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Abstract: This paper reviews and analyzes the recent progress in human-robot collaborative (HRC)
technologies that enhance assembly and welding processes. It focuses on how the HRC approach helps
improve assembly and welding productivity and quality, while enabling complex process operations that
cannot be accomplished by humans or robots/machines alone. It also discusses the basic elements in HRC
approaches, including (1) human sensors, (2) signal processing for extraction of human intent from sensors,
(3) presentation of information to the human for their reaction, obtained from environmental sensors that
monitor the environment, machines, and processes, and (4) interface control, which manages how
information is presented to the human, what reactions are expected from the human, and what needs to
be presented next. Finally, it summarizes the state-of-the-art in the major elements and application
accomplishments, identifies challenges for greater benefits, and proposes directions to address these
challenges.

1. Introduction

The manufacturing industry has undergone a significant transformation in recent years with the increasing
use of automation technologies, particularly robotics, which have been shown to improve production
efficiency, product quality, and reduce manufacturing costs. However, robots/machines often require
intelligence to adapt to complex jobs, which can be job-specific, complex, and difficult to learn. While
human operators can train their mental "neural networks" and develop the required process intelligence,
transferring this knowledge to machines is often not straightforward. Human-robot collaborative
manufacturing (HRCM) offers a solution that combines the accuracy, repeatability, and physical strength
of machines with the adaptation and quick learning abilities of humans in operating processes.

Casting, forming, machining, joining/welding, additive manufacturing, assembly, and coating are among
major manufacturing processes. The latter four share a common goal of locally connecting materials
together. In particular, while the connection by assembly is considered reversible, joining/welding,
additive manufacturing, and coating connect materials in irreversible ways and can be considered welded.
Assembly and welding are thus two major types of materials connection processes. As the final goal of
manufacturing is to finish a product that integrates/connects parts together in the designed ways, welding
and assembly thus play important roles in manufacturing. As our focus is assembly and welding, this paper
analyzes the state-of-the-art of human-robot collaboration (HRC) in assembly and welding.



We conducted a search in Web of Science for publications in the past five years with key words <weld OR
assembly> AND <human> AND <machine OR robot> AND <manufacturing> in all fields and uncovered 74
publications [1-74]. A basic function of HRCM is for a human to control a machine/robot. To this end, the
human must send a signal that may be understandable by the robot. Acquisition of such signals, referred
to as human signals, can be referred to as human signal sensing. The acquired signals often require certain
processing to become understandable. Human signal sensing and processing of human signals are thus
two basic functions in an HRC system. To integrate human intelligence, the human must also be immersive
despite if the human is actually at, or away from the manufacturing. Virtual reality (VR), augmented reality
(AR), and mixed reality (MR) equip humans to realize and improve immersion with Al enhanced sensing
and seamless guidance.

This review paper aims to assess the current state of research in the following areas: (1) Human Sensing,
which explores the use of sensors to detect various aspects of human behavior, including motor
movements and intentions, and the methods used to process sensor data to extract this information. (2)
Information Presented/Visualized to Humans, which investigates the types of environmental information
that are presented to individuals to facilitate interaction with their surroundings, including other humans,
machines, robots, and processes. (3) Immersive Technologies, which examines the hardware platforms
and commercial products employed to create augmented, virtual, and mixed reality environments that
enable individuals to better engage with their surroundings. (4) Intelligent Human-Machine Collaboration,
which explores the ways in which humans and machines/robots can collaborate to increase intelligence
and adaptability of their counterparts in complex human-robot systems. (5) Challenges and Opportunities
in Human-Machine Interactions, which examines the obstacles and prospects associated with the
development of more intelligent human-robot collaborative manufacturing processes.

This paper is organized as follows: Section 2 will provide a few exemplar applications to demonstrate
human-robot collaboration in order to provide an overall picture. The following sections, Section 3-6, will
review and analyze the details in Human Sensing, Information Presented/Visualized to Humans, Immersive
Technologies, and Intelligent Human-Machine Collaboration. The Challenges and Opportunities in Human-
Machine Interactions will be identified in the conclusion Section 7.

2. Human-Robot Collaboration Examples

Example 1: Robot Assistance to Human for Assembly [2]

Sanna et al. [2] presented an example of an assembly application where a human assembles parts together
inthe Assembling Area (close to the human) and a robot picks the next part to be assembled from a Picking
Area (out of reach of the human, with many parts) and then places it in the Releasing Area (close to the
human with only the next required part). The robot's assistance improves the efficiency of the human
worker. A key question here is how the human instructs the robot to pick the correct part when needed.
This is accomplished through the NextMind, which senses the human's intention and communicates with
the AR. The AR, with a HoloLens 2 as the platform, presents options to the human to make a selection.
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Fig. 1 Robot assistance to assembly by human operator [2].

The NextMind is a wireless device that can be worn like a headband to detect brain activity using nine
electrodes located at the back of the head where the visual cortex is located. The device consists of two
main components: NeuroTags and NeuroManager. NeuroTags are unique visual signatures that are
identified by blinking textures and allow the user to control objects in the scene. Here “blinking textures”
refer to a visual pattern that NeuroTags use to identify specific objects in the scene. These textures are
created by rapidly changing the color or brightness of a pattern at specific frequencies that correspond to
each unique NeuroTag. When the user focuses their attention on an object associated with a specific
NeuroTag, the NextMind device detects the corresponding blinking texture and generates a response in
the user's brain, which allows them to control the object. NeuroManager manages the communication
between the NeuroTags and the NextMind engine, which processes signals received from the electrodes.
The device can be paired with other devices that support Bluetooth and has been used in studies to
compare the performance of selection using gestures versus brain-computer interfaces in augmented
reality interfaces.

We above mentioned that the user makes his/her selection by focusing on the respective NeuroTag in
his/her view among those displayed. The display is done using a Microsoft HoloLens 2, which is transparent
without interference to the human vision/operation or can display visual information to the user when
commanded. When a section is made, all corresponding parts are displayed. Two NeuroTags are associated
with each part: Explore and Select. In Explore mode, the user can achieve more information about the
selected component, change the representation from solid to wireframe, rotate the object, select the
object, see a video about the object, and skip back to the visualization of all the section components. In
Select mode, the robot is directly activated to pick the selected object. The selection mechanism is
triggered by the user focusing on a NeuroTag for a given time, e.g., two seconds, and a growing circle is
associated with the selection mechanism to provide more efficient feedback than the standard three green
lines forming a triangle. The gaze-tracking constraint is also activated for the main menu scene so that the
selection panel can always be displayed in front of the user. Finally, the calibration scene allows the user
to calibrate the NextMind device, and a graphical representation denotes the quality of signals received
from the electrodes.

Example 2: Human Commanded Robotic Assembly Tasks [3]
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Fig. 3 Human-Robot Collaborative Assembly Process [3]

In the above example, the assembly is finished by the human and the robot assists the human. In this
example, the job is done by robots commanded by human who is sensed by various sensors using the
experimental system shown in Fig. 2 which is connected to a team of robot controllers via Ethernet. An
external computer processes the signals from a Leap motion sensor (a kind of motion sensor that
integrates cameras and infrared LEDs for being capable of observing a roughly hemispherical area to a
distance of about 1 m and tracking fingers or similar items to a spatial precision of 0.01 mm), a microphone,
and an EEG sensor headset. The assembly process involved first fitting a cylinder head (weighing 3.4 kg)
onto the engine block, placing a valve cover on it, fastening screws, and then accurately inserting an
injector fuel tube (weighing 1.8 kg) into the cylinder head's holes. Finally, the operator assembled the
ignition coils.



The assembly process has 12 steps illustrated in Fig. 3: 1) Brainwave commands the first robot to place the
cylinder; 2) The first robot is controlled to move to the cylinder head and fit the gripper's fingers with
millimeter-level tolerance. 3) Gesture 1" is used to control the gripper to grasp the cylinder head; 4)
Brainwave commands the first robot to place the cylinder head onto the engine block, and the operator
checks the alignment of the cylinder head with the engine block; 5) "Gesture 2" is used to open the gripper
at a specified level; 6) The assembly of the valve cover is initiated by a voice command, which instructs the
first robot to move from the engine block to the valve cover using "Up," "Left," and "Down," respectively.
Once the gripper fits with the component, a hand gesture (Gesture 1) is posed to close the gripper; 7) The
operator issues voice commands to control the first robot to place the valve cover on the engine block,
followed by fastening screws, and enables the "open" of the gripper via the hand gesture; 8) The accurate
assembly of the fuel injection tube starts with sensorless haptics control. During the assembly, the
detection threshold of the external force applied by the operator to the second robot can be up to 2 Nm.
The admittance controller is adopted to transform the contact force into reference position and velocity
with adaptive admittance parameters; 9) Fine manipulation of the second robot is achieved by adjusting
the admittance parameters. Within the context, a low-speed and accurate robot motion control assists in
the appropriate fit of the gripper into the fuel injection tube, followed by the close gesture of the gripper
control as shown in the inset; 10) The operator forces the second robot to move the tube to the engine
block and align it with the holes of the cylinder head, and the inset shows one of the haptic control
operations during assembly. A relatively large force is applied to the robot for a fast motion; 11) A fine
adjustment of the orientation and position of the end-effector at a low speed facilitates accurate insertion
of the tube into the cylinder head's holes, followed by opening the gripper via the gesture in the inset, as
well as the quality check of the insertion operation; 12) The operator assembles the ignition coils and
secures the components by fastening screws, and the final assembly state of all the components is shown
in the inset.

In this example, two robots are controlled by a human operator to complete a number of tasks. The human
commands are detected by multiple "human sensors," and the signals are processed using advanced
techniques, which will be discussed in detail later. However, the humans and robots do not operate or
process a common object. In [8], the robot holds a workpiece while the human co-worker performs
assembly operations on it.

Example 3: Comprehensive Use of Augmented Reality [23]

This example demonstrates a comprehensive use of AR in human control of robot trajectory, utilizing a
finite state machine (FSM) as the control logic (refer to Fig. 4). The FSM has four states (states 1-4), and
each state can transition in two directions - advancing to the next state or not advancing. User eye blinks,
categorized into three types (normal, double, and long) and detected through EEG waveforms, control
these state transitions. Normal blinks are ignored, while long and double blinks correspond to advancing
and not advancing, respectively. If not advancing, the particular action depends on the particular state.
Throughout all states except for state 1, the human eye blink is a reaction to what is displayed by the AR
on the HoloLens.
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Fig. 4 FSM and HRC based robot programming [23] Fig. 5 Real-time adjustment of the target point by head pose [23].

In all states, if no "abnormal" eye blinks (double or long blinks) are detected, no changes are made, and
the system continues to do what it is currently doing. For example, in state 1, this implies "waiting." In
state 2, where the robot's trajectory is programmed, the user first interacts with the visual display in the
HoloLens to determine the final target point. This can be seen in Figure 5: the user's head pose (coordinate
system H) aims at the target point, and the distance from the head pose to the target point is the same as
the distance between the head pose and the robot's TCP (tool center point). When a double blink is
performed, the target point is fixed, and a proposed trajectory is displayed. This displayed trajectory
toward the target point consists of several points in the display. In the Trajectory Modification stage, also
in state 2, the user can focus on a point in the trajectory and then perform a double blink to choose it as
an intermediate point in the trajectory. This point changes color to blue to confirm the selection. Each time
an intermediate point is confirmed, the trajectory is updated. Then, the user can focus on additional points
if needed and select them by performing a double blink each time to choose additional intermediate
points. Once all the intermediate points are selected, the user performs a long blink to leave state 2 with
the updated trajectory to advance to state 3. In state 3, the user is displayed with the virtual movement
of the robot along the trajectory for preview. If it is unsatisfactory, a double blink sends the system back
to state 2. Otherwise, the system advances to state 4. In state 4, the user waits (no abnormal blinks) or
accepts the trajectory and commands the robot to execute it with a double blink or restarts the
programming with a long blink to advance to state 1.
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Fig. 6 Application of AR enabled robot programming [23].

Fig. 6 shows a programming for robot by user with interaction with AR through HoloLens using the displays
to the user. The interaction began with a long blink by the user at t=0s, which triggered the state transition
from state 1 to state 2 for the interaction where human first determine the final target point which is
indicated in the HoloLens snapshot by a red sphere appeared in the user's field of view. This point moves
as the head pose moves (Fig. 6(2)-(4)) and always appears in the center of the user’s view in the HoloLens
display. At t=2.6s (Fig. 6(4), the user performed a double blink to fix the target. In Fig. 6(5)-(8), an
intermediate point is selected and confirmed. In Fig. 6(9)-(12), the user is displayed with a preview of the
robot trajectory being considered for execution. In Fig. 6(13)-(16), the robot executed the programmed
trajectory.

Example 4: Coordination Learning [36]

The examples presented earlier only involve jobs that are separatable and can be assigned to different
team members. Complex jobs may not be separable and require coordination among team members to
effectively perform. This highlights the crucial role of coordination in certain complex manufacturing tasks
that require the collaboration of robots, machines, and humans. The study in [36] studies a particular
coordination that involves followers adapting their motion speed by detecting changes in external force
information and working closely with the leader. To study this type of coordination, human leaders and
followers are used to provide the needed data in this study [36].



|

|

I Pectoralis

:Amerior tmajor

| deltoid

! \

| =

| s =
)

Leader Follower Global coordinate system

EMG

sensors

~ Fy
| I/ orce sensor

Goniometer—— = = peg

} Robot

[/

Workbench ‘ 3 _~ Workbench
Human tutor
3 ; ) Base coordinate system of the robot
Fig. 7 Learning experimental set-up [36] Fig. 8 Experimental set-up to generate data

to train a force estimation model [36]

Fig. 7 shows the human-human experiment that is used to collect the force imposed by the leader and the
speed from the follower. They are the input and output of the model to be learned. By using this model, a
human leader can operate a robot and the robot can provide the right speed as a response to the force
imposed by the human. This right speed from the robot is calculated using the learned model from the
detected force. For the robot follower, a force sensor can be installed and the envisioned human-robot
collaboration can be implemented. However, to learn this model, we need (force, speed) data. The
experimental set-up in Fig. 7 can provide the speed of the follower but not the force imposed by the leader
directly. As can be seen in Fig. 7, the leader has been installed with various sensors. The hope is that the
force imposed by the leader can be estimated from the signals from these sensors.

To estimate the force from the sensor signals, an experimental set-up shown in Fig. 8 is used to generate
sensor data and measure the corresponding force by the force sensor installed on the robot. They will be
the input and output of the force estimation model. With this model, the force in the experiment shown
in Fig. 7 can be estimated so that the leader-follower model can be learned. As such, the experiments
shown in Fig. 8 need to be conducted first. To this end, the arm is attached with six EMG sensors that are
distributed on different locations of different muscles, two goniometers, and one IMU sensor. A peg is
connected to a robot arm and the human operates the peg.

Example 5: Coordinated Human-Robot Collaborative Welding [13, 90]

This example demonstrated a control, coordinated by a human and robot, for precision welding, which
requires control of both the weld bead (surface appearance) and weld penetration (internal quality). This
is a job that demands not only extensive training and practice to appropriately respond and adapt to
observed process phenomena, but also physical strength and motor controllability to hold the welding
torch steadily and move it smoothly and accurately while making necessary adjustments. However, this is
challenging for both robots and human workers. Appropriately responding and adapting to observed
process phenomena depends on the human's understanding of welding phenomena and process
dynamics, which is acquired through training and practice. Such understanding is unstructured and difficult
to explain or export. This is a major challenge in robotizing such a welding process for precision welding.
On the other hand, human welders, regardless of the training, practice, ageing, disability, etc. are all
subjected to different limitation in physical strength and motor controllability to provide the needed steady,
smooth, and accurate movement and adjustment. Such limitation is in general not concerned for a robot



but developing/equipping the intelligence and adaptation for a robot requires the knowledge about
welding phenomena and process dynamics human gain through long training and practices. A human-
robot collaborative approach to combine human intelligence and machine physical strengths and
repetition provides an effective solution.

Fig. 9 demonstrates this welding job which is the root pass of the welding for the groove joint. For this job,
the welding torch is supposed to weave transversely while moving along the central line of groove
longitudinally. Ideally, the frequency and amplitude of the weaving need to be consistent during welding.
This repetitive job is thus fully controlled by the robot through programming. The welding process also
needs to be controlled to produce the needed weld bead and weld penetration as the bead and
penetration are subjected to the influence of the welding conditions whose accurate control is considered
not realistic. This requires a major welding parameter be real-time adjusted per the feedback of the
welding process. In this example, the welding speed is chosen as the welding parameter that is adjusted
in real-time. This is challenging for the robot to undertake as it must be based on understanding of process
phenomena and process dynamics but may be better done by human. As such, fusing the actions from the
robot which carries the welding torch to move forward and weave and the responses from the human
which adjusts the welding speed to form a coordinated control is an appropriate solution.
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Fig. 9 Comparison of human-robot collaborative welding result with robotic and manual welding results
[90]

As shown in the left of Fig. 9, the robot is purposely programmed to carry the torch to travel in a direction
deviating from the central line of the groove. As the torch also weaves transversely, the groove is scanned.
The arc voltage increases approximately proportionally with the arc length, the distance from the torch to
the work-piece surface. The arc volage is used to estimate the lowest point (where the arc voltage is the
highest) for the robot to adjust its weaving center but not the weaving frequency and amplitude. As such,
robotic welding has a consistent weaving pattern while assuring the weld be made at the right position.
However, the welding current is purposely changed to generate a condition, which should be caused by
the deviation of welding conditions from the nominal ones, where real-time adjustment of welding speed
is needed. As there is no adjustment from the robot for the welding speed, the produced weld bead
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(appearance) changes with the changed condition (current) and is thus not consistent as can be seen from
the picture of the produced weld. In the middle of Fig. 9, the welding is done manually by a human welder.
The weld appearance looks much consistent despite the changed current, but the weaving is not
consistent. The weld appearance is much more consistent although the inconsistence on the weaving
should also have affected the consistence of the produced weld but the adjustment of the welding speed
partially compensated. The right of Fig. 9 shows the result from fused coordination from human
adjustment in speed and robotic movement where the weaving and the produced weld bead are both
consistent.

A human-robot collaborative system is needed to realize this coordinated process control. To this end, a
system shown in Fig. 10 has been developed where a human views the welding process from the display
of an augmented reality (AR) system and operates a virtual torch which is light and easy to control. The
sensors of the AR system capture the movement of the virtual torch. The speed can be calculated from
their signals and human operation errors and fluctuations can be corrected/filtered. The corrected/filtered
speed as a better representation of the human intent is sent to the robot for execution. The robot fuses
the real-time adjusted speed with its movement program to form the entire command of the robot
movement. The robot also carries a camera that provides the raw information of the welding process
feedback for the AR system to generate the information on the display for the human to view the welding
process away from the welding site as being present (immersive). As such, human and robot are effectively
coordinated to outperform over human and robot for a complex welding job.
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Fig. 10 Human-robot collaborative welding system [90].

Example 6: Human-Robot Collaboration for Micromanufacturing [75]

Micromanufacturing refers to the process of fabrication, alignment, attachment, packaging, and testing
devices whose components span across several dimensional scales, nominally from 1 um to 1 cm.
Examples of such systems include many of the sensors in use today in consumer electronics, as well as
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Micro-Opto-Electro-Mechanical Systems (MOEMS), that have active parts for processing motion, light,
fluids, and so on. Due to the stringent precision requirements, automated handling of parts has long been
recognized as a better way to complete micro-assemblies, in terms of both time and accuracy. A
microassembly system typically consists of precision robots, one or several visual microscopes to monitor
the assembly scene, and other, finer resolution sensors for final alignment steps with sub-micron accuracy
that are often needed [76]. Although part handling can often be automated, calibration and
bonding/processes often require human intervention, due to difficulties in compensation of unknown
process conditions such as temperature, humidity, lighting, stiction, etc. These play a much more
important role as disturbances at the small scales, than at the larger scales, and often prevent full
automation of manufacturing. The NeXus is a custom micromanufacturing platform that contains five
precision robots working in tandem to perform tasks such as additive manufacturing via Aerosol and Inkjet
printing, thin-film curing via Intense Pulse Light (IPL), robotic microassembly, wirebonding and inspection,
Fused-Deposition-Modeling (FDM) printing with a 6 DOF robot, electronic pick and place, and textile
weaving and interconnect for wearable devices. The system is depicted in Figure 11. An operator interface
consisting of a display system and joystick is used on the NeXus to bring the human operator into the
micromanufacturing decision and execution processes.
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Fig. 11 NeXus robotic additive micromanufacturing system, showing overall design (top, left), automated
thin-film aerosol jet printing, curing and inspection line (top, right) [75], microassembly station (bottom,
left) [9], and 3 — robot collaborative fabric interconnection diagram (bottom, right) [76].
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Because a high magnification is required for the microscope to see the assembly site and features of
interest, tradeoffs including limited field of view, sensitivity to ambient lighting, and occlusions due to
micro-gripping tools must be navigated by the operator in a semi-automated fashion. Additionally,
attachment processes such as dispensing of adhesive fluids, alignment of probes for electric contact or
strain testing also require human intervention to interpret visual results, and achieve situational
awareness in the assembly scene, and compensate for the lack of tactile feedback.

In a study, we evaluated the performance of the user interface of our microassembly subsystem while
performing assembly of a microrobot using semi-automated capabilities vs. complete teleoperation.
Results clearly show that by automating 10 of the 13 assembly and packaging processes, mostly those
related to alignment, assembly target identification, and motion execution, we increase assembly
precision by an order of magnitude, while also slightly improving the fabrication time. The manual
processes (e.g., those not automated) included difficult to perform adhesive dispensing, recovery from
failed assembly, and inspection, where the operator’s experience is critical. Furthermore, by automating
many of the precision alignment processes, the mental workload on the operator was considerably
reduced during the operation of the NeXus [9].

3. Key Elements in Human-Robot Collaborative Systems

The goal of an HRC system is to either improve manufacturing productivity, assure quality, or accomplish
jobs that are not possible to achieve by either humans or robots alone. Improving productivity involves
allowing humans and robots to work in close proximity on separate subtasks, and ensuring the safety of
humans in such an environment is often a primary concern for HRC systems. Assuring quality requires
combining the actions and decisions of humans and robots to accomplish a task.

Despite the goal, an HRC system typically has the following key components: human sensors that monitor
human intent (such as commands, reactions, and actions), signal processing that interprets human intent
from human sensor signals, presentation of information to the human for them to react, environmental
sensors that monitor the environment, machines and processes to obtain the raw information that needs
to be used as the basis for presenting to the human, and interface control that manages how the
information is presented to the human, what reactions are expected from the human, and what needs to
be presented next and expected. Additionally, there are humans and robots. These components form an
HRC system as illustrated by Fig. 12.

Signal
Processing
m— Presentation L

Fig. 12 Principle of HRC system

Robot/Process

As can be seen, interface control is the core of an HRC system. It decides when to present what information
to the human, in what way, what human intents to expect, and what to do next, including what to present
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further or what to inform the robot. The information sources it receives include processed human sensor
signals and processed environmental sensor signals, but it further processes these signals using
technologies such as deep learning, augmented reality, etc., to decide what to present and how to control
the robot. The presentation to the human is typically realized in a way such that the human feels being at
the process and within the environment. This is the immersive requirement and is better realized using
VR, AR, or MR.

3.1 Human Sensors

The following sensors have been used to monitor human reactions, actions and intents: (1) External
Sensors: voice sensors, and motion sensors including vision/cameras, IMUs and their combinations. They
have been used for motion track including gesture, hand gesture, head pose; (2) Force Sensors: haptic
control, force sensor; and (3) Internal Sensors: electroencephalogram (EEG), electrocardiograms (ECG) and
electromyogram (EMG). They have been used to monitor brain and muscle activities. Table 1 lists the
relevant papers with the sensors used, what the sensors are monitored and how the sensed information
is used to improve the manufacturing. From Table 1, we can see:

Ref # Sensor type Human intent Benefits/purposes
2; EEG; brain activities; BCl to control robot.
Voice, motion, voice, hand gesture, haptic control,

3; force, EEG motion, brain activities; multi-sensors to allow human to control robot.

5; motion; hand gesture; hand gestures to control robot.
work on the same job collaboratively (holding part for human

8; IMUs; gesture; to easily operate).

13; camera, IMUs; VR system; human operates the robot/overcome the delay from human to robot.

15; camera; human movement; monitor and supervise human activities.

22; EEG; brain activities; human controls robot to stop if human feels danger.

brain activities, head pose, AR

23; EEG, IMUs; headset; human controls how robot should move.

27; EMG; muscle gesture; human controls two arm robot to move.
gesture recognition and body skeletal detection to enable human

34; camera; human model; ergonomics analysis.

36; EMG, IMUs; estimate the human force; learning from human collaboration through force to determine speed.
using gross motion from Motion Capture and fine-grained motion to

49; motion; human gross and fine motions; classify human tasks.

53; ECG, EEG, EMG;  full monitoring of human; developing a new class of skin-like, stretchable bioelectronics.
human to operate a robot remotely for reducing task completion
times, shortening the time needed for training, reducing unwanted

69; motion hand gesture, hand motion track; collisions, and decreasing cognitive workload.

External sensors: Cameras have been used for monitoring and supervising human activities [15]. In
collaborative scenarios, IMUs have been used to track human gesture and allow for cooperative work with
robots [8]. IMUs have also been combined with cameras in virtual reality (VR) systems to enable human
operation of robots and to overcome delay from human to robot [13]. Motion sensors, such as those used
to track hand gestures, have been used to allow humans to control robots [5, 49]. Gross motion from
motion capture and fine-grained motion have been combined to classify human tasks [49]. Hand gestures
and hand motion tracking have been used to enable humans to operate robots remotely, reducing task
completion times, shortening training time, reducing unwanted collisions, and decreasing cognitive
workload [69].
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Internal Sensors: EEG sensors have been used in several studies for brain activity monitoring in order to
control robots through brain-computer interfaces (BCl) [2, 22]. EMG sensors have been used to detect
muscle gestures for human control of two-arm robots [27]. EMG sensors combined with IMUs have been
used to estimate human force and to enable learning from human collaboration through force to
determine speed [36].

Combined Sensors: Gesture recognition and body skeletal detection have been used to enable human
ergonomics analysis [34]. Full monitoring of human activities using ECG, EEG, and EMG sensors has been
used in the development of a new class of skin-like, stretchable bioelectronics [53]. Overall, these sensors
are used to enable humans to control robots in various ways, including voice commands, hand gestures,
haptic control, motion detection, EEG, and more. Additionally, these sensors can be used to monitor and
supervise human activities, enable ergonomics analysis of human movement, and improve the safety of
human-robot interactions. Multi-sensor systems combining voice, hand gesture, haptic control, motion,
and brain activity (EEG) have been used to enable humans to control robots in various ways [3].

In addition, in [10], the force is sensed to provide the human operator the feedback for the human to
operate machine. This is not for human sensing but for environmental and process sensing for which this
paper will not discuss.

o Multi-sensor perception
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Fig. 13 System design for multimodal robot control in HRC assembly [3].

3.2 Processing of Signals from Human Sensors

Reference [3] used multiple sensors to control the robot as shown in Fig. 13. As can be seen, EEG, force,
voice and gesture are monitored by headset, haptics, voice and leap motion sensor respectively for human
intent in multi-sensor perception step. In step 2, the data is organized and fused to present to a deep
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learning system as its input. The deep learning system detects the human intent directly from the fused
data. The corresponding command for the robot is classified to decide what event is needed for the robot
to execute. The corresponding robot code is automatically generated by an FB network and then pasted
to the robot. As the true intent of the human is considered known, the needed label to train the deep
learning system is available. Also, the fused data from relevant sensors assures the sufficiency of the raw
information. A deep learning model is thus learnable to find the right human intent. Without deep learning,
finding true human intent from the complex inputs could be complex and reliability would be difficult to
assure.

Reference [8] used a upper body gesture to control a robot. The proposed human-robot interaction (HRI)
is to enable a robot to assist a human co-worker in delivering tools and parts, as well as holding objects
for an assembly operation. To capture human upper body gestures, wearable IMUs are used. The captured
data is segmented into static and dynamic blocks using an unsupervised sliding window method. The
segmented data is then used to calculate the respective features. The features calculated from the
respective data, static and dynamic data blocks, are then used to train an artificial neural network (ANN)
for static, dynamic, and combined gesture classification. The classification result is then used by the Task
manager to control the robot to provide the needed assistance to the human co-worker.

AR RRR R R AR anny \_/_‘

Segmentation

i
— en

Speech and visual feedback Task manager Classification Features

Fig. 14 Gesture based robot control for robot to assist human co-worker [8].

This study utilized wearable IMUs in multiple positions to monitor the upper body movement, as
demonstrated in Fig. 15. Each IMU sensor typically records the 3-axial acceleration and 3-axial angular
speed, which can be utilized to determine the translation and rotation of the sensor and, consequently,
the movement of the specific body part to which the IMU is attached. However, the signals from IMU
sensors are often noisy, and there are multiple IMUs in use. Therefore, while algorithms can be developed
to process the sensor data directly to identify human intent, they can be highly complex and time-
consuming to develop without adequate assurance of detection accuracy. An end-to-end approach with
accurate labeling can result in better outcomes, with machine learning offering promising results. As such,
the authors reported “the proposed solution accurately classifies static and dynamic gestures, trained with
a relatively small number of patterns, and with an accuracy of about 98% for a library of 8 SGs and 4 DGs.”
[8].
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Fig. 15 Using multiple IMUs to monitor the movement of the upper body [8].

Reference [36] aimed to investigate how a follower adjusts their hand movement speed based on their
perception of the force from the leader. The study first assumed that the follower's speed was solely
determined by the leader's force. To establish a model with the force from the leader as the input and the
follower's speed as the output, accurate labels of the follower's true speed were required. As the
relationship between force and speed could be complex, the researchers trained a machine learning model,
called the "Skill Imitation Model," as shown in Figure 16. The model has two layers. The first layer is a
classifier that categorizes the follower's movement into slow and fast modes based on the force waveform.
Then, the force data is input into its respective model to predict the speed. The first layer is an
unsupervised classification, and the second layer consists of two parallel models based on Gaussian
process regression. The first layer determines which of the two models to use.

Target motion Three-dimensional arm force estimation model Skills imitation model Human-robot collaborative assembly

|
| Unsupervised clustering
i of force information

i

i

Multi-model Gaussian |
process regression

uonow [enoy

main motion direction

Figure 16. Deep learning for speed estimation from human sensors and its training [36].

Although there are two layers, they form a single model. The parameters in both layers must be trained
together using the imported force and output label. However, as the force originates from the human, the
force data is not directly obtainable but must be estimated using the "Three-Dimensional Arm Force
Estimation Model," which is also shown in Figure 16. This force estimation model employs signals from
the human sensors discussed in Section 2 Example 4: Coordination Learning as its input to predict the
force. The key component of this force estimation model is two parallel LSTM neural networks. LSTM
stands for Long-Short Term Memory, and LSTM neural networks are popular recurrent deep learning
networks used to process dynamic data, as is the case for force estimation from human sensors. To train
this model, experiments were performed using a robot as the follower so that the force could be accurately
measured as the label. This model was trained separately before the "Skill Imitation Model" was trained.
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Once the Three-Dimensional Arm Force Estimation Model has been trained, the signals from the human
sensors can be used to calculate a target speed for the robot. The robot speed can be realized, measured,
and compared to the actual human speed. The resulting error, which represents the difference between
the actual and target motions, is utilized to update the parameters in the Skill Imitation Model so that this
model can be trained.

3.3 Interface Control

Human sensors are supposed to work continuously. Each manufacturing job follows a certain procedure
with multiple steps. The logic of the interface control must be organized to provide the human with the
information needed at the particular step for human to make a particular decision, often to select among
possible choices. The design of the logic is often task specific and thus should not be discussed in detail
here. We thus only use two examples to illustrate below in this paper.

One example is to enable a human to program a robot using a Finite State Machine (FSM), as illustrated in
Figure 4. The FSM consists of a decision tree with several (four in Figure 4) states. At each state, the FSM
detects the human's response to decide what action to take next. The human's response is one of three
options that are consistent across all states. However, the action taken for each response may differ
depending on the current state. This approach is necessary because human sensors, particularly brain
sensors, are often insufficient for deriving complex information. As a result, human's control over the robot
may be limited, requiring the need for a well-designed logic system to ensure appropriate and effective
control.

Another example involves relative complex communication with the human which has been introduced in
Section 2.1 Example 1 [2]. In that example, the human performs the assembly operation in the Assembling
Area, while the robot retrieves the next part from the Picking Area, where there are many parts that are
out of reach for the human, and then transfers it to the Releasing Area, which is located near the human
and only contains the next required part. As there are multiple parts, it is more than just asking the robot
to pick up and release. The human will also select the next part that needs the robot to transport. To
provide an intuitive selection mechanism based on visual cortex signals, a relatively complex NextMind
has been developed whose core is composed of two main components: NeuroTags and NeuroManager.
NeuroTags (Figure 17) are identifiable by blinking or flickering textures that allow any object in the scene
to become "mind-controllable." Each NeuroTag has a unique visual signature that triggers a response in
the user's brain. NeuroManager, serving as the Interface Control, manages communication between the
NeuroTags and the NextMind engine, which processes the signals received from the electrodes that detect
human brain activities.

Figure 17 NeuroTag example with flickering texture [2].
The communication between NeuroTags and the NextMind engine can be explained below:

1) The NeuroManager is structured into three distinct scenarios, the main menu, calibration, and project,
and this paper only reviews the main menu. Upon launching, the main menu is displayed, providing
the user (human) with the options for the user to choose either view the assembled or exploded
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version of the clamp. To ensure that the selection panel remains visible to the user, a gaze-tracking
constraint is implemented. The option is decided based on the signals received from the electrodes.
Due to the ten NeuroTags per scene limit, the clamp is divided into three sections (as exampled in
Figure 18 for exploded version).

Figure 18 Three sections of exploded clamp [2].

2) Each section is assigned a NeuroTag, with two NeuroTags assigned to each component: Explore
and Select (refer to Figure 19). Selecting a section leads NeuroManager to present all the
corresponding parts to the user via being displayed on the HoloLens. The Select mode then
activates the robot directly to pick the selected objects.

£

EXPLORE

L
SELECT

Section Back

Figure 19 Display of all parts in section 1 in Fig. 18 [2].

3) To provide more effective feedback than the standard three green lines forming a triangle, a
growing circle is used to associate with the selection mechanism when the user focuses on a
NeuroTag. The green circle grows gradually until it reaches the size of the white circle, indicating
that the user has focused on the NeuroTag for a specific period, typically two seconds, before
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the NeuroTag triggers the selection (refer to Figure 20). This approach is useful in preventing
unintended selections.

Figure 20 Effective feedback by growing a green circle grows for the user to focus and select [2].

3.4 Presentation to the Human

Environmental information, process feedback, and assistance from artificial intelligence for human to react
are presented to the human in different ways using different devices. Out of them, reaction force in HRC
environment provides human operators with feedback to decide how much force is needed to move the
object. A projector projects an image onto a ground in HRC environment to provide humans safety alert.
Computer display, GUI, and high-definition multimedia provide humans more detailed information for
human to react and respond. 3D virtual interface uses three-dimensional models to represent objects and
environments in a virtual space. Virtual reality headset (HTC Vive) and HoloLens are headsets for virtual
reality, augmented reality and mixed reality that provide 3D immersive environment for human to react.
allow users to see and interact with holographicimages in their environment. Customized large AR displays
use augmented reality (AR) to overlay digital information onto the physical world. In particular, high-
definition multimedia [1] has provided human the needed view and details for human to perceive and
interpret robot’s surroundings for high precision trajectory planning for welding. HoloLens [2][23][35],
Projector [4][24], and customized large AR displays [35] have provided a safe working environment for
humans and robots. Computer displays [5][9][12][69], virtual reality headsets [13], and customized AR
displays [35] have allowed humans to control robots using hand gestures or by selecting waypoints for
path programming. Reaction force has provided feedback for remote object manipulation [10], while
Unity3D game engine environment [31] has improved human learning and created immersive
environments. Hololens [35][47] and Robot Operating System (ROS) [47] have been used for programming
and operating robots with the assistance of AR, while GUI and computer displays [17] have guided human-
robot collaboration. Display usage has also enabled humans to remotely operate robots [69], reducing task
completion times, training time, unwanted collisions, and cognitive workload.

In particular, HTC Vive is a virtual reality headset developed by HTC and Valve Corporation. It uses room-
scale tracking technology, which allows users to move around a physical space and have their movements
tracked and translated into the virtual world. The headset features a high-resolution display with a refresh
rate of 90 Hz, providing users with an immersive and realistic experience. HTC Vive is commonly used in
various applications, including gaming, education, and training. Its ability to track movements in a physical
space makes it an ideal tool for simulating real-world scenarios and training users in a safe environment.
For example, HTC Vive has been used in medical training to simulate surgeries, allowing medical students
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to practice procedures before performing them on real patients [77]. It has also been used in astronaut
training, allowing trainees to simulate tasks in a virtual environment that mimics the conditions of space
[78]. In addition, HTC Vive has been used in human-robot interaction research to enable humans to
remotely control robots in a more natural and intuitive way. By using the headset and its motion controllers,
humans can control the robot's movements and interact with the environment in a more intuitive way,
allowing for more efficient and effective collaboration between humans and robots [79].

Microsoft HoloLens [80-83] is a mixed reality device that uses a combination of sensors, cameras, and
holographic displays to project virtual images onto the real world. It allows the user to see and interact
with digital content in a physical space, creating an immersive and interactive experience. In human-robot
interaction, HoloLens has been utilized to provide a safe region for the human to work with the robot [82-
84] and to enable the human to control the robot [80-83]. By using HoloLens, the human can visualize the
robot's perspective [81], track its movements, and provide commands through gestures and voice
recognition [80, 81]. In addition, HoloLens can be used to program and operate the robot with the
assistance of augmented reality [83], as well as to guide human-robot collaboration [85]. The use of
HoloLens in human-robot interaction has several benefits, including increased safety, improved control
and communication, and enhanced efficiency and productivity.

4. Summary: State-of-the-art, Challenges, and Future Directions
4.1 State-of-the-art

The state-of-the-art in sensor technology for human-robot collaboration involves a range of external and
internal sensors. External sensors like cameras and motion sensors have been used to monitor and track
human gestures and activities, enabling humans to control robots through hand gestures, voice commands,
and haptic control. Internal sensors like EEG and EMG have been used to monitor brain and muscle activity,
respectively, to control robots through brain-computer interfaces and detect muscle gestures for human
control of robots. Combined sensor systems have been used for human ergonomics analysis and to
monitor and supervise human activities. Multi-sensor systems combining voice, hand gesture, haptic
control, motion, and EEG have been used to enable humans to control robots in various ways.

Signal processing techniques have been applied in various fields such as robotics and human-robot
interaction. Deep learning models have been utilized to detect human intent from multiple sensors and
classify corresponding robot commands for execution. Wearable IMUs have been used to monitor human
upper body movement, which is then segmented and processed for gesture classification using machine
learning models such as artificial neural networks. Additionally, deep learning has been employed to
estimate human speed from force perception, where the force estimation model utilizes parallel LSTM
neural networks. These studies highlight the importance of accurate labeling and machine learning in
processing complex sensor data to detect human intent and enable effective human-robot interaction.

The state of the art in designing communication with humans involves developing logical interfaces that
provide humans with the necessary information to make decisions during manufacturing jobs. Two
examples are given, one using a Finite State Machine (FSM) to program a robot, and the other using
NextMind technology to provide an intuitive selection mechanism based on visual cortex signals. The
NextMind technology involves using NeuroTags and NeuroManager to manage communication between
the NextMind engine and the user's brain activities. Effective feedback is provided using a growing circle
that associates with the selection mechanism when the user focuses on a NeuroTag, preventing

20



unintended selections. Overall, these designs aim to provide humans with efficient and effective control
over robots during manufacturing jobs.

Presenting information, feedback, and assistance to humans can be achieved through various devices and
technologies. Some of the state-of-the-art devices include HTC Vive, a virtual reality headset with room-
scale tracking technology, which allows users to move around a physical space and have their movements
tracked and translated into the virtual world. It has been used in various applications, including medical
training and astronaut training. Microsoft HoloLens is a mixed reality device that projects virtual images
onto the real world, allowing users to interact with digital content in a physical space. HoloLens has been
utilized in human-robot interaction to provide a safe region for humans to work with robots and to enable
humans to control robots through gestures and voice recognition, among others. The use of these devices
has several benefits, including increased safety, improved control and communication, and enhanced
efficiency and productivity.

We note that there is a fundamental difference between assembly and welding. In general, assembly
involves a number of different steps or subtasks, while welding is a continuous process that requires
careful control and adjustment of welding parameters based on feedback. While welding may seem
relatively simple, it is actually much more complex, particularly when it comes to ensuring welding quality.
This requires many years of training and practice. In contrast, assembly skills mainly determine
productivity rather than quality and acceptability.

Assembly can also be decomposed into subtasks that can be finished separately, and the pace of work
typically only affects productivity rather than quality and acceptability. As such, assembly is generally
easier for HCR systems to realize than welding. Hence, there are far more studies in HRC assembly than in
welding. We also note that per the Bureau of Labor Statistics (BLS), as of May 2020, there were
approximately 1.5 million workers employed as assemblers and fabricators in the US [86]. On the other
hand, the BLS reports that there were approximately 404,800 welding, soldering, and brazing workers
employed in the US as of May 2020 [87]. These figures suggest that, out of every three HRC assembly and
welding papers, there should be one HRC welding paper. However, out of the 74 papers we uncovered,
example 5 is probably the only one focusing on welding operations. The difficulty in realizing HRC welding
is likely the reason for this.

For the papers uncovered, almost all of them for assembly do not involve real-time collaboration from
human and robots to accomplish a same job that is not accomplishable by either a human or a robot,
except for [8] where a robot holds a workpiece while the human co-worker performs assembly operations.
However, in this case, the work decouplable among human and robot and the collaboration is still not in
real time and does not involve real-time changes.

In summary, various advanced tools, including human sensors, Al-based signal processing, advanced RV,
AR, and MR technologies to enable providing human with immersive environment and intelligent
assistance, etc. have been developed. However, the examples presented for HRC assembly show that
HRC provides only marginal improvements in productivity rather than fundamental solutions. While the
presentation to humans appears to be advanced, intelligent, and reliable, human sensors are less ideal
and reliable requiring comprehensive processing and deep learning to extract accurate human intent.
Reliably interfacing human intent with machines remains a challenging task. Additionally, in most case
studies, the roles of humans are not adaptive and may easily be replaced by better solutions except for
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adaptive robot programming with human assistance through HRC interface. For welding, limited studies
have been done.

4.2 Challenges and Future Directions

The challenge lies in achieving a more comprehensive, reliable, and quantitative understanding of human
intent in real-time to effectively communicate with machines/robots. This allows humans to provide
adaptive input to the robots rather than merely selecting a job from a pre-determined library or modifying
the robot's trajectory planning outside of real-time. This challenge arises primarily because all human
sensors are external, while critical human intents are often internal and difficult to accurately measure and
monitor using external sensors, making reliability a significant challenge.

It is important to emphasize that achieving a more comprehensive, reliable, and quantitative
understanding of human intent in real-time requires a fundamental grasp of human operations. In general,
we must determine the raw information that the human operators sense from their "outside world" as
input and the output they generate to control their "outside world." This involves mapping a portion of
their external environment (input to their model) to another portion of their external environment (output
of their model). While this mapping is complex and often unknown, deep learning offers a powerful tool
for approximating it using suitable models. With the advancement of deep learning techniques and
algorithms, success primarily hinges on whether the model inputs contain sufficient raw information about
the model outputs.

Itis evident that the necessary fundamental understanding is application dependent. Such comprehension
can be particularly challenging for distinct manufacturing jobs, such as welding, which require extensive
training. For instance, consider the case of a skilled human welder successfully controlling weld
penetration [88]. While it is commonly believed that the welder responds to the weld pool, this notion is
incomplete. The study in [88] revealed that weld penetration depends on the history of the weld pool.
Consequently, the skilled welder's raw information must encompass the history of the weld pool rather
than just its present state. To predict welder intent, a deep learning model should be a recurrent network,
such as a RNN (recurrent neural network), rather than a simple convolutional neural network (CNN) [88].
Further investigation delved into the factors influencing the phenomena observed by human welders [89].
The study determined that the weld pool observed at a given time is influenced by the history of the weld
penetration, rather than solely the current state of the penetration. Armed with the findings from these
two studies, we can select more appropriate deep learning models to comprehend and predict human
welder intent during weld penetration control. Different applications may necessitate different yet
conceptually similar fundamental studies.

Another challenge lies in acquiring the requisite data for learning human behaviors, such as training deep
learning models. In assembly scenarios, the data exchanged among collaborators may involve forces,
tactile sensations, and more, which are more challenging to present immersively than visual scenes.
However, in welding, the primary data exchanged among collaborators pertains to the weld pool and arg,
both of which can be represented using images and videos. Advanced tools like Virtual Reality (VR),
Augmented Reality (AR), and Mixed Reality (MR) have been developed to enable immersion. Nonetheless,
effective methods are still needed to capture what demonstrating welders see without affecting their
operational skills. A potential approach involves operating robots with collaborating welders, allowing the
robots to carry cameras while performing tasks. This method enables the collection of genuine
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demonstration data and may guide the development of Human-Robot Collaboration (HRC) welding and
the programming of a robot team with the requisite intelligence and collaborative skills.

Given the challenges associated with HRC assembly for practical applications, it is prudent to focus on
bottleneck applications for in-depth study. This approach holds the potential to uncover the most efficient
HRC solutions.
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