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Abstract
Remote procedure calls are the workhorse of distributed
systems. However, as software engineering trends, such as
micro-services and serverless computing, push applications
towards ever finer-grained decompositions, the overhead of
RPC-based communication is becoming too great to bear. In
this paper, we argue that point solutions that attempt to opti-
mize one aspect of RPC logic are unlikely to mitigate these
ballooning communication costs. Rather, we need a dramatic
reappraisal of how we provide communication. Towards this
end, we propose to emulate message-passing RPCs by sharing
message payloads and metadata on CXL 3.0-backed far mem-
ory. We provide initial evidence of feasibility and analyze the
expected benefits.

CCS Concepts
• Networks → Data center networks; • Computer systems
organization → Cloud computing; • Software and its engi-
neering → Cooperating communicating processes.
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1 Introduction:
A majority of businesses 1 now use microservice-based ar-
chitectures for building large-scale applications. Breaking
a system into autonomous services that communicate via a
fixed API allows development teams to work independently in
every sense, implementing their services in any way they want
while interacting across services only at the interface level.
Microservices also provide scaling benefits along several di-
mensions: operators can scale individual services indepen-
dently to accommodate load and bottlenecks, while managers
can scale development and support teams for individual ser-
vices independently.

These organizational and operational advantages come at a
profound performance cost. Even looking beyond the more
shocking recent headlines, 2 there is increasing evidence that
the fundamental costs of microservices may not justify their
flexibility. In a typical microservice-based application, a sin-
gle request flow may trigger hundreds or even thousands of
remote procedure calls (RPCs), which incur data serializa-
tion, kernel crossing, packet processing, queuing delays, and
myriad other resource costs and sources of latency. Facebook
reports [37] that only 40% of the compute cycles contribute
to processing business logic, with the rest being spent on
communication.

To mitigate these ballooning, communication-related over-
heads we must focus on RPC, the workhorse of microservices.
However, reducing overhead without abandoning any of the
152%, according to a 2020 survey [32]
2e.g., Amazon Prime Video’s move to a “monolithic” application that saved
them 90% in infrastructure costs [1]
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generality that made the architecture attractive is a tradeoff
that seems difficult to navigate. Many point solutions in the
literature target perceived bottlenecks in the RPC stack, in-
cluding kernel-bypass networking to reduce data copies and
kernel crossings [5, 9, 21, 28, 38] and hardware acceleration
of (de) serialization [22, 33, 39]. Unfortunately, as we show
in Section 2, modern RPC stacks are highly sensitive to work-
load characteristics. Our experiments, using both client/server
benchmarks and simulation of entire microservice-based ap-
plications, reveal that minor variations in communication
pattern can easily shift the bottleneck from overheads in data
transformation, to kernel network stack, to HTTP header pro-
cessing, to transport-level security and load balancing. Time
will not be well-spent on point solutions that target and ac-
celerate a single perceived bottleneck of the communication
stack. The problem is the communication itself.

We advocate something more disruptive. Memory has been
undergoing a transformation similar to the one experienced
by storage a decade ago. RDMA began to show how mem-
ory semantics might transcend the boundaries of a host; now
technologies such as Compute Express Link [8] (CXL) allow
multiple sockets on multiple nodes to access pooled remote
memory via a fast interconnect. The next step—sharing the
data in the memory “pool” among those nodes, at low latency
and without queuing effects—is within reach. This vision may
seem perilously close to distributed shared memory (DSM),
an old idea that, each time it comes back around, is dismissed
by the systems community as impractical due to the chal-
lenges of scaling coherence and tolerating faults. We observe
that the semantics of RPC, which involve the round-trip trans-
fer of (immutable) data and control between agents that are
already assumed to fail independently, places very modest
constraints on the sharing medium, and requires none of the
complexity of general DSM.

In this paper, we present Notnets, a network-bypass
strategy that can be retrofitted to existing RPC frameworks.
Notnets will allow a collection of hosts (with a radix of
as many as 512-1024 cores) to use a pool of CXL-attached
memory to transparently implement message-passing seman-
tics in a way that avoids all of the dominant bottlenecks in
the current RPC stack. By exploiting message passing se-
mantics, Notnets is compatible with a variety of hardware-
and software-based coherence mechanisms, allowing us to
postpone a choice of mechanism until more is known about
their peformance characteristics in CXL-based devices. Our
initial experiments suggest that network bypass can improve
RPC latency by an order of magnitude.

2 The Overhead of Microservices
To better understand what factors contribute to the perfor-
mance overhead of RPCs, we performed a basic experiment
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Figure 1: Where is time spent in systems that use RPC?
The first four bars (a) draw from benchmarks in Hyper-
protobench, while the second (b) profile individual mi-
croservices from the HotelReservation application
in DeathStarBench. The last bar is the combined profile
across all services in the HotelReservation.

with RPC client-server pairs in which the business logic is
to simply “echo” the input message. The client and server
machines were directly connected to a single switch and no
other traffic was sent over the network. Thus, network prop-
agation time was negligible. We performed this experiment
on a diversity of messages. To illustrate our observations,
we report results for the “hello world” message from the
gRPC tutorial [13] and message 54 from bench5 (m54) of
Google’s Hyperprotobench benchmark[16]. We used Intel
VTune to capture the call stacks on the gRPC server side, and
break down the delay into four categories: gRPC Serialization
which mainly captures the time spent on serializing/deserial-
izing the messages, gRPC Transport which mainly involves
HTTP header processing for the messages, gRPC Core which
consists of other gRPC internal processing including setting
up a bunch of internal data structures and handling IOs, and
kernel stack which is the TCP/IP stack used to receive/send
messages. The results of this initial experiment are shown in
Figure 1a.

These microbenchmarks provide initial evidence that RPC
stacks are highly sensitive to workload characteristics such as
payload size. Factors (e.g., kernel networking or data serializa-
tion) that dominate in some scenarios (e.g., m54 receive and
send, respectively) are negligible in others (e.g., helloworld
receive and send, respectively). This suggests that point solu-
tions targeting perceived bottlenecks in the stack are unlikely
to bear fruit in mixed workloads. For example, kernel-bypass
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networking is an attractive solution to avoid the fixed over-
heads of kernel crossings and redundant data copies [5, 9],
but at the cost of significant complexity. Efforts to port ex-
isting RPC frameworks to utilize the flavor of the month in
userspace networking will not be well-spent in application
regimes in which these fixed overheads are dwarfed by data-
and topology-dependent costs in serialization, discovery, and
load balancing. As a second example, the conventional wis-
dom that serialization costs dominate RPC might lead us to
explore solutions that accelerate serialization with special-
ized hardware [22, 33, 39]. These efforts might provide only
marginal benefit for applications that use large messages with
relatively simple serialization logic, and perhaps no benefit at
all for applications that favor small messages.

Of course, these microbenchmarks might not reflect the
balance of RPC overhead in practice. What is more, they only
study overhead in the RPC stack without considering to what
degree this overhead interferes with business logic in practice.
To get a clearer picture of RPC overhead in the context of a
realistic microservice-based application, we performed a sec-
ond profiling experiment using the social network application
in Deathstarbench [10]. We used the HotelReservation
application, consisting of 8 services as well as a persistent
backing store, using the mixed-workload_type_1 benchmark.
We ran the workload for 30 minutes, and use golang’s pprof
package to profile the results, which are shown in Figure1b.

In addition to plotting time spent in the four RPC categories
used in the previous experiment, we include the time spent
in user-supplied business logic code. We show the break-
down for four services (geo, user, rate, profile)
as well as the cumulative breakdown across the entire ap-
plication. We note first that across all services, only about
25% of CPU cycles are spent doing useful work. We are not
too surprised to see an even lower figure compared to that of
Facebook’s reports, since the application code in the Death-
starbench applications are very simple. As we observed in the
microbenchmarks, the overhead of different components of
the RPC stack is very sensitive to the workload presented by
each individual service. Finally, RPC overheads are balanced
across the entire application (as shown in the merged bar),
with time spent in the kernel dominating slightly.

3 Enabling Trends and Feasibility
The two observation behind this work are: (i) shared, remote
memory is possible and almost here, and (ii) adopting RPC se-
mantics allows Notnets to sidestep many of the traditional
problems associated with DSM.

3.1 CXL and Coherence
Over the past decade, industry has increasingly adopted data
center disaggregation [11, 18, 23, 25, 27], which allows stor-
age and compute resources to be scaled independently, im-
proving utilization and efficiency.

Memory is undergoing a similar transition [2, 9, 14, 29, 30].
CXL [8] is a multi-protocol interconnect standard that builds
on the PCIe interface to provide remote memory access be-
tween a host processor and a device connected over a CXL
link. Early use-cases [3, 34, 40] focused on scenarios in which
remote memory is dynamically allocated to a particular appli-
cation. The CXL 3.0 standard, however, brings cache coher-
ence to a shared multi host environment, permitting remote
hosts with distinct coherence domains to share access to the
same cache line.

CXL Type 3 Devices with support for multiple host/peer
interfaces [8] will utilize the hardware based back-invalidate
coherence mechanism, which ensures that individual hosts
obtain exclusive access to cache lines before modifying them
In this modality, remote memory will be transparent to ap-
plications. An alternative is software-managed coherence, in
which applications are responsible for explicitly invalidating
and/or flushing cache hierarchies, trading complexity for a
reduction in coherence traffic. It is too soon to know which
approach will perform best for our system. Our design will
support both.

3.2 Is This DSM?
This vision may sound like distributed shared memory (DSM)
by another name. DSM, of course, has been studied for
decades [4, 6, 7, 26], and it would be natural to question why
any new attempt to revive this technology would succeed.

Historically, there have been three main problems that have
hindered the adoption of DSM:

• Access Latency. Applications that are not written to tolerate
non-uniform memory access latencies have unacceptable
performance when some memory accesses are remote.
We discuss how RPC over CXL-backed memory can side-
step these issues below.

• Failures. Applications are not written to handle partial fail-
ures of memory [36], and masking the failure of memory
nodes via redundancy [24, 35] incurs unacceptable costs
on the critical path of loads and stores.

• Coherence and Synchronization. Protocols that manage
transparent access to copies of shared data do not scale
well [15, 31].

3.3 Why RPC is Different
Notnets can side-step all three of these problems because
it does not need to support arbitrary, transparent access to
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shared memory. All that is required is support for the ba-
sic semantics of RPC, which narrowly extends the standard
single-machine procedure call abstraction to provide transfer
of control and data across a computer network. When the re-
mote procedure is invoked, the caller suspends its execution,
passes the parameters across the network, and executes the
procedure on the callee. When the procedure completes, the
results are passed back to the caller. We note these key aspects
of the semantics of RPC:

(1) It assumes latency due to message passing.
(2) It assumes that agents fail independently.
(3) It assumes that a client and server own their own copies

of data.

Access Latency. There are two key arguments to make about
performance. First, distributed applications are already writ-
ten in such a way that they expect increased latency for remote
access due to the overhead of RPC communication. Thus, in-
creased latency is not really an issue when replacing RPC
with shared-memory communication. Second, even if it were,
the latency is likely better with Notnets than with RPC.
The performance gap between inter- and intra-node commu-
nication has tightened significantly since the early work on
DSM. Referencing publicly reported numbers from manufac-
turers and recent research results [17, 19, 20], we see that
although RPC has 100↑ higher latency than accessing local
DRAM, RPC is also 100↑ faster than accessing local SSD.
Recent work [12] reports that DirectCXL memory pooling
achieves around 7↑ better performance than RDMA-based
memory pooling.

Failures. Unlike transparent DSM, the RPC model already as-
sumes that agents can fail independently and has well-defined
semantics in such contingencies. Unlike a load or store,
a RPC call can return an error to the caller, either due to
an explicit error return from the server or (in the event that
the server node is down or otherwise unreachable) a client-
managed timeout. A typical microservice is designed to an-
ticipate and mitigate the effects of failures of services upon
which it depends, either by retrying, taking a fallback path,
or supplying a static default. Hence Notnets completely
sidesteps the problem of transparent fault-tolerance for remote
memory.

Coherence and Synchronization. The last bugbear of DSM
is the performance and scalability of coherence. As we have
observed, the RPC abstraction does not require transparent
coherence between concurrently-accessed copies of memory.
In RPC, data movement is always explicitly triggered by the
application, at which time the coherence state of the data
(the immutable “message” being modeled in shared memory)
transitions atomically from exclusively owned by the sender
to read-only and exclusively owned by the receiver.

4 Notnets: the Potential
Realizing the advantages of our hypothesized shared memory
RPC will not be as simple as waiting for vendors to deliver
data center shared memory. RPCs provide more than a loca-
tion abstraction within the data center, and many mechanisms
that cannot simply be bypassed will need to be rethought to
best take advantage of a shared memory implementation.

In the section below, we discuss the low-hanging fruit for
which performance advantages can be shown (as we demon-
strate in Section 5.2) by simply doing less. Next, we discuss
stretch goals that will require further design, and potentially,
changes to the programming model to realize.
Kernel Stack. A traditional RPC incurs two kernel crossings
(single-digit 𝐿s) and at least as many copies of the data pay-
load; the use of out-of-process sidecar proxies (e.g. Envoy),
which is common in microservice architectures to handle
cross-cutting concerns including discovery and routing, ef-
fectively doubles both, and network interfaces may incur
additional copies. Notnets will avoid all kernel crossings.
L7 (HTTP) Networking. gRPC uses HTTP as a transport
mechanism to allow for streaming requests, i.e., so that ap-
plications avoid the overhead of opening/closing connections.
However, our shared-memory deployment will obviate the
need for traditional network communication, and therefore,
make the need for L7 networking unnecessary. We do note,
though, that gRPC uses HTTP headers to pass meta data (e.g.,
telemetry information) between the client and server. This
mechanism will need to be replaced by a shared-memory im-
plementation, which should be straightforward to implement
in a manner similar to passing the RPC payload.
gRPC Data Transform, i.e., (De)serialization. There is no
free lunch, and it will not in general be possible to simul-
taneously avoid all serialization costs and support existing
microservice-based applications in their full variety. One of
the touted benefits of using microservices is that they permit
decoupling (and hence autonomy and independent scaling) of
development teams along API boundaries. This autonomy im-
plies that applications can (and often will) be polyglot, in the
sense that cooperating services are implemented in separate
languages, frameworks, and runtime environments.

While it may be reasonable in practice to make some as-
sumptions about memory representation (e.g. endianness),
some serialization cost seems fundamental when sharing val-
ues (e.g., floating point numbers) between caller and callee.
Endpoints written in different languages and hosted on dif-
ferent platforms could in principle choose a common rep-
resentation (e.g., Apache Arrow) for data intended to be
shared as RPC arguments or returns, obviating the need for
(de)serialization. Further study of microservice-based appli-
cations are required in order to understand how pervasive
polyglot systems are. In any case, fast paths can be explored
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whenever two adjacent services in the call graph share a com-
mon representation, and this can be determined statically.

4.1 Open Questions

Transport Layer Security. On a single server, security (i.e.,
privacy) is provided via process isolation; the virtual address
space in one process is completely separate from the virtual
address space in a second process. In other words, process A
cannot access memory in process B. The isolation is enforced
by the memory management unit (MMU). In particular, a
process is not able to directly access physical memory, but
rather must use virtual memory addresses that the MMU
translates to physical address. In this way, the MMU can
ensure that process A cannot “name” addresses in process B.

In a distributed setting, multiple processes, which may
reside on physically separate machines, work together to pro-
vide the application functionality. Each of these processes
have isolated virtual memory spaces. To copy data from one
address to another, applications have typically relied on mes-
sage passing. Transport Layer Security (TLS) encrypts the
data to ensure that the data is kept private while in transit.

However, with a shared-memory backend for communica-
tion, the security model changes. The communicating pro-
cesses already share an address space. This suggests that,
rather than end-to-end encryption, a new mechanism is needed
to ensure isolation of the shared memory. There must be
something equivalent to the MMU that ensures that non-
participating processes cannot “name” the addresses in the
shared memory segment.

Load Balancing and DNS Resolution. Load balancing is
needed to spread the workload evenly across the additional
machines. DNS is often used as a mechanism to discover
available peers. Today, many microservice deployments rely
on side-car proxies to interpose on RPC requests and perform
load balancing. However, recent versions of gRPC include
support for “proxyless” service meshes, in which gRPC can
directly process requests from the control plane using the
XDS API. As with traditional RPC deployments, our shared-
memory approach will adopt a scale-out approach in which
we increase capacity by adding additional servers to the mem-
ory pool. Thus, we will need to maintain some of the same
infrastructure to monitor load and determine which CPU to
target for execution. To balance load, we expect to extend
gRPC’s “serverless proxy” functionality to allow for select-
ing peers from within the memory pool based on the load
information that we collect. We expect that there will be some
performance gains compared to standard DNS-based distribu-
tion of servers, but the extent of that benefit would need to be
experimentally evaluated.

5 Evidence of Feasibility
By cutting the network out of the distributed system, NotNets
may seem to be proposing to boil the ocean. Nevertheless,
this discussion suggests an incremental path. Our initial pro-
totype transparently short-circuits the overheads of kernel and
layer 7 networking and TLS. It makes no attempt to side-
step serialization overheads, although the next prototype will
exploit a fast path when client and server share a common
memory representation (a property known when servers are
deployed). We now briefly describe our prototype alongside
initial evidence of the promise of NotNets.

5.1 Network Bypass
Ultimately, NotNets will emulate message-passing by shar-
ing message payloads and metadata on CXL 3.0-backed far
memory. While we wait for this (or a similar) technology to
become available we are path-finding. The initial prototype,
designed to answer basic questions about required function-
ality and best-case performance, runs on a single host us-
ing System V shared memory. The communication channel
is realized as a circular buffer; we interpose on gRPC’s re-
quest/response API, using the “custom channel” extension
mechanism, to enqueue and dequeue messages at the client
and server, respectively.

The choice of a coherence mechanism will have significant
performance consequences that are difficult to reason about
at this time. The transparent, hardware-based coherence that
CXL will provide, in addition to simplifying the design, will
avoid costly polling of remote storage, but at the cost of
coherence traffic that will otherwise be unnecessary due to
the simplicity of the sharing model. To avoid overfitting to
a performance assumption that cannot yet be validated, we
are maintaining a variety of implementations of the circular
queue that make different assumptions regarding coherence
and availability of synchronization mechanisms. In this small
experiment, we showcase a lock-free queue implementation
that uses atomic variables to synchronize.

The prototype bypasses all communication-related over-
head including the TCP and HTTP stacks just as Notnets
will. It also short-circuits away functionality in gRPC re-
lated to load balancing, transport-level security, discovery,
and other features that our ultimate solution must somehow
address, as we discussed in Section 4.

5.2 Evaluation

avg p99 p999

http2 209 507 1430

notnets 26.2 138 335

notnets- 9.67 44.1 231

Table 1: Latency in 𝐿s.

Our initial feasibility ex-
periment focuses on end-
to-end RPC latency, sup-
porting the intuition that
you can do things a lot
faster if you do a lot
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less. We use a single
Google Cloud Platform
ec-standard-4 host, con-
figured with 4 vCPUs and

16GB memory, to host the server and client, and reproduce the
“HelloWorld” experiment reported in Section 2. We measure
the latency of a trivial “echo” RPC end-to-end from invoca-
tion to completion on the client, in three scenarios. http2 uses
the standard http-based transport of GRPC. notnets uses the
prototype described in Section 5.1. notnets- uses the proto-
type without serializing the message payload.

Table1 reports latencies in microseconds, showing near an
order of magnitude performance gain short-circuiting away
the RPC. Bypassing serialization can offer another 3↑ im-
provement. We should do this.

6 Conclusion
Systems engineering is characterized by tradeoffs, and it is
a rare and happy day when we can have our cake and eat it
too. Nevertheless, the emerging systems landscape, driven
by other concerns (in this case, saving money by eliminat-
ing stranded memory), has offered us a unique opportunity.
We can dip our toes into DSM and enjoy only its benefits,
postponing its downsides for future research.
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