believe they are best situated to serve as canonical

reference geometries for benchmarking and comparative studies. Moreover, previous reviews

on molecular crystals have shown that PBE-TS yields the best geometries across di!erent

DFT optimization protocols1,49, although another work has shown that energy di!erences

obtained with di!erent DFT optimized geometries are minimal21. Importantly, our own

testing (see below) indicates that the use of geometries taken directly from X-ray di!raction

can change the cohesive energy by 5 kJ/mol or more. Therefore, we support the use of

geometries that are optimized by DFT using any reasonable dispersion-corrected functional,

although further testing would be valuable. We compare our calculated cohesive energies

to the revised X23 reference values50, which were obtained by correcting experimental sub-

limation enthalpies for temperature-dependent vibrational contributions, including thermal

expansion.

8



Before comparing to experiment and assessing the accuracy of spin-component scaling, we

first pause to note that—in contrast to periodic, canonical MP2—the many-body expansion

(MBE) has been one of the most popular formalisms for correlated calculations of molecular

crystals52–54. Although convergence of MBE calculations is nontrivial38,55,56, a recent paper

by Sargent et al. reported carefully converged cohesive energies of most of the molecular

crystals in the X23 dataset using MBE with only two-body contributions [MBE(2B)]52.

This work used structures taken directly from the Cambridge Structural Database (CSD)

and did not calculate the one-body relaxation energy, so we have calculated this quantity

ourselves for the same crystal geometries, to facilitate comparison.

In table 1, we present a comparison of the cohesive energies of three commonly studied

molecular crystals and find that the agreement between our own periodic calculations and

the MBE calculations from Ref.52 is excellent. When we use PBE-TS structures (as we do

throughout the rest of this work), the di!erences are 4.9, 1.1, and 4.4 kJ/mol, for ammonia,

carbon dioxide, and benzene, respectively. When we repeat our calculations with the same

CSD structures, the di!erence is reduced to 0.2, 0.3, and 0.5 kJ/mol. However, upon extend-

ing this comparison to the rest of the X23 dataset, we find that some of the CSD structures

used in Ref.52 have extremely large molecular relaxation energies, yielding abnormally bad

cohesive energies. We thus suggest that unoptimized CSD geometries should be used with

caution, and postpone a detailed comparison with MBE to future work. We conclude that

kJ/mol agreement is possible with tightly converged MBE or periodic calculations, but that

alternative geometries can cause di!erences of about 5 kJ/mol or more. To demonstrate the

challenge of kJ/mol agreement, in the bottom half of table 1, we also show MP2 cohesive

energies from a few other reports in the literature, which commonly di!er by 5–15 kJ/mol.

Having shown an example of our own convergence in figure 1 and demonstrated good

agreement (sub kJ/mol) with similarly converged MBE results, we now turn to a comparison

with experimental cohesive energies. In figure 2, we present the error of the converged

MP2 cohesive energy (with PBE-TS geometries) compared to the corrected experimental
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Figure 2: Error in the cohesive energy (error = Ecalc

coh
↑ Eexp

coh
) of the molecular crystals

in the X23 dataset using MP2 and four modified MP2 models: the scaled-opposite spin
(SOS) model14, the spin component-scaled (SCS) model13, the SCS-molecular interaction
[SCS(MI)] model15, and the SCS-molecular crystal [SCS(MC)] model developed in this work.
The grey shaded area of ±2 kJ/mol reflects our estimated uncertainty in our calculated
numbers due to errors in extrapolations and composite corrections.

cohesive energy50 for all 23 molecular crystals. We see that MP2 overestimates the cohesive

energy, which is a well documented behavior of MP215,33 due to an inaccurate description of

dispersion interactions and intermolecular binding energies. Indeed, the magnitudes of the

error are roughly correlated with the molecular polarizabilities, as we show in figure S4. For

example, the two largest MP2 errors are for naphthalene and anthracene, which also have

the two largest molecular polarizabilities.

Previous benchmark studies using molecular data sets57–59 have suggested that using

smaller basis sets can improve the performance of MP2 via error cancellation. In Table S1,

we provide performance statistics of MP2 in the DZ, TZ, and QZ basis set on the X23 dataset.

Although the mean signed error is improved in small basis sets (as low as ↑4.1 kJ/mol in

DZ), the mean absolute error is slightly worse. As discussed in the introduction, a more

systematic route toward improving the performance of MP2 at the same cost is though spin-

component scaling13, wherein the correlation energy is calculated as ESCS

c
= cosE

(2)

os + cssE
(2)

ss
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and cos, css have been previously optimized on training data. In figure 2, we show results

from three di!erent spin scaling prescriptions developed previously: the scaled-opposite spin

(SOS) model14 (css = 0, cos = 1.3), the spin-component-scaled (SCS) model13 (css = 1/3,

cos = 6/5), and the SCS-molecular interaction [SCS(MI)] model15 (css = 1.29, cos = 0.4). We

see that all three spin scaling prescriptions correct for the overbinding tendency of MP2. The

magnitude of the corrections displays an overall trend, SOS-MP2 > SCS-MP2 > SCS(MI)-

MP2, and is typically too large, resulting in predicted cohesive energies that are, on average,

too small compared to experiment.

In table 2, we collect performance statistics of MP2 and the spin scaling variants, along

with those of DFT results with various dispersion corrections. The errors are classifed

into We see that SCS(MI)-MP215 delivers the best performance, with a mean absolute er-

ror (MAE) of 9.5 kJ/mol and a mean signed error (MSE) of ↑6.1 kJ/mol over the entire

dataset. Remarkably, SCS(MI)-MP215 has a MAE of only 5.4 kJ/mol for the hydrogen-

bonded molecular crystals, indicating that purely dispersion bound complexes are the most

di#cult. Indeed, with pure MP2, we find the largest errors for anthracene (49.1 kJ/mol)

and naphthalene (39.0 kJ/mol), reflecting the challenge of capturing their ε-electron based

dispersion interactions with second-order perturbation theory, which is consistent with pre-

vious studies of molecular interactions60,61. For dispersion bound crystals, we find that all

MP2-based methods have a MAE of about 10–20 kJ/mol.

In contrast, the improved performance for hydrogen-bonded crystals can likely be at-

tributed to the ability of HF to capture some amount of polarization and electrostatics.

Rather remarkably, DFT with the PBE functional and dispersion corrections largely out-

performs MP2-based methods. Specifically, we see that PBE-TS11 is slightly worse than

MP2-based methods, whereas PBE-D3 and PBE-MBD are significantly better, exhibiting

average errors of only 3-5 kJ/mol.

In figure 2, we see two prominent outliers, adamantane and anthracene, which do not

follow the trend seen for the other molecular crystals. In particular, for these crystals, the cor-
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rection from both SOS-MP2 and SCS-MP2 nearly vanishes, while that from SCS(MI)-MP2

is abnormally large and negative (i.e., the magnitude of the cohesive energy is significantly

underestimated by more than 40 kJ/mol).

This behavior can be traced back to the degree to which a spin-component scaling pre-

scription conserves the magnitude of the MP2 correlation energy (note that energy di!erences

are much smaller than the total correlation energy). Specifically, we define the ratio

ϑ =
E(2)

SCS

E(2)
=

css + cosϖ

1 + ϖ
(7)

where ϖ = Eos/Ess, and ϖ is typically 3–3.5 (see Ref.13 and figure S6). Then a theory that

approximately conserves the magnitude of the MP2 correlation energy has ϑ ↔ 1, which

implies css+3cos ↔ 4; this is satisfied for the SOS and SCS models, but not for the SCS(MI)

model, which has ϑ ↔ 0.6. The SCS(MI) correlation energies are not accurate (far too

small), but the method is optimized for energy di!erences, which can still be accurate. As

detailed in section V in the SI, in the presence of spin scaling, two terms dominate the

correction to the MP2 cohesive energy: one term proportional to (ϑ ↑ 1)E(2)

coh
with E(2)

coh
the

correlation part of Ecoh, and the other term proportional to (css ↑ cos)ϱ with ϱ = ϖmol ↑ ϖcell.

Empirically, we observe ϱ ↔ 0.1 for most systems in the X23 set (figure S6). For SCS-

MP2 and SOS-MP2, with ϑ ↔ 1, the first term vanishes and the second term dominates

the correction, which is negative because css < cos, and the cohesive energy is correctly

reduced. By contrast, for SCS(MI)-MP2, where ϑ ↔ 0.6, both correction terms are nonzero

but with opposite sign, so they partially cancel and render the net correction smaller than

the other two prescriptions. However, when ϱ ↔ 0, as is accidentally the case for the two

outliers, adamantane and anthracene (figure S6), the net correction from both SCS-MP2

and SOS-MP2 vanishes, while that from SCS(MI)-MP2 is uncompensated and abnormally

large, consistent with our observation from figure 2.

Approximate conservation of correlation energy has been widely regarded as a good
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practice for mixing di!erent energy components, with the most famous example being hybrid

DFT63. The accidental vanishing of ϱ for the two outliers discussed above is thus unfortunate,

as the analysis suggests that any spin-component scaling prescription that approximately

conserves the MP2 correlation energy is doomed to show little improvement over the bare

MP2 cohesive energy. When ϱ = 0, nonzero corrections can be obtained by a theory that

disregards the conservation of the MP2 correlation energy, but such a theory is at risk of

uncompensated, abnormally large corrections as seen in SCS(MI)-MP2.

With all these observations in mind, we assess the extent to which further improvement is

possible by a reoptimization of the spin-scaling parameters. In figure 3, we plot the cohesive

energy MAE as a function of the scaling parameters and identify css = 0.99, cos = 0.76 to be

optimal for the X23 set; we call this new prescription SCS for molecular crystals [SCS(MC)].

As shown in figure 2 for all crystals, the cohesive energies predicted by SCS(MC)-MP2

are very similar to those of SCS(MI)-MP2 except for the two outliers, where the significant

underestimation by SCS(MI)-MP2 is largely corrected, resulting in an improved MAE (MSE)

of 7.5 kJ/mol (↑1.3 kJ/mol) as seen in table 2. In figure 3, we also show the region of

parameters that conserve the MP2 energy (i.e., those with ϑ ↔ 1 or with css + 3cos ↔ 4).

We see that the new SCS(MC) parameters do not violate this constraint nearly as much as

those of SCS(MI), and empirically we find ϑ ↔ 0.8. This compromise allows for reasonable

correlation energy conservation while maintaining the freedom to correct the MP2 cohesive

energy even when ϱ = 0.

In summary, we have presented cohesive energies of 23 molecular crystals at the MP2

level of theory, with careful attention paid to basis set and finite-size errors. For our chosen

geometries, we believe our results are converged to better than 2 kJ/mol. This presentation

of converged MP2 cohesive energies for the entire X23 dataset is one of the most important

parts of this work. While our results provide a negative answer to the question posed in the

title, we believe that such a definitive answer required the extensive work carried out here.

Studying only a few molecular crystals or analyzing unconverged numbers could lead one to
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Figure 3: MAE (kJ/mol) for the spin-component scaled MP2 cohesive energy of the X23
dataset. Indicated points correspond to the scaling parameters for MP2 (black dot), SOS-
MP2 (green pentagon), SCS-MP2 (blue triangle), SCS(MI)-MP2 (orange triangle), and our
new SCS(MC)-MP2 (cyan star). The red-shaded area highlights the range of spin scaling
parameters that approximately conserve the MP2 correlation energy.

believe the answer is “yes”; only by studying an extensive dataset like X23 with carefully

converged numbers can we be sure that the answer is “no,” and that alternative methods

must be pursued for improved accuracy. We hope that these results will serve as useful

benchmarks in future applications of wavefunction methods for molecular crystals and other

solids, as well as the foundation to periodic double-hybrids, where the scope of them has

been rather limited to small systems.64–66 Importantly, we have emphasized that the cohesive

energy of di!erent but reasonable geometries can di!er by 5 kJ/mol or more, which presents

a challenge for precise comparisons between calculated or experimental values.

With regards to performance, we have demonstrated the well-known trend of MP2 to

overbind, resulting in an overestimation of the cohesive energy by about 10–20 kJ/mol on

average. Separate scaling of spin components approximately halves this error, making pre-

dictions with 5–10 kJ/mol accuracy possible. Although we proposed a new spin scaling

prescription, we note that optimization against experimental values is imperfect, for reasons

discussed throughout the text, and the degree to which this new model is transferable to

other problems is unknown. Although we have demonstrated that kJ/mol accuracy cannot

be reliably obtained within the family of spin-component scaled MP2 methods, we anticipate

applications of regularized MP267 or double-hybrid DFT64,66,68 as possible avenues towards
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kJ/mol accuracy without the cost of coupled-cluster theory38,39.
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Table 2: Error statistics (kJ/mol) of our MP2 results and DFT results for the
X23 dataset, including mean absolute error (MAE) and mean signed error (MSE)
compared to experimental values. In the final two columns, we included the
classification by Cutini et al.19, separating performance on crystals dominated
by hydrogen bonding (HB) and dispersion (disp) interactions.

Theory MAE MSE MAE (HB) MAE (disp)
MP2 12.9 11.3 5.2 18.3
SCS-MP2 11.9 -7.9 14.3 10.5
SOS-MP2 19.9 -17.3 23.5 15.3
SCS(MI)-MP2 9.5 -6.1 5.4 15.0
SCS(MC)-MP2 7.5 -1.3 4.1 9.8
PBE-D335 4.6 2.9 7.1 2.6
PBE-TS35 13.0 12.7 10.5 16.0
PBE-MBD62 4.5 3.1 5.0 3.9
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(29) Marsman, M.; Grüneis, A.; Paier, J.; Kresse, G. Second-order Møller–Plesset pertur-

bation theory applied to extended systems. I. Within the projector-augmented-wave

formalism using a plane wave basis set. J. Chem. Phys. 2009, 130, 184103.

(30) Gruber, T.; Liao, K.; Tsatsoulis, T. Applying the Coupled-Cluster Ansatz to Solids

and Surfaces in the Thermodynamic Limit. Phys. Rev. X 2018, 8, 021043.

(31) Neufeld, V. A.; Ye, H.-Z.; Berkelbach, T. C. Ground-State Properties of Metallic Solids

from Ab Initio Coupled-Cluster Theory. J. Phys. Chem. Lett. 2022, 13, 7497–7503.
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