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ARTICLE INFO ABSTRACT

Keywords: Information on planting dates is crucial for modeling crop development, analyzing crop yield, and evaluating the
Planting Dates effectiveness of policy-driven planting windows. Despite their high importance, field-level planting date datasets
Phenology

are scarce. Satellite remote sensing provides accurate and cost-effective solutions for detecting crop phenology
from moderate to high resolutions, but remote sensing-based crop planting date detection is rare. Here, we aimed
to generate field-level crop planting date maps by taking advantage of satellite remote sensing-derived pheno-
logical metrics and proposed a two-step framework to predict crop planting dates from these metrics using
required growing degree dates (RGDD) as a bridge. Specifically, we modeled RGDD from the planting date to the
spring inflection date (derived from phenological metrics) and then predicted the crop planting dates based on
phenological metrics, RGDD, and environmental variables. The ~3-day and 30-m Harmonized Landsat and
Sentinel-2 (HLS) products were used to derive crop phenological metrics for corn and soybean fields in the U.S.
Midwest from 2016 to 2021, and the ground truth of field-level planting dates from USDA Risk Management
Agency (RMA) reports were used for the development and validation of our proposed two-step framework. The
results indicated that our framework could accurately predict field-level planting dates from HLS-derived
phenological metrics, capturing 77 % field-level variations for corn (mean absolute error, MAE=4.6 days) and
71 % for soybean (MAE=5.4 days). We also evaluated the predicted planting dates with USDA National Agri-
cultural Statistics Service (NASS) state-level crop progress reports, achieving strong consistency with median
planting dates for corn (R2=0.90, MAE=2.7 days) and soybeans (R?=0.87, MAE=2.5 days). The model’s per-
formance degraded slightly when predicting planting dates for fields with irrigation (MAE=5.4 days for corn,
MAE=6.1 days for soybean) and cover cropping (MAE=5.4 days for corn, MAE=5.6 days for soybean). The USDA
RMA Common Crop Insurance Policy (CCIP) provides county- or sub-county-level crop planting windows, which
drive producers’ decisions on when to plant. Within the CCIP-driven planting windows, higher prediction ac-
curacies were achieved (MAE for corn: 4.5 days, soybean: 5.2 days). Our proposed two-step framework
(phenological metrics-RGDD-planting dates) also outperformed the traditional one-step model (phenological
metrics-planting dates). The proposed framework can be beneficial for deriving planting dates from current and
future phenological products and contribute to studies related to planting dates such as the analysis of yield gaps,
management practices, and government policies.

Required Growing Degree Days
Corn and Soybean

U.S. Midwest

Harmonized Landsat and Sentinel-2

1. Introduction under climate change, and evaluating the effectiveness of the govern-
ment’s policies on crop planting (Boyer et al., 2023; Cassman and

Planting dates play an important role in crop development and Grassini, 2020; Khan et al., 2017b; Urban et al., 2018). Timely planting
growth, affecting crop yields, reflecting farmers’ management practices is crucial for root growth initiation and vegetative development (Khan
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et al., 2017a) and to ensure favorable climate conditions during the
critical growth stages such as flowering (Sacks et al., 2010). Delayed
planting may lead to reduced photosynthesis and decreased duration of
plant growth (Hu and Wiatrak, 2012), while early planting tends to have
challenges in the seedling establishment because of low temperatures
(Khan et al., 2017a). Inappropriate planting date is one of the major
reasons for reduced crop yields (Bussmann et al., 2016). Choosing
optimal planting dates can maximize beneficial conditions and minimize
detrimental conditions during crop growth, ultimately improving crop
yield potential (Hu and Wiatrak, 2012; Urban et al., 2018; Zhang et al.,
2021). Optimal planting dates are typically within a “planting window”
and farmers always face a decision of when to plant (Bussmann et al.,
2016). Planting dates also reflect how farmers respond to weather
variability, and shifting planting dates is an important adaptation
strategy for farmers to maintain crop yield (Waha et al., 2013). Gov-
ernment policies related to planting dates should be able to guide
farmers to plant crops within reasonable time windows to avoid yield
deductions.

Accurate records of crop planting dates are crucial for assessing the
agronomic and environmental impact of management activities on
agricultural systems. Long-term planting date datasets are valuable for
understanding farmers’ planting decisions (Deines et al., 2023;
Kucharik, 2006; Sacks et al., 2010). Adjusting crop growing seasons can
reduce the impacts of weather variability on crop growth (Miller et al.,
2021) and mitigate pest pressure (Pulakkatu-Thodi et al., 2014), but
may also affect regional carbon cycling, water use, soil erosion, and
surface energy balance (Deines et al., 2023; Ren et al., 2024). To
maximize the ecological and economic benefits, optimal planting win-
dows should be appropriately designed (Sacks et al., 2010). Determining
yield-maximizing planting dates is economically important (Boyer et al.,
2015; Egli and Cornelius, 2009; Hu and Wiatrak, 2012) and has been
studied for decades (Boyer et al., 2023). Multiple factors may affect
planting dates, such as economic factors, which may include the avail-
ability of agricultural machinery, farmer credit, and risk tolerance
(Borchers et al., 2014; Johansen et al., 2012); and management factors,
which may include irrigation, cover cropping, and tillage (Acharya
etal., 2017; Teasdale and Mirsky, 2015), and planting intensity and crop
varieties (Kucharik, 2006; Zhang et al., 2021). Each year the USDA Risk
Management Agency (RMA) Common Crop Insurance Policy (CCIP)
Special Provisions publish the earliest and final planting dates at the
county or sub-county level for crop insurance in the U.S., serving as a
guideline for farmers to choose economically advantageous planting
dates (Schnitkey, 2013). Since employing crops with different planting
dates is beneficial for sustainable agroecosystems (Cassman and Grass-
ini, 2020; Isbell et al., 2017; Nicholls and Altieri, 2013), it is also
important to determine optimal planting dates for maximizing both
ecological and economic benefits. Thus, planting date records are crucial
for policymakers to understand farmers’ planting practices and design
more flexible and beneficial planting windows for sustainable agricul-
ture (Miller et al., 2021).

Despite their importance, planting date datasets are often limited to
coarse resolutions or regional scales, while they are desired at fine res-
olutions or field level. When released to the public, planting dates are
typically aggregated into large administrative regions (Urban et al.,
2018), such as the state-level crop progress reports produced by the
USDA National Agricultural Statistics Service (NASS). Due to the high
spatial variability of soil properties, economic factors, and cropping
conditions (Bussmann et al., 2016; Feola et al., 2015; Zhang et al.,
2021), planting dates of adjacent fields can differ by as much as one
month (Zhang et al., 2021). Thus, coarse-resolution planting date
datasets could not meet the needs of many applications that rely on fine-
resolution planting date information (Urban et al., 2018). Satellite
remote sensing provides an opportunity to derive field-level planting
date maps cost-effectively. However, few previous studies have been
focused on mapping field-level planting dates at large scales (Deines
et al, 2023), because most studies are focused on deriving crop
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phenological metrics (Gao et al., 2017; Piao et al., 2019; Zeng et al.,
2020). Long-term crop phenology datasets are publicly available from
moderate to fine resolutions at regional or global scales (Ganguly et al.,
2010; Moon et al., 2022; Niu et al., 2022; Zhang et al., 2018a). Deriving
field-level planting dates from crop phenological metrics will be bene-
ficial for generating planting date maps with high accuracies and large
spatiotemporal coverages.

Here, we primarily focused on developing a framework to accurately
convert satellite remote sensing derived crop phenological metrics into
field-level planting dates across a large region. Crop phenological met-
rics can be characterized from the satellite detected seasonality of crop
growth (Zhang et al., 2018b), which can be further combined with the
concept of crop growing degree-days (GDD) to determine crop status
after planting (Delpierre et al., 2009; Lobell et al., 2011; Piao et al.,
2019). GDD is a useful agriculture-climate indicator to predict crop
growth stages, and required GDDs (RGDD) from planting dates to
emergence, spring inflection date, or maturity are widely used to
determine crop growth (Akyuz et al., 2017; Pathak and Stoddard, 2018;
Sacks and Kucharik, 2011). RGDD should be dynamically modeled since
it is affected by climate conditions (Pathak and Stoddard, 2018), soil
properties (Trachsel et al., 2011), and growing regions (Sacks et al.,
2010). Thus, we proposed a two-step framework (phenological metrics-
RGDD-planting dates) to predict field-level planting dates from satellite-
derived crop phenological metrics using RGDD as a bridge. Specifically,
we used 30-m and ~3-day NASA’s Harmonized Landsat and Sentinel-2
(HLS) products to derive field-level crop phenological metrics for corn
and soybean in the U.S. Midwest from 2016 to 2021, and we used field-
level planting dates from USDA RMA to develop models for RGDD and
planting date predictions. An independent holdout of 20% USDA RMA
field-level planting date reports and state-level USDA NASS crop prog-
ress reports were used for performance validation. This study can
advance our capability to detect field-level planting dates across large
regions for sustainable agriculture management.

2. Material
2.1. Study region

Our study region includes 12 states in the U.S. Midwest, including
lllinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri,
Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin (Fig. 1a).
The corn-soybean system in this region is highly productive, accounting
for over 85% of total U.S. (Deines et al., 2023) and over 30% of global
corn and soybean production (USDA, 202.3). The soil types in this region
are mainly Alfisols, Mollisols, and Entisols (Clark et al., 2019; Potash
et al., 2022), and the climate conditions can be characterized as semi-
arid in the western part and warm-summer humid in the central and
eastern parts (Peel et al., 2007). Since the 1980s, the U.S. Midwest has
experienced increased daily temperature, increased precipitation from
mid-spring to early summer, and decreased precipitation from mid-
summer to early fall (Dai et al., 2016). Planting dates are generally
earlier in the warmer states and later in the cooler states in the U.S.
Midwest (Deines et al., 2023) with significant shifts over the past de-
cades (Deines et al., 2023; Kucharik, 2006; Sacks and Kucharik, 2011).

2.2. Data

Four major categories of datasets were used in this study including
ground truth data, satellite data, environmental data, and auxiliary data.
The ground truth data included insurance unit-level RMA planting dates
from 2016 to 2020 and state-level NASS crop progress reports from 2016
to 2021. The field polygons were derived from the crop units and
covered the 12 states in the U.S. Midwest (Tables S1 and S2). These
polygons were further compared with the NASS Cropland Data Layer
(CDL) (Boryan et al., 2011). The crop type with the most CDL pixels in
the field polygons was considered the CDL crop type. Only polygons
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Fig. 1. (a) Study region and corn-soybean fractions in the U.S. Midwest derived from USDA National Agricultural Statistics Service (NASS) Cropland Data Layer
(CDL) from 2008 to 2022 and (b) the conceptual framework for predicting field-level planting dates from crop phenology using required growing degree days (RGDD)
from the planting date (PD) to the spring inflection date (SID, derived from satellite vegetation index (VI) time series) as a bridge.

with matched CDL and RMA crop types were kept for model develop-
ment and validation. State-level crop progress reports from the USDA
NASS Quickstats (https://quickstats.nass.usda.gov) were used for
additional independent validation. Since crop progress reports only
provide week-ending statistics, the mid-week date was used for valida-
tion, calculated by subtracting 3.5 days from the week-ending date.

The satellite dataset was NASA’s HLS observations (version 2) from
2016 to 2021 (Claverie et al., 2018), which are 30-m and ~3-day
seamless products from both the Operational Land Imager (OLI) on-
board Landsat-8 and Multi-Spectral Instrument (MSI) onboard Sentinel-
2. The high-quality HLS time series after applying the quality assurance
(QA) layer was used to derive field-level phenological metrics for corn
and soybean fields in the U.S. Midwest. The QA layer in the HLS product
was generated by the Fmask algorithm (Zhu et al., 2015), and pixels
with a QA flag indicating cloud, cloud shadow, snow, and water were
disregarded.

The environmental data included 10-m gSSURGO (Gridded Soil
Survey Geographic Database) soil data in 2020 from the USDA-NRCS
and 2.5-arc PRISM climatic data (Daly et al., 2015) from 2016 to
2021. The environmental datasets were used to develop models for
RGDD and planting date predictions.

The auxiliary data included CDL and field boundary layer. The 30-m
annual CDL data were used to identify corn and soybean pixels and to
remove field polygons that CDL and RMA crop types were inconsistent.
Our internal field boundary layer based on the common land unit (CLU)
was refined by each year’s CDL and was used to aggregate pixels into
fields.

The HLS, gSSURGO, PRISM, and CDL data were matched at the field
level based on the field boundary layer. Specifically, for fine-resolution
data (e.g. HLS, gSSURGO, and CDL), multiple pixels within a field were
averaged (for continuous numeric data such as HLS reflectance and
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gSSURGO clay content) or assigned the majority value (for categorical
data such as CDL crop type and gSSURGO soil texture). For coarse-
resolution data such as the 2.5-arc PRISM data, most fields were
smaller than one PRISM pixel, and we used the pixel centered at the field
to extract climatic information.

3. Methodology

To derive field-level planting dates from satellite-based phenological
metrics, we proposed a two-step framework (phenological metrics-
RGDD-planting date) with the following three major steps: (1) derive
field-level crop phenological metrics from HLS vegetation index time
series; (2) model RGDD using phenological metrics and environmental
variables; and (3) predict field-level planting dates based on RGDD,
phenological metrics, and environmental variables. A flowchart that
summarizes these three steps is shown in Fig. 2.

3.1. Deriving phenological metrics

High-quality vegetation index time series is crucial to characterize
crop growth and normalized difference vegetation index (NDVI) has
been proven successful in detecting crop phenology (Beck et al., 2006;
Liu et al., 2022; Zhang et al., 2003). Although the cloud mask (QA layer)
was applied to the satellite products, the remaining residual noise
caused by dust, cloud shadow, and snow in the time series may affect the
usage of the NDVI time series. A revised algorithm from Chen et al.,
(2004) based on the Savitzky-Golay filter was used to remove outliers
and reconstruct a high-quality NDVI time series, which included modi-
fications for potential cover cropping and was more suitable for corn and
soybean fields in the U.S. Midwest (Zhou et al., 2022).

The classic double logistic function was used to determine pheno-
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Fig. 2. Flowchart of deriving field-level planting dates from satellite remote sensing using a two-step framework. The framework includes three major modules: (1)
deriving phenological metrics (parameters al to a8) from Harmonized Landsat and Sentinel-2 (HLS) normalized difference vegetation index (NDVI) time series, (2)
modeling required growing degree days (RGDD) from planting date to spring inflection date, and (3) predicting field-level planting dates based on phenological

metrics, RGDD, and environmental variables.
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logical stages (Beck et al., 2006; Melaas et al., 2013; Zhang et al., 2003).
For a given location, the time series (G(t)) can be modeled by two lo-
gistic functions for the spring (S(t)) and fall (F(t)) time series (Babcock
et al., 2021). Thus, G(t) can be written as Eq. (1).

a

S(t) = &+

1 <t<ag
(o) )

F(t)=as + ag <t < 365

az
where a; is spring minimum greenness, a; is seasonal maximum
greenness, as controls spring green-up rate, a4 is spring inflection date,
as is fall minimum greenness, as controls fall green-up rate, a; is fall
inflection date, and ag is the date when S(t) = F(t). Since cover cropping
may delay planting dates of main cash crops (Deines et al., 2023; Osi-

pitan et al., 2019) as shown in Fig. S1, a Gaussian function (Eq. (2)) was
included to model the growth of potential cover crops.

>1<t<ag

where ag is the peak greenness of cover crops, ajo is the date of peaking
cover crop greenness, and a;; is the standard deviation of cover crop
greenness. To avoid the impacts of weeds, we assumed that a; +ag
should be larger than 0.4 for cover cropping fields (Wang et al., 2023;
Zhou et al., 2022). Thus, the NDVI time series with potential cover
cropping can be written as Eq. (3).

G(t) = {S(t) +Ct1 <t<ag

(t—ao)®
2(1112

C(t) = agexp ( - (2)

F(t)as < t < 365 3

where C(t) equals zero when a; + ag < 0.4. The phenological metrics
and their descriptions are summarized in Table S3.

3.2. Modeling RGDD

After obtaining phenological metrics, we derived RGDD from the
planting date to the spring inflection date using Eq. (4). The planting
date was derived from field-level data, the spring inflection date was
derived from satellite-based phenological metrics, and GDD was derived
from the PRISM climatic data. Since the field-level reports did not have
direct measures of RGDD, the derived RGDD data in the unit of Celsius
degree (°C) were used as “pseudo” ground truth for training and vali-
dating the RGDD model.

spring inflection date
RGDD = E

i=planting date

GDD; (€]
where GDD; is daily GDD, which can be calculated as GDD = (Tpax +
Tmin)/2-Tpase (Liu et al., 2013). Tmax, Tmin, and Tpase are the daily
maximum temperature, daily minimum temperature, and base temper-

Planting date = Function(RGDD, phenological metrics, environmental variables)

ature, respectively. The growth of corn and soybean will stop when
temperatures exceed a certain threshold temperature (Tireshold)- Thus,
two modifications in the calculation of GDD were applied: (1) any
temperature below Tpase is set to Thase and (2) any temperature above
Tihreshold 1S cut off to Tihreshold (Curtis et al., 2023). The Tpase is usually set
as 10 °C for corn and soybean (MRCC, 2024), and the standard Tinreshold
for corn is 30°C and can also be used for soybean (NDAWN, 2024a,
2024b). The spring inflection date was selected to calculate RGDD for
two reasons: (1) it is derived from the spring time series, which is
relatively closer to the planting date than phenological metrics from the
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Table 1
Variables and their data source for model development of required growing
degree days (RGDD) and planting dates in the U.S. Midwest from 2016 to 2021.

Category Variable Source Resolution

! HLS-
derived

Phenology a; to ag 30m
Daily maximum and minimum
temperature”

Monthly temperature from April to
June

Monthly precipitation from April
to June

Monthly VPD® from April to June
Clay concentration

Sand concentration

PRISM 2.5 arc

Environment

Silt concentration 10m
Soil organic carbon concentration

Soil texture”

gSSURGO

! parameters of double logistic functions.

2 Daily maximum and minimum temperature: used for calculating growing
degree days (GDD) and not used for the development of the RGDD model.

3 VPD: vapor pressure deficit.

* Soil texture: derived based on the contents of clay, sand, and silt.

fall time series, and (2) it corresponds to the maximum change rate of
the spring time series, which can reduce the uncertainty in determining
the spring inflection date. Assuming a fitting error of ANDVI in the
phenology curve, the uncertainty in determining a date in the phenology

“hangrae- For example, a change of 0.01 in NDVI might result in a

difference of several weeks in the early and peak NDVI time series but
only several days near the spring inflection date (Fig. 2).
The model of RGDD can be written as:

curve is

)

RGDD = Function(phenological metrics, environmental variables)

The model assumed that RGDD is dynamically changed across space and
time, which might be affected by crop growing status (phenological
metrics) and environmental conditions (soil and climatic parameters).
The environmental factors included climatic variables such as temper-
ature, precipitation, and vapor pressure deficit (VPD), and soil variables
such as clay, sand, silt, soil organic carbon (SOC) concentration, and soil
texture. These variables and their data sources are listed in Table 1. The
function in Eq. (5) was the eXtreme Gradient Boosting (XGBoost) ma-
chine learning algorithm (Chen and Guestrin, 2016). The 80% of
“pseudo” field-level RGDD data were used for training and the remain-
ing 20% were used for validation.

3.3. Predicting planting dates

The modeled RGDD was included in the prediction of planting dates
based on our two-step model, which can be written as:

(6)

In addition to the two-step planting date model (Eq. (6)), we also built
two other planting date models for comparison: (1) a one-step model
(Eq. (7)) that directly predicts planting dates from phenological metrics
and environmental variables, which can help assess the benefits of using
RGDD in our two-step model; (2) a model (Eq. (8)) that only utilizes
phenological metrics to predict planting dates, which can allow us to
compare the performance of our derived phenological metrics with
other phenological metrics in predicting planting dates.

Planting date = Function(phenological metrics, environmental variables)

@)
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Planting date = Function(phenological metrics)

(8

The inputs for Egs. (6) and (8) were listed in Table 1 and the RGDD in
Eq. (6) was predicted using Eq. (5). The functions in Eqgs. (6-8) were the
XGBoost algorithm (Chen and Guestrin, 2016). The XGBoost provides
many hyperparameters and we empirically set several parameters for
both RGDD and planting date models: number of gradient-boosted trees
(n_estimators=140), maximum tree depth for base learners
(max_depth=10), learning rate (learning rate=0.05), random number
seed (random_state=42). Other hyperparameters were set as default.
The training and validation of planting dates can refer to sections 3.4
and 3.5.

3.4. Spatiotemporal cross-validation

To assess the spatiotemporal transferability of our proposed model,
we did spatiotemporal cross-validation by training and testing on
different spatiotemporal subsets of the total reference data (Filippelli
et al., 2024). We built the following three kinds of models: (1) trained
and tested on the full dataset (full validation); (2) trained and tested on
the leave-one-year-out dataset (temporal validation); and (3) trained
and tested on the leave-20%-region-out dataset (spatial validation).
Specifically, for full validation, about 80% of field-level planting date
data were used for training and the remaining 20% were used for vali-
dation; for temporal validation, in the 80% of field-level data, one-year
data were dropped for training and the dropped-year data in the
remaining 20% were used for validation; for spatial validation, in the
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80% of field-level data, 20%-county data were dropped for training and
the dropped-county data in the remaining 20% were used for validation.

3.5. Accuracy assessment

To comprehensively assess our predicted planting dates, we con-
ducted field-, county-, and state-level validation against multi-sourced
planting date datasets. For the field-level validation, we used the
holdout 20% field-level planting date data for independent validation.
For the county-level validation, we compared our planting dates against
the publicly available dataset from Deines et al. (2023). The dates that
25%, 50%, and 75% of acres planted within a county were compared.
For the state-level validation, we compared our predicted planting dates
with state-level NASS crop progress reports. The median predicted
planting dates within a state were validated against the NASS-reported
dates that 50% of acres in the state were planted.

Three widely used statistical indicators were used to evaluate the
model’s performances including the coefficient of determination R,
mean absolute error (MAE), and root mean square error (RMSE). These
indicators can be calculated as Eq. (9).

1 P,—R;)?
=3 IP—RIRMSE=1/ > (Pi—Ri)”

n D2
=1 2 PP g |
L, (Pi—P) n =l n

lel (P
©)

where P; is the predicted value, R; is the referenced value, P is the mean
value of P;, IA’i is estimated value from linear regression of P; and R;, and n

#
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Fig. 3. Validation of predicted planting dates against independent holdout of 20% field-level planting dates in the U.S. Midwest from 2016 to 2019 based on Eq. (8).
The model only uses phenological metrics to predict planting dates: (a) for corn using Multi-Source Land Surface Phenology (MS-LSP) metrics; (b) for corn using our
double logistic (DBL) function-based phenology metrics; (c) for soybean using MS-LSP metrics; and (d) for soybean using DBL metrics. The histograms represent the
density distributions of the reported and predicted planting dates. DOY refers to the day of the year.
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is the number of matched samples.

4. Results and discussion

4.1. Performance of the two-step framework

Appropriate phenological modeling is crucial to derive planting
dates from phenological metrics. We compared our double logistic (DBL)
function-based phenological metrics (eight parameters) with the Multi-
Source Land Surface Phenology (MS-LSP) products (20 parameters,
excluding layers such as quality assurance, number of phenological cy-
cles, and number of clear observations) (Bolton et al., 2020) in pre-
dicting field-level planting dates in the U.S. Midwest from 2016 to 2019.
The performance of these phenological metrics to directly predict field-
level planting dates (using Eq. (8)) for corn and soybean is shown in
Fig. 3. Although MS-LSP has more parameters to characterize the
phenological cycles, our DBL-based phenological metrics (Fig. 3b and d,
R2 =0.69, MAE = 5.76 days, and RMSE = 7.82 days for corn; R?= 0.62,
MAE = 6.06 days, and RMSE=8.17 days for soybean) outperformed the
MS-LSP phenological metrics (Fig. 3a and ¢, R2 = 0.52, MAE = 7.52
days, and RMSE = 9.72 days for corn; R? = 0.48, MAE = 7.33 days, and
RMSE = 9.62 days for soybean). The higher performance of our DBL-
based phenological metrics could be attributed to our phenological
model being designed for corn and soybean, while the MS-LSP algorithm
is for all land cover types. These results indicated that appropriate
phenological modeling is crucial to improve field-level planting date
estimation.

After deriving phenological metrics, the second step in our frame-
work was to predict RGDD, which can be accurately modeled using
phenological metrics and environmental variables. As shown in Fig. 4,
our RGDD model could explain 81% of field-level RGDD variation for
corn with an MAE of 25.21 degrees and 75% of RGDD variation for
soybean with an MAE of 38.66 degrees (Fig. 4a and c) in the U.S. Mid-
west from 2016 to 2020. More GDD was needed for soybean (average
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RGDD of about 460 degrees) than for corn (about 355 degrees), which
was consistent with previous studies (Zhong et al., 2014). Higher per-
formance for corn was achieved potentially because corn is a C4 plant,
while soybean is a C3 plant. C4 plants have a more efficient photosyn-
thetic pathway and higher light use efficiency, especially in warm and
sunny conditions (Ciampitti and Vyn, 2012; Sage, 2004; Yin and Struik,
2009). Thus, the growth of corn has a faster response to GDD which may
lead to a better performance in RGDD modeling. Spatially, the MAEs of
predicted RGDD for both corn (Fig. 4b) and soybean (Fig. 4d) were
generally smaller in the northern U.S. Midwest than those in the
southern U.S. Midwest. The lower performance of RGDD modeling in the
southern part might be due to the increase in vegetative growth duration
and decrease in reproductive growth duration from lower to higher
latitudes (Liu et al., 2013). Since the period from the planting date to the
spring inflection date mainly covered the crop’s vegetative growth, the
longer vegetative growth duration made it more difficult to predict
RGDD. In most counties in the U.S. Midwest, MAE for RGDD modeling
was less than 30 degrees for corn and 50 degrees for soybean, which
might result in 3-day and 5-day uncertainties in planting date pre-
dictions if the temperature was constantly 20 degrees. Overall, RGDD
can be accurately modeled from phenological metrics and environ-
mental variables.

The two-step framework (phenological metrics-RGDD-planting date)
can accurately predict field-level planting dates for corn and soybean in
the U.S. Midwest from 2016 to 2020 based on satellite-derived pheno-
logical metrics, modeled RGDD, and environmental variables. When
validated against independently holdout of 20% field-level planting date
data, the two-step model could explain 77% of field-level planting date
variation for corn with an MAE of 4.6 days and an RMSE of 6.6 days
(Fig. 5a) and 71% of planting date variation for soybean with an MAE of
5.4 days and an RMSE of 7.5 days (Fig. 5¢). The performance of corn was
slightly better than soybean, which was consistent with a previous one-
step model (Deines et al.,, 2023). Spatially, the MAEs of predicted
planting dates for both corn (Fig. 5b) and soybean (Fig. 5d) were smaller
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Fig. 4. Validation of predicted field-level required growing degree days (RGDD) against independent holdout of 20% field-level data for (a) corn and (c) soybean in
the U.S. Midwest from 2016 to 2020. The histograms represent the density distributions of the reported and predicted RGDD. The spatial distributions of county-level
mean absolute errors (MAE) of predicted RGDD in the unit of Celsius degree (°C) for (b) corn and (d) soybean are also plotted.
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Fig. 5. Validation of predicted planting dates against independent holdout of 20% field-level planting dates in the U.S. Midwest from 2016 to 2019 based on Eq. (6).
The model uses phenological metrics, environmental variables, and RGDD to predict planting dates for (a) corn and (c) soybean in the U.S. Midwest from 2016 to
2020. The histograms represent the density distributions of the reported and predicted planting dates. The spatial distributions of county-level mean absolute errors
(MAE) of predicted planting dates for (b) corn and (d) soybean are also plotted.

in the central and northern U.S. Midwest than those in the western and
southern U.S. Midwest. The western parts of South Dakota, Nebraska,
Kansas, and the southern part of Missouri had the largest MAEs, while
North Dakota, Minnesota, and Iowa had relatively lower MAEs.

At the county level, our predicted planting dates were consistent
with those from a previous study. Our predicted dates when 25%, 50%,
and 75% acres were planted within a county agreed well with the dates
provided by Deines et al. (2023) from 2016 to 2020 in the U.S. Midwest
(Fig. S2). In the comparison of our and Deines’s planting date data for
dates when 25%, 50%, and 75% acres were planted within a county, the
R? ranged from 0.81 to 0.84 for corn and 0.70 to 0.79 for soybean; the
MAE ranged from 3.06 to 3.79 days for corn and 3.41 to 3.69 days for
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Fig. 6. Validation of predicted state-level median planting dates against the
NASS crop progress reports in the U.S. Midwest from 2016 to 2021. (a) RMA vs
NASS for corn; (b) our prediction vs NASS for corn; (c) RMA vs NASS for soy-
bean; and (d) our prediction vs NASS for soybean. The colors of the dots refer to
different years.
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Table 2

Model performance with different spatiotemporal cross-validation strategies
including (1) trained and tested on the full dataset (full validation); (2) trained
and tested on the leave-one-year-out dataset (temporal validation); and (3)
trained and tested on the leave-20%-region-out dataset (spatial validation).

Crop Validation R? MAE (day) RMSE (day)
full 0.77 4.60 6.60
temporal 0.65 6.15 8.03
Corn spatial 0.75 4.77 6.79
full 0.71 5.38 7.51
Soybean temporal 0.61 6.62 8.76
spatial 0.69 5.56 7.70

soybean; and the RMSE ranged from 4.59 to 5.50 days for corn and 5.08
to 5.65 days for soybean. The predicted planting dates had better con-
sistency for corn than for soybean, likely because both our and Deines’s
predictions of planting dates had higher accuracies for corn. Thus, more
efforts should be made to the field-level planting date detection of
soybean in the future.

When aggregated to the state level and compared with state median
planting dates from the NASS crop progress reports from 2016 to 2021 in
the 12 states in the U.S. Midwest, our planting date prediction can
achieve an R? of 0.90 and MAE of 2.74 days for corn (Fig. 6b), and an R?
of 0.87 and MAE of 2.52 days for soybean (Fig. 6d), which is more
favorable compared with previous studies (Deines et al., 2023; Ren
etal., 2017; Sakamoto et al., 2011; Urban et al., 2018), whose R? ranges
from 0.58 to 0.76 and MAEs >4 days. Considering the biases between
field-level and state-level reports were 2.98 days for corn (Fig. 6a) and
2.82 days for soybean (Fig. 6¢), our model trained on field-level reports
was highly accurate at the state level.

The spatiotemporal transferability should be identified before
applying our framework outside the spatiotemporal range of our
training datasets (Filippelli et al., 2024). Compared with full validation
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(Table 2), temporal validation (leave-one-year-out) had a lower per-
formance in field-level planting date detection with a RMSE increased by
1.23 days for corn (from 6.60 to 8.03 days) and 1.25 days for soybean
(from 7.51 to 8.76 days), while the spatial validation (leave-20%-region-
out) resulted in a smaller decrease in performance, with a RMSE
increased by only 0.19 days for both corn and soybean (corn: from 6.60
to 6.79 days; soybean: from 7.51 to 7.70 days). The spatiotemporal
transferability of corn and soybean was similar, with the decreased
performance caused by temporal transfer being about six times that
caused by spatial transfer. The results indicated that the two-step
framework had better spatial transferability than temporal trans-
ferability in predicting field-level planting dates for corn and soybean
fields.

4.2. Spatiotemporal pattern of planting dates

The field-level planting date maps for corn and soybean from 2016 to
2021 in the U.S. Midwest provided detailed information on spatial and
temporal variations of planting dates in recent years. Annual field-level
planting dates for corn and soybean are separately plotted in Figs. 7 and
8, and the mean planting dates of corn and soybean in the U.S. Midwest
from 2016 to 2021 are shown in Fig. 9. The planting dates in the central
U.S. Midwest were generally earlier than those in the other parts of the
U.S. Midwest, with large variations within states (Fig. 9). For example,
the south vs. the north of Iowa and Illinois and the west vs. east Nebraska
and Kansas had considerably different planting dates, which cannot be
captured by state-level NASS crop progress reports. The field-level
planting date maps demonstrated that (1) soybean is typically planted
two weeks after corn in the U.S. Midwest, (2) planting dates in the U.S.
Midwest may vary more than two months even for the same crop, and
(3) 30-m and ~3-day HLS products are useful for field-level predictions
of planting dates.

Although large shifts in planting dates in the U.S. Midwest were re-
ported in previous studies (Deines et al., 2023; Kucharik, 2006; Sacks
and Kucharik, 2011), no significant changes were observed in planting
dates of corn and soybean in this region from 2016 to 2021 (Fig. S3).
However, we detected abnormally late plating in 2019 for both corn and
soybean in the U.S. Midwest (Figs. 7 and 8). In 2019, corn and soybean
were planted 9-13 days later and 12-15 days later, respectively
(Fig. 9¢), due to the heavy spring rainfall in 2019 (Gao et al., 2020). In
2020, corn and soybean in Iowa were planted slightly earlier than the
other years (Figs. 7 and 8). The R? between field-reported and satellite-
predicted planting dates in 2020 in Iowa was 0.41 for corn and 0.44 for
soybean, while during 2016-2020 was 0.66 and 0.67 for corn and soy-
bean, respectively (Table S4). The lower model performance in Iowa in
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2020 might be attributed to the intense and fast-moving windstorms
known as a derecho on 10 August 2020 across Iowa’s agricultural re-
gions (Hosseini et al., 2020), which caused damage to corn and soybean
and affected the crop NDVI time series. This further led to unreliable
phenological modeling and resulted in inaccurate predictions of
planting dates in 2020 in lowa (Fig. S4). Thus, field-level planting date
records may help understand the impacts of natural disasters and inform
appropriate management practices for future adaptations.

Accurate planting date records for almost all corn and soybean fields
in the U.S. Midwest allow for the analysis of the impacts of agricultural
management such as irrigations and cover cropping. The performance of
field-level planting date prediction for corn and soybean with irrigation/
non-irrigation and cover cropping/non-cover cropping is shown in
Fig. 10. The irrigation information was extracted from field reports and
cover cropping information was derived from the satellite-based
phenological modeling (Fig. S1). For cover cropping fields, the MAE
for corn and soybean in the U.S. Midwest was 5.39 days and 5.63 days,
respectively, while for the non-cover cropping fields, the performance
was improved by 0.8 days for corn and 0.9 days for soybean. This
indicated that cover cropping had similar impacts on the model’s per-
formance for both corn and soybean. Generally, cover crops are planted
in the non-growing seasons, which may not have much influence on the
growth curve of cash crops (Zhou et al., 2022). Thus, cover cropping has
no different impacts on the satellite time series for corn and soybean,
leading to similar impacts on predicting planting dates for corn and
soybean. For irrigation fields, the MAE for corn and soybean in the U.S.
Midwest was 5.36 days and 6.11 days, respectively, while for the non-
irrigation fields, the performance was improved by 0.8 days for corn
and 1.4 days for soybean. This indicated that irrigation reduced the
model’s performance more for soybean fields. The two-step model was
based on RGDD, an accumulation of thermal heat (Cayton et al., 2015),
and irrigation directly affects the temperatures through evapotranspi-
ration and further influences the model’s performance. The cooling ef-
fects of irrigation are typically more pronounced and last longer for corn
than for soybean (Chen et al., 2018). Thus, irrigation should lead to
larger impacts on the model’s performance for corn from the aspects of
cooling effects. However, the opposite results were obtained in this
study, which may be due to the difference in corn and soybean structure.
Since PRISM-modeled temperature rather than the land surface tem-
perature was used, soybean structure may induce larger discrepancies
between the two kinds of temperature. Overall, both cover cropping and
irrigation decreased the model’s performance in predicting field-level
planting dates for corn and soybean. The impacts of cover cropping
were similar for corn and soybean fields, while irrigation had a larger
impact on soybean fields than on corn fields. Further research is needed
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Fig. 10. Performance of predicted field-level planting dates for corn and soybean fields with cover cropping/non-cover cropping and irrigation/non-irrigation in the

U.S. Midwest from 2016 to 2020.
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to understand these effects better.
4.3. Benefits of the two-step framework

The two-step framework can provide more flexibility and robustness
in model development, which has been widely adopted in remote
sensing communities (Sakamoto et al., 2010; Santini et al., 2010; Zeng
et al, 2018). In our proposed two-step framework (phenological
metrics-RGDD-planting date), RGDD served as a bridge to link pheno-
logical metrics to planting dates (Fig. 11a). The benefits of using RGDD
can be summarized as follows: (1) The correlations between RGDD and
spring inflection date were stronger than those between planting dates
and spring inflection date (Fig. 11c), which can lead to higher modeling
performance. In other words, the importance of spring phenological
metrics on planting dates is enhanced by RGDD, making it more suitable
for years with natural disasters. For example, the strong windstorms in
Iowa in 2020 occurred on 10 August (Hosseini et al., 2020), which only
affected the fall phenology, so models relying more on spring phenology
are theoretically less affected. (2) Compared with planting dates, the
spatial and temporal variations of RGDD were much smaller (Fig. 11b,
12, S5, and S6). Considering the phenological metrics are robust from
the satellite time series and less affected by single satellite observations,
the relatively stable RGDD is easier to predict (Fig. 4). Because of its
stability, empirical RGDD values are widely used to estimate crop
growth. For example, the seed company Beck’s Hybrids uses 120 RGDD
for corn and 130 RGDD for soybean to determine the required time for
seeds to emerge (Gauck, 2019). (3) RGDD can account for spatial and
temporal variations in temperature and the impacts of weather vari-
ability (Cayton et al., 2015), which is highly consistent with growing-
season temperature and a typical measure of crop development
(Lobell et al., 2011). The RGDD in the U.S. Midwest during 2016-2021
for corn and soybean was relatively stable even with a delayed planting
of about two weeks in 2019 (Figs. S5 and S6). (4) RGDD can potentially
provide insights into how planting dates and phenological metrics are
linked. Even if the planting date can vary more than two months in the
U.S. Midwest (Figs. 7 and 8), RGDD for crop growth remained relatively
stable (Figs. S5 and S6), which was beneficial to understand crop growth
under variable conditions.

The advantages of using RGDD also led to higher accuracies in pre-
dicting field-level planting dates for corn and soybean in the U.S. Mid-
west. Fig. 13 shows the MAEs between satellite-predicted and reported
field-level planting dates using the two-step (phenological metrics-
RGDD-planting dates) and traditional one-step (phenological metrics-
planting dates) models for corn and soybean fields with varying
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Fig. 14. Performance of predicted field-level planting dates of corn and soy-
bean using one-step (phenological metrics-planting dates) and two-step
(phenological metrics-RGDD-planting dates) models in the U.S. Midwest from
2016 to 2020 with 1000 samples per state per year.
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numbers of training samples. With the same number of training samples,
the two-step model outperformed the one-step model for both corn and
soybean, significantly reducing the need for ground “truth” samples. For
example, to achieve an MAE of 5 days for corn fields, the two-step model
requires ~3400 fields per state per year while the one-step model re-
quires ~11300 fields (about three times) per state per year. To achieve
an MAE of 6 days for soybean fields, the two-step model requires ~1000
fields per state per year while the one-step model requires ~3900 fields
(about four times) per state per year. It is extremely beneficial because
field-level ground truth is typically labor- and cost-intensive to obtain
(Deines et al., 2023).

The two-step model outperformed the one-step model for all states in
the U.S. Midwest. For example, with 1000 samples per state per year, a
relatively large number of ground truth samples (Deines et al., 2023),
the two-step model achieved better performance than the one-step
model for all states in the U.S. Midwest with improved MAEs for corn
from 5.82 to 5.68 days and for soybean from 6.77 to 6.54 days (Fig. 14).
The improvements of the two-step model were more obvious for extreme
events like the flooding in the U.S. Midwest in 2019 (Fig. S7). These
results indicated that the two-step model is spatially and temporally
stable and less sensitive to extreme events.

The two-step framework for field-level detection of planting dates
demonstrated high accuracies for corn and soybean fields in the U.S.
Midwest from 2016 to 2020. The framework has great flexibility for
wider applications with some necessary modifications. First, the
framework can be used for planting date detection for other crops
including summer and winter crops. For summer crops such as sorghum,
which have similar phenological cycles to corn and soybean (Masialeti
etal., 2010), the framework can be directly applied. However, for winter
crops such as winter wheat, which has different phenological cycles
from corn and soybean (Masialeti et al., 2010), modifications in the
phenological modeling are required. The NDVI time series for current
phenological modeling is from spring to winter, but for winter crops, it
should start from the summer to next year’s summer (Lu et al., 2014).
For other crops like alfalfa, which experience “grow and cut” cycles in
summer and fall (Masialeti et al., 2010), the double logistic function may
fail to capture the crop growth, and more advanced phenological
modeling algorithms are required. Second, the framework can be
adapted to detect other crop stages such as silking, maturity, and harvest
dates by changing the bridge (RGDD in this study). For example, the
cooling degree days (CDD, similar to the concept of GDD) are useful for
determining crop leaf senescence date (Piao et al., 2019). Replacing
GDD with CDD, the framework might be able to detect field-level leaf
senescence dates. Harvest detection may be more complex because it is
not only controlled by crop phenological cycles but also affected by
farmers’ management (Kusumastuti et al., 2016). A certain period after
phenological-derived heading dates might be suitable for harvesting
(Sakamoto et al., 2005). Thus, the framework may provide a time
window for harvesting, and the detection of extract harvest dates may
require other information such as synthetic aperture radar (SAR) ob-
servations (Meroni et al., 2021). Third, the framework can be extended
to larger regions and longer periods. Current phenological modeling is
based on the 30-m and ~3-day HLS NDVI time series, which started in
2015. For larger-region (e.g. global) and longer-period (e.g. back to
2000) applications, Landsat archives may be a good alternative (Deines
et al., 2023). However, the frequency of high-quality Landsat observa-
tions is too sparse to capture short-term changes during crop growth
(Zhou et al., 2022). Thus, phenological datasets from multi-sensor fused
products are more favorable (Liao et al., 2019; Luo et al., 2018; Sadeh
et al., 2021).

4.4. Performance for “within” and “outside” policy-driven planting
windows

The fine-resolution planting date records allow for analysis of crop
planting practices that are “within” or “outside” the CCIP-driven earliest
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Fig. 15. Performance of predicted field-level planting dates of corn and soybean in the U.S. Midwest from 2016 to 2020 for different time windows defined by the
USDA RMA CCIP-driven earliest planting dates (EPD) and final planting dates (FPD). The bottom four maps are the spatial distributions of the USDA-suggested EPD
for corn and soybean and FPD for corn and soybean in the unit of day of the year (DOY).

and final planting dates. The CCIP-driven planting windows are used for
crop insurance products including yield protection, revenue protection
with harvest price exclusion, and revenue protection plans (Schnitkey,
2013). Fields planted before the earliest planting date are not eligible for
replant payments and for fields planted after the final planting date, the
guarantee will be reduced by 1% per day up to 25 days and will be 60%
after 25 days (Schnitkey, 2013). The CCIP-driven planting windows are
designed to guide farmers to ensure crop yield production, while both
planting too early and too late could induce yield deduction, thus the
suggested planting windows should be close to optimal planting win-
dows (Khan et al., 2017b).

We used the CCIP-driven earliest and final planting dates to evaluate
the performance of our model-derived field-level planting dates. The
model’s performance of field-level planting dates “within” and “outside”
the CCIP-driven earliest and final planting dates is shown in Fig. 15.
Planting dates “outside” the CCIP-driven planting windows were more
difficult to predict, especially for those planted earlier than the CCIP-
driven earliest planting dates. The MAEs of predicted field-level
planting dates for corn and soybean fields “within” the CCIP-driven
planting windows in the U.S. Midwest were 4.47, and 5.16 days,
respectively. For corn and soybean fields with reported planting dates
“outside” the CCIP-driven planting windows, MAEs of model-predicted
planting dates were 8.04 and 11.6 days, respectively, which was about
two times those “within” the CCIP-driven planting windows. In addition,
for fields planted two weeks before the CCIP-driven earliest planting
dates and fields planted two weeks after the CCIP-driven final planting
dates, the MAEs were around 30 days and 20 days, respectively.

The framework, based on crop phenology, has limitations for fields
planted too early or too late. For example, crops planted in February or
March may have similar vegetation time series because seeds may be
dormant until favorable weather conditions. The higher model perfor-
mance indicates higher accordance with the crop phenological growth
and a higher possibility of non-reduced crop yield. Better performance of
predicted field-level planting dates within the CCIP-driven planting

windows indicated that the time windows are relatively suitable for crop
growth at least from the aspect of crop phenology. To predict planting
dates for fields planted too early or too late, other types of algorithms
rather than phenology-based approaches are needed.

5. Conclusion

This study proposed a two-step framework to convert phenological
metrics to planting dates using RGDD as a bridge. The 30-m and ~3-day
HLS remote sensing time series were used to derive field-level pheno-
logical metrics, the field-level reports of planting dates were used for
model training and validation, and the state-level crop progress reports
were used for additional validation. The framework can accurately
predict field-level planting dates with an MAE of 4.6 days for corn and
5.4 days for soybean. After aggregating to the state level, the predicted
planting dates were well consistent with the state-level crop progress
reports with MAEs <3 days for both corn and soybean. The performance
in cover cropping and irrigation systems degraded slightly and the MAEs
were still less than one week. Higher accuracies were achieved for
planting dates within policy-driven planting windows. The proposed
two-step framework (phenological metrics-RGDD-planting dates) also
outperformed the one-step model (phenological metrics-planting dates),
which can significantly reduce the required number of ground truth
samples and can be beneficial for deriving planting dates from current
and future phenological products. This work can further contribute to
the analysis of yield gaps, management practices, and government pol-
icies on crop planting.
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