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A B S T R A C T

Near-infrared reflectance of vegetation multiplied by incoming sunlight (NIRvP) is important for gross primary
production (GPP) estimation. While NIRvP is a useful indicator of canopy structure and solar radiation, its as-
sociation with heat or moisture stress is not fully understood. Thus, this research aimed to explore the impact of
air temperature (Ta) and vapor pressure deficit (VPD) on the NIRvP-GPP relationship. Using Moderate Resolution
Imaging Spectroradiometer (MODIS) observations, eddy-covariance measurements, and the Parameter–Elevation
Regressions on Independent Slopes Model (PRISM) data, we found that NIRvP cannot fully explain the response
of plant photosynthesis to Ta and VPD at both seasonal and daily scales. Therefore, we incorporated a polynomial
function of Ta and an exponential function of VPD to correct its seasonal response to stress and calibrated the
GPP residual via a linear function of Ta and VPD time-varying derivatives to account for its daily response to
stress. Leave-one-site-out cross-validation suggested that the improvements relative to its original version were
especially noteworthy under stress conditions while less significant when there was no water or heat stress across
grasslands and croplands. When compared to six other GPP models, the enhanced NIRvP model consistently
outperformed them or performed comparably with the best model in terms of bias, RSME, and coefficient of
determinant against measurements in grasslands and croplands. Moreover, we found that parameterizing the
fraction of photosynthetically active radiation term using NIRv notably improved the performance of the classic
MOD17 and vegetation photosynthesis model, with an average RMSE reduction of 13 % across grasslands and
croplands. Overall, this study highlights the need to consider environmental stressors for improved NIRvP-based
GPP and shed light on future improvements of LUE models.

1. Introduction

Terrestrial gross primary production (GPP) is responsible for the CO2
uptake of approximately 120–150 Pg C year−1, roughly one-sixth of the
total atmospheric CO2 pool (Beer et al., 2010; Anav et al., 2015; Ryu
et al., 2019). The carbon fixed through plant photosynthesis provides
the material basis for the functioning of life on Earth. Slight perturba-
tions in GPP could remarkably alter the carbon balance of terrestrial
ecosystems, nutrient availability, biodiversity, and climate change (Law

et al., 2002; Piao et al., 2009; Running, 2012; Ahlström et al., 2015).
Thus, accurate quantification of GPP and its variability is crucial in plant
biology and global change studies. Originating from trace amounts of
energy released during plant photosynthesis, solar-induced chlorophyll
fluorescence (SIF) has received increasing attention in GPP estimates
since the serendipitous advances in its spaceborne observing capabilities
in the early 2010s (Guanter et al., 2007; Frankenberg et al., 2011;
Guanter et al., 2012; Joiner et al., 2014; Xiao et al., 2019). Due to SIF’s
unique mechanistic connection to photosynthesis, it offers a more direct
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way to approximate GPP than conventional vegetation indices (Guanter
et al., 2014; Yang et al., 2015; Guan et al., 2016; Miao et al., 2018;
Mohammed et al., 2019; He et al., 2020; Wu et al., 2022).

While SIF integrates the information of photosynthetically active
radiation (PAR), plant structure, and plant physiology to a great extent
(Frankenberg and Berry, 2018), spaceborne SIF observations often suffer
from low spatiotemporal resolution and substantial spatial gaps (Sun
et al., 2023). Although machine learning techniques can partially
address this deficiency with the help of additional information (Zhang
et al., 2018; Gentine and Alemohammad, 2018; Li and Xiao, 2019), it
still notably limits its applications and promotes the research on alter-
native solutions. Largely inspired by SIF, Badgley et al. (2017) proposed
a novel and parsimonious vegetation index for GPP estimation, namely
the near-infrared reflectance of vegetation (NIRv) that is the product of
the normalized difference vegetation index (NDVI) (Tucker et al., 1985)
and NIR. Physically, NIRv explains the fraction of NIR light reflected by
vegetation and thus can well approximate the fraction of photosyn-
thetically active radiation (FPAR) absorbed by plants (Badgley et al.,
2017). As documented, NIRv demonstrates a superior ability to estimate
GPP compared to SIF, without the need for extra auxiliary inputs typi-
cally required for traditional vegetation indices-based estimates
(Running and Nemani, 1988; Badgley et al., 2019; Zhang et al., 2022).
However, unlike SIF observations, NIRv — as a vegetation index — is
inherently insufficient to fully capture GPP dynamics under varying
environmental stress scenarios due to its lack of consideration of PAR
and plant efficiency in using radiation for photosynthesis (Zeng et al.,
2019). Specifically, such limitations could make it hard to reflect the
rapid GPP change and/or seasonal shifts in GPP influenced by light,
heat, or water stress.

So far, great endeavors have been undertaken to enhance NIRv’s
capacity to accurately quantify GPP variations in response to light and
environmental stress. Recently, Dechant et al. (2020, 2022) explored the
product of NIRv and PAR (NIRvP) and Wu et al. (2020) investigated the
near-infrared radiance of vegetation (NIRvR), both of which showed an
improved correlation with GPP across daily to yearly time scales.
Meanwhile, Jiang et al. (2021) developed the SatelLite Only Photosyn-
thesis Estimation (SLOPE) model based on the same concept as NIRvP
but using a soil-corrected NIRv, which has demonstrated its accurate
performance across the continental US when benchmarked against
AmeriFlux eddy covariance (EC) data. Their excellence at varying time
scales is mainly attributed to the following two aspects. First, NIRv can
well capture plant structure changes and partially reflects the impact of
environmental stress on plants over monthly/yearly time scales through
changes in vegetation structure. Secondly, by adding PAR, not only
instantaneous incident solar radiation is accounted for, but also partial
environmental heat and water stress, as they have certain correlations
(Stearns and Carlson, 1960; Bristow and Campbell, 1984). However,
none of these methods can comprehensively explain changes in plant
physiological information. Given that plant physiology directly controls
how efficiently plants use radiation for photosynthesis and varies
promptly with environmental factors, failure to account for it could lead
to a significant overestimation of GPP under stress conditions.

Although such a challenge has not been addressed for NIRv, it is
worth noting that accounting for environmental stress for GPP estima-
tion has been frequently investigated within the light use efficiency
(LUE) model framework. Currently, numerous methods have been pro-
posed to quantify the impact of LUE on GPP through different envi-
ronmental factors, among which heat and moisture are the most crucial
ones (Pei et al., 2022). This is because photosynthetic enzyme activity
decreases when air temperature (Ta) deviates from the optimum
(Bernacchi et al., 2002; Moore et al., 2021) while increased water stress
due to reduced soil moisture (SM) and/or elevated vapor pressure deficit
(VPD) hinders uptake of soil water by plant roots and triggers stomatal
closure (Novick et al., 2016; Sulman et al., 2016; Liu et al., 2020a;
Rigden et al., 2020; Zhang et al., 2021). So far, multiple algorithms have
been developed to account for Ta effects, including the min-max scaling

function with/without considering optimal Ta (Prince and Goward,
1995; Xiao et al., 2004a; Wang et al., 2015), ramp function (Running
et al., 1999; He et al., 2013), exponential function (Wang et al., 2018;
Veroustraete et al., 2002), and polynomial function (Cui et al., 2016).
On the other hand, parameterizing water stress can be categorized into
four groups based on the origin of the stress, including (1) atmospheric
water stress based method (Running et al., 1999; Xiao et al., 2004a;
Wang et al., 2015; Zhang et al., 2016), (2) soil water stress based method
(Landsberg and Waring, 1997), (3) plant water stress based method
(Potter et al., 1993; Yuan et al., 2007; Yuan et al., 2010; Gao et al., 2014;
Yan et al., 2015; Cui et al., 2016; de Almeida et al., 2018), and (4)
combined method (Prince and Goward, 1995; Zhang et al., 2015; He
et al., 2016; Wang et al., 2018; Stocker et al., 2019). In addition to heat
and moisture stress, some models also consider other factors such as
carbon dioxide concentration and freezing conditions, but less
frequently (Veroustraete et al., 2002; He et al., 2016).

Considering that Ta and VPD are most frequently used to interpret
plant physiological information under heat and water stress (Running
et al., 1999; Xiao et al., 2004a; Pei et al., 2022), this study aimed to
quantify their impact on the NIRvP-GPP relationship and improve it.
Meanwhile, since NIRv has never been examined within the framework
of the classic LUE model, such investigations can provide insights into
future improvements of LUE models. Specifically, we strive to answer
the following questions: (1) How do Ta and VPD impact the relationship
between NIRvP and GPP? (2) How can we effectively integrate Ta and
VPD with NIRvP for improved GPP estimates? (3) How does the
enhanced NIRvP model perform relative to other LUE models, including
LRC-NIRvP (Khan et al., 2022), MOD17 (Running et al., 2004; Zhao
et al., 2005), MOD17-NIRvP, vegetation photosynthesis model (VPM)
(Xiao et al., 2004a; Zhang et al., 2017), VPM-NIRvP, and two-leaf LUE
(TL-LUE) model (He et al., 2013; Wu et al., 2015; Zhou et al., 2016)?
Here, MOD17-NIRvP and VPM-NIRvP models are variants of MOD17
and VPM models but their FPAR terms are set to be equal to NIRv. To
answer these questions, we focused on the SLOPE model and narrowed
down the analysis to the US Great Plains pasturelands and Midwest
croplands. This is because the US Great Plains pasturelands harbor the
majority of the US pasturelands and livestock production (Drummond
et al., 2012; USDA NASS, 2018), and the US Midwest produces around
1/3 of the global corn and soybean production (Hatfield, 2012; Heine-
mann et al., 2014). Additionally, these regions have substantial gradi-
ents in both water and heat stress, which provide an important testbed
for our proposed methods (Beck et al., 2018).

2. Study area and data

2.1. Study area

Stretching between the Mississippi River and the Rocky Mountains,
the Great Plains (Fig. 1) encompasses an expansive elevated plateau
characterized by semi-arid grasslands. Elevation varies from 1500 to
1800m at the foot of the Rockies, gradually descending to ~500m at the
eastern border. The Great Plains experiences a continental climate with
distinct seasonal patterns. Throughout most of the region, cold winters
and warm summers are prevalent, accompanied by low levels of pre-
cipitation and humidity and rapid temperature fluctuations (Beck et al.,
2018). Moisture primarily originates from the Gulf of Mexico, resulting
in reduced rainfall towards the north and west. Typically, the Great
Plains receives more rainfall during the summer than in the winter. Due
to its unique geographical features, the Great Plains serves as the pri-
mary location for the majority of the US pasturelands and is responsible
for approximately 50 % of the total beef cattle herd in the United States
(USDA NASS, 2018; Klemm and Briske, 2021).

The U.S. Corn Belt (Fig. 1) occupies the Midwest States of Iowa, Il-
linois, Indiana, Ohio, Michigan, Wisconsin, and Minnesota, and
stretches into the Great Plain States of North Dakota, South Dakota,
Nebraska, and Kansas (Green et al., 2018). Most states are lowlands with

L. Gao et al. Remote Sensing of Environment 316 (2025) 114516 

2 



elevations below 500 m. According to the Köppen-Geiger classification
(Beck et al., 2018), the majority of the Midwest experiences a humid
continental climate characterized by notable temperature variation be-
tween seasons and consistent precipitation throughout the year. The
Midwest is one of the world’s most productive agricultural regions
(Hatfield, 2012). Its fertile soil, relatively flat topography, and plentiful
water resources make it particularly suitable for crop cultivation. The
combination of a humid climate with warm summers is instrumental in
shaping the agricultural landscape of the region, enabling the cultiva-
tion of vast corn and soybean fields with minimal irrigation re-
quirements (Green et al., 2018).

2.2. Data for SLOPE model

Following the SLOPE model (Jiang and Guan, 2020, Jiang et al.,
2021), this study used soil-adjusted NIRv, PAR, and C4 fraction data at a
250-m spatial grid from 2000 to 2019 (Table 1). Specifically, NIRv was
calculated using 250-m MODIS surface reflectance of red and NIR from
both MOD09GQ and MYD09GQ products (Vermote and Wolfe, 2015a;
Vermote and Wolfe, 2015b). To ensure data quality, only high-quality
surface reflectance observations labeled as “corrected product pro-
duced at ideal quality all bands” were retained based on the quality
control flag. When cloud optical thickness > 0, we further masked out
cloud-contaminated values using 1-km MODIS cloud optical thickness
data (Baum et al., 2012). Furthermore, to mitigate the impact of the
Bidirectional Reflectance Distribution Function (BRDF) (Schaaf et al.,

Fig. 1. Study area and geographical locations of 39 AmeriFlux sites throughout the Great Plains grasslands and Midwest croplands of the United States, super-
imposed on the 30-m land cover map from the National Land Cover Database (NLCD) data in 2019. The state boundaries of the Great Plains and Midwest are
highlighted in red. The “Num.” in the inset denotes the total number of days of EC observations. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Specifications of data for the implementation of SLOPE, ESLOPE, MOD17, MOD17-NIRvP, VPM, VPM-NIRvP, and TL-LUEmodels, including soil-adjusted near-infrared
reflectance of vegetation (NIRv), photosynthetically active radiation (PAR), C4 fraction (fC4), EC gross primary productivity (GPP), shortwave radiation (SWR), air
temperature (Ta), vapor pressure deficit (VPD), leaf area index (LAI), land surface water index (LSWI), enhanced vegetation index (EVI), and plant functional type
(PFT).

Variables Sources Spatial Res. Temporal Res. Time Coverage Service Models Reference

NIRv
SLOPE 250 m

Daily
2000–2019 All NIRvP models Jiang and Guan (2020)PAR Daily

fC4 Annual SLOPE
GPP

AmeriFlux – Daily 2000–2019 All Baldocchi et al. (2001)
SWR
Ta PRISM 4 km Daily 2000–2019 All except

LRC-NIRvP
Daly et al. (2000)

VPD
LAI

MCD15A3H 500 m 4-day 2000–2019
MOD17
TL-LUE Chen and Black (1992)

LSWI
MOD09A1 500 m 8-day 2000–2019

VPM
VPM-NIRvP Vermote (2015)

EVI VPM
PFT MCD12C1 0.05◦ Annual 2001–2019 All Friedl and Sulla-Menashe (2015)
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2002) on NIRv, we averaged MOD- and MYD-derived NIRv estimates
within a day when their difference was below a threshold of 0.1,
considering that the BRDF effect on NIRv at similar solar zenith angles is
hardly larger than 0.1. In cases where the absolute difference between
MOD- and MYD-derived NIRv exceeded 0.1, we selected the larger value
assuming that the smaller value was influenced by clouds. Additionally,
assuming there are no extreme events like hailstorms or fire, a temporal
filter with a window size of a 7-d radius was applied to fill gaps, remove
outliers, enhance NIRv smoothness, and reduce the BRDF effect on the
temporal variation of NIRv, considering that (1) vegetation structure
typically changes smoothly over a short time window, (2) vegetation
structure is hard to promptly respond to environmental stress that
typically affects plant photosynthesis through stomatal conductance and
photosynthetic enzyme activities (Bernacchi et al., 2002; Novick et al.,
2016), and (3) NIRv noise is typically higher than its daily variations due
to environmental stress (Jiang and Guan, 2020). More details can be
referred to (Jiang et al., 2021). It should be noted that as we checked at
two randomly selected EC sites (i.e., US-AR1 and US-IB1), the used NIRv
(and its derivative) has higher temporal correlations with EC GPP (and
GPP derivative) than BRDF-corrected NIRv from the MCD43C4 product,
indicating that smoothing NIRv time series shall not have significant
impact on its daily variations with stress.

PAR was calculated by upscaling site-level observations using the
ensemble from four machine learning approaches (Jiang et al., 2021),
including multivariate adaptive regression splines (MARS) (Friedman,
1991), least absolute shrinkage and selection operator (LASSO)
(Tibshirani, 1996), random forest regression (RF) (Liaw and Wiener,
2002), and k-nearest neighbor regression (KNN) (Goldberger et al.,
2004). Specifically, ground benchmark data were first computed as the
product of the top-of-atmosphere shortwave radiation (SWRTOA), at-
mospheric transmittance (SWR/SWRTOA), and the ratio of PAR within
the shortwave range (PAR/SWR). SWRTOA was determined according to
the day of the year (DOY) and latitude (Allen et al., 1998) while the
calculation of daily mean SWR and PAR was based on ground obser-
vations from seven long-term continuous sites across the Surface Radi-
ation Budget (SURFRAD) network (Augustine et al., 2000) with an
interval of less than 3 min between 2000 and 2018. To impose more
physical constraints on the machine-learning PAR calculation, multiple
satellite-based forcing datasets were obtained from MODIS Terra and
Aqua observations, including 3-km aerosol optical depth (MOD04_3K
and MYD04_3K) (Remer et al., 2013), 1-km total column water vapor
(MOD05_L2 and MYD05_L2) (Chang et al., 2014), 1-km cloud optical
thickness (MOD06_L2 and MYD06_L2) (Baum et al., 2012), 5-km total
column ozone burden (MOD07_L2 and MYD07_L2) (Seemann et al.,
2006), and 500-m white-sky land surface shortwave albedo (MCD43A3)
(Román et al., 2009). In addition, 30-m altitude data were also collected
from the Shuttle Radar TopographyMission Global 1 Arc Secondmission
(Kobrick and Crippen, 2013). All machine learning approaches were
trained and validated through the 5-fold cross-validation based on
available data. It should be noted that to circumvent the influence of
uncertainties in machine learning derived PAR on the analysis, we also
calculated PAR based on the shortwave radiation measurements from
AmeriFlux sites for all site-level analyses bymultiplying a constant value
that was calibrated against machine learning-derived PAR.

To investigate the impact of heat and water stress on the SLOPE
model, we conducted analyses using daily 4-km Ta and VPD data ob-
tained from the Parameter–Elevation Regressions on Independent
Slopes Model (PRISM) (Daly et al., 2000; Johnson et al., 2000). Devel-
oped by the PRISM Climate Group at Oregon State University (Daly
et al., 2008), PRISMwas originally designed to map precipitation, which
was further expanded to monitor Ta and dew point along with other
climate variables. Considering the marked correlation between eleva-
tion and climate, PRISM generates the gridded climate variables using a
climate-elevation regression weighted by station observation data and
other physiographic factors such as topographic position and vertical
atmospheric layer. In this study, we performed the analysis using both

daily average and maximum values for Ta and VPD. Analysis of average
and maximum values was incorporated because maximum and mini-
mum temperatures can exhibit significant day-to-day variation, whereas
minimum VPD tends to remain relatively constant (Fig. A1 in the Ap-
pendix). The daily mean Ta and VPD were computed by averaging daily
minimum and maximum values. We note that the PRISM data were used
rather than the downscaled ERA-Interim reanalysis data (Dee et al.,
2011) since the PRISM dataset has higher spatial resolution than ERA-
Interim reanalysis data and can be directly used to produce the
regional GPP map. Moreover, these two datasets are highly correlated
with each other across studied AmeriFlux sites, as we examined in
Fig. A1 in the Appendix.

2.3. Data for other models

To evaluate the performance of the enhanced SLOPE (ESLOPE)
model, we compared it with other models, including LRC-NIRvP,
MOD17, MOD17-NIRvP, VPM, VPM-NIRvP, and TL-LUE models. To
keep the comparison fair during the leave-one-site-out cross-validation
process, we directly implemented these models rather than using their
official products (if they existed) and used the same suite of Ta and VPD
from the PRISM to parameterize water and heat stress when needed. For
the implementation of the MOD17 and MOD17-NIRvP models, we used
the 500-m 4-day composite leaf area index (LAI) from MODIS
(MCD15A3H, Version 6.1) (Chen and Black, 1992) instead of the LAI
climatology used by official products. The 4-day LAI composite was
temporally interpolated into a daily time scale using the linear inter-
polation method. On the other hand, when implementing the VPM and
VPM-NIRvP models, we computed the enhanced vegetation index (EVI)
(Huete et al., 1997) and land surface water index (LSWI) (Xiao et al.,
2004a) using MODIS surface reflectance of red, NIR, blue, and short-
wave infrared from the MOD09A1 (version 6) product (Vermote, 2015).
This product is a composite of 8-day observations from the Terra satellite
at a 500-m spatial resolution and was temporally interpolated into a
daily time scale using the linear interpolation method. Note that the self-
implemented MOD17 and VPM models should have better or at least
comparable performance to their official counterparts considering that
their maximum LUE values are calibrated against local EC measure-
ments in this study.

2.4. Eddy covariance GPP

The calibration and validation of SLOPE and ESLOPE GPP were
performed using the observations obtained from AmeriFlux sites, which
employed the nighttime partitioning method to partition the net
ecosystem CO2 exchange into GPP and respiration (Baldocchi et al.,
2001; Reichstein et al., 2005; Wutzler et al., 2018). Specifically, we
initially collected the measurements from 176 sites with 3520 site years
across the US Great Plains and Corn Belt from 2000 to 2019, which in-
cludes all FLUXNET2015 Tier 1 data (Pastorello et al., 2020) that were
generated through a standardized data processing pipeline. For sites not
included in FLUXNET2015 Tier 1 data, we employed the Open Network-
Enabled Flux processing pipeline (ONEFlux) (Pastorello, 2019) to gap-
fill meteorological and flux measurements and partition CO2 fluxes
into respiration and photosynthesis components. To control the quality
of daily average GPP (i.e., GPP_DT_VUT_MEAN), we masked out all
values when the quality flag (i.e., NEE_VUT_REF_QC) was below 0.8.
Besides, we confined our analysis to the sites where the coefficient of
determination between NIRv and measured GPP was more than 0.5 to
further mitigate the spatial representativeness issue of EC measurements
due to heterogeneous vegetation, wind directions, atmospheric turbu-
lent states, and measurement height (Barcza et al., 2009; Chen et al.,
2012). The threshold of 0.5 was determined based on the facts that NIRv
has a moderate to high correlation with GPP (Badgley et al., 2017).
Moreover, we further evaluated the spatial representativeness of
selected EC sites using the 30-m Cropland Data Layer (CDL) (Boryan
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et al., 2011) within 250-m radial distance from the tower from 2008 to
2019 (Chu et al., 2021), which indicated that most sites had moderate to
high spatial representativeness with dominant land cover exceeding 50
% (Fig. A2 in the Appendix). In addition, sites with less than 30 days of
observations were excluded, resulting in a final selection of 16 sites (73
site years) in grasslands, 15 sites (91 site years) in C4 croplands, and 17
sites (61 site years) in C3 croplands for analysis. The distribution of these
sites is depicted in Fig. 1.

2.5. Land cover

The annual 250-m C4 fraction data were calculated based on the
National Land Cover Database (NLCD) (Homer et al., 2004) and Crop-
land Data Layer (CDL) (Boryan et al., 2011). Produced by the United
States Geological Survey (USGS), NLCD provides a high-quality land
cover classification at a spatial resolution of 30 m (Fig. 1), which has
been updated every two to three years starting from 2001. NLCD classes
include agriculture, grassland, forest, and urban areas. By contrast, the
agriculture-oriented CDL product from the United States Department of
Agriculture (USDA) National Agricultural Statistics Service (NASS) of-
fers annual crop cover of more than 100 crop types at a spatial resolution
of 30 m starting in 2008. To compute the C4 fraction within the MODIS
footprint of 250 m, the fraction of vegetated area was first determined
based on NLCD data. Then, the C4 fraction of crops was calculated as the
ratio of the C4 fraction in the whole footprint to the fraction of vegetated
areas (Jiang et al., 2021). The calculated C4 fraction was then utilized,
along with yearly plant functional types (PFTs) from MCD12C1 (Friedl
and Sulla-Menashe, 2015) at a spatial resolution of 0.05◦, to differen-
tiate between grass, C4 crops, and C3 crops. The determination of the C4
fraction was limited to croplands due to the unavailability of more
detailed functional types for grasslands.

3. Methodology

3.1. SLOPE and ESLOPE models

The SLOPE model (Jiang et al., 2021) is derived as follows:

GPP = PAR • FPAR • LUE ≈ α • NIRvP (1a)

NIRvP = PAR • NIRv (1b)

where the constant value α [gC J−1] is calibrated against EC measure-
ments for a specific PFT. NIRv denotes soil-corrected NIRv, which is
normalized by multi-year climatological maximum and soil background
NIRv. The reason why NIRv is further corrected for soil background is
that bare-soil NIRv is rarely equal to zero and thus could decay NIRv
signals from vegetation, which is analogous to the correction of soil-
background effects on EVI for the classic VPM model (Wu et al.,
2018). The soil background NIRv values were determined based on the
following steps (Jiang et al., 2021). First, for non-forested areas, soil-
background NIRv was identified as the lowest value based on the
multi-year time series of NIRv. Second, when soil-background NIRv was
greater than 0.2, we forced it to 0.2 because soil NDVI is typically less
than 0.2 (Montandon and Small, 2008), which was also supported by our
hyperspectral reflectance simulation results (Jiang and Fang, 2019).
Third, for forested areas that are not considered in this work, it is not
necessary to conduct any soil background correction since soils cannot
be observed from space. We note that in most cases where bare-soil NIRv
is smaller than vegetation-contributed NIRv, the correction of bare-soil
NIRv shall not affect the continuity of NIRv. However, the continuity of
NIRv will be affected in the presence of bare soils, which is especially
important for harvested agricultural fields. In addition, considering that
the GPP-NIRv relationship varies significantly across C3 and C4 species
(Badgley et al., 2019; Wu et al., 2020), the model further accounts for
the area fraction of C4 (fC4) vs C3 for croplands:

GPP =
[
αC3 •

(
1− fC4

)
+ αC4 • fC4

]
• NIRvP (1c)

where αC3 and αC4 are coefficients for C3 and C4 species.
To account for Ta and VPD effects on SLOPE GPP, this study cali-

brated both SLOPE coefficient α and GPP residuals. Based on our anal-
ysis (Section 4.1), Ta effects were parameterized by a quadratic function
while VPD effects were calibrated by an exponential decay function (Eq.
(2b)). The quadratic function of Ta was considered since it can simulate
LUE increase with Ta below an optimum and LUE decrease with Ta
above an optimum. In this quadratic polynomial function of Ta, there is
no constant term, and thus GPP is 0 gCm−2 day−1 when Ta is below 0 ◦C,
which is consistent with other classic LUE models (Running et al., 1999;
Xiao et al., 2004a). For the exponential decay function of VPD, only one
unknown parameter was considered. However, we note that more
complex exponential functions might enhance the fitting accuracy dur-
ing calibration, but they could also introduce greater vulnerability and
reduce the robustness of the model. On the other hand, on a daily time
scale, we observed a strong correlation between the time-varying de-
rivative difference between SLOPE and EC GPP and the derivatives of
daily maximum Ta and VPD. This difference was calibrated using a
multivariate linear function of daily maximum Ta and VPD time-varying
derivatives (Eq. (2c)). Since the time-varying derivative of GPP only
modifies daily variation in GPP, it is expected that this residual term will
not significantly affect the seasonal trend of GPP. However, considering
that such calibration may render the intercept not equal to 0, we only
applied it to high biomass conditions with NIRv greater than 0.1.
Finally, the ESLOPE GPP is expressed as follows:

GPP = f1(Tamean,VPDmean) • NIRvP− f2(Tamax,VPDmax) (2a)

f1(Tamean,VPDmean) =
(
β1 • Tamean2 + β2 • Tamean

)
• exp(β3 • VPDmean)

(2b)

f2(Tamax,VPDmax) = β4 • δTamax + β5 • δVPDmax (2c)

where βi (i = 1, 2,3, 4,5) are coefficients fitted based on EC measure-
ments and their values are shown in Table 2. The subscripts of ‘mean’
and ‘max’ denote daily mean and maximum values.

3.2. Other GPP models for comparison

To comprehensively evaluate the performance of the proposed
model, we compared it with other six GPP models, including NIRvP
based light response curve model (LRC-NIRvP) (Khan et al., 2022),
MOD17 model (Running et al., 1999), NIRvP based MOD17 model
(MOD17-NIRvP), VPM (Xiao et al., 2004a; Xiao et al., 2004b), NIRvP
based VPM (VPM-NIRvP), and two-leaf LUE model (TL-LUE) (He et al.,
2013; Wu et al., 2015; Zhou et al., 2016). MOD17-NIRvP and VPM-
NIRvP models are directly adapted from the MOD17 and VPM but
their FPAR terms are set to be equal to NIRv, which can help evaluate the
performance of the developed stress calibration methods relative to
existing classical approaches. Note that despite the difference in
magnitude between FPAR and NIRv, this difference can be eliminated
using the calibrated coefficient in Eq. (2b), given that NIRv has a sig-
nificant linear correlation with MOD17/VPM FPAR, which was exam-
ined using all available data across EC sites (not shown here). More
details about the model and parameterizations are provided in Appendix
C.

Table 2
Values of βi (i = 1, 2, 3,4, 5) used in Eq. (2).

PFT β1 β2 β3 β4 β5

Grassland −0.0039 0.2677 −0.0149 0.1236 −0.0379
C3 Cropland −0.0031 0.2223 −0.0033 0.1275 0.0532
C4 Cropland −0.0036 0.2873 −0.0007 0.2006 0.0436
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3.3. Data analysis and performance evaluation

To study how SLOPE GPP responded to Ta and VPD, we focused the
analysis on the peak growing season from June to September to be
consistent with previous works (Fu et al., 2020; Liu et al., 2020a, 2020b;
He et al., 2021; Wang et al., 2022; Gao et al., 2024). This is not only
because vegetation in off-peak growing season is very sparse in US Great
Plains pasturelands and Midwest croplands, but also because moisture
and heat predominantly control ecosystem fluxes during the peak
growing season (Liu et al., 2020a, 2020b; He et al., 2021; Wang et al.,
2022), which could facilitate answering our first scientific question
about how do Ta and VPD impact the relationship between NIRvP and
GPP. Besides, we note that while NIRv may reach saturation in densely
vegetated areas during the peak growing season due to the saturation
problem of NDVI (Huete et al., 2002), it was documented that NIRv is
less likely to saturate than traditional vegetation indices (Baldocchi
et al., 2020; Mengistu et al., 2021). Moreover, as we examined per EC
site, NIRv saturation was not found in US Great Plains pasturelands and
Midwest croplands.

In addition, we performed analyses on both daily and seasonal time
scales. On a seasonal scale, we used a statistical data binning analysis
(Liu et al., 2020a; Zhou et al., 2019; Gao et al., 2024) for the parameter α
in Eq. (1a) with respect to Ta and VPD. Specifically, for different plant
functional types (PFTs), we calculated α values at different levels of Ta
or VPD to check whether α varied or not, where Ta and VPDwere binned
using a sliding window of 2 ◦C and 2 hPa around their center. To detect
the daily-scale impacts of Ta and VPD on SLOPE GPP, we computed the
time-varying derivatives of GPP, Ta, and VPD, which is the difference
between values on two consecutive days. Then, the correlation between
the time-varying derivative of Ta/VPD and the difference between
SLOPE and AmeriFlux EC GPP time-varying derivatives (ẟGPPS - ẟGPPA)
was used as a metric to measure the coupling between SLOPE GPP, Ta,
and VPD at a daily time scale. This is because EC GPP captures the daily-
scale effects of Ta and VPD, and thus any deviations between SLOPE and
EC GPP time-varying derivatives are likely caused by inaccurate repre-
sentation of Ta and VPD in SLOPE. These analyses were further used to
guide the calibration of Ta and VPD effects on the SLOPE model, leading
to the development of the ESLOPE model.

To evaluate the performance of the ESLOPE model, we first
comprehensively compared the SLOPE and ESLOPE model. Specifically,
we studied the degree to which calibrating SLOPE coefficients and re-
sidual can reduce the impacts of Ta and VPD on GPP through the cor-
relation between the SLOPE residual and Ta/VPD. Further, we
conducted the leave-one-site-out cross-validation to compare two
models along different gradients of Ta and VPD, which can help to check
in which cases the improvements are more notable. Note that the leave-
one-site-out cross-validation has been frequently used by previous works
to improve and validate GPP models (Verma et al., 2014; Verma et al.,
2015; Virkkala et al., 2021). Moreover, we examined the time series of
SLOPE and ESLOPE GPP to understand how accounting for Ta and VPD
contributes to the improvement of the ESLOPE model relative to the
SLOPE model. Besides, we checked the difference between spatial pat-
terns of SLOPE and ESLOPE GPP across US Great Plains grasslands and
Midwest croplands. On the other hand, we intercompared the ESLOPE
model with the SLOPE and six other models by examining diverse error
metrics of bias, root-mean-squared error (RMSE), and coefficient of
determinant (R2), which are defined as follows:

bias = E(θ̂ − θ)

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

E
[
(θ̂ − θ)

2
]√

R2 =
(E[(θ̂ − E(θ̂) )(θ − E(θ) ) ] )

2

(
E

(
θ̂
2)

− (E(θ̂) )
2

)(
E

(
θ2)

− (E(θ) )
2

)

where E is the expectation, θ̂ is the estimated parameter, and θ is the
measurement. To examine whether the differences among models are
significant or not, we resorted to the one-way analysis of variance
(ANOVA) (Bewick et al., 2004).

4. Results

4.1. Quantification of Ta and VPD impacts on SLOPE GPP

Fig. 2 presents the SLOPE coefficients calculated using all available
site-level data binned by daily mean Ta or VPD across different PFTs.
The results highlight the substantial impact of Ta and VPD on SLOPE
coefficients and the NIRvP-GPP relationship. Specifically, the SLOPE
coefficients increased with daily mean Ta for C3 and C4 crops. As Ta
enhanced from 10 to 30 ◦C, the coefficient increased by 52 % and 116 %
for C3 and C4 crops, respectively, resulting in a substantial deviation
from the constant coefficient previously used in the SLOPE model. To
that end, using a constant coefficient without accounting for Ta effects
could lead to a notable overestimation of GPP when Ta is below 15 ◦C,
especially during early and late growing seasons (Fig. A1 in the Ap-
pendix) and a marginal underestimation when Ta exceeds 25 ◦C. How-
ever, for grasslands, the binned coefficients did not significantly vary
with daily mean Ta, potentially because grasslands represent a diversity
of C3 and C4 species with different Ta responses. On the other hand, the
SLOPE coefficients decreased by more than 22 % for all three PFTs as
VPD increased from 0 to 20 hPa. When compared with the constant
SLOPE coefficient, the deviation primarily occurred when VPD was
below 5 hPa, which could lead to an underestimation of GPP when a
constant coefficient is employed.

Given that the daily mean Ta and VPD contain information per-
taining to both high and low temperatures and/or VPD, we also inves-
tigated the SLOPE coefficient variation against daily maximum Ta and
VPD, as depicted in Fig. D1 in the Appendix. Generally, the results
affirmed that the SLOPE coefficient tended to increase with enhanced Ta
for C3 and C4 croplands and decrease when VPD increased across all
PFTs, especially when the daily maximum Ta and VPD were not at low
levels. Nonetheless, when the daily maximum Ta fell below 15 ◦C or
when the daily maximum VPD approached 0 hPa, the SLOPE coefficient
showed remarkable fluctuations and did not follow the same trend as
observed in Fig. 2. This phenomenon could be attributed to the fact that
daily maximum Ta and VPD played a more important role in deter-
mining GPP variation when Ta and VPD were relatively high. Therefore,
we parameterized the SLOPE coefficient using daily mean values of Ta
and VPD for the improved SLOPE GPP estimation.

We also calculated the SLOPE coefficient by grouping data based on
both daily mean Ta and VPD, and compared it with the numerical ap-
proximations using Eq. (2b). To ensure statistical robustness, bins with
sample sizes less than 10 days were discarded. Consistent with Fig. 2,
Fig. 3 showed an upward trend in the SLOPE coefficient as Ta increased
for croplands and a downward trend in the SLOPE coefficient as VPD
increased across all PFTs. Such a trend with Ta and VPD resulted in
substantial variation of more than 400 % between the minimum and
maximum coefficient values for all three PFTs. To account for the Ta and
VPD effects on the SLOPE coefficient, we applied a correction using a
polynomial function for Ta and an exponential decay function for VPD
(Eq. (2b)). The numerical approximation in Fig. 3 illustrated that the
proposed method captured the overall trend of the coefficients with Ta
and VPD. Specifically, for all three PFTs, lower values were observed
under extremely low Ta and VPD conditions, while higher values were
evident when Ta was high and VPD was low. Compared to the binning
analysis, the coefficients obtained with the numerical approximation
showed smoother transitions along the gradients of Ta and VPD. One
notable difference between the binned and approximated SLOPE co-
efficients occurred when VPD was lower than 10 hPa, with the binned
coefficient showing a notably higher value compared to the
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approximated values. This is mainly because the exponential decay
function of VPD does not have an intercept term. On the other hand, we
computed the difference between the SLOPE constant coefficient and
binned/approximated coefficients. Significant differences primarily
occurred in regions with relatively low data density, characterized by
low Ta or high VPD, according to both binning analysis and numerical
approximation results. By contrast, in regions where data density
exceeded 0.7, the disparity was trivial. This generally aligns with our
expectations since the SLOPE constant coefficient was determined by
fitting all available data, which could lead to a more substantial differ-
ence between the constant coefficient and binned coefficients over re-
gions with lower data density.

In addition, we investigated the immediate impacts of Ta and VPD on
SLOPE GPP on a daily time scale by assessing the relationship between
ẟGPPS - ẟGPPA and the corresponding derivatives of daily maximum Ta
and VPD. As shown in Fig. 4, there was moderate correlation between
daily maximum Ta derivatives and ẟGPPS - ẟGPPA, with Pearson cor-
relation coefficient r > 0.2 for all three PFTs. By contrast, we found more
significant correlations between daily maximum VPD derivatives and
ẟGPPS - ẟGPPA with r > 0.36 across different PFTs. These results indicate
that VPD had a greater influence than Ta in regulating the day-to-day
variation of GPP, which is likely due to its direct control over stomatal
conductance, as described by Farquhar and Von Caemmerer (1982) and
Leuning (1995). On the other hand, we also investigated correlations
using daily mean Ta and VPD derivatives, as shown in Fig. D2 in the
Appendix. The results were generally consistent with Fig. 4, indicating a
notable correlation between ẟGPPS - ẟGPPA and the daily mean Ta and
VPD derivatives. Specifically, the correlation between ẟGPPS - ẟGPPA
and daily mean Ta derivatives was notably lower than that using daily
maximum Ta derivatives while the correlation between ẟGPPS - ẟGPPA
and daily mean VPD derivatives was similar to that using daily
maximum VPD derivatives. This is not surprising given that both mini-
mum and maximum Ta values vary notably, while the minimum VPD
value is relatively constant. Therefore, maximum VPD was probably the
major driver of both mean and maximum VPD. Overall, these results

suggested accounting for the daily-scale impacts of environmental fac-
tors, especially VPD, could improve the SLOPE model.

4.2. Comparison between ESLOPE and SLOPE models

Fig. 5 examines the effects of coefficient and residual calibration on
the SLOPE model over C4 croplands, whereas outcomes pertaining to
grasslands and C3 croplands can be found in Appendix E. When there is a
strong relationship between Ta or VPD and the GPP residuals, per-
forming a direct calibration of the SLOPE coefficient can effectively
diminish the dependence of GPP residuals on Ta or VPD. Specifically,
compared to the SLOPE model, the significant association between GPP
residual and Ta can be reduced by 89 % after the calibration of the
SLOPE coefficient (Fig. 5A). Considering that the GPP residual mainly
arises from the seasonal and interannual deviation from measurements,
these results indicate that calibrating the SLOPE coefficient can effec-
tively improve the SLOPE GPP seasonal and interannual variability with
environmental variables. By contrast, such calibration had no effects on
the correlation between ẟGPPS - ẟGPPA and Ta/VPD derivatives
(Fig. 5B).

On the other hand, the calibration of the SLOPE residual consider-
ably decreased the dependence of ẟGPPS - ẟGPPA on Ta/VPD derivatives
(Fig. 5B) while having no effects on the association between GPP re-
sidual and Ta/VPD (Fig. 5A). As shown, the correlation between ẟGPPS -
ẟGPPA and the derivatives of Ta and VPD was reduced by more than 42
% in comparison with the original SLOPE model; however, the corre-
lation between GPP residual and Ta/VPD remains at the same level. This
is generally in line with our expectations since the GPP time-varying
derivative mainly depends on its daily rather than seasonal/interan-
nual variation. As a result, the combined calibration of both SLOPE
coefficient and derivative residual complements each other, resulting in
simultaneous improvements in both seasonal and daily variation of GPP
with respect to Ta and VPD. Specifically, the absolute correlation coef-
ficient values between GPP residual and environmental stress and be-
tween ẟGPPS - ẟGPPA and the derivatives of Ta/VPD are all well

Fig. 2. SLOPE coefficients [gC J−1] binned by daily mean Ta and VPD across US grasslands, C3 and C4 croplands, where the bar length denotes the corresponding
standard derivation of all site-level values at each bin. The red dashed line indicates the constant coefficient used by SLOPE. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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controlled below 0.12. Similar results for grassland and C3 croplands
can also be found in Figs. E1 & E2 in the Appendix.

To evaluate the extent of improvement in GPP estimates achieved by
ESLOPE as compared to the SLOPE model, we conducted leave-one-site-
out cross-validation across different levels of Ta and VPD, including
extreme cases, for three distinct PFTs based on data from available
AmeriFlux sites. Fig. 6 demonstrates pronounced improvements in GPP
accuracy using the ESLOPE model relative to the SLOPE model under
extreme Ta and VPD conditions. In the case of grassland, our observa-
tions revealed a notable reduction in RMSE when using the ESLOPE
model across most Ta and VPD levels relative to the SLOPE model. As
checked by the ANOVA test, the extent of RMSE reduction became more
significant under stress conditions when Ta fell below 15 ◦C or exceeded
30 ◦C or when VPD was greater than 30 hPa. On average, the RMSE
decreased by over 10 % across all Ta/VPD levels, but it exhibited a
reduction of more than 16 % when VPD exceeded 30 hPa. For C3
croplands, the results illustrate that the ESLOPE model is superior to the

SLOPE model at most levels of Ta and VPD. In particular, the reduction
in RMSE became more prominent as Ta decreased, leading to a 21 %
decrease in RMSE when Ta was less than 15 ◦C. Note that we also
observed a degradation in the performance of ESLOPE GPP relative to
SLOPE GPP when Ta was above 25 ◦C, which may be due to the noise in
Ta and NIRv data. By contrast, there were no notable trends between the
difference in RMSE of SLOPE and ESLOPE GPP with VPD. Regarding C4
croplands, the ESLOPEmodel typically performed better than the SLOPE
model at most Ta/VPD levels, with the greatest RMSE reduction in low
Ta conditions. The RMSE was reduced by more than 40 % when Ta was
below 15 ◦C. Further results in Figs. F1 & F2 in the Appendix demon-
strate that the reduction of RMSE along Ta and VPD gradients mainly
resulted from the decrease in bias, although the temporal correlation
between ESLOPE and measurements was slightly improved across most
Ta and VPD gradients. This appeared to align with the difference be-
tween the constant and binned coefficients depicted in Fig. 3, suggesting
that the incorporation of Ta and VPD into the SLOPE model can overall

Fig. 3. SLOPE coefficient [gC J−1] as a function of Ta and VPD across grassland, C3 and C4 croplands using both binning analysis and numerical approximation. The
binning analysis was performed by grouping data using a Ta threshold of 2 ◦C and a VPD threshold 2 hPa, while numerical approximation was based on Eq. (2b). The
contours and the surrounding numbers depict the data density. Note that the analysis was only conducted for the bins with more than 10-day observations. The
constant coefficient used by SLOPE for each land cover was reported in the inset of the first row.
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result in enhanced GPP estimates.
To investigate the circumstances under which accounting for the

environmental variables of Ta and VPD can further improve the SLOPE
model, here we plotted the GPP time-series estimates from SLOPE and
ESLOPE models along with Ta and VPD data during the peak growing
season of the C4 crop in 2016 at the US-A74 site (36.8◦, −97.5◦) (Fig. 7).
The reason for selecting the site was due to its exposure to high Ta and
VPD with large fluctuations during the study period. The results
demonstrate that both ESLOPE and SLOPE estimates could effectively
capture the overall seasonal dynamics of GPP measurements, with the
coefficient of determinant greater than 0.8. Compared to the SLOPE
model, the ESLOPE model notably improved the estimate of GPP when
validated against measurements, with a 2.4 % increase in the coefficient
of determination and a 3.5 % reduction in RMSE. As indicated by the
ANOVA test, the reduction in bias becomes significant (p < 0.01) during
the period from 06/16/2016 and 07/19/2016 (Fig. 7, light gray part),
where Ta is at a notable high level while VPD fluctuates greatly.
Consequently, combining Ta and VPD with NIRvP induced a consider-
able enhancement in the ESLOPE coefficient, which further minimizes
the discrepancy between the estimated GPP and measurements. In
addition, we also checked the GPP time series at grassland and C3
cropland sites (G1Figs. G1 & G2), showing that accounting for Ta and
VPD can notably improve SLOPE GPP estimates when GPP has great
daily variability with Ta and VPD.

Furthermore, we implemented the SLOPE and ESLOPEmodels across
US Great Plains grasslands and Midwest croplands during the period
from 2000 to 2019 to investigate their differences under the extreme Ta
or VPD scenarios. In Fig. 8, we presented the temporally averaged GPP
derived from the SLOPE and ESLOPE models as well as their disparity
when VPD exceeded 30 hPa or Ta fell below 15 ◦C, denoted as high-
lighted Regions A and B in Fig. 3. The results reveal that SLOPE and
ESLOPE GPP display similar spatial patterns in both grasslands and
croplands but with notable variation in magnitude. Specifically, in the

case of high VPD in grasslands, both models consistently indicate an
increasing GPP gradient along the longitudinal direction of the US Great
Plains, which is aligned with the east-west precipitation gradient
(Corbosiero et al., 2009). Using the ANOVA test, we found that ESLOPE
GPP is significantly lower than SLOPE GPP, particularly in the eastern
Great Plains, where the disparity can be as large as 2 gC m−2 d−1. The
longitudinal discrepancy could be attributed to the uneven distribution
of grass, with sparse vegetation in the midwest Great Plains compared to
the eastern region, where the difference between SLOPE and ESLOPE
GPP is linked to GPP magnitude. On the other hand, in the low Ta case
for croplands, SLOPE GPP is higher than ESLOPE GPP, with the over-
estimation in SLOPE GPP surpassing 1 gC m−2 d−1 in the majority of
cropland areas. Overall, these results are in line with the binning anal-
ysis in Fig. 3, supporting the argument that incorporating environmental
variables into the ESLOPE model helps alleviate the overestimation of
GPP under extreme Ta and VPD conditions.

4.3. Comparison among different GPP models

In addition, we compared the performance of ESLOPE with SLOPE,
LRC-NIRvP, MOD17, MOD17-NIRvP, VPM, VPM-NIRvP, and TL-LUE
models through the level-one-site-out cross-validation across grass-
land, C3 and C4 croplands. The results in Fig. 9 demonstrate that the
ESLOPE model typically outperforms most other models across all three
PFTs, in terms of bias, RMSE and coefficient of determinant. Regarding
bias, the median bias of all models generally remains below 1 gC m−2

d−1 while no specific model significantly outperforms others in all three
PFTs according to the ANOVA test. However, we found that the vari-
ances of ESLOPE GPP bias remained stable at a low level in all three PFTs
while variances of other models increased notably in the C4 cropland.
Concerning RMSE and coefficient of determinant, despite no significant
differences being detected between the ESLOPE model and most other
models, it was observed that the ESLOPE model was generally superior

Fig. 4. Relationship between the time-varying derivatives of daily maximum Ta (ẟTa) and VPD (ẟVPD) and the differences in time-varying derivatives of SLOPE
(ẟGPPS) and AmeriFlux GPP (ẟGPPA) [gC m−2 d−1]. The red line indicates the best-fit linear regression line. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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to most others or at least has comparable performance with the best
model in each PFT. In contrast, except for MOD17-NIRvP, none of the
existing classical models can achieve the same consistently high per-
formance as the ESLOPE model in the three PFTs. On the other hand,
when comparing MOD17 (VPM) and MOD17-NIRvP (VPM-NIRvP), it
was observed that incorporating NIRv into classic MOD17 and VPM
models can typically improve their performance in most PFTs based on
three error metrics. On average, the bias (RMSE) was reduced by 39 %
(18 %) and 80 % (7 %) while the coefficient of determinant was
increased by 24 % and 12 % for the MOD17 and VPM, respectively.

To further check their performance under stress conditions, we
reproduced Fig. 9 considering only days with VPD > 30 hPa for grass-
lands and Ta < 15 ◦C for croplands. Consistent with Fig. 9, the results in
Fig. 10 illustrate that the ESLOPE model generally performs better than
other models under stress conditions for all three PFTs, in terms of bias,
RMSE, and coefficient of determinant. Different from Fig. 9, we found
that the bias of the ESLOPE model is significantly (p < 0.01) lower than
most other models across three PFTs. In contrast, the biases of other

models vary notably across different PFTs. Largely due to the low bias of
the ESLOPE model, its RMSE remains at the lowest level among all
models across the three PFTs. In terms of the correlation with mea-
surements, although the coefficient of the determinant of the ESLOPE
model is not the highest among different models but it has comparable
performance with the best model for each PFT. On the other hand,
Fig. 10 reaffirms that incorporating NIRv into classic MOD17 and VPM
models can consistently improve their accuracy for all three PFTs under
stress conditions based on three error metrics.

5. Discussion

5.1. Synthesis of the results for the science questions

In this study, we for the first time studied the effects of heat and
moisture stress on the NIRvP-GPP relationship. Here, we summarize our
main findings. First, we found that NIRvP cannot fully capture the plant
response to Ta and VPD stress across grassland, C3 and C4 croplands.

Fig. 5. Density scatter plot illustrates the relationship between the residual of SLOPE GPP and environmental factors of Ta and VPD, where the SLOPE model was
performed with and without the coefficient calibration and/or residual calibration using all available data across C4 croplands.
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Specifically, the coefficient of the SLOPE model increased with Ta while
decreased with VPD, indicating that NIRvP cannot well characterize the
impact of environmental stress on GPP under extreme heat and moisture
conditions. Second, the strong correlation between the differences in
time-varying derivatives of NIRvP and EC GPP with Ta/VPD derivatives
suggested that NIRvP cannot effectively capture the daily variations in
GPP. Third, based on these analyses, we proposed an enhanced NIRvP
model (i.e., ESLOPE) by simultaneously correcting its coefficient and
daily-scale GPP variations using Ta and VPD. Fourth, when compared
with other models — including LRC-NIRvP, MOD17, MOD17-NIRvP,
VPM, VPM-NIRvP, and TL-LUE models — the results indicate that the
ESLOPE model typically outperforms other models or at least has com-
parable performance with the best model in each PFT. Lastly, when
comparing MOD17 and VPM to MOD17-NIRvP and VPM-NIRvP, we
found that using the NIRv to parameterize FPAR term in classic one-leaf
LUE models can notably improve their performance, indicating that
NIRv is a better proxy of FPAR than traditional vegetation indices like
EVI and LAI. This was further supported by the significantly higher
coefficient of determinant between NIRv*PAR and EC GPP relative to
those between (1-e-0.5LAI)*PAR (or EVI*PAR) and EC GPP across all three
PFTs (Fig. 11). This is mainly because NIRv physically represents the
amount of NIR light intercepted, scattered, and reflected by the

vegetation structure, which not only partially eliminates the influence of
the soil background but also closely reflects the interactions between
solar radiation and the canopy, specifically the light interception and
scattering processes (Badgley et al., 2017). By contrast, although EVI
was designed to mitigate the soil background effects (Huete et al., 2002),
it inherently denotes the vegetation greenness and cannot explicitly
describe the interactions between light and vegetation structure. These
results not only filled the knowledge gap on the impact of heat and
moisture effects on the NIRvP-GPP relationship but also shed light on
future improvements of LUE models given the outstanding performance
of NIRv in characterizing vegetation structure.

5.2. Mechanism understanding

To better understand the mechanisms behind the results, we
compared the LUE model (GPPLUE), NIRv reflectance (NIRvref ), NIRv
radiance (NIRvrad), and NIRvP (Badgley et al., 2017; Zeng et al., 2019;
Dechant et al., 2020; Wu et al., 2020; Jiang et al., 2021). As shown in
Fig. 12, we decomposed canopy-level observations of NIRvref , NIRvrad,
and NIRvP into leaf-level input variables based on the approach
described by Zeng et al. (2019). Specifically, NIRvref can be directly
approximated by multiplying canopy interception, leaf single scattering

Fig. 6. Cross validation of SLOPE and ESLOPE GPP along Ta and VPD gradients and the extreme scenarios highlighted in Fig. 3. Data were categorized based on a
5 ◦C/hPa threshold around the central values within Ta and VPD gradients. The extreme scenario in grassland corresponds to Region A in Fig. 3, while it corresponds
to Region B in Fig. 3 in croplands. The median is represented in each box, accompanied by the 25th and 75th percentiles with whiskers extending to 1.5 times the
interquartile range around the median.
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Fig. 7. Time-series of SLOPE and ESLOPE GPP, coefficient, daily mean Ta, and daily mean VPD at the US-A74 site (36.8◦, −97.5◦) during the peak growing season of
C4 crop in 2016, where both models were calibrated using all available data across C4 cropland sites.

Fig. 8. Temporally averaged SLOPE and ESLOPE GPP and their difference across the US Great Plains and Midwest during the peak growing season from 2000 to
2019, where only days with VPD > 30 hPa were considered for grasslands while only days with Ta < 15 ◦C were considered for croplands. The extreme cases of VPD
and Ta correspond to Regions A and B in Fig. 3.
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Fig. 9. Intercomparison between GPP estimates from SLOPE, ESLOPE, LRC-NIRvP, MOD17, MOD17-NIRvP, VPM, VPM-NIRvP, and TL-LUE models through level-
one-site-out cross-validation using all available EC measurements across grasslands, C3 and C4 croplands. The median is represented in each box, accompanied by the
25th and 75th percentiles with whiskers extending to 1.5 times the interquartile range around the median.

Fig. 10. Same as Fig. 9 but for stress conditions, where only days with VPD > 30 hPa were considered for grasslands while only days with Ta < 15 ◦C were
considered for croplands.
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albedo, and escaping ratio. NIRvrad is the product of these factors with
the addition of incoming solar radiation flux at 760 nm while NIRvP is
the product of these factors with PAR.

Fig. 12 demonstrates that NIRvrad and NIRvP share similar compo-
nents, and by their nature, they are expected to perform better than
NIRvref in estimating GPP since they incorporate solar radiation infor-
mation in addition to plant biophysical information. This result is
consistent with the previous findings by Wu et al. (2020) and Dechant
et al. (2020). On the other hand, when comparing NIRvP and GPPLUE,
the high performance of NIRvP is attributed to its ability to explain fPAR
and partly incorporate the LUE stress term through factors like canopy
interceptance, leaf single scattering albedo, and escaping ratio. These
factors are significantly related to vegetation structure (Yang and van
der Tol, 2018), which adjusts to environmental stress at a long-term time
scale (Hikosaka and Hirose, 1997; Yamori et al., 2010). However, only
using vegetation structure-dependent variables falls short in capturing
other LUE stress term variations under stressed conditions, especially on
a daily basis, such as the instantaneous stomata response to environ-
mental stress (Farquhar and Von Caemmerer, 1982; Leuning, 1995).
Hence, integrating environmental variables such as water and heat
stresses with NIRvP is essential for a more accurate estimation of GPP, as
it helps to account for the dynamic interplay between environmental
stressors and gas exchange processes within the vegetation canopy.

5.3. Further consideration of uncertainties and possible improvement

Although a notable improvement in the SLOPE model was observed
after incorporating Ta and VPD, some limitations should be taken into
account when interpreting our results. In this study, we only used the
AmeriFlux sites where the coefficient of determination between NIRv
and measured GPP was greater than 0.5 considering the moderate to
high correlation between NIRv and GPP (Badgley et al., 2017) and the
EC representativeness issue (Barcza et al., 2009; Chen et al., 2012).
Typically, the EC footprint can extend up to a 1000-m radius around a
flux tower (Kumar et al., 2016; Chu et al., 2021), which is much larger
than the 250-m NIRv observations fromMODIS. In this scenario, MODIS
satellite observations are unable to fully capture the spatial heteroge-
neity within an EC footprint. Taking the US-Bd4 crop site as an example,
where the flux tower is situated between two neighboring rice fields, the
correlation coefficient between EC GPP and corresponding NIRv ob-
servations is less than −0.1 using data during the peak growing season in
2005 and 2006. This discrepancy occurs because the EC measurements
and NIRv represent two different fields with distinct crop phenology, as
we examined (not shown here). Therefore, using the coefficient of
determination threshold between NIRv and measured GPP allows us to
mitigate representativeness issue. On the other hand, to check whether
the mixture of C3 and C4 plant has a significant impact on our analysis,
we reproduced the results using only pure satellite pixels without C4/C3
plant admixture based on the 30-m CDL data. Figs. G1& G2 in Appendix
show quite consistent results with Figs. 2 & 9, indicating the robustness
of our analysis. Besides, we acknowledge that this representativeness
issue may also be alleviated using high-resolution data from Sentinel-2
or Landsat satellites or the Harmonized Landsat and Sentinel (HLS)
products (Pabon-Moreno et al., 2022; Kong et al., 2022; Chen et al.,
2023).

On the other hand, for the quantification of the Ta and VPD effects on
the SLOPE model, we used the PAR estimations from the shortwave
radiation measurements obtained from AmeriFlux sites rather than es-
timates from the SLOPE datasets (Jiang and Guan, 2020) to avoid
possible uncertainties propagating from numerous forcing data into PAR
(Section 2.2). This is because shortwave radiation exhibits a strong
correlation with PAR (Liang and Wang, 2019) and its measurements are
effective in reflecting daily variabilities in PAR. In addition, we cor-
rected the VPD effects using an exponential decay function without
considering an interception term (Eq. (2b)), which could lead to a
notable deviation between binned and approximated SLOPE coefficients
(Fig. 3). While incorporating an intercept term into the exponential
decay function of VPD could result in a more accurate approximation of
SLOPE coefficients that align better with the binned values at lower VPD
levels. However, our study revealed that this modification does not
significantly impact the cross-validation results but could introduce
more uncertainty since more unknowns need to be calibrated. Moreover,
it is noted that when accounting for moisture effects in the SLOPE
model, we used VPD that can well represent the impact of atmospheric
dryness on plant photosynthesis while not considering soil moisture
conditions due to the lack of long-term high-resolution products for the
implementation of the ESLOPE model at regional scales (Gao et al.,
2020; Gao et al., 2021; Gao et al., 2022). However, we note that soil
moisture is essential for plant photosynthesis by modulating stomatal
conductance and leaf cell turgor pressure (Leuning et al., 2005) and that
failure to consider soil moisture may lead to notable GPP underestima-
tion (Stocker et al., 2018, 2019). Thus, future works are still encouraged
to further improve the ESLOPE model when high-resolution data are
available.

Fig. 11. Boxplot demonstrates the correlation between EC GPP and (1-e-0.5LAI)
*PAR or EVI*PAR or NIRv*PAR at EC sites across grassland, C3 and C4 crop-
lands, where 1-e-0.5LAI is the key component of MOD17 FPAR. The ANOVA test
indicates that NIRv*PAR has a significantly stronger correlation with EC GPP
compared to others (p < 0.01).

Fig. 12. Schematic overviews of the LUE model (GPPLUE), NIRv reflectance
(NIRvref ), and NIRv radiance (NIRvrad), and NIRvP where i0, ω, fesc, and S760
represent canopy interception, leaf single scattering albedo, escaping ratio, and
the incoming solar radiation flux at 760 nm, respectively.

L. Gao et al. Remote Sensing of Environment 316 (2025) 114516 

14 



In addition, we restricted our analysis to the US Great Plains pas-
turelands and Midwest croplands during the peak growing season,
considering (1) the importance of the Great Plains grasslands and Mid-
west croplands to US and global agriculture (Drummond et al., 2012;
Hatfield, 2012; Heinemann et al., 2014; USDA NASS, 2018), (2) the
substantial water and heat gradients in this region (Beck et al., 2018),
and (3) the notable effects of moisture and heat on controlling ecosystem
fluxes during the peak growing season (Liu et al., 2020a; Wang et al.,
2022; Gao et al., 2024). We note that future efforts are still needed to
expand to other ecosystems and across seasons. Furthermore, this work
mainly used MOD09 surface reflectance products for NIRv calculation
rather than BRDF-corrected reflectance considering the following rea-
sons. First, the used NIRv dataset was well constructed and published
(Jiang and Guan, 2020), which has also been extensively examined in
estimating GPP across US (Jiang et al., 2021). Second, as pointed by
Doughty et al. (2021), unadjusted NIRv was more coherent with plant
photosynthesis-dependent SIF at mid and high latitude than BRDF-
adjusted NIRv. Third, the BRDF correction for MODIS reflectance
could introduce additional uncertainties in calculating NIRv since it
assumes the surface is homogeneous and only limited number of viewing
angles are available for BRDF correction (Schaaf et al., 2002). Lastly, as
we examined at two randomly selected EC sites (i.e., US-AR1 and US-
IB1), the used NIRv has higher correlations with EC GPP than BRDF-
corrected NIRv from the MCD43C4 product. Nonetheless, we acknowl-
edge that correcting for BRDF could be necessary when forests are
involved across globe scales (Huang et al., 2019).

Despite these limitations, it is expected that this work has implica-
tions for future GPP studies beyond the current findings. Several studies
strived to estimate the regional or global GPP using NIRvrad or NIRvref
(Badgley et al., 2019; Liu et al., 2020c; Wang et al., 2020a; Wang et al.,
2021). In these studies, they directly used EC measurements to bench-
mark the satellite-observed NIRvP without accounting for the water and
heat stressors. Consequently, this may lead to a notable bias of GPP
during extreme Ta and VPD conditions, as indicated by our findings. The
same caveat is also applicable to those research endeavors that directly
employed NIRvP as a proxy for GPP to identify seasonal and yearly
fluctuations in GPP, as well as to observe how GPP responds to chal-
lenges like drought, heatwaves, and tropospheric ozone (Wang et al.,
2020b; Wang et al., 2020c; Yang et al., 2022; Gao et al., 2024). There-
fore, there is a potential for further improvements in those GPP esti-
mations or their response to environmental factors when the effects of
environmental stressors are corrected. Nevertheless, it is important to
note that calibrating unknown variables in Eq. (2) might pose greater
complexities in global studies compared to regional ones. This
complexity arises from the fact that GPP tends to show more consistent
variability at a regional scale with the same PFT and climate regime. To
enhance accuracy in regional and/or global studies, it would be bene-
ficial to simultaneously account for plant conditions and climate types
when calibrating the unknowns in Eqs. (5)–(7). Considering that the
ESLOPE model shares similar algorithmic structures with other one-leaf
LUE models and that the ESLOPE model performs better than MOD17
and VPM models across three reported PFTs, it is expected that NIRvP
may serve as a viable alternative vegetation index for enhancing these
models.

6. Conclusions

For improving GPP estimates, this study examined and integrated the
effects of heat and water stress into the SLOPEmodel that calculates GPP
as a product of a plant-type-specific coefficient and NIRvP. This

investigation was carried out across the US Great Plains pasturelands
and Midwest croplands. Specifically, we initially analyzed the effects of
Ta and VPD on both the SLOPE coefficient and GPP changing rate. The
binning analysis revealed that SLOPE coefficients exhibited a notable
increase with Ta and a decrease with VPD. This relationship could result
in a substantial divergence between GPP estimates and EC measure-
ments, particularly under extreme Ta and VPD conditions. Additionally,
our investigation revealed that the disparity between the changing rates
of SLOPE and EC GPP was notably influenced by the time-varying de-
rivatives of both Ta and VPD since NIRvP cannot fully explain the day-
to-day fluctuations in GPP with Ta and VPD. Subsequently, an enhanced
version of the model was proposed through the correction of its co-
efficients and day-to-day variation. To incorporate the Ta and VPD ef-
fects into the SLOPE model, we calibrated the SLOPE coefficient using a
polynomial function of Ta and an exponential function of VPD while the
day-to-day GPP variations were corrected using a linear function of Ta
and VPD. The cross-validation results demonstrated that under
extremely low Ta and high VPD conditions, ESLOPE could notably
improve GPP accuracy for grasslands, C3 and C4 croplands compared
with SLOPE model. On the other hand, we inter-compared the ESOLPE
model with six other models, including LRC-NIRvP, MOD17, MOD17-
NIRvP, VPM, VPM-NIRvP, and TL-LUE models. It was observed that
ESLOPE generally performed better than others or at least had equiva-
lent performance with the best model in terms of bias, RSME and coef-
ficient of determinant with EC measurements across different PFTs. In
addition, the results revealed that directly parameterizing FPAR term
using NIRv for classic MOD17 and VPM models can notably improve
their performance. Overall, this study not only quantified and accounted
for the impacts of Ta and VPD on the NIRvP-GPP relationship but also
demonstrated the advantages of using NIRvP to improve the classic LUE
models.
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Appendix A. Occurrences of Ta and VPD extremes during Peak growing season

To assess occurrences of extremely low and high Ta and VPD, we generated a time series plot depicting the minimum and maximum ranges of Ta
and VPD using all PRISM data across available AmeriFlux sites in US Great Plains and Midwest. As illustrated in Fig. A1, Ta values below 10 ◦C tend to
manifest during the early or late stages of the growing seasons, specifically in June and September. Conversely, high Ta values around 30 ◦C can be
observed throughout virtually the entire growing season. Concerning VPD, the minimum value consistently hovers near 0 hPa, whereas high VPD
values exceeding 30 hPa can sporadically materialize during the growing season, particularly in July and August. On the other hand, Fig. A1 illustrates
that PRISM Ta and VPD are highly correlated with AmeriFlux achieved ERA-Interim values with the coefficient of determination all greater than 0.85.
This robust correlation suggests that both datasets are suitable for providing reliable analysis in the main text.

Fig. A1. Time series of minimum and maximum ranges of Ta and VPD during the peak growing season using all available PRISM data across AmeriFlux sites as well
as the density scatter plot demonstrating the correlation between PRISM and AmeriFlux achieved ERA-Interim Ta and VPD.

Appendix B. Spatial representativeness of selected EC sites

To evaluate the spatial representativeness of selected EC sites, we examined the percentage of the dominant land cover type within the 250-m
radial distance from the tower using the 30-m CDL land cover, where the specific radius was determined to be consistent with (Chu et al., 2021)
as well as the 250-m MODIS footprint size used. Note that only available sites during 2008 and 2019 were considered due to the availability of CDL
data. The results in Fig. B1 demonstrate that most sites had high spatial representativeness with more than 80 % of the dominant land cover within the
250-m radial distance from the tower across three PFTs, especially for C3 and C4 cropland sites. However, we also observed a few less represented EC
sites with dominant land cover notably below 50 % within a 250-m radial distance from the tower, such as US-A32, US-AR2, and US-IB2. As we
checked per site, this is partly because the reported land cover is concentrated at smaller radial distances from the tower, such as US-A32, which
nevertheless overlaps well with 250-mMODIS coverage. On the other hand, it is because of the inaccuracies in CDL data, which misclassifies grassland
as others, such as US-AR2 and US-IB2. Overall, the selected sites have moderate to high spatial representation.
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Fig. B1. Spatial representativeness of EC site using 30-m CDL land covers from 2008 to 2019.

Appendix C. Specifications of other GPP models

C.1. LRC-NIRvP model

LRC-NIRvP was first proposed by Khan et al. (2022) based on the light response curve that can partition net ecosystem exchange (NEE) into GPP
and ecosystem respiration (Lasslop et al., 2010). It is expressed as

GPP =
γ • NIRvP • η
γ • NIRvP + η (3)

in which γ (μmol CO2 J−1) denotes the canopy-level LUE prior to reaching light saturation and η represents the maximum canopy CO2 uptake rate at
the light saturation point (Lasslop et al., 2010; Reichstein et al., 2012). Note that γ and η are approximated using the least-square regression method
based on eddy covariance measurements for each PFT.

C.2. MOD17 and MOD17-NIRvP models

The classic MOD17 model is directly derived from Monteith’s LUE concept (Monteith, 1972, 1977), which has been routinely used to produce
MODIS GPP products (Running et al., 1999). Specifically, FPAR is parameterized as an exponential decay function of LAI while LUE is simultaneously
constrained by linear ramp functions of Ta and VPD. The formulas are described as follows:

GPP = εmax • PAR • FPAR • Ws • Ts (4a)
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FPAR = 0.95 •
(
1− e−k•LAI) (4b)

Ws =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1,VPD ≤ VPDmin

VPDmax − VPD
VPDmax − VPDmin

,VPDmin < VPD < VPDmax

0,VPD ≥ VPDmax

(4c)

Ts =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0,T ≤ Tmin
T − Tmin

Tmax − Tmin
,Tmin < T < Tmax

1,T ≥ Tmax

(4d)

where εmax is the maximum LUE, which is downregulated by water stress (Ws) and temperature stress (Ts); k = 0.5 is the light extinction coefficient
(Leverenz and Jarvis, 1980); VPDmin and VPDmax are daily minimum and maximum VPD (hPa); Tmin, and Tmax are daily minimum and maximum Ta
(◦C). εmax was determined through least square regression using all EC measurements for each PFT while the PFT-specific values of VPDmin, VPDmax,
Tmin, and Tmax are directly obtained fromMODIS user’s guide (Running and Zhao, 2019), which are also provided in Table 3. Adapted from the MOD17
model, the MOD17-NIRvP model has the same expressions as the MOD17 model, but with the FPAR term set equal to NIRv.

C.3. VPM and VPM-NIRvP models

Like the MOD17 algorithm, the VPMmodel (Xiao et al., 2004a; Xiao et al., 2004b) parameterizes FPAR with a vegetation index while its maximum
LUE (εmax) is scaled by water and heat stresses but with a different parameterization scheme (Raich et al., 1991):

GPP = εmax • PAR • FPAR • Ws • Ts (5a)

FPAR = 1.25 • (EVI−0.1) (5b)

Ws =
1 + LSWI

1 + LSWImax
(5c)

Ts =

⎧
⎪⎨

⎪⎩

0,T ≤ Tmin or T ≥ Tmax
(T − Tmin)(T − Tmax)

(T − Tmin)(T − Tmax) −
(
T − Topt

)2,Tmin < T < Tmax
(5d)

where EVI is adjusted with constants of 1.25 and 0.1 to circumvent the effects of sparsely vegetated areas (Wu et al., 2018); The LSWImax is the multi-
year maximum LSWI value. Tmin, Tmax, and Topt represent the PFT-dependent minimum, maximum, and optimum temperatures, which were directly
adopted from Zhang et al. (2017) and are available in Table 3. Similar to the MOD17 model, εmax was specified through the least square regression
calibration based on EC measurements across different PFTs whileWs and Ts range from 0 to 1 with larger values denoting less stressed cases. Adapted
from the VPM, the VPM-NIRvP model has the same formula as VPM but its FPAR term is set to be equal to NIRv.

C.4. TL-LUE model

Stemmed from the MOD17 and the process-based boreal ecosystem productivity simulator (BEPS) (Chen et al., 1999), the TL-LUE model divides
the canopy into sunlit and shaded leaves (He et al., 2013; Wu et al., 2015; Zhou et al., 2016), considering that diffuse radiation can contribute
significantly to plant photosynthesis (Roderick et al., 2001; Mercado et al., 2009; Oliphant et al., 2011). The TL-LUE model calculates GPP as follows:

GPP = (εmsu • APARsu + εmsh • APARsh) • Ws • Ts (6a)

APARsu = (1− ω) •

(

PARdir •
cos φ
cos θ

+
PARdif − PARdif ,u

LAI
+C

)

• LAIsu (6b)

APARsh = (1− ω) •

(
PARdif − PARdif ,u

LAI
+C

)

• LAIsh (6c)

Ws =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1,VPD ≤ VPDmin

VPDmax − VPD
VPDmax − VPDmin

,VPDmin < VPD < VPDmax

0,VPD ≥ VPDmax

(6d)
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Ts =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0,T ≤ Tmin
T − Tmin

Tmax − Tmin
,Tmin < T < Tmax

1,T ≥ Tmax

(6e)

PARdir = PAR−PARdif (6f)

PARdif = PAR •
(
0.7527+ 3.8453 • R−16.316 • R2 + 18.962 • R3 −7.0802 • R4)

(6g)

PARdif ,u = PARdif • e−0.5•Ω•
LAI
cos θ (6h)

C = 0.07 • Ω • PARdir • (1.1−0.1 • LAI) • ecos θ (6i)

LAIsu = 2 • cosθ •

⎛

⎝1− e−0.5•Ω•
LAI
cos θ

⎞

⎠ (6j)

LAIsh = LAI− LAIsu (6k)

where εmsu and εmsh denote the maximum LUE for sunlit and shaded leaves; ω is the canopy albedo; PARdir, PARdif , and PARdif ,u are the direct
component of incoming PAR, diffuse component of incoming PAR, and diffuse PAR under the canopy (Chen et al., 1999); PARdif−PARdif ,u

LAI stands
for the diffuse PAR per unit leaf area below the canopy; R = PAR/(PAR/0.5S0cosθ) is the sky clearness index with S0 = 1367Wm¡2 as a solar
constant; C quantifies the multiple scattering of direct radiation to the diffuse irradiance (Norman, 1982); φ = 60◦ is the mean leaf-sun
angle; θ is the solar zenith angle; LAIsu and LAIsh represent the sunlit and shaded LAI; Ω is the clumping index. Note that the values for
εmsu, εmsh, ω, and Ω were calibrated using the least-square regression based on all available EC measurements for each PFT, which are
provided in Table 3.
Table 3
Specifications of PFT-specific Tmin, Tmax, Topt , VPDmin, VPDmax, εmsu, εmsh, ω, and Ω for MOD17, VPM, and TL-LUE models, where MOD17 and VPM related values can
refer to (Running and Zhao, 2019; Zhang et al., 2017) while the last four parameters for the TL-LUE model were optimized based on all available EC measurements.
Note that VPM values are marked with a superscript of ‘*’.

PFT Grassland C3 Cropland C4 Cropland

Tmin (◦C) −8 (0*) −8 (−1*)
Tmax (◦C) 12.02 (48*) 12.02 (48*)
Topt (◦C) 27* 30*
VPDmin (hPa) 6.5 6.5
VPDmax (hPa) 53 43
εmsu (gC/MJ) 0.96 0.85 1.36
εmsh (gC/MJ) 2.15 4.88 5.27
ω 0.23 0.47 0.43
Ω 0.9 1.69 1.11

Appendix D. Quantification of Ta and VPD impacts on SLOPE GPP

As a complementary to Fig. 2, we also investigated the SLOPE coefficient at different levels of Ta and VPD by binning data using daily maximum Ta
and VPD. Consistent with Fig. 2, Fig. D1 demonstrates that the SLOPE coefficient increases with Ta for C3 and C4 croplands and decreases with
enhanced VPD for all three PFTs. However, we note that the SLOPE coefficient exhibits remarkable fluctuations when the daily maximum Ta is less
than 15 ◦C or when the daily maximum VPD hovers near 0 hPa. This is probably because daily maximum Ta and VPD exert a more significant influence
on the GPP variation when Ta and VPD are relatively high in contrast to when they are relatively low.
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Fig. D1. Same as Fig. 2 but data were binned by daily maximum Ta and VPD.

The results in Fig. D2 reaffirm there exists a notable correlation between ẟGPPS - ẟGPPA and the daily mean Ta and VPD across all land cover types.
When compared with Fig. 4, the correlation between ẟGPPS - ẟGPPA and daily mean VPD derivatives remains at the same level as that using daily
maximum VPD derivatives. However, the correlation between ẟGPPS - ẟGPPA and the daily mean Ta is significantly lower than that using daily
maximum Ta derivatives. This is primarily due to the fact that daily mean Ta has the tendency to incorporate information from both the daily
minimum and maximum values, as both of these values exhibit significant fluctuations across days. However, this is not the case for VPD, as the daily
minimum VPD remains relatively consistent across days.

Fig. D2. Same as Fig. 4 but using the time-varying derivatives of daily mean Ta (ẟTa) and VPD (ẟVPD).
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Appendix E. Effects of calibration procedures on the coupling between SLOPE GPP and stress

As complementary to Fig. 5, Figs. E1& E2 demonstrate the correlation between the calibrated GPP residual and stress and the correlation between
the deviation of the time-varying derivative of calibrated GPP from the measured values and the corresponding derivatives of Ta and VPD across
grasslands and C3 croplands. Consistent with the findings in Fig. 5, the results here reaffirmed that the joint calibration of both the SLOPE coefficient
and GPP daily-scale changing rate can more effectively mitigate the reliance of GPP estimations on environmental stress factors of Ta and VPD
compared to solely calibrating the SLOPE coefficient or GPP daily-scale changing rate individually. To be specific, directly calibrating the SLOPE
coefficient can reduce the correlation between the calibrated GPP residual and stress, while it only has a limited impact on the relationship between
the deviation of the time-varying derivative of calibrated GPP from the measured values and the corresponding derivatives of Ta and VPD. On the
other hand, the direct calibration of the GPP rate can notably decrease the coupling between the deviation of the time-varying derivative of calibrated
GPP from the measured values and the corresponding derivatives of Ta and VPD while having limited effects on the correlation between the calibrated
GPP residual. In contrast to these two distinct calibration approaches, the combined calibration of both the SLOPE coefficient and GPP rate can
concurrently reduce both coupling relationships.

Fig. E1. Same as Fig. 5 but for grasslands.
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Fig. E2. Same as Fig. 5 but for C3 cropland.

Appendix F. Cross validation of ESLOPE along Ta and VPD gradients

As a complement to Fig. 6, we also generated plots for the bias and coefficient of determination (R2) of SLOPE and ESLOPE GPP across the gradients
of Ta and VPD in Figs. F1 & F2, which were based on leave-one-site-out cross-validation against measurements. The results in Fig. F1 show that
ESLOPE GPP exhibited significantly lower bias compared to SLOPE GPP in most cases of Ta and VPD across different PFTs, particularly in situations
characterized by extremely high VPD or low Ta. In grasslands, ESLOPE GPP consistently showed lower bias than SLOPE GPP. The reduction in ESLOPE
GPP bias relative to SLOPE GPP was more pronounced as Ta and VPD increased, leading to an 82 % decrease in RMSE when VPD exceeded 30 hPa. In
C3 croplands, SLOPE and ESLOPE models generally performed comparably in terms of bias, with ESLOPE GPP showing slightly lower bias than SLOPE
GPP across most Ta gradients while slightly larger bias than SLOPE GPP along most VPD gradients. In the case where Ta was less than 15 ◦C, the
reduction in ESLOPE GPP bias relative to SLOPE GPP was as high as 91 %. For C4 croplands, the bias of ESLOPE GPP was notably lower than that of
SLOPE GPP along most Ta and VPD levels. The difference in bias between ESLOPE and SLOPE GPP was more prominent at relatively low and high Ta
values. When Ta was below 15 ◦C, the reduction in ESLOPE GPP bias relative to SLOPE GPP bias exceeded 64 %.

Fig. F2 illustrates that ESLOPE GPP typically had a slightly higher temporal correlation with measurements than SLOPE GPP along most Ta and
VPD gradients, especially for grasslands and C4 croplands. However, we also observed a notable decrease in the coefficient of determination of
ESLOPE GPP against measurements compared to SLOPE GPP under extreme conditions such as when VPD was higher than 30 hPa in grasslands. This
could be due to the fact that the uncertainties in VPD and Ta tended to increase in extreme cases, resulting in decreased temporal correlation between
ESLOPE GPP and measurements.
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Fig. F1. Same as Fig. 6 but for bias.
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Fig. F2. Same as Fig. 6 but for the coefficient of determinant (R2).
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Appendix G. Time-series of ESLOPE GPP at C4 and C3 cropland sites

As complementary to Fig. 7, we plotted the SLOPE and ESLOPE GPP time series during the peak growing season of the grass in 2009 at the US-AR1
site (36.4◦, −99.4◦) and during the peak growing season of C3 crop in 2012 at the US-IB1 site (41.86◦, −88.22◦) (Figs. G1 & G2). For both sites, the
results illustrate that ESLOPE and SLOPE GPP show a moderate to high temporal correlation with AmeriFlux measurements with the coefficient of
determination greater than 0.7. When comparing ESLOPE and SLOPE GPP with EC measurements, we found that ESLOPE GPP notably outperformed
SLOPE one with the coefficient of determination increased by more than 4.6 % and RMSE reduced by more than 3.2 % at both sites. Specifically, the
improvements mainly happen when GPP has great variability within a short period of time, for example, during the period from 07/07/2009 and 07/
14/2009 at the US-AR1 site and during the period from 07/21/2012 and 07/30/2012 at the US-IB1 site. This is because these severe daily variations in
GPP were highly correlated with the huge fluctuations in Ta and VPD while incorporating Ta and VPD can effectively optimize SLOPE coefficients and
thus GPP. On the other hand, we also observed considerable improvements in ESLOPE GPP relative to SLOPE one during the late growing season from
09/22/2009 to 09/30/2009 at the US-AR1 site and from 09/16/2012 to 09/30/2012 at the US-IB1 site. This is chiefly attributed to the fact that the
decrease in GPP during the late growing season at both sites is synonymous with the reductions in Ta and VPD.

Fig. G1. Same as Fig. 7 but for the US-AR1 grassland site (36.4◦, −99.4◦) during the peak growing season of grass in 2009.

L. Gao et al. Remote Sensing of Environment 316 (2025) 114516 

25 



Fig. G2. Same as Fig. 7 but for the US-IB1 C3 cropland site (41.86◦, −88.22◦) during the peak growing season of C3 crop in 2012.

Appendix H. Effects of mixtures of C3 and C4 plants

To examine the effect of mixtures of C3 and C4 plants on our analysis, we reproduced Figs. 2 & 9 by only using pure satellite pixels without C4/C3
plant admixture. The results in Fig. H1 demonstrate that the relationship between SLOPE coefficients and environmental stress of Ta and VPD is quite
consistent with that in Fig. 2. On the other hand, Fig. H2 illustrates that ESLOPE consistently outperforms most of other models, which is in line with
that in Fig. 9. The consistent results indicate the robustness of our analysis and limited impact of EC representative issues on the results.
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Fig. H1. Same as Fig. 2 but only for EC sites without mixed C3 and C4 plants.

Fig. H2. Same as Fig. 9 but only for EC sites without mixed C3 and C4 plants.
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Data availability

SLOPE datasets data were acquired from doi:https://doi.
org/10.3334/ORNLDAAC/1786. AmeriFlux data are publicly available
through https://ameriflux.lbl.gov/. PRISM data were downloaded from
https://prism.oregonstate.edu/. MOD09A1 data are freely accessible via
doi:https://doi.org/10.5067/MODIS/MOD09A1.061. MCD12C1 data
were acquired from doi:https://doi.org/10.5067/MODIS/
MCD12C1.061.
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