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Abstract

Attaining kJ/mol accuracy in cohesive energy for molecular crystals is a persistent
challenge in computational materials science. In this study, we evaluate second-order
Mpgller-Plesset perturbation theory (MP2) and its spin-component scaled models for
calculating cohesive energies for 23 molecular crystals (X23 dataset). Using periodic
boundary conditions and Brillouin zone sampling, we converge results to the ther-
modynamic and complete basis set limits, achieving an accuracy of about 2 kJ/mol
(0.5 kcal/mol), which is rarely achieved in previous MP2 calculations for molecular
crystals. When compared to experimental data, our results have a mean absolute er-
ror of 12.9 kJ/mol, comparable to Density Functional Theory (DFT) with the PBE
functional and TS dispersion correction. By separately scaling the opposite-spin and
same-spin correlation energy components, using predetermined parameters, we reduce
the mean absolute error to 9.5 kJ/mol. Further fine-tuning of these scaling parameters

specifically for the X23 dataset brings the mean absolute error down to 7.5 kJ/mol.
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Molecular crystals are periodic arrangements of molecules bound by weak, noncovalent
interactions. They play an important role in the pharmaceutical industry, and their unique
electronic and optical properties are of interest for the development of molecular optoelec-
tronics!. The small energy scale of their interactions gives rise to polymorphism, where
one molecule crystallizes into more than one structure, which have different properties such
as their stability or solubility 2. The prediction of relative stabilities of competing crystal
structures is a computational grand challenge due to the chemical nature and magnitude
of the competing molecular interactions, and a successful methodology would have major
impact on basic and applied research.

Density functional theory (DFT)3* is among the most popular methods for predicting
material properties from first-principles due to its low cost and widely available implementa-
tion in popular software packages. However, DFT with the commonly employed semi-local®
or hybrid functionals®® does not accurately capture non-covalent interactions such as dis-
persion, which are essential for molecular crystals. Efforts to address this deficiency include
the empirical ‘-D’ corrections of Grimme?, the exchange-hole dipole moment (XDM) method
of Becke and Johnson'?, and the van der Waals Cs model of Tkatchenko and Scheffler!!.

An alternative to DFT is a wave-function based approach, which naturally includes dis-
persion interactions at the post-Hartree-Fock (HF) level and which is, in principle, sys-
tematically improvable. Among such methods, second-order Mgller-Plesset perturbation
theory (MP2)12 is the simplest correlation method and its accuracy can be significantly im-
proved by the separate scaling of the spin components of its correlation energy (at least,

)9,13715'

for molecules Despite the increasing use of periodic MP2 due to its relatively low

cost, there are few systematic and complete reports on its performance 623

, especially in the
computationally demanding complete basis set (CBS)?*?® limit and thermodynamic limit
(TDL) 30732'

Recently, our group reported such a study for semiconductors and insulators with strong

covalent or ionic bonds®?, finding that MP2 yields reasonable predictions for lattice con-



stants, bulk moduli, and cohesive energies. For example, the mean absolute error of the
cohesive energy, compared to experimental values, was 22 kJ/mol; with separate scaling of
the spin components, the error was reduced to 6 kJ/mol, which is better than that of good
DFT functionals like PBEsol or SCAN. In these strongly bound solids, the HF cohesive
energy is qualitatively correct and constitutes about 60-70% of the MP2 cohesive energy. In
contrast, in many weakly bound molecular crystals, the HF cohesive energy is qualitatively
incorrect—predicting the wrong sign or only a small fraction of the true cohesive energy—and
thus molecular crystals provide a more challenging test of approximate theories of electron
correlation.

Recently, our group reported a periodic MP2 study of the benzene crystal®*, showing
promising results and addressing potential basis set incompleteness and finite-size errors
in literature MP2 values. We found that MP2 overestimated the magnitude of the cohesive
energy by about 18 kJ/mol and, again, that spin scaling could reduce the error to 3-5 kJ /mol.
Here, we extend this work and report tightly converged periodic MP2 calculations of the
cohesive energies of the 23 molecular crystals contained in the X23 dataset of Reilly and
Tkatchenko®, which is an extension of the X16 dataset®® and built on the C21 dataset of
Otero-de-la-Roza and Johnson?37.

The crystals in the X23 dataset exhibit diverse bonding types, including dipole interac-
tions, pure dispersion, and hydrogen bonding. For select molecular crystals, coupled-cluster
theory with single, double, and perturbative triple excitations [CCSD(T)| has achieved
kJ/mol accuracy in calculated cohesive energies®®3%  but its high cost—scaling as N7 with
system size N—precludes routine application to systems with large unit cells. Fifteen
years ago, DiStasio and Head-Gordon targeted CCSD(T) accuracy with MP2 cost by opti-
mizing the MP2 spin-scaling coefficients specifically for intermolecular interaction energies
[SCS(MI)-MP2]'® using the S22 dataset®® of non-covalently bonded model complexes. In
the CBS limit, spin scaling reduced the mean absolute error with respect to CCSD(T)

from 3.3 kJ/mol to less than 1 kJ/mol and reduced the maximum error from 12 kJ/mol to



2 kJ/mol. In this work, we test the transferability of this and other spin-scaling prescriptions
for molecular crystals, whose many-body and long-range interactions may not be reflected
in the dimers included in the S22 dataset.
Our calculations were performed using PySCF 4142 with the all-electron cc-pVXZ (X=D,T,Q)

4446 with cor-

basis sets*® and periodic Gaussian density fitting of electron repulsion integrals
responding JKFIT auxiliary basis sets. Core electrons were kept frozen during MP2 calcula-
tions. For a fixed k-point mesh containing N, points sampled uniformly from the Brillouin

zone, the MP2 correlation energy per unit cell is F?) = Eég) + Eg ), with the opposite-spin

and same-spin components,
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(i%1ak2| jkspke) are electron repulsion integrals, and ¥ are HF orbital energies. The primed
summation indicates conservation of crystal momentum such that k; + k; — k, — ky, = G,
where G is a reciprocal lattice vector.

For each Ny, we have verified that the HF energy is converged at the QZ level and we
extrapolate the MP2 correlation energy. Specifically, we perform a series of MP2 calculations
with increasing X, and we extrapolate the correlation energy to the CBS limit using the two-

point X =3 form 84748,

X3E@(Ny, X7) — Y3E®@(N,,Y7Z)
X5 _vs : (3)

E®(N,,CBS) =

where X = 3,4 (i.e., TZ and QZ). The CBS HF and MP2 energies are then extrapolated to
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Figure 1: Thermodynamic limit convergence of energies of the ammonia crystal using dif-
ferent basis sets. HF cohesive energies and MP2 correlation contributions to the cohesive
energies are shown in panels (a) and (c), respectively, with zoomed-in views shown in (b)
and (d). Hollow square in (d) indicates the estimate obtained from the composite correction
scheme described in the text, which is accurate to about 0.5 kJ/mol.

the TDL assuming finite-size errors that decay as NV, L

N1 E(Ng1,CBS) — Ny o E(Ng 2, CBS)
Nia — N2

E(TDL, CBS) = (4)

which is consistent with our use of a Madelung constant correction for the integrable diver-
gence in the HF exchange®4748,

The k-point meshes used for extrapolation are chosen commensurate with the shape of
the unit cell. For example, rhombohedral cells with lattice parameters a = b = ¢ suggest
meshes like N, = 111,222,333, while hexagonal cells with a = b > ¢ suggests meshes like
Ny = 221,332,443 (we write N, = abc as shorthand for a x b x ¢). Optimal k-point mesh
pairs are determined by exploration of several appropriate k-point mesh pairs with a cheap

minimal basis set.

An example of the CBS and TDL extrapolations is shown in figure 1 for the ammonia



crystal. In this particular example, we chose N, = 222,333 as the pair of k-point meshes
for production calculations, as it provides a small error when compared to results obtained
with larger meshes but smaller basis sets; for example, in figure 1, we also present results
with N, = 444 in the DZ basis set, showing that extrapolation with N, = 222,333 is in good
agreement with that from N, = 333, 444.

Large systems in the X23 dataset required special attention because their high compu-
tational costs precludes study of appropriately large basis sets and k-point meshes. For
example, the largest unit cell in the dataset, pyrazole, contains 80 atoms and 5872 basis
functions at the QZ level. Therefore, for large systems like these, we employed a composite

correction scheme to estimate the TDL/CBS limit,

E(TDL, CBS) ~ E(TDL, TZ) + [E(Ny, CBS) — E(Ny, TZ)], (5)

the accuracy of which is illustrated in figure 1 for ammonia and explored in more details for
other crystals in the Supporting Information. We use periodic density fitting, and the storage
requirement for 3-index Coulomb integrals is O(NEn..n4g). For large systems demanding
over 2000 GB of storage, exceeding the available disk space, we used the integral-direct
algorithm implemented in PySCF3**2. In the Supporting Information, we provide further
details on our TDL and CBS extrapolations, including the composite correction; based on
testing, we conclude the uncertainty in our final numbers is around 2 kJ/mol.

Finally, we report the counterpoise corrected cohesive energy,

Ece crysta. crysta. as
b B (B — B (6)

—Leoh = mol+ mol mol
N, mol &

crystal . .
E ortgnost 1S the energy of the molecule in its

where F.q is the total crystal energy per cell,
crystal geometry including basis functions from its first nearest-neighbor shell of ghost atoms,
and the final term in parentheses (a molecular relaxation energy) is the energy difference

between the molecule in the crystal geometry and its most stable gas phase geometry (without



Table 1: Comparison of the cohesive energy (kJ/mol) of selected molecular
crystals at the MP2 level of theory, including local MP2 (LMP2) and the hy-
brid QM /MM many-body interaction (HMBI) model®'. The MBE results from
Ref.%2 include the monomer relaxation energy from our own calculations as ex-
plained in the main text.

ammonia COs benzene

this work (PBE-TS structs.) 38.3 27.8 76.6
this work (CSD structs.) 33.6 28.6 72.8
MBE(2B)-MP2/CBS?2 33.4 28.9 72.3
LMP2/CBS1'® 35.6 29.8 -

HMBI-MP2/CBS5! 39.3 29.1 61.6
MP2/CBS!8 33.9 26.1 58.7
MP2/CBS?3 35.1 29.4 -

LMP2/p-aug-6-31G(d,p) ** 34.1 22.7 57.5

any ghost atoms). We note our sign convention is such that the cohesive energy Eqp is the
(positive) energy required to dissociate the crystal into its constituent molecules.

All geometries used are obtained from the original X23 paper®, where all geometries
(including cell parameters for crystals) were optimized with DFT using the PBE functional
and the TS dispersion correction (PBE-TS)!. Because these geometries are the ones pre-
sented in the original X23 paper, we believe they are best situated to serve as canonical
reference geometries for benchmarking and comparative studies. Moreover, previous reviews
on molecular crystals have shown that PBE-TS yields the best geometries across different

149 “although another work has shown that energy differences

DFT optimization protocols
obtained with different DFT optimized geometries are minimal?'. Importantly, our own
testing (see below) indicates that the use of geometries taken directly from X-ray diffraction
can change the cohesive energy by 5 kJ/mol or more. Therefore, we support the use of
geometries that are optimized by DFT using any reasonable dispersion-corrected functional,
although further testing would be valuable. We compare our calculated cohesive energies
to the revised X23 reference values®, which were obtained by correcting experimental sub-

limation enthalpies for temperature-dependent vibrational contributions, including thermal

expansion.



Before comparing to experiment and assessing the accuracy of spin-component scaling, we
first pause to note that—in contrast to periodic, canonical MP2—the many-body expansion
(MBE) has been one of the most popular formalisms for correlated calculations of molecular
crystals®? 4. Although convergence of MBE calculations is nontrivial 3556 a recent paper
by Sargent et al. reported carefully converged cohesive energies of most of the molecular
crystals in the X23 dataset using MBE with only two-body contributions [MBE(2B)]%2.
This work used structures taken directly from the Cambridge Structural Database (CSD)
and did not calculate the one-body relaxation energy, so we have calculated this quantity
ourselves for the same crystal geometries, to facilitate comparison.

In table 1, we present a comparison of the cohesive energies of three commonly studied
molecular crystals and find that the agreement between our own periodic calculations and
the MBE calculations from Ref.%? is excellent. When we use PBE-TS structures (as we do
throughout the rest of this work), the differences are 4.9, 1.1, and 4.4 kJ/mol, for ammonia,
carbon dioxide, and benzene, respectively. When we repeat our calculations with the same
CSD structures, the difference is reduced to 0.2, 0.3, and 0.5 kJ/mol. However, upon extend-
ing this comparison to the rest of the X23 dataset, we find that some of the CSD structures
used in Ref.?? have extremely large molecular relaxation energies, yielding abnormally bad
cohesive energies. We thus suggest that unoptimized CSD geometries should be used with
caution, and postpone a detailed comparison with MBE to future work. We conclude that
kJ/mol agreement is possible with tightly converged MBE or periodic calculations, but that
alternative geometries can cause differences of about 5 kJ/mol or more. To demonstrate the
challenge of kJ/mol agreement, in the bottom half of table 1, we also show MP2 cohesive
energies from a few other reports in the literature, which commonly differ by 5-15 kJ/mol.

Having shown an example of our own convergence in figure 1 and demonstrated good
agreement (sub kJ/mol) with similarly converged MBE results, we now turn to a comparison
with experimental cohesive energies. In figure 2, we present the error of the converged

MP2 cohesive energy (with PBE-TS geometries) compared to the corrected experimental
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Figure 2: Error in the cohesive energy (error = E° — E®P) of the molecular crystals

in the X23 dataset using MP2 and four modified MP2 models: the scaled-opposite spin
(SOS) model*; the spin component-scaled (SCS) model'3, the SCS-molecular interaction
[SCS(MI)] model*®, and the SCS-molecular crystal [SCS(MC)] model developed in this work.
The grey shaded area of £2 kJ/mol reflects our estimated uncertainty in our calculated
numbers due to errors in extrapolations and composite corrections.

cohesive energy®® for all 23 molecular crystals. We see that MP2 overestimates the cohesive
energy, which is a well documented behavior of MP2%3% due to an inaccurate description of
dispersion interactions and intermolecular binding energies. Indeed, the magnitudes of the
error are roughly correlated with the molecular polarizabilities, as we show in figure S4. For
example, the two largest MP2 errors are for naphthalene and anthracene, which also have
the two largest molecular polarizabilities.

Previous benchmark studies using molecular data sets®® have suggested that using
smaller basis sets can improve the performance of MP2 via error cancellation. In Table S1,
we provide performance statistics of MP2 in the DZ, TZ, and QZ basis set on the X23 dataset.
Although the mean signed error is improved in small basis sets (as low as —4.1 kJ/mol in
DZ), the mean absolute error is slightly worse. As discussed in the introduction, a more
systematic route toward improving the performance of MP2 at the same cost is though spin-

component scaling!®, wherein the correlation energy is calculated as ECSCS = COSE(()? —I—CSSES(S2 )

10



and ¢, Css have been previously optimized on training data. In figure 2, we show results
from three different spin scaling prescriptions developed previously: the scaled-opposite spin
(SOS) model!* (cgs = 0, cos = 1.3), the spin-component-scaled (SCS) model®® (cy = 1/3,
Cos = 6/5), and the SCS-molecular interaction [SCS(MI)] model™® (cy = 1.29, cos = 0.4). We
see that all three spin scaling prescriptions correct for the overbinding tendency of MP2. The
magnitude of the corrections displays an overall trend, SOS-MP2 > SCS-MP2 > SCS(MI)-
MP2, and is typically too large, resulting in predicted cohesive energies that are, on average,
too small compared to experiment.

In table 2, we collect performance statistics of MP2 and the spin scaling variants, along
with those of DFT results with various dispersion corrections. The errors are classifed
into We see that SCS(MI)-MP2' delivers the best performance, with a mean absolute er-
ror (MAE) of 9.5 kJ/mol and a mean signed error (MSE) of —6.1 kJ/mol over the entire
dataset. Remarkably, SCS(MI)-MP2'5 has a MAE of only 5.4 kJ/mol for the hydrogen-
bonded molecular crystals, indicating that purely dispersion bound complexes are the most
difficult. Indeed, with pure MP2, we find the largest errors for anthracene (49.1 kJ/mol)
and naphthalene (39.0 kJ/mol), reflecting the challenge of capturing their m-electron based
dispersion interactions with second-order perturbation theory, which is consistent with pre-

60.61 " For dispersion bound crystals, we find that all

vious studies of molecular interactions
MP2-based methods have a MAE of about 10-20 kJ/mol.

In contrast, the improved performance for hydrogen-bonded crystals can likely be at-
tributed to the ability of HF to capture some amount of polarization and electrostatics.
Rather remarkably, DFT with the PBE functional and dispersion corrections largely out-
performs MP2-based methods. Specifically, we see that PBE-TS!! is slightly worse than
MP2-based methods, whereas PBE-D3 and PBE-MBD are significantly better, exhibiting
average errors of only 3-5 kJ/mol.

In figure 2, we see two prominent outliers, adamantane and anthracene, which do not

follow the trend seen for the other molecular crystals. In particular, for these crystals, the cor-
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rection from both SOS-MP2 and SCS-MP2 nearly vanishes, while that from SCS(MI)-MP2
is abnormally large and negative (i.e., the magnitude of the cohesive energy is significantly
underestimated by more than 40 kJ/mol).

This behavior can be traced back to the degree to which a spin-component scaling pre-
scription conserves the magnitude of the MP2 correlation energy (note that energy differences

are much smaller than the total correlation energy). Specifically, we define the ratio

B Eé%)s  Css Tt CosY
E@ 144

(7)

where v = E./Fq, and v is typically 3-3.5 (see Ref.'® and figure S6). Then a theory that
approximately conserves the magnitude of the MP2 correlation energy has a ~ 1, which
implies cg + 3¢os & 4; this is satisfied for the SOS and SCS models, but not for the SCS(MI)
model, which has a ~ 0.6. The SCS(MI) correlation energies are not accurate (far too
small), but the method is optimized for energy differences, which can still be accurate. As
detailed in section V in the SI, in the presence of spin scaling, two terms dominate the
correction to the MP2 cohesive energy: one term proportional to (o — 1)EC((2)31 with Ec(ifl the
correlation part of E.q,, and the other term proportional to (css — Cos)0 With § = Yol — Yeell-
Empirically, we observe § &~ 0.1 for most systems in the X23 set (figure S6). For SCS-
MP2 and SOS-MP2, with o =~ 1, the first term vanishes and the second term dominates
the correction, which is negative because cis < cos, and the cohesive energy is correctly
reduced. By contrast, for SCS(MI)-MP2, where a =~ 0.6, both correction terms are nonzero
but with opposite sign, so they partially cancel and render the net correction smaller than
the other two prescriptions. However, when ¢ =~ 0, as is accidentally the case for the two
outliers, adamantane and anthracene (figure S6), the net correction from both SCS-MP2
and SOS-MP2 vanishes, while that from SCS(MI)-MP2 is uncompensated and abnormally

large, consistent with our observation from figure 2.

Approximate conservation of correlation energy has been widely regarded as a good

12



practice for mixing different energy components, with the most famous example being hybrid
DFT%. The accidental vanishing of § for the two outliers discussed above is thus unfortunate,
as the analysis suggests that any spin-component scaling prescription that approximately
conserves the MP2 correlation energy is doomed to show little improvement over the bare
MP2 cohesive energy. When 6 = 0, nonzero corrections can be obtained by a theory that
disregards the conservation of the MP2 correlation energy, but such a theory is at risk of
uncompensated, abnormally large corrections as seen in SCS(MI)-MP2.

With all these observations in mind, we assess the extent to which further improvement is
possible by a reoptimization of the spin-scaling parameters. In figure 3, we plot the cohesive
energy MAE as a function of the scaling parameters and identify cgs = 0.99, c,s = 0.76 to be
optimal for the X23 set; we call this new prescription SCS for molecular crystals [SCS(MC)].
As shown in figure 2 for all crystals, the cohesive energies predicted by SCS(MC)-MP2
are very similar to those of SCS(MI)-MP2 except for the two outliers, where the significant
underestimation by SCS(MI)-MP2 is largely corrected, resulting in an improved MAE (MSE)
of 7.5 kJ/mol (—1.3 kJ/mol) as seen in table 2. In figure 3, we also show the region of
parameters that conserve the MP2 energy (i.e., those with a &~ 1 or with ¢y + 3ces = 4).
We see that the new SCS(MC) parameters do not violate this constraint nearly as much as
those of SCS(MI), and empirically we find o &~ 0.8. This compromise allows for reasonable
correlation energy conservation while maintaining the freedom to correct the MP2 cohesive
energy even when ¢ = 0.

In summary, we have presented cohesive energies of 23 molecular crystals at the MP2
level of theory, with careful attention paid to basis set and finite-size errors. For our chosen
geometries, we believe our results are converged to better than 2 kJ/mol. This presentation
of converged MP2 cohesive energies for the entire X23 dataset is one of the most important
parts of this work. While our results provide a negative answer to the question posed in the
title, we believe that such a definitive answer required the extensive work carried out here.

Studying only a few molecular crystals or analyzing unconverged numbers could lead one to

13



Figure 3: MAE (kJ/mol) for the spin-component scaled MP2 cohesive energy of the X23
dataset. Indicated points correspond to the scaling parameters for MP2 (black dot), SOS-
MP2 (green pentagon), SCS-MP2 (blue triangle), SCS(MI)-MP2 (orange triangle), and our
new SCS(MC)-MP2 (cyan star). The red-shaded area highlights the range of spin scaling
parameters that approximately conserve the MP2 correlation energy.

believe the answer is “yes”; only by studying an extensive dataset like X23 with carefully
converged numbers can we be sure that the answer is “no,” and that alternative methods
must be pursued for improved accuracy. We hope that these results will serve as useful
benchmarks in future applications of wavefunction methods for molecular crystals and other
solids, as well as the foundation to periodic double-hybrids, where the scope of them has
been rather limited to small systems. %4 % Importantly, we have emphasized that the cohesive
energy of different but reasonable geometries can differ by 5 kJ/mol or more, which presents
a challenge for precise comparisons between calculated or experimental values.

With regards to performance, we have demonstrated the well-known trend of MP2 to
overbind, resulting in an overestimation of the cohesive energy by about 10-20 kJ/mol on
average. Separate scaling of spin components approximately halves this error, making pre-
dictions with 5-10 kJ/mol accuracy possible. Although we proposed a new spin scaling
prescription, we note that optimization against experimental values is imperfect, for reasons
discussed throughout the text, and the degree to which this new model is transferable to
other problems is unknown. Although we have demonstrated that kJ/mol accuracy cannot
be reliably obtained within the family of spin-component scaled MP2 methods, we anticipate

applications of regularized MP2°%" or double-hybrid DFT 646668 a5 possible avenues towards
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kJ/mol accuracy without the cost of coupled-cluster theory3%39.
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The Supporting Information is available free of charge at [publisher inserts link].

Cohesive energies for all 23 crystals at all levels of theory discussed, basis set and ther-
modynamic limit convergence testing, and discussion on the spin scaling correction to the

cohesive energy.
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Table 2: Error statistics (kJ/mol) of our MP2 results and DFT results for the
X23 dataset, including mean absolute error (M AE) and mean signed error (MSE)
compared to experimental values. In the final two columns, we included the
classification by Cutini et al.'®, separating performance on crystals dominated
by hydrogen bonding (HB) and dispersion (disp) interactions.

Theory MAE MSE MAE (HB) MAE (disp)
MP2 12.9 11.3 5.2 18.3
SCS-MP2 11.9 7.9 14.3 10.5
SOS-MP2 19.9 -17.3 23.5 15.3
SCS(MI)-MP2 9.5 6.1 5.4 15.0
SCS(MC)-MP2 75 1.3 4.1 9.8
PBE-D335 46 2.9 7.1 2.6
PBE-TS35 13.0 12.7 10.5 16.0
PBE-MBD ©2 45 3.1 5.0 3.9

16



References

(1)

(2)

(3)

(4)

()

(6)

(9)

(10)

Beran, G. J. O. Modeling Polymorphic Molecular Crystals with Electronic Structure
Theory. Chem. Rev. 2016, 116, 5567-5613.

Marom, N.; DiStasio Jr., R. A.; Atalla, V.; Levchenko, S.; Reilly, A. M.; Che-
likowsky, J. R.; Leiserowitz, L.; Tkatchenko, A. Many-Body Dispersion Interactions in
Molecular Crystal Polymorphism. Angew. Chem. Int. Ed. Engl. 2013, 52, 6629-6632.

Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation
Effects. Phys. Rev. 1965, 140, A1133-A1138.

Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864—
B871.

Kristyan, S.; Pulay, P. Can (semi)local density functional theory account for the London

dispersion forces? Chem. Phys. Lett. 1994, 229, 175-180.

Kozuch, S.; Martin, J. M. L. DSD-PBEPS86: in search of the best double-hybrid DFT
with spin-component scaled MP2 and dispersion corrections. Phys. Chem. Chem. Phys.
2011, 15, 20104-20107.

Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid functionals based on a screened
Coulomb potential. J. Chem. Phys. 2003, 118, 8207-8215.

Broqvist, P.; Alkauskas, A.; Pasquarello, A. Hybrid-functional calculations with plane-
wave basis sets: Effect of singularity correction on total energies, energy eigenvalues,

and defect energy levels. Phys. Rev. B 2009, §0, 085114.

Grimme, S. Accurate description of van der Waals complexes by density functional

theory including empirical corrections. J. Comput. Chem. 2004, 25, 1463-1473.

Becke, A. D.; Johnson, E. R. Exchange-hole dipole moment and the dispersion inter-
action. J. Chem. Phys. 2005, 122, 154104.

17



(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from
Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009,

102, 073005.

Mgller, C.; Plesset, M. S. Note on an Approximation Treatment for Many-Electron
Systems. Phys. Rev. 1934, 46, 618—622.

Grimme, S. Improved second-order Mgller—Plesset perturbation theory by separate scal-
ing of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys. 2003, 118,
9095-9102.

Jung, Y.; Lochan, R. C.; Dutoi, A. D.; Head-Gordon, M. Scaled opposite-spin second
order Mgller—Plesset correlation energy: An economical electronic structure method.

J. Chem. Phys. 2004, 121, 9793-9802.

Distasio JR., R. A.; Head-Gordon, M. Optimized spin-component scaled second-order
Mgller-Plesset perturbation theory for intermolecular interaction energies. Mol. Phys.

2007, 105, 1073-1083.

Maschio, L.; Usvyat, D.; Schiitz, M.; Civalleri, B. Periodic local Mgller—Plesset second
order perturbation theory method applied to molecular crystals: Study of solid NH3
and CO2 using extended basis sets. J. Chem. Phys. 2010, 132, 134706.

Maschio, L.; Civalleri, B.; Ugliengo, P.; Gavezzotti, A. Intermolecular Interaction En-
ergies in Molecular Crystals: Comparison and Agreement of Localized Mgller—Plesset
2, Dispersion-Corrected Density Functional, and Classical Empirical Two-Body Calcu-

lations. J. Phys. Chem. A 2011, 115, 11179-11186.

Del Ben, M.; Hutter, J.; VandeVondele, J. Second-Order Mgller—Plesset Perturbation
Theory in the Condensed Phase: An Efficient and Massively Parallel Gaussian and
Plane Waves Approach. J. Chem. Theory Comput. 2012, 8, 4177-4188.

18



(19)

(20)

(23)

(25)

(26)

Cutini, M.; Civalleri, B.; Corno, M.; Orlando, R.; Brandenburg, J. G.; Maschio, L.;
Ugliengo, P. Assessment of Different Quantum Mechanical Methods for the Prediction
of Structure and Cohesive Energy of Molecular Crystals. J. Chem. Theory Comput.
2016, 12, 3340-3352.

Thomas, S. P.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A. Accurate Lattice
Energies for Molecular Crystals from Experimental Crystal Structures. J. Chem. Theory

Comput. 2018, 14, 1614-1623.

Klimes, J. Lattice energies of molecular solids from the random phase approximation

with singles corrections. J. Chem. Phys. 2016, 145, 094506.

Pham, K. N.; Modrzejewski, M.; Klimes, J. Assessment of random phase approximation
and second-order Mgller—Plesset perturbation theory for many-body interactions in

solid ethane, ethylene, and acetylene. J. Chem. Phys. 2023, 158, 144119.

Miiller, C.; Usvyat, D. Incrementally Corrected Periodic Local MP2 Calculations: I.
The Cohesive Energy of Molecular Crystals. J. Chem. Theory Comput. 2013, 9, 5590~
5598.

Shepherd, J. J.; Griineis, A.; Booth, G. H.; Kresse, G.; Alavi, A. Convergence of many-
body wave-function expansions using a plane-wave basis: From homogeneous electron

gas to solid state systems. Phys. Rev. B 2012, 86, 035111.

Booth, G. H.; Tsatsoulis, T.; Chan, G. K.-L.; Griineis, A. From plane waves to local
Gaussians for the simulation of correlated periodic systems. J. Chem. Phys. 2016, 145,
084111.

Callahan, J. M.; Lange, M. F.; Berkelbach, T. C. Dynamical correlation energy of
metals in large basis sets from downfolding and composite approaches. J. Chem. Phys.

2021, 154, 211105.

19



(27)

(30)

(31)

(32)

(33)

(34)

(35)

Lee, J.; Feng, X.; Cunha, L. A.; Gonthier, J. F.; Epifanovsky, E.; Head-Gordon, M.
Approaching the basis set limit in Gaussian-orbital-based periodic calculations with
transferability: Performance of pure density functionals for simple semiconductors.

J. Chem. Phys. 2021, 155, 164102.

Ye, H.-Z.; Berkelbach, T. C. Correlation-Consistent Gaussian Basis Sets for Solids Made

Simple. J. Chem. Theory Comput. 2022, 18, 1595-1606.

Marsman, M.; Griineis, A.; Paier, J.; Kresse, G. Second-order Mgller—Plesset pertur-
bation theory applied to extended systems. I. Within the projector-augmented-wave

formalism using a plane wave basis set. J. Chem. Phys. 2009, 130, 184103.

Gruber, T.; Liao, K.; Tsatsoulis, T. Applying the Coupled-Cluster Ansatz to Solids
and Surfaces in the Thermodynamic Limit. Phys. Rev. X 2018, 8, 021043.

Neufeld, V. A.; Ye, H.-Z.; Berkelbach, T. C. Ground-State Properties of Metallic Solids
from Ab Initio Coupled-Cluster Theory. J. Phys. Chem. Lett. 2022, 13, 7497-7503.

Griineis, A.; Marsman, M.; Kresse, G. Second-order Mgller—Plesset perturbation theory
applied to extended systems. II. Structural and energetic properties. J. Chem. Phys.
2010, 133, 074107.

Goldzak, T.; Wang, X.; Ye, H.-Z.; Berkelbach, T. C. Accurate thermochemistry of
covalent and ionic solids from spin-component-scaled MP2. J. Chem. Phys. 2022, 157,
174112.

Bintrim, S. J.; Berkelbach, T. C.; Ye, H.-Z. Integral-Direct Hartree-Fock and
Mgller—Plesset Perturbation Theory for Periodic Systems with Density Fitting: Ap-

plication to the Benzene Crystal. J. Chem. Theory Comput. 2022, 18, 5374-5381.

Reilly, A. M.; Tkatchenko, A. Understanding the role of vibrations, exact exchange, and

20



(36)

(37)

(38)

(40)

(41)

(42)

(43)

many-body van der Waals interactions in the cohesive properties of molecular crystals.

J. Chem. Phys. 2013, 139, 024705.

Reilly, A. M.; Tkatchenko, A. Seamless and Accurate Modeling of Organic Molecular
Materials. J. Phys. Chem. Lett. 2013, 4, 1028-1033.

Otero-de-la Roza, A.; Johnson, E. R. A benchmark for non-covalent interactions in

solids. J. Chem. Phys. 2012, 137, 054103.

Yang, J.; Hu, W.; Usvyat, D.; Matthews, D.; Schiitz, M.; Chan, G. K.-L. Ab initio
determination of the crystalline benzene lattice energy to sub-kilojoule/mole accuracy.

Science 2014, 345, 640-643.

Borca, C. H.; Glick, Z. L.; Metcalf, D. P.; Burns, L. A.; Sherrill, C. D. Benchmark
coupled-cluster lattice energy of crystalline benzene and assessment of multi-level ap-

proximations in the many-body expansion. J. Chem. Phys. 2023, 158, 234102.

Jurecka, P.; Sponer, J.; Cerny, J.: Hobza, P. Benchmark database of accurate (MP2
and CCSD(T) complete basis set limit) interaction energies of small model complexes,

DNA base pairs, and amino acid pairs. Phys. Chem. Chem. Phys. 2006, 8, 1985-1993.

Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N. S.; Bogdanov, N. A_;
Booth, G. H.; Chen, J.; Cui, Z.-H. et al. Recent developments in the PySCF program
package. J. Chem. Phys. 2020, 153, 024109.

Sun, Q.; Berkelbach, T. C.; Blunt, N. S.; Booth, G. H.; Guo, S.; Li, Z.; Liu, J;
McClain, J. D.; Sayfutyarova, E. R.; Sharma, S. et al. PySCF': the Python-based sim-

ulations of chemistry framework. WIREs Comput. Mol. Sci. 2018, 8, e1340.

Dunning, T. H., Jr. Gaussian basis sets for use in correlated molecular calculations. I.

The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007-1023.

21



(44)

(45)

(46)

(49)

(52)

Sun, Q.; Berkelbach, T. C.; McClain, J. D.; Chan, G. K.-L.. Gaussian and plane-wave

mixed density fitting for periodic systems. J. Chem. Phys. 2017, 147, 164119.

Ye, H.-Z.; Berkelbach, T. C. Fast periodic Gaussian density fitting by range separation.
J. Chem. Phys. 2021, 15/, 131104.

Ye, H.-Z.; Berkelbach, T. C. Tight distance-dependent estimators for screening two-
center and three-center short-range Coulomb integrals over Gaussian basis functions.

J. Chem. Phys. 2021, 155, 124106.

Paier, J.; Marsman, M.; Hummer, K.; Kresse, G.; Gerber, 1. C.; Angyén, J. G. Screened

hybrid density functionals applied to solids. J. Chem. Phys. 2006, 12/, 154709.

Sundararaman, R.; Arias, T. A. Regularization of the Coulomb singularity in exact
exchange by Wigner-Seitz truncated interactions: Towards chemical accuracy in non-

trivial systems. Phys. Rev. B 2013, 87, 165122.

Hoja, J.; Reilly, A. M.; Tkatchenko, A. First-principles modeling of molecular crystals:
structures and stabilities, temperature and pressure. WIREs Comput. Mol. Sci. 2017,
7, €1294.

Dolgonos, G. A.; Hoja, J.; Boese, A. D. Revised values for the X23 benchmark set of

molecular crystals. Phys. Chem. Chem. Phys. 2019, 21, 24333-24344.

Wen, S.; Beran, G. J. O. Accurate Molecular Crystal Lattice Energies from a Fragment
QM/MM Approach with On-the-Fly Ab Initio Force Field Parametrization. J. Chem.
Theory Comput. 2011, 7, 3733-3742.

Sargent, C. T.; Metcalf, D. P.; Glick, Z. L.; Borca, C. H.; Sherrill, C. D. Benchmarking
two-body contributions to crystal lattice energies and a range-dependent assessment of

approximate methods. J. Chem. Phys. 2023, 158, 054112.

22



(53)

(54)

(55)

(56)

(57)

Hofierka, J.; Klimes, J. Binding energies of molecular solids from fragment and periodic

approaches. FElectron. Struct. 2021, 3, 034010.

Metcalf, D. P.; Smith, A.; Glick, Z. L.; Sherrill, C. D. Range-dependence of two-body
intermolecular interactions and their energy components in molecular crystals. J. Chem.

Phys. 2022, 157, 084503.

Xie, Y.; Glick, Z. L.; Sherrill, C. D. Assessment of three-body dispersion models
against coupled-cluster benchmarks for crystalline benzene, carbon dioxide, and tri-

azine. J. Chem. Phys. 2023, 158, 094110.

Kennedy, M. R.; McDonald, A. R.; DePrince, A. E.; Marshall, M. S.; Podeszwa, R.;
Sherrill, C. D. Communication: Resolving the three-body contribution to the lattice

energy of crystalline benzene: Benchmark results from coupled-cluster theory. J. Chem.

Phys. 2014, 1/0, 121104.

Parker, T. M.; Burns, L. A.; Parrish, R. M.; Ryno, A. G.; Sherrill, C. D. Levels of
symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for in-
teraction energies. J. Chem. Phys. 2014, 140, 094106.

Lao, K. U.; Herbert, J. M. Atomic Orbital Implementation of Extended Symmetry-
Adapted Perturbation Theory (XSAPT) and Benchmark Calculations for Large

Supramolecular Complexes. J. Chem. Theory Comput. 2018, 14, 2955-2978.

Schriber, J.; Cheney, D.; Sherrill, C. D. Levels of symmetry adapted perturbation theory

(SAPT). II. Convergence of interaction energy components. ChemRziv 2023,

Tsuzuki, S.; Uchimaru, T.; Matsumura, K.; Mikami, M.; Tanabe, K. Effects of the
higher electron correlation correction on the calculated intermolecular interaction en-

ergies of benzene and naphthalene dimers: comparison between MP2 and CCSD(T)
calculations. Chem. Phys. Lett. 2000, 319, 547-554.

23



(61)

(62)

(67)

(68)

Nguyen, B. D.; Chen, G. P.; Agee, M. M.; Burow, A. M.; Tang, M. P.; Furche, F.
Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large

Molecules. J. Chem. Theory Comput. 2020, 16, 2258-2273.

Mortazavi, M.; Brandenburg, J. G.; Maurer, R. J.; Tkatchenko, A. Structure and Sta-
bility of Molecular Crystals with Many-Body Dispersion-Inclusive Density Functional
Tight Binding. J. Phys. Chem. Lett. 2018, 9, 399-405.

Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab Initio Calculation
of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional

Force Fields. J. Chem. Phys. 1994, 98, 11623-11627.

Sharkas, K.; Toulouse, J.; Maschio, L.; Civalleri, B. Double-hybrid density-functional

theory applied to molecular crystals. J. Chem. Phys. 2014, 141, 044105.

Sansone, G.; Civalleri, B.; Usvyat, D.; Toulouse, J.; Sharkas, K.; Maschio, L.
Range-separated double-hybrid density-functional theory applied to periodic systems.
J. Chem. Phys. 2015, 13, 102811.

Stein, F.; Hutter, J.; Rybkin, V. V. Double-Hybrid DFT Functionals for the Condensed
Phase: Gaussian and Plane Waves Implementation and Evaluation. Molecules (Basel,

Switzerland) 2020, 25, 5174.

Shee, J.; Loipersberger, M.; Rettig, A.; Lee, J.; Head-Gordon, M. Regularized Second-
Order Mgller—Plesset Theory: A More Accurate Alternative to Conventional MP2 for
Noncovalent Interactions and Transition Metal Thermochemistry for the Same Com-

putational Cost. J. Phys. Chem. Lett. 2021, 12, 12084-12097.

Wang, Y.; Li, Y.; Chen, J.; Zhang, I. Y.; Xu, X. Doubly Hybrid Functionals Close to
Chemical Accuracy for Both Finite and Extended Systems: Implementation and Test
of XYG3 and XYGJ-OS. JACS Au 2021, 1, 543-549.

24



