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Abstract

When learning about scientific phenomena, students are

expected to mechanistically explain how underlying inter-

actions produce the observable phenomenon and concep-

tually connect the observed phenomenon to canonical

scientific knowledge. This paper investigates how the

integration of the complementary processes of designing

and refining computational models using real‐world data

can support students in developing mechanistic and

canonically accurate explanations of diffusion. Specifically,

we examine two types of shifts in how students explain

diffusion as they create and refine computational models

using real‐world data: a shift towards mechanistic reason-

ing and a shift from noncanonical to canonical explanations.

We present descriptive statistics for the whole class as well

as three student work examples to illustrate these two

shifts as 6th grade students engage in an 8‐day unit on the

diffusion of ink in hot and cold water. Our findings show

that (1) students develop mechanistic explanations as they

build agent‐based models, (2) students' mechanistic rea-

soning can co‐exist with noncanonical explanations, and (3)

students shift their thinking toward canonical explanations

after comparing their models against data. These findings

could inform the design of modeling tools that support

learners in both expressing a diverse range of mechanistic
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explanations of scientific phenomena and aligning those

explanations with canonical science.

K E YWORD S

comprehension, computer simulation, diffusion, education,
thinking

1 | INTRODUCTION

Developing scientific explanations is a complex skill that involves both describing a phenomenon and explaining its

underlying mechanisms. When learning about scientific phenomena, students are often expected to develop

explanations that both conceptually connect the observed phenomenon to canonical scientific knowledge and

mechanistically explain how underlying interactions produce the observable phenomenon.

Engaging in mechanistic reasoning is a powerful scientific practice that allows one to make predictions and theorize

about phenomena (Machamer et al., 2000; Salmon, 1978). Mechanistic explanations identify the underlying, often

unobservable entities that give rise to a phenomenon and specify the sequence of events, from input to output, that

produce the phenomenon (Louca et al., 2011; Machamer et al., 2000; Perkins & Grotzer, 2000; Springer & Keil, 1991).

In the past decade, science education reforms (National Research Council, 2012; NGSS Lead States, 2013) have

called for integrating mechanistic reasoning as a crosscutting concept into science instruction and encouraging

students to construct and apply mechanistic accounts. One way to support students in developing mechanistic

explanations is to engage them in creating and refining computational, agent‐based models (henceforth 'ABM';

Dickes et al., 2016; Fuhrmann et al., 2018; Löhner et al., 2005; Louca & Zacharia, 2008; Wilensky, 2003; Wilkerson,

Gravel, et al., 2015; Xiang & Passmore, 2015). Much of this work has shown how designing computational ABMs

supports engaging in mechanistic reasoning as learners encode properties and behaviors for individual agents and

observe the aggregate outcomes from their interactions. Computational agent‐based modeling can also scaffold

students' developing a canonical understanding of scientific phenomena (e.g., Wilkerson, Wagh, et al., 2015).

However, in traditional science classes, computational models are primarily used to confirm a theory rather than as

an inquiry tool. Students use or manipulate a canonically accurate model that scientists or curriculum designers

have developed over many years. Perhaps because developing adequate programming expertise with modeling

tools can be challenging, students are rarely given opportunities to construct models to test their own ideas. As a

result, students do not get to engage in iterative model building that is often informed by data analysis

(Blikstein, 2014; Fuhrmann, et al., 2014; Merritt & Krajcik, 2013).

Empirical data analysis plays a crucial role in professional modeling practice. Scientists use data to construct,

refine or decide between possible models (Passmore et al., 2009; Nersessian, 2002) and to assess the adequacy of a

given model by the degree to which that model explains the data (Passmore & Svoboda, 2012). However, model‐

based learning in science classrooms typically separates modeling and data‐based practices (Blikstein et al., 2016;

Fuhrmann et al., 2018), with physical experimentation and data collection being largely disconnected from theory

building and model design.

Integrating real‐world data into the computational modeling process provides learning opportunities that do

not arise when students focus on models alone. The Bifocal Modeling framework (Blikstein, 2014) suggests

integrating real‐world data collection and analysis with computational modeling to enable real‐time comparisons of

simulated and real‐world data. Juxtaposing real‐world data and modeling enables students to notice and attend to

discrepancies between models and data, making noise, uncertainty, and intrinsic differences between them as

issues for discussion (Blikstein et al., 2016; Fuhrmann et al., 2018). Integrating real‐world data and analysis into

computational modeling can also scaffold students in developing canonical understanding of scientific phenomena
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(Blikstein, 2014; Fuhrmann et al., 2014). To date, however, few computational modeling platforms support learners

in both constructing models or theories of scientific phenomena and comparing those models to real‐world data to

refine and validate them, and few studies have examined how moving between these activities might support the

side‐by‐side development of mechanistic explanations and alignment of those explanations with canonical

descriptions of phenomena. As computational modeling and data‐based investigations continue to gain traction in

the classroom (e.g., Arastoopour Irgens et al., 2020; Conlin et al., 2020; Fuhrmann & Blikstein, 2017; Sengupta

et al., 2013), it is important to understand how integrated modeling experiences that incorporate data might shape

these important aspects of science learning in concert.

This paper aims to explore how iteratively designing models and refining them based on real‐world data can

support students in developing mechanistic and canonically accurate accounts of diffusion. We show how this

process of designing ABMs supports shifts in student thinking towards mechanistic, sometimes noncanonical

explanations while comparing those models against real‐world data supports shifts towards canonically accurate

explanations. To make this argument, we draw on data from 16 sixth‐grade students in a science class engaged in an

8‐day unit about diffusion using MoDa (Eloy et al., 2022; Fuhrmann, Wagh, et al., 2022; Wagh et al., 2022). MoDa is

a domain‐specific, block‐ and agent‐based computer modeling environment. It is one of a growing number of tools

that introduce students to computational modeling of scientific phenomena through a modular toolkit of domain‐

specific procedures (e.g., Hutchins et al., 2020; Sengupta et al., 2013). Over the course of the unit, students

collected and analyzed experimental data and designed paper and computational models to investigate and explain

why ink spreads at a different rate in hot and cold water. We are guided in this work by the following research

question: How do students' mechanistic reasoning and conceptual understandings shift as they design ABM of

diffusion using real‐world data?

We argue that our findings bear both theoretical and practical implications. We document the occurrence of

mechanistic reasoning before canonical conceptual understanding of diffusion, adding to literature that explores the

potential independence of these forms of learning (Russ et al., 2008; Wilkerson, Gravel, et al., 2015). In particular,

we document developments in students' mechanistic reasoning as they build and refine agent‐based computational

models, shifting their reasoning toward canonical norms as they compare those models to real‐world data. By

suggesting the mediating effects of different curricular elements on these forms of learning—model‐building

supporting mechanistic reasoning and data validation supporting canonical understanding—we also see this paper

as informing design and facilitation practices for model‐based science learning. Finally, the emergence of these

findings in a typical school setting, run autonomously by the classroom teacher without extensive researcher

support, suggests their potential to impact real‐world teaching and learning.

2 | BACKGROUND

To ground this work, we first explore the role of mechanistic reasoning in scientific explanations as a component of

science learning. Next, we briefly survey the literature on learners' canonical and noncanonical ideas about

diffusion, the target phenomenon in this study. Finally, we review varied approaches to create environments that

support learners in developing scientific explanations. This background review lays the foundation for MoDa, the

educational environment used in this study, and our analytical foci in evaluating students' work with it.

2.1 | Mechanistic reasoning as a component of science learning

Mechanistic reasoning is a core form of explanation in science education. It involves accounting for the factors and

relationships underlying a phenomenon (Russ et al., 2008; Krist et al., 2019; Louca et al., 2011; Machamer

et al., 2000; Perkins & Grotzer, 2000; Russ et al., 2008; Springer & Keil, 1991). Existing frameworks focus on
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different aspects of mechanistic reasoning (e.g., Hmelo‐Silver & Pfeffer, 2004; Russ et al., 2008; van Mil et al.,

2013). We buil on Russ et al.'s (2008) framework that identifies important structural elements of scientific accounts.

According to Russ and colleagues, students engaging in mechanistic knowledge building ask questions about their

observations and figure out explanations for the “how” and “why,” and not only the “what,” of a scientific

phenomenon. The focus on mechanisms breaks up the original explanation‐seeking “why question” into a series of

smaller questions about the causal process. For example, what are the participating entities, and what are their

relevant properties? How are the entities and their interactions organized? What factors could prevent or modify

the outcome? In wondering about and formulating answers to these questions, students move beyond the more

simplistic descriptive work of observation toward a more causal account of the phenomenon.

Proposing a framework one level up from that of Russ et al. (2008) and building on others' work, Krist et al.

(2019) emphasize “thinking across scalar levels” as a primary epistemic heuristic in mechanistic reasoning.

Explaining a phenomenon by identifying the underlying causes involves thinking at least one scalar level below the

observable level of the target phenomenon. For example, identifying that there is a non‐visible entity (e.g., water is

composed of molecules) is an essential step in reasoning about mechanism (Schwarz et al., 2009).

In the next section, we explore another type of explanation used in science learning specifically when learning

about diffusion.

2.2 | Canonical and noncanonical explanations as components of science learning

Students can generate a range of explanations to account for scientific phenomena, many of which differ from

those generally accepted by the scientific community. Depending on the theoretical alignments, these noncanonical

ideas are also called “misconceptions” (Fisher, 1985; Odom, 1995), “inadequate conceptions,” “alternative

conceptions” (Astolfi, 1999), “epistemological resources/personal epistemologies” (Hammer & Elby, 2002), and

“naive thinking” (Inagaki & Hatano, 2006). This paper aligns with the view that it is essential to offer students

opportunities to explore their noncanonical ideas, using them as epistemological resources to connect to the

accepted canonical explanations (Hammer & Elby, 2002).

In this paper, we focus specifically on diffusion as a foundational mechanism widely used in many fields,

including chemistry, biology, and physics (Friedler et al., 1987). It explains many processes, such as molecular

transportation within cells, gas exchange and circulation, water and electrolyte balance, and osmosis. The canonical

definition for diffusion is the net movement of any substance from a region of higher concentration to a region of

lower concentration as the result of individual molecules or atoms moving or bouncing off one another during the

course of Brownian motion. Although diffusion is a key concept in science curricula (NGSS Lead States, 2013), it has

been challenging for high school and college students (Friedler et al., 1987; Meir et al., 2005; Odom, 1995; Sanger

et al., 2001; Westbrook & Marek, 1991; Zuckerman, 1994). For example, students often anthropomorphize

particles, explaining diffusion as the result of a “desire” or “drive” by the particles to reach equilibrium rather than

recognizing the constant presence of Brownian motion (Friedler et al., 1987; Meir et al., 2005; Odom, 1995; Sanger

et al., 2001; Zuckerman, 1994). Dynamic equilibrium—the end state of diffusion in which particles’ movement

continues—presents similar challenges, with learners often describing that particles reach equilibrium and then stop

moving (Friedler et al., 1987; Meir et al., 2005; Odom, 1995; Sanger et al., 2001; Zuckerman, 1994). In the following

section, we review varied approaches to support learners in developing explanations.

2.3 | Integrating modeling and data analysis for science learning

Integrating real‐world data into the modeling process provides learning opportunities that do not arise when

students focus on models alone. For example, exploring and making sense of real‐world data might encourage
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students to explore more deeply the underlying features of a phenomenon (Schwarz et al., 2013). Similarly, real‐

world data can help students evaluate models as they decide how well a model aligns with the data, and what

conclusions are justified by the data (Holmes et al., 2015). One such learning approach is the Bifocal Modeling

framework (Blikstein et al., 2016; Blikstein, 2014; Fuhrmann et al., 2014, 2018). It engages students both in

conducting experiments and collecting data and in designing computational models to explain scientific phenomena

(Figure 1). In particular, Bifocal Modeling emphasizes comparisons of simulated and experimental data. Through

such comparative work, students come to notice similarities and discrepancies between the physical experiment

and their model of it, iteratively revising their model to reduce these discrepancies and align with a canonical

explanation of the scientific phenomenon. Activities designed according to this framework can develop students'

conceptual understanding and meta‐modeling competencies (Blikstein, 2014; Fuhrmann et al., 2018).

Bifocal Modeling is just one example of a collection of approaches that integrate multiple modes, or aspects, of

scientific modeling in service of more sophisticated student understandings. For example, Chiu et al. (2015)

describes how “augmented virtual labs” that combine virtual and physical demonstrations of the same scientific

phenomena supported students' construction of explanations and refinement of alternative ideas. Other studies

such as Bielik et al. (2021) and Wilkerson, Gravel, et al. (2015) highlight how constructing and exploring models

across multiple media (e.g. drawing, animation, agent‐based modeling, systems modeling) can support

complementary aspects of modeling. Those studies, however, focused on the construction of explanations. We

build on this work by studying the co‐development of mechanistic reasoning and conceptual understanding through

the sustained comparison of students' models to real‐world data.

Our current work extends these studies of integrated modeling approaches in three ways. First, many studies and

platforms that emphasize integrated approaches make use of pre‐built simulations, rather than allowing students to build

and test their own models. Building their own models within MoDa allows students to express and explore the variety of

different understandings of a phenomenon that they may bring to a science classroom. Additionally, MoDa enables

students to compare their own models side by side with visualizations of real‐world data so they can refine and validate

their models. Such data‐based validation is built into MoDa rather than leaving such integration to external curricular

materials. Finally, this study represents an experienced teacher's use of these integrative tools and frameworks in a

relatively autonomous, classroom context, e.g., the instruction was not heavily supported by researcher intervention.

Similar studies of computational modeling platforms were conducted in lab settings or in intensive workshops run by

researchers (Bielik et al., 2021 andWilkerson, Gravel, et al. 2015). Our research context—a typical middle school classroom

run by the classroom teacher with minimal researcher support—adds to the growing body of work (Farris et al., 2019;

Pierson et al., 2020) that works to extend researcher‐dependent interventions by evaluating classroom feasibility.

F IGURE 1 The Bifocal Modeling framework prompts students to link (1) a physical experiment and (3) a
computer model by (2) comparing data gathered from these distinct modalities.
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3 | METHODS & MATERIALS

3.1 | MoDa: An environment that integrates agent‐based modeling and visualizations
of real‐world data

Building on prior research that developed and evaluated domain‐specific computational modeling platforms (e.g.,

Wilkerson, Wagh, et al., 2015), MoDa is a web‐based environment that combines creating computational models using

domain‐specific code blocks with visualizations of real‐world data (Eloy et al., 2022; Fuhrmann, Wagh, et al., 2022; Wagh

et al., 2022). MoDa allows students to build models using domain‐specific code blocks (Wilkerson, Wagh, et al., 2015) and

compare their model outputs with visualizations of real‐world data from similar phenomena (Eloy et al., 2022; Fuhrmann,

Wagh, et al., 2022; Wagh et al., 2022). This design enables students to work with domain‐specific code blocks that align

with the learning domain (in this case 'diffusion') and a variety of common ideas they have about how phenomena within

that domain work. For example, in modeling the diffusion of ink in water, students could use a canonical “bounce” or a

noncanonical “attach” or “erase” block to model particle interactions. By then comparing their computer modeling results

with video or quantitative data that reflect the phenomenon in real life, students can validate their models and make

changes. For example, when modeling the noncanonical “attach” particle interaction, which was drawn from previous work

on students' extended studies of diffusion (Fuhrmann, Fernandez, et al., 2022), students often notice that the simulated

molecules form clumps that contrast with what they see in the video data, leading them away from this noncanonical

theory of diffusion. A core idea of the Bifocal Modeling framework (Blikstein, 2014), on which the platform is built, is for

students to test their ideas by comparing simulations of those ideas against real‐world data. Taking the traditional Bifocal

Modeling one step further, MoDa embeds data visualization within the computational modeling environment itself rather

than leaving such integration to supplementary curricular activities.

MoDa consists of (a) a modeling environment and (b) a real‐world data area (Figure 2). The modeling environment

includes: 1) a coding area where students can drag and drop domain‐specific blocks built on Google's Blockly library; 2) a

simulation area (built on top of the NetLogo engine, Wilensky, 1999) in which students can see the result of their code and

control different variables in the simulation, such as temperature; and 3) data visualizations that illustrate the modeling

F IGURE 2 The MoDa modeling and data environment for ink diffusion in water, consisting of a modeling
environment (a) and a real‐world data area (b). The modeling environment includes (1) a coding area, (2) a simulation
area, and (3) data visualizations.

8 | FUHRMANN ET AL.
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results in graphs. Figure 3 details the available domain‐specific blocks ‐ organized into categories of general properties,

actions, and control mechanisms ‐ available for programming models of diffusion.

This paper describes a study in which a unit on ink diffusion in water was implemented in two 6th‐grade

classes. Two videos, generated by the research team—of ink spreading in hot and in cold water—were included in

MoDa as real‐world data, reflecting a common classroom demonstration of diffusion (Dou et al., 2013) that was

already in use by our collaborating teachers given its simplicity and accessibility.

3.2 | Participants

The study took place in an independent college preparatory day school in California with students from two 6th‐

grade science classes. White students comprise 74% of the student population, while two or more races account for

18%, Asian or Pacific Islander students represent 5%, Hispanic students constitute 2%, and Black students make up

1%. The Student–teacher ratio is 5:1. Across the two classes, 16 students consented to participate in this study

(eight girls, six boys, and two nonbinary students). The science teacher had been part of this project for 1.5 years

and participated in professional development and codesign sessions with the project team.

3.3 | Instructional sequence

The unit occurred over eight class periods and included activities to explore ink diffusing in hot and cold water (Figure 4).

Similar to Bielik et al. (2021) and Wilkerson, Wagh, et al. (2015), students explored the target phenomenon in multiple

media using paper modeling and ABM. In our design, however, students validated their models against real‐world data

tightly integrated within the platform throughout the unit as opposed to treating external video data as a starting point for

their modeling work. Throughout the sequence, students were instructed to focus on how a drop of ink in clear water

gradually colored the water and how this process related to heat and the interaction of molecules. The instructional

sequence was implemented independently by the classroom teacher with minimal researcher support.

The class met twice a week. To introduce the topic of diffusion, the teacher placed lavender oil on tissue paper and

asked students to raise their hands when they smelled the oil. The class had a brief discussion of the spatial dimensions of

the scent's movement through the room. They then followed the sequence described in Figure 4. They conducted an

experiment comparing the rate of ink spread in hot and cold water. They ran the experiment three times at each water

temperature and recorded their data. They then analyzed the data collaboratively and individually drew paper models to

F IGURE 3 MoDa's available domain‐specific blocks ‐ organized into categories of (a) general, (b) properties,
(c) actions, and (d) control mechanisms.

FUHRMANN ET AL. | 9
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explain the difference in the rate of ink spread across the two conditions. Students were then introduced toMoDa through

four challenges that focused on different programming blocks. Students then worked in pairs to draw another paper model

of their explanation before collaborative coding computational models to explain their observations and comparing their

models to the video data. Students shared their paper and computational models with the class to get feedback from their

peers and teacher. On the last day, students discussed the validity of their models and watched a video that described the

canonical explanation for diffusion.

3.4 | Data sources

In this manuscript, we draw on analysis of five sources of student data (bolded and italicized in Figure 4's timeline):

1. Students' responses to open‐ended questions on the pre‐survey about how and why ink diffuses in water

(Day 1) (see Appendix A for questions).

2. Students' drawn models of the experiment (Day 2). Two students were absent on this day and did not produce

individual drawings.

3. Students' pair drawings after first working in MoDa (Day 5).

4. Students' model share‐outs in pairs as they presented their computer models to their classmates (Day 7). By

analyzing students' descriptions of these models, not the models themselves, we focus on student utterances

rather than the language of the coding environment.

5. Student responses to open‐ended questions on the post‐survey about how and why ink diffuses in water.

Collectively, these five data sources represented diverse modalities, including student utterances and drawings.

We acknowledge limitations of using and comparing across these data sources. For example, drawings could

prompt more attention to the spatial organization of depicted elements compared to post‐test open‐ended

questions on which students use only words. Similarly, when analyzing student utterances, it can be challenging to

separate students' ideas from their (re)statements of the teacher's explanation. Nonetheless, these five data sources

provide a window into how students' mechanistic reasoning and conceptual understanding of diffusion developed

over the course of the unit. Narrowing our analysis to only the most similar data forms (e.g., only the survey

questions or drawings) would give a more limited view of students' learning trajectories.

3.5 | Data analysis

Our data include both individual‐ and pair‐level data. Of our five data points, three are at the individual level, while two

were at a pair level. To respect variation between students in a pair, we treat the individual as the level of analysis and

F IGURE 4 The instructional sequence of the diffusion unit, with data sources used in the study in bold.
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assign pair‐level data to each student in that pair. We acknowledge that in ascribing pair‐level data to each individual, this

approach would potentially misattribute one student's learning to their partner (overestimation). However, the alternatives

—either dropping the two pair‐level data points or combining individual data for a pair‐wise level of analysis—give a limited

view of the learning trajectories and blur distinctions between students in a pair, respectively.

Preliminary review of students' data suggested they were exhibiting mechanistically detailed but noncanonical

explanations for diffusion (Russ et al., 2008; Wilkerson, Gravel, et al., 2015). We document the occurrence of

mechanistic reasoning before the canonical conceptual understanding of diffusion, adding to literature that explores

the potential independence of these forms of learning. To understand the impacts of specific features of the tool

and curriculum on these distinct elements of reasoning, we used separate coding rubrics for mechanistic reasoning

and canonical understanding, as detailed below.

3.5.1 | Mechanistic reasoning

In coding whether a specific explanation had elements of mechanistic reasoning, we used a modified version of Russ

et al.'s (2008) framework (Table 1). We followed Krist et al.'s (2019) practice of omitting Russ et al.'s (2008) first two

code categories since the activity prompts already describe both the target phenomenon ('In which does it spread

faster?') and the experimental setup ('A drop of ink is placed in a glass of hot water and a glass of cold water').

Additionally, Russ et al.'s “chaining” code focuses on the time dimension, similar to how a storyboard presents

events chronologically. Krist et al.'s “linking” code emphasizes movement across multiple levels, from microscopic

entities to macroscopic aggregate phenomena. Since we did not want to focus on time or scale, we created a new

code, “causality,” in place of and closely related to Krist et al.'s (2019) “linking” and Russ et al.'s (2008) “chaining.”

“Causality” is the highest level of mechanistic reasoning in our rubric and is defined as reasoning about how

individual entities, along with their properties and interactions, give rise to the aggregate phenomenon. SeeTable 1

for the full list of codes, their definitions, and examples.

Two researchers independently coded each data source, achieving at least a 91% match rate on a

training set, by data source, and at least a 87% match on the remaining data. The score for work completed

by pairs of students (i.e., pair drawings and model presentations) was attributed to both students of the pair.

TABLE 1 Rubric for mechanistic reasoning about diffusion, adapted from Russ et al. (2008).

Code Description Examples of mechanistic reasoning

Identifying entities (IE) Students mention the elements (entities)
that play roles in producing diffusion.

Water molecules, color molecules, air
molecules, particles, elements, atoms.

Identifying
activities (IA)

Students describe actions and activities that

caused diffusion.

Molecules spread apart, molecules spread

evenly.

Identify properties of
entities (IP)

Students describe properties (adjectives) of
the entities responsible for the target

phenomenon.

Water molecules are little hard balls that
bounce off everything, molecules move

faster, molecules are bigger.

Identifying organization
of entities (IOE)

Students indicate how the entities are
spatially organized and structured.

Dye molecules move between the water
molecules, cold molecules are closer

together, molecules move from high
concentration to low concentration.

Causality (Ca) Students reason about how the properties
and interactions of individual entities give

rise to the general phenomenon.

The faster the water molecules move, the
more they spread the ink.

FUHRMANN ET AL. | 11
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3.5.2 | Canonical understanding of diffusion

To code whether students' understanding of diffusion connected to canonical descriptions, we coded their

written or verbal explanations. We take these explanations as a proxy for their understanding of the

phenomenon at the time, acknowledging that we cannot characterize understanding directly or completely.

To code student explanations, we chose not to use an existing framework (e.g., She, 2004; Stains &

Sevian, 2015; Westbrook & Marek, 1991) because such frameworks predominantly include some level of

mechanistic reasoning. To code for conceptual understanding independently of mechanistic reasoning, we

coded the above data sources using grounded coding (Corbin & Strauss, 2014). Two researchers

independently pulled out keywords from students' responses, drawings, and model descriptions to

characterize their explanations at each point in the instructional sequence (Table 2). Through iterative

coding, these keywords were clustered into two components: 1) those describing particle interaction and 2)

those describing the effect of temperature. This distinction was made because, oftentimes, student

responses would exhibit a canonical understanding of one component of diffusion while maintaining a

noncanonical understanding of the other component (e.g., 'When the water is heated up, the water molecules

move faster [canonical effect of temperature], therefore attracting the ink particles more [noncanonical

particle interaction]'). Each response was then collaboratively coded to mark a canonical or noncanonical

explanation of diffusion. Responses lacking one component were deemed canonical so long as the

represented component was accurate. Noncanonical responses were those in which either of the present

component(s) was incorrect. Responses of “I don't know” or lacking both components were coded as “no

explanation.”

3.5.3 | Examples selection

Based on the results of the above coding and analysis, three example students were selected for closer narrative

description of 1) the mechanistic explanations they developed as they engaged with agent‐based computational

models and 2) how mechanistic explanations co‐existed with noncanonical theories and eventually shifted toward

canonical science. Selection criteria included data density (i.e., no absences), frequent utterances, and clear

demonstration of shifts in both variables of interest (i.e., mechanistic reasoning and understanding of diffusion).

Students are referred to by pseudonyms.

4 | RESULTS

To answer our research question, we share the results of students' developing mechanistic reasoning and

characterize their developing conceptual understanding of diffusion. Below, we share aggregated, whole‐

class frequencies and select narrative descriptions to illustrate how developments in the two dimensions of

explanations of diffusion are linked to elements of the computational modeling platform and surrounding

curriculum as students progress through the unit.

4.1 | Result #1: Students develop mechanistic explanations as they build agent‐based
models

Our first finding indicates that students' mechanistic reasoning developed as they built agent‐based models. Across

the instructional sequence, more students exhibited mechanistic reasoning (Figure 5a), and they consistently

12 | FUHRMANN ET AL.
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mentioned a greater number of mechanistic reasoning elements (Figure 5b). From the first to last day of the

instructional sequence, the number of students using mechanistic reasoning grew dramatically from two students

out of 16 (12.5%) on the pre‐survey to 16 out of 16 students (100%) on Day 7 and 68.7% on the post‐survey

(Figure 5a). We noticed especially large increases from the pre‐survey to Day 2, when students drew paper models,

and from Day 2 to 5, when students started using MoDa. We infer from these results that, over the course of the

unit, students began thinking about diffusion at a mechanistic level.

4.2 | Result #2: Students' mechanistic reasoning co‐exists with noncanonical
explanations

Considering the two learning trajectories together (Figure 6) suggests that students' mechanistic reasoning co‐exist

with noncanonical theories. Furthermore, students' mechanistic reasoning and conceptual understanding of

diffusion did not develop in parallel but were instead slightly staggered, with students proposing mechanistic

explanations with noncanonical explanations before proposing canonically‐aligned explanations. As the unit

progressed, the distribution of students' explanations shifted from no explanation or noncanonical (split evenly on

the pre‐unit survey) to a prevalence of canonical explanations (Figure 6). On Day 5, 37.5% of students (6 out of 16

students) provided a canonical explanation for diffusion, and on Day 7, 43.7% of students (7 out of 16 students)

provided a canonical explanation of diffusion. In the post‐unit survey, 62.5% of students (10 out of 16 students)

explained diffusion in a way that was scientifically accurate (Figure 6). In addition, some noncanonical explanations

persisted, while some students who offered at least some explanation on Day 5 (regardless of accuracy) offered no

explanation on the post‐survey.

Data shows that from the pre‐survey to Day 2, over four times more students included mechanistic

reasoning in their explanations for diffusion, but none of those responses included a canonical explanation of

the phenomenon. By Day 5, all but two students included causal mechanisms for diffusion, but the majority of

students still submitted noncanonical explanations. It could be that the physical experiment, paper model and

the introduction to the MoDa environment prompted students to think about causal mechanisms. However,

they might still have been exploring various theories to explain diffusion without figuring out what is the

canonical explanation.

F IGURE 5 Mechanistic reasoning results for the class. (a) The number of students exhibiting mechanistic
reasoning. (b) The average number of mechanisitic reasoning elements mentioned by students (restricted to
students using mechanistic reasoning). *Two students were absent.
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4.3 | Result #3: Students shift from noncanonical to canonical explanations after
testing theories and refining their models against the data

Breaking down student explanations of diffusion into component pieces ‐ particle interactions and the effect of

temperature—indicates that their understanding of these components did not develop concurrently but rather

seemed to progress somewhat autonomously. The canonical explanation for the effect of temperature—namely

that particles move faster at higher temperatures and slower at a low temperature ‐ appeared on Day 2 and was the

most prevalent explanation on the post‐survey (Figure 7a). The canonical explanation of particle interactions ‐ that

they bounce off each other—appeared first at Day 5 and was shared by slightly less than half the students on the

post‐unit survey (Figure 7b). Only after students spent significant time testing different theories within that

F IGURE 6 Mechanistic reasoning and explanations of diffusion. *Two students were absent.

F IGURE 7 Students' explanations for (a) the effect of temperature and (b) particle interaction within diffusion.
*Two students were absent.
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environment and comparing them to the video data (days between Day 2 and 7 in Figure 7) did students start to

shift away from noncanonical theories and converge on the canonical explanation.

4.4 | Illustrative examples

To provide a clearer illustration of how students developed explanations that include both mechanistic reasoning

and noncanonical elements, we next present narratives of three students' work. These instances also show how

comparing their mechanistic, noncanonical theories against data helped shift students' thinking toward the

canonical theory of diffusion.

4.4.1 | Example #1: A mechanistic “barrier” theory

On Day 2 of the unit, students individually drew models on paper to explain their ideas about diffusion, prompted

by the instructions to “Zoom in on what is happening that causes the ink to move about. Make sure to add labels

and arrows to clearly communicate your ideas.” Uma created the drawings and explanations in Figure 8.

In this instance, despite being in the early stages of the learning sequence, Uma provided a mechanistic

explanation for the noncanonical “barrier theory” of diffusion. In her drawing and explanation of the experiment,

she focused mainly on water, identifying entities ('water atoms'), their properties ('hotter,' 'mass,' 'resistance'), their

spatial organization (see drawing), and the relationship between cause and effect. She related the temperature of

water to the ink's ability to spread and reasoned that cold water “atoms” formed a barrier that prevented the color

from spreading while hot water “atoms” separated from each other, allowing the color to spread. Though her

explanation of particle interaction was noncanonical, her mechanistic explanation was highly detailed. On Day 5,

after working with her partner in MoDa, Uma drew an even more detailed mechanistic explanation for the

noncanonical “barrier” theory (Figure 9).

In this example, in addition to the water particles, Uma identified ink particles. She also drew lines between

particles and explained that “in cold liquid, particles attach to each other and get higher density making them

F IGURE 8 Uma's drawing and explanations of ink spread on Day 2.
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heavier.” She reasoned about the causal relationship between temperature and particle movement, maintaining a

highly mechanistic, noncanonical explanation for diffusion (the 'barrier' theory). On the post‐survey, Uma did

provide a canonical explanation (“the ink particles move in random direction from high concentration to low

concentration” and “The particles move slower in cold and faster in hot”), though we don't know specifically what

prompted her shift in reasoning.

4.4.2 | Example #2: A mechanistic attach theory refuted by video data

On Day 5, after being engaged with MoDa for 2 days, Quora and her partner collaboratively drew a detailed

mechanistic explanation for the “attach” theory of diffusion (Figure 10).

Quora and her partner identified underlying entities (“water particles” and “ink particles”), their

properties (“move faster,” “move much slower”), and reasoned about the relationship between cause and

effect between temperature and movement (line 1 for hot temperature, line 2 for cold temperature.) Though

their explanation for the effect of temperature was canonical, she maintained the idea that particles interact

by “pick[ing] up” or attaching to one another. Thus, she presented a detailed mechanistic account of a

noncanonical theory.

Later, when presenting their code to the class, Quora described how she and her partner refuted the

noncanonical “attached” theory to settled on the canonical “bounce‐off” theory:

1 Quora: It did not work because we realized that in the model there were clumps that

2 were not what we saw in real life and the video.

3 We decided that this was the wrong model and we decided to design the

F IGURE 9 Uma's drawings and explanations of ink spread on Day 5.
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4 “bounce off” model. If particles are moving slowly they will hit each other slowly so

5 ink will sink to the bottom of the container, and it is similar in the video when we look

6 at cold water.

7 We compared the model with the video, and it looks the same. Let's start with

8 low temperatures. It resembles the video, look how ink goes slow and sinks down.

In this context, as Quora compared their original “attach” model with the video data and the class experiment

(line 3, 5), they identified discrepancies between their model and the video ('we realized that in the model there

were clumps'). The inconsistencies caused them to realize that their model was inaccurate and shift their

explanation for particle interaction to the canonical “bounce off” theory.

4.4.3 | Example #3: A mechanistic “attach/freeze” explanation refuted by video data

On Day 5, after engaging with MoDa for 2 days, Jade and Joy collaboratively drew a model that offered a detailed

mechanism for noncanonical “attach/freeze” explanation of diffusion (Figure 11).

Jade and Joy demonstrated mechanistic reasoning as they identified entities ('ink molecules,' 'water molecules'),

their properties ('warm”'and 'cold'), their activities ('spread[ing],' 'attached,' 'freeze,' 'interact'), and speculated on

causation ('cold molecules freeze, but warm water does not?'). Though they proposed a few particle interactions

('attached,' 'freeze,' 'interact'), none were the canonical “bounce‐off” interaction, and they did not yet seem to

understand how temperature affects the speed of particle movement. Although they offered a detailed mechanistic

explanation, it was not yet aligned with canonical explanations of diffusion.

When they presented their computational model to the class on day seven, Jade and Joy explained how the

comparison of their model to the video (on Day 6) advanced their thinking and ultimately lead them to the canonical

explanation:

1 Joy: We played the video, we saw that particles fall dramatically and modeling that

F IGURE 10 Quora and partner's drawings and explanations of ink spread on Day 5.
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2 was kind of hard. I was trying to add [code] blocks to see what each block is

3 doing, but we also looked at the video to see if it matched the model or not. We did trial

4 and error, adding a block and checking the video, and again.

5 Teacher: This is what scientists do when they design models. They are trying to run the

6 model and looking at the video [data] and testing, running the model in cold

7 temperature to match the video [data].

8 Joy: … We wanted to move the water particles and spread them more, then bounce the

9 particles so they will spread more. Move things to bounce off them. In cold water, it's

10 the exact same thing, but all particles move slower. Ink particles moving and spreading

11 slower.

Jade and Joy took a self‐described “trial and error” process of adjusting their model based on comparison with the

video (line 3–4). Eventually, they decided a purely “bounce off” model gave them the closest match to the video and

described how it worked for both hot and cold water (lines 9–10). By comparing their computational model to the video

data, Jade and Joy achieved an explanation that was both mechanistic and aligned with canonical understanding.

4.5 | Summary of findings

Students' explanations of diffusion shifted throughout the instructional sequence from no explanation or noncanonical

(split evenly on the pre‐unit survey) to a prevalence of canonical explanations. Examining the above learning trajectories

together (Figure 6) suggests that students' mechanistic reasoning and conceptual understanding of diffusion did not develop

in parallel. Mechanistic reasoning surfaced as students engaged with the level of the causal explanation (i.e., a particle level

F IGURE 11 Jade and Joy drawings and explanations of ink spread on Day 5.
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in the case of diffusion) and often co‐existed with wrong, noncanonical ideas. Canonical understanding developed as

students compared their modeled mechanistic explanations against real‐world data.

5 | DISCUSSION

5.1 | Mechanistic reasoning and canonical understanding do not develop in parallel

Over the course of an 8‐day unit on diffusion, 6th‐grade students' mechanistic reasoning both progressed and co‐

existed with noncanonical explanations. At the beginning of the instructional unit, 6th grade students did not offer

causal mechanisms for diffusion. After being introduced to the MoDa agent‐based environment, they began

providing more mechanistic explanations. Echoing previous work (e.g., Fuhrmann et al., 2018; Fuhrmann,

Fernandez, et al., 2022; Fuhrmann, Wagh, et al., 2022), engagement with a block‐based environment that enabled

students to describe the creation of particles (entities), their properties, and activities, resulted in explanations of

diffusion that included these micro‐level, causal mechanisms.

Surprisingly, mechanistic reasoning did not immediately direct students to canonical explanations. As students

generated mechanistic explanations of how ink particles spread in cold and hot water, the mechanisms they initially

expressed were largely noncanonical. The shift to a canonical explanation mainly occurred when students validated

their computational models with the experimental data, often facilitated by the teacher during class presentations.

As students compared their designed models with video of the diffusion experiment, they often noticed

discrepancies that prompted them to rethink their explanations and re‐design their models to better resemble the

real‐world data. We note that this trend organically emerged in a science class taught by a teacher experienced with

computational modeling rather than through researcher intervention. While the role of discrepancies in developing

thinking in this way is not new (Fuhrmann et al., 2018), the integration of video data into the modeling platform

itself likely facilitated and elevated such comparisons. Moreover, echoing tenets of the conceptual change literature

(Smith III et al., 1994), these findings underscore the efficacy of the activity design—including the modeling

platform, the curriculum activities, and teacher facilitation—in surfacing the range of students' non‐canonical

explanations, in this case, about diffusion (Friedler et al., 1987; Meir et al., 2005; Odom, 1995; Sanger et al., 2001;

Zuckerman, 1994). We position our findings as aligned with existing literature such as that on learning progressions

covering a range of topics (Hadenfeldt et al., 2014; Johnson & Tymms, 2011; Merritt & Krajcik, 2013).

In the course of a computational modeling unit exploring diffusion, students' explanations seem to traverse a

two‐dimensional space defined by axes of mechanistic reasoning and canonical understanding (Figure 12). Students

typically began with nonmechanistic, noncanonical explanations (see Figure 12, bottom left) eventually transitioning

to mechanistic, canonical explanations (see Figure 12, top right), sometimes by way of mechanistic, but

noncanonical explanations (see Figure 12, top left). This coexistence of mechanistic reasoning and noncanonical

explanations reinforces the notion that mechanistic reasoning is a function of an argument's structure rather than

its content (Krist et al., 2019; Russ et al., 2008). Interestingly, few students exhibited canonical explanations with

nonmechanistic reasoning (see Figure 12, bottom right). We posit, and support with the above data, that: 1)

modeling experiences (whether on paper or in a computer model) drove the development of students' mechanistic

reasoning, and 2) comparing their own models with the video data in MoDa together with teachers' use of the

designed curriculum shifted students' conceptual explanations from noncanonical to canonical.

5.2 | Implications for educational design and practice

This study holds several implications for teachers and educational designers. First, despite its limited block library,

MoDa accommodated students' diverse ideas. As “a tool to think with” (Papert, 1980), MoDa's block library, in
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conjunction with the accompanying curriculum, encouraged students to articulate and explore various noncanonical

explanations for diffusion. Related work on computational modeling, including our own (Wagh & Wilensky, 2018;

Wilkerson, Wagh, et al., 2015), has typically provided students with programming blocks designed around canonical

ideas in science. Based on the findings presented above, we suggest the value of including blocks that enable

students to express their own ideas, including noncanonical ones, as a crucial step in learning science: engaging in

modeling in ways that are more epistemically authentic to professional practice in developing their mechanistic

reasoning and conceptual understanding of scientific phenomena through computational modeling.

Second, the design of the MoDa's modeling area alongside real‐world data provided students with direct access

to data for reference, enabling them to compare their models with empirical evidence embedded in MoDa.

Students' validation of their models based on data offers opportunities for refining noncanonical models and

transitioning toward canonical explanations, as both the aggregate data and vignettes above illustrate.

Furthermore, we note that these findings emerged within a middle school classroom run by the teacher, rather

than in extended workshops or one‐on‐one settings run by researchers. Thus, appropriate curriculum design and

expert facilitation can foster advanced disciplinary sense‐making in everyday classroom settings.

Lastly, the development of mechanistic reasoning alongside noncanonical explanations appears to be

closely associated with MoDa's capabilities and underscores the importance of offering authentic modeling

experiences. This study highlights the need for a deeper level of disciplinary sense‐making, encompassing not

only access to data but also considering the overall unit design including facilitation, time management, elements

of UI/UX, the curricular activities, and the support of exceptional teachers. Modeling plays a central role in this

comprehensive design. The documented correspondences between developing mechanistic reasoning and

conceptual understanding—linked to explanatory mechanism and data‐based validation, respectively—could

inform the design and teaching of other, non‐computational modeling instructional materials within science

classrooms.

F IGURE 12 The space of mechanistic reasoning and canonical understanding, populated with student
responses.
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5.3 | Limitations

We note the role of the instructional unit's diverse media in prompting and capturing students' developing skills and

understanding. Our five data sources included three different media: typed responses to open‐end pre/post‐survey

questions, models drawn with pen and pencil on paper, and verbal descriptions of block‐based coding models. We

suspect that the text‐based typed responses in particular may have made it harder for students to enter detail or

description that the drawings and verbal presentations better supported (see, from Day 7 to the Posttest, the

decrease in mechanistic reasoning (Figure 5a) and the decrease in students offering any explanation of diffusion

(Figure 6). We interpret these findings as suggesting the strengths of particular media—in this case, paper models

and verbal presentations—for eliciting more detailed explanations from students. Finally, we applied the same two

coding rubrics to all three data types.

Based on the implications above, we may have underestimated students' reasoning or understanding at the

time‐points that used text‐based responses (pre‐ and post‐unit survey). Further analysis that leverages deeper

conceptual mapping techniques (e.g., as in Moreira et al., 2019 or Macrie‐Shuck & Talanquer, 2020) could offer

deeper insight into the structure and nature of students' explanations, versus our intention to examine this

development as intertwined interactions with the specific features of tools and data‐based comparisons. We also

note the relative prevalence of text‐based activities and assessments within educational resources more generally

and echo calls to streamline the collection and assessment of richer media such as drawings and verbal explanations

that may more fully capture students' learning.

Finally, we acknowledge that not all the students demonstrated a canonical understanding of diffusion by the

end of the unit (10 out of 16 demonstrated a canonical understanding at post‐test). However, we maintain that

incorporating noncanonical ideas into science instruction and environments, as MoDa does, is essential as it: 1)

surfaces students' prior knowledge and possible sources of confusion, allowing educators to mediate the learners'

knowledge building; and 2) allows students to experience how scientists work and how scientific models are

generated and validated. We also acknowledge that giving time for students to explore noncanonical ideas can be a

new dynamic for teachers, who may need support in learning how to scaffold their students' reasoning toward

canonical understanding.

6 | CONCLUSIONS

This study of 6th grade students' work in a computational modeling unit on diffusion both described whole class

shifts in mechanistic reasoning and conceptual understanding across the instructional sequence and offered three

illustrative examples of student work to trace those shifts to elements of the instructional unit and modeling

environment. We found that students' mechanistic reasoning co‐existed with noncanonical theories. In particular,

students' explanations took on more mechanistic elements as they used the agent‐based modeling environment.

Separately, their explanations shifted from none given or noncanonical to canonical as they used the modeling

environment to simulate noncanonical theories, compared them to experimental video data, and revised their

models to resolve discrepancies. Implications for model‐based design and curriculum include the necessity of

exploring noncanonical theories to surface students' diverse ideas about a phenomenon and of integrating

comparison with real‐world data to connect those ideas with canonical science.

ACKNOWLEDGMENTS

We thank Dr. Engin Bumbacher for his formative contributions to the research project. We also thank Ms. Jenny

Billings and her students for their thoughtful engagement with this project. This material is based upon work

supported by the National Science Foundation under Grant No. DRL‐2010413. Any opinions, findings, and

22 | FUHRMANN ET AL.

 1098237x, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sce.21890 by C

olum
bia U

niversity Libraries, W
iley O

nline Library on [17/07/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect

the views of the National Science Foundation.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are not publically available so as to protect the identity of the

participants involved.

ORCID

Tamar Fuhrmann http://orcid.org/0000-0002-6139-2867

Leah Rosenbaum https://orcid.org/0000-0001-7977-2297

Aditi Wagh http://orcid.org/0000-0002-7807-3344

Adelmo Eloy http://orcid.org/0000-0002-5658-7774

Jacob Wolf http://orcid.org/0009-0003-1504-5236

Paulo Blikstein http://orcid.org/0000-0003-3941-1088

Michelle Wilkerson http://orcid.org/0000-0001-8250-068X

REFERENCES

Arastoopour Irgens, G., Dabholkar, S., Bain, C., Woods, P., Hall, K., Swanson, H., Horn, M., & Wilensky, U. (2020). Modeling

and measuring high school students' computational thinking practices in science. Journal of Science Education and

Technology, 29, 137–161.
Astolfi, J. P. (1999). El tratamiento didáctico de los obstáculos epistemológicos. Revista Educación y Pedagogía, 25, 149–171.
Bielik, T., Fonio, E., Feinerman, O., Duncan, R. G., & Levy, S. T. (2021). Working together: Integrating computational

modeling approaches to investigate complex phenomena. Journal of Science Education and Technology, 30, 40–57.
Blikstein, P. (2014). Bifocal modeling: Promoting authentic scientific inquiry through exploring and comparing real and ideal

systems linked in real‐time, In Playful user interfaces (pp. 317–352). Springer.
Blikstein, P., Fuhrmann, T., & Salehi, S. (2016). Using the bifocal modeling framework to resolve “discrepant events”

between physical experiments and virtual models in biology. Journal of Science Education and Technology, 25(4),

513–526. https://doi.org/10.1007/s10956-016-9623-7
Chiu, J. L., DeJaegher, C. J., & Chao, J. (2015). The effects of augmented virtual science laboratories on middle school

students’ understanding of gas properties. Computers & Education, 85, 59–73.
Conlin, L., Hutchins, N., Grover, S., & Biswas, G. (2020). “Doing Physics” and “Doing Code”: Students' Framing During

Computational Modeling in Physics. International Conference of the Learning Sciences.

Corbin, J., & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for developing grounded theory (4).
Sage Publications.

Dickes, A. C., Sengupta, P., Farris, A. V., & Basu, S. (2016). Development of mechanistic reasoning and multilevel
explanations of ecology in third grade using agent‐based models. Science Education, 100(4), 734–776.

Dou, R., Hogan, D., Kossover, M., Spuck, T., & Young, S. (2013). Defusing diffusion. The American Biology Teacher, 75(6), 391–395.
Eloy, A., Wolf, J., Fuhrmann, T., Bumbacher, E., Wilkerson, M. H., & Blikstein, P. (2022). MoDa: Designing an integrated

platform for computational modeling & data analysis for sustained investigations in science classroomsInProceedings

of the 2022 Annual Meeting of the International Society for the Learning Sciences (ISLS 2022).
Farris, A. V., Dickes, A. C., & Sengupta, P. (2019). Learning to interpret measurement and motion in fourth grade

computational modeling. Science & Education, 28, 927–956.
Fisher, K. M. (1985). A misconception in biology: Amino acids and translation. Journal of Research in Science Teaching, 22(1),

53–62.
Friedler, Y., Amir, R., & Tamir, P. (1987). High school students' difficulties in understanding osmosis. International Journal of

Science Education, 9(5), 541–551.
Fuhrmann, T., & Blikstein, P. (2017). Complex bifocal model labs in a science class: Combining computer models and real

world data in a diffusion unit, Presentation at the annual meeting of the American Educational Research

Association (AERA).
Fuhrmann, T., Fernandez, C., Blikstein, P., & de Deus Lopes, R. (2022). “Can molecules change their color?” Exploring

students' non‐canonical ideas while programming a model of diffusion. In C. Chinn, E. Tan, C. Chan, & Y. Kali (Eds.),

Proceedings of the 16th International Conference of the Learning Sciences - ICLS 2022 (pp. 1429–1432). International
Society of the Learning Sciences.

FUHRMANN ET AL. | 23

 1098237x, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sce.21890 by C

olum
bia U

niversity Libraries, W
iley O

nline Library on [17/07/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

http://orcid.org/0000-0002-6139-2867
https://orcid.org/0000-0001-7977-2297
http://orcid.org/0000-0002-7807-3344
http://orcid.org/0000-0002-5658-7774
http://orcid.org/0009-0003-1504-5236
http://orcid.org/0000-0003-3941-1088
http://orcid.org/0000-0001-8250-068X
https://doi.org/10.1007/s10956-016-9623-7


Fuhrmann, T., Salehi, S., & Blikstein, P. (2014). A tale of two worlds: Using bifocal modeling to find and resolve “Discrepant
Events” between physical experiments and virtual models in biology, Proceedings of the 2014 Annual Meeting of the

International Society of the Learning Sciences (ISLS) 2014, Colorado, CO. International Conference of the Learning
Sciences (Vol 2, pp. 863–870).

Fuhrmann, T., Schneider, B., & Blikstein, P. (2018). Should students design or interact with models? Using the bifocal

modelling framework to investigate model construction in high school science. International Journal of Science

Education, 40(8), 867–893.
Fuhrmann, T., Wagh, A., Eloy, A., Wolf, J., Bumbacher, E., Wilkerson, M. H., & Blikstein, P. (2022). Infect, attach or bounce

off?: Linking real data and computational models to make sense of the mechanisms of diffusion, Proceedings of the

16th International Conference of the Learning Sciences ‐ ISLS 2022 (pp. 1445–1448). International Society of the
Learning Sciences.

Hadenfeldt, J. C., Liu, X., & Neumann, K. (2014). Framing students' progression in understanding matter: A review of
previous research. Studies in Science Education, 50(2), 181–208.

Hammer, D., & Elby, A. (2002). On the form of a personal epistemology. Personal Epistemology: The Psychology of Beliefs

about Knowledge and Knowing (pp. 169–190). Routledge.
Hmelo‐Silver C. E., & Pfeffer, M. G. (2004). Comparing expert and novice understanding of a complex system from the

perspective of structures, behaviors, and functions. Cognitive Science, 28(1), 127–138.
Holmes, N. G., Wieman, C. E., & Bonn, D. A. (2015). Teaching critical thinking. Proceedings of the National Academy of

Sciences, 112(36), 11199–11204.
Hutchins, N. M., Biswas, G., Zhang, N., Snyder, C., Lédeczi, Á., & Maróti, M. (2020). Domain‐specific modeling languages in

computer‐based learning environments: A systematic approach to support science learning through computational
modeling. International Journal of Artificial Intelligence in Education, 30, 537–580.

Inagaki, K., & Hatano, G. (2006). Young children's conception of the biological world. Current Directions in Psychological

Science, 15(4), 177–181.
Johnson, P., & Tymms, P. (2011). The emergence of a learning progression in middle school chemistry. Journal of Research in

Science Teaching, 48(8), 849–877.
Krist, C., Schwarz, C. V., & Reiser, B. J. (2019). Identifying essential epistemic heuristics for guiding mechanistic reasoning in

science learning. Journal of the Learning Sciences, 28(2), 160–205.
Löhner, S., van Joolingen, W. R., Savelsbergh, E. R., & van Hout‐Wolters, B. (2005). Students' reasoning during modeling in

an inquiry learning environment. Computers in Human Behavior, 21(3), 441–461.
Louca, L. T., & Zacharia, Z. C. (2008). The use of computer‐based programming environments as computer modelling tools

in early science education: The cases of textual and graphical program languages. International Journal of Science

Education, 30(3), 287–323.
Louca, L. T., Zacharia, Z. C., & Constantinou, C. P. (2011). In quest of productive modeling‐based learning discourse in

elementary school science. Journal of Research in Science Teaching, 48(8), 919–951.
Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.
Macrie‐Shuck, M., & Talanquer, V. (2020). Exploring students’ explanations of energy transfer and transformation. Journal of

Chemical Education, 97(12), 4225–4234.
Meir, E., Perry, J., Stal, D., Maruca, S., & Klopfer, E. (2005). How effective are simulated molecular‐level experiments for

teaching diffusion and osmosis? Cell Biology Education, 4(3), 235–248.
Merritt, J., & Krajcik, J. (2013). Learning progression developed to support students in building a particle model of matter, In

Concepts of matter in science education (pp. 11–45). Springer.
Moreira, P., Marzabal, A., & Talanquer, V. (2019). Using a mechanistic framework to characterise chemistry students’

reasoning in written explanations. Chemistry Education Research and Practice, 20(1), 120–131.
National Research Council. (2012). A framework for K‐12 science education: Practices, crosscutting concepts, and core ideas.

National Academies Press.
Nersessian, N. J. (2002). The cognitive basis of model‐based reasoning in science. In The cognitive basis of science (pp.

133–153). Cambridge University Press.

NGSS Lead States. (2013). Next generation science standards: For states, by states. The National Academy Press.
Odom, A. L. (1995). Secondary & college biology students' misconceptions about diffusion & osmosis. The American Biology

Teacher, 57, 409–415.
Papert, S. A. (1980). Mindstorms: Children, computers, and powerful ideas. Basic Books.

Passmore, C., Stewart, J., & Cartier, J. (2009). Model‐based inquiry and school science: Creating connections. School Science
and Mathematics, 109(7), 394–402.

Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International
Journal of Science Education, 34(10), 1535–1554.

24 | FUHRMANN ET AL.

 1098237x, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sce.21890 by C

olum
bia U

niversity Libraries, W
iley O

nline Library on [17/07/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Perkins, D. N., & Grotzer, T. A. (2000). Models and moves: Focusing on dimensions of causal complexity To achieve deeper

scientific understanding. ERIC.
Pierson, A. E., Brady, C. E., & Clark, D. B. (2020). Balancing the environment: Computational models as interactive

participants in a STEM classroom. Journal of Science Education and Technology, 29, 101–119.
Russ, R. S., Scherr, R. E., Hammer, D., & Mikeska, J. (2008). Recognizing mechanistic reasoning in student scientific inquiry:

A framework for discourse analysis developed from philosophy of science. Science Education, 92(3), 499–525.
Salmon, W. C. (1978). Why ask, “Why?” An inquiry concerning scientific explanation. Proceedings and Addresses of the

American Philosophical Association, 51, 683–705.
Sanger, M. J., Brecheisen, D. M., & Hynek, B. M. (2001). Can computer animations affect college biology students'

conceptions about diffusion & osmosis? The American Biology Teacher, 63, 104–109.
Schwarz, C. V., Akcaoglu, M., Ke, L., & Zhan, L. (2013). Fifth grade students' engagement in modeling practice across content

areas: What epistemologies in practice change over time and how. Annual Meeting of the American Educational
Research Association.

Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., Shwartz, Y., Hug, B., & Krajcik, J. (2009).

Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for
learners. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science

Teaching, 46(6), 632–654.
Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating computational thinking with K‐12 science

education using agent‐based computation: A theoretical framework. Education and Information Technologies, 18, 351–380.
She, H.‐C. (2004). Facilitating changes in ninth grade students' understanding of dissolution and diffusion through DSLM

instruction. Research in Science Education, 34(4), 503–525.
Smith III, J. P., DiSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: A constructivist analysis of knowledge in

transition. Journal of the Learning Sciences, 3(2), 115–163.
Springer, K., & Keil, F. C. (1991). Early differentiation of causal mechanisms appropriate to biological and nonbiological

kinds. Child Development, 62(4), 767–781.
Stains, M., & Sevian, H. (2015). Uncovering implicit assumptions: A large‐scale study on students' mental models of

diffusion. Research in Science Education, 45(6), 807–840.
van Mil, M. H. W., Boerwinkel, D. J., & Waarlo, A. J. (2013). Modelling molecular mechanisms: A framework of scientific

reasoning to construct molecular‐level explanations for cellular behaviour. Science & Education, 22(1), 93–118.
Wagh, A., Fuhrmann, T., Eloy, A. A., da, S., Wolf, J., Bumbacher, E., Blikstein, P., & Wilkerson, M. H. (2022). MoDa: Designing

a tool to interweave computational modeling with real‐world data analysis for science learning in middle schoolIn
Proceedings of Interaction Design and Children (pp. 206–211). ACM.

Wagh, A., & Wilensky, U. (2018). EvoBuild: A quickstart toolkit for programming agent‐based models of evolutionary

processes. Journal of Science Education and Technology, 27(2), 131–146.
Westbrook, S. L., & Marek, E. A. (1991). A cross‐age study of student understanding of the concept of diffusion. Journal of

Research in Science Teaching, 28(8), 649–660.
Wilensky, U. (1999). NetLogo (and NetLogo user manual). Center for connected learning and computer‐based Modeling,

Northwestern University. http://ccl.northwestern.edu/netlogo

Wilensky, U. (2003). Statistical mechanics for secondary school: The GasLab multi‐agent modeling toolkit. International
Journal of Computers for Mathematical Learning, 8, 1–41.

Wilkerson, M. H., Gravel, B. E., & Macrander, C. A. (2015). Exploring shifts in middle school learners' modeling activity while
generating drawings, animations, and computational simulations of molecular diffusion. Journal of Science Education

and Technology, 24(2), 396–415.
Wilkerson, M. H., Wagh, A., & Wilensky, U. (2015). Balancing curricular and pedagogical needs in computational

construction kits: Lessons from the DeltaTick project. Science Education, 99(3), 465–499.
Xiang, L., & Passmore, C. (2015). A framework for model‐based inquiry through agent‐based programming. Journal of

Science Education and Technology, 24(2), 311–329.
Zuckerman, J. T. (1994). Problem solver's conceptions about osmosis. The American Biology Teacher, 56, 22–25.

How to cite this article: Fuhrmann, T., Rosenbaum, L., Wagh, A., Eloy, A., Wolf, J., Blikstein, P., & Wilkerson,

M. (2025). Right but wrong: How students' mechanistic reasoning and conceptual understandings shift when

designing agent‐based models using data. Science Education, 109, 3–26. https://doi.org/10.1002/sce.21890

FUHRMANN ET AL. | 25

 1098237x, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sce.21890 by C

olum
bia U

niversity Libraries, W
iley O

nline Library on [17/07/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

http://ccl.northwestern.edu/netlogo
https://doi.org/10.1002/sce.21890


APPENDIX A: PRE‐ AND POSTTEST OPEN‐ENDED QUESTIONS
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