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Abstract: This paper reviews and analyzes the recent progress in human-robot collaborative (HRC) 
technologies that enhance assembly and welding processes. It focuses on how the HRC approach helps 
improve assembly and welding productivity and quality, while enabling complex process operations that 
cannot be accomplished by humans or robots/machines alone. It also discusses the basic elements in HRC 
approaches, including (1) human sensors, (2) signal processing for extraction of human intent from sensors, 
(3) presentation of information to the human for their reaction, obtained from environmental sensors that 
monitor the environment, machines, and processes, and (4) interface control, which manages how 
information is presented to the human, what reactions are expected from the human, and what needs to 
be presented next. Finally, it summarizes the state-of-the-art in the major elements and application 
accomplishments, identifies challenges for greater benefits, and proposes directions to address these 
challenges.  

1. Introduction 

The manufacturing industry has undergone a significant transformation in recent years with the increasing 
use of automation technologies, particularly robotics, which have been shown to improve production 
efficiency, product quality, and reduce manufacturing costs. However, robots/machines often require 
intelligence to adapt to complex jobs, which can be job-specific, complex, and difficult to learn. While 
human operators can train their mental "neural networks" and develop the required process intelligence, 
transferring this knowledge to machines is often not straightforward. Human-robot collaborative 
manufacturing (HRCM) offers a solution that combines the accuracy, repeatability, and physical strength 
of machines with the adaptation and quick learning abilities of humans in operating processes.  

Casting, forming, machining, joining/welding, additive manufacturing, assembly, and coating are among 
major manufacturing processes. The latter four share a common goal of locally connecting materials 
together. In particular, while the connection by assembly is considered reversible, joining/welding, 
additive manufacturing, and coating connect materials in irreversible ways and can be considered welded. 
Assembly and welding are thus two major types of materials connection processes. As the final goal of 
manufacturing is to finish a product that integrates/connects parts together in the designed ways, welding 
and assembly thus play important roles in manufacturing. As our focus is assembly and welding, this paper 
analyzes the state-of-the-art of human-robot collaboration (HRC) in assembly and welding.   
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We conducted a search in Web of Science for publications in the past five years with key words <weld OR 
assembly> AND <human> AND <machine OR robot> AND <manufacturing> in all fields and uncovered 74 
publications [1-74]. A basic function of HRCM is for a human to control a machine/robot. To this end, the 
human must send a signal that may be understandable by the robot. Acquisition of such signals, referred 
to as human signals, can be referred to as human signal sensing. The acquired signals often require certain 
processing to become understandable. Human signal sensing and processing of human signals are thus 
two basic functions in an HRC system. To integrate human intelligence, the human must also be immersive 
despite if the human is actually at, or away from the manufacturing. Virtual reality (VR), augmented reality 
(AR), and mixed reality (MR) equip humans to realize and improve immersion with AI enhanced sensing 
and seamless guidance.  

This review paper aims to assess the current state of research in the following areas: (1) Human Sensing, 
which explores the use of sensors to detect various aspects of human behavior, including motor 
movements and intentions, and the methods used to process sensor data to extract this information. (2) 
Information Presented/Visualized to Humans, which investigates the types of environmental information 
that are presented to individuals to facilitate interaction with their surroundings, including other humans, 
machines, robots, and processes. (3) Immersive Technologies, which examines the hardware platforms 
and commercial products employed to create augmented, virtual, and mixed reality environments that 
enable individuals to better engage with their surroundings. (4) Intelligent Human-Machine Collaboration, 
which explores the ways in which humans and machines/robots can collaborate to increase intelligence 
and adaptability of their counterparts in complex human-robot systems. (5) Challenges and Opportunities 
in Human-Machine Interactions, which examines the obstacles and prospects associated with the 
development of more intelligent human-robot collaborative manufacturing processes. 

This paper is organized as follows: Section 2 will provide a few exemplar applications to demonstrate  
human-robot collaboration in order to provide an overall picture. The following sections, Section 3-6, will 
review and analyze the details in Human Sensing, Information Presented/Visualized to Humans, Immersive 
Technologies, and Intelligent Human-Machine Collaboration. The Challenges and Opportunities in Human-
Machine Interactions will be identified in the conclusion Section 7.  

2. Human-Robot Collaboration Examples 

Example 1: Robot Assistance to Human for Assembly [2] 

Sanna et al. [2] presented an example of an assembly application where a human assembles parts together 
in the Assembling Area (close to the human) and a robot picks the next part to be assembled from a Picking 
Area (out of reach of the human, with many parts) and then places it in the Releasing Area (close to the 
human with only the next required part). The robot's assistance improves the efficiency of the human 
worker. A key question here is how the human instructs the robot to pick the correct part when needed. 
This is accomplished through the NextMind, which senses the human's intention and communicates with 
the AR. The AR, with a HoloLens 2 as the platform, presents options to the human to make a selection. 
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Fig. 1 Robot assistance to assembly by human operator [2]. 

The NextMind is a wireless device that can be worn like a headband to detect brain activity using nine 
electrodes located at the back of the head where the visual cortex is located. The device consists of two 
main components: NeuroTags and NeuroManager. NeuroTags are unique visual signatures that are 
identified by blinking textures and allow the user to control objects in the scene. Here “blinking textures” 
refer to a visual pattern that NeuroTags use to identify specific objects in the scene. These textures are 
created by rapidly changing the color or brightness of a pattern at specific frequencies that correspond to 
each unique NeuroTag. When the user focuses their attention on an object associated with a specific 
NeuroTag, the NextMind device detects the corresponding blinking texture and generates a response in 
the user's brain, which allows them to control the object. NeuroManager manages the communication 
between the NeuroTags and the NextMind engine, which processes signals received from the electrodes. 
The device can be paired with other devices that support Bluetooth and has been used in studies to 
compare the performance of selection using gestures versus brain-computer interfaces in augmented 
reality interfaces. 

We above mentioned that the user makes his/her selection by focusing on the respective NeuroTag in 
his/her view among those displayed. The display is done using a Microsoft HoloLens 2, which is transparent 
without interference to the human vision/operation or can display visual information to the user when 
commanded. When a section is made, all corresponding parts are displayed. Two NeuroTags are associated 
with each part: Explore and Select. In Explore mode, the user can achieve more information about the 
selected component, change the representation from solid to wireframe, rotate the object, select the 
object, see a video about the object, and skip back to the visualization of all the section components. In 
Select mode, the robot is directly activated to pick the selected object. The selection mechanism is 
triggered by the user focusing on a NeuroTag for a given time, e.g., two seconds, and a growing circle is 
associated with the selection mechanism to provide more efficient feedback than the standard three green 
lines forming a triangle. The gaze-tracking constraint is also activated for the main menu scene so that the 
selection panel can always be displayed in front of the user. Finally, the calibration scene allows the user 
to calibrate the NextMind device, and a graphical representation denotes the quality of signals received 
from the electrodes. 

Example 2: Human Commanded Robotic Assembly Tasks [3] 
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Fig. 2 Experimental system for human-robot collaborative assembly [3] 

 

Fig. 3 Human-Robot Collaborative Assembly Process [3] 

In the above example, the assembly is finished by the human and the robot assists the human. In this 
example, the job is done by robots commanded by human who is sensed by various sensors using the 
experimental system shown in Fig. 2 which is connected to a team of robot controllers via Ethernet. An 
external computer processes the signals from a Leap motion sensor (a kind of motion sensor that 
integrates cameras and infrared LEDs for being capable of observing a roughly hemispherical area to a 
distance of about 1 m and tracking fingers or similar items to a spatial precision of 0.01 mm), a microphone, 
and an EEG sensor headset. The assembly process involved first fitting a cylinder head (weighing 3.4 kg) 
onto the engine block, placing a valve cover on it, fastening screws, and then accurately inserting an 
injector fuel tube (weighing 1.8 kg) into the cylinder head's holes. Finally, the operator assembled the 
ignition coils.  
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The assembly process has 12 steps illustrated in Fig. 3: 1) Brainwave commands the first robot to place the 
cylinder; 2) The first robot is controlled to move to the cylinder head and fit the gripper's fingers with 
millimeter-level tolerance. 3) Gesture 1" is used to control the gripper to grasp the cylinder head; 4) 
Brainwave commands the first robot to place the cylinder head onto the engine block, and the operator 
checks the alignment of the cylinder head with the engine block; 5) "Gesture 2" is used to open the gripper 
at a specified level; 6) The assembly of the valve cover is initiated by a voice command, which instructs the 
first robot to move from the engine block to the valve cover using "Up," "Left," and "Down," respectively. 
Once the gripper fits with the component, a hand gesture (Gesture 1) is posed to close the gripper; 7) The 
operator issues voice commands to control the first robot to place the valve cover on the engine block, 
followed by fastening screws, and enables the "open" of the gripper via the hand gesture; 8) The accurate 
assembly of the fuel injection tube starts with sensorless haptics control. During the assembly, the 
detection threshold of the external force applied by the operator to the second robot can be up to 2 Nm. 
The admittance controller is adopted to transform the contact force into reference position and velocity 
with adaptive admittance parameters; 9) Fine manipulation of the second robot is achieved by adjusting 
the admittance parameters. Within the context, a low-speed and accurate robot motion control assists in 
the appropriate fit of the gripper into the fuel injection tube, followed by the close gesture of the gripper 
control as shown in the inset; 10) The operator forces the second robot to move the tube to the engine 
block and align it with the holes of the cylinder head, and the inset shows one of the haptic control 
operations during assembly. A relatively large force is applied to the robot for a fast motion; 11) A fine 
adjustment of the orientation and position of the end-effector at a low speed facilitates accurate insertion 
of the tube into the cylinder head's holes, followed by opening the gripper via the gesture in the inset, as 
well as the quality check of the insertion operation; 12) The operator assembles the ignition coils and 
secures the components by fastening screws, and the final assembly state of all the components is shown 
in the inset. 

In this example, two robots are controlled by a human operator to complete a number of tasks. The human 
commands are detected by multiple "human sensors," and the signals are processed using advanced 
techniques, which will be discussed in detail later. However, the humans and robots do not operate or 
process a common object. In [8], the robot holds a workpiece while the human co-worker performs 
assembly operations on it. 

Example 3: Comprehensive Use of Augmented Reality [23] 

This example demonstrates a comprehensive use of AR in human control of robot trajectory, utilizing a 
finite state machine (FSM) as the control logic (refer to Fig. 4). The FSM has four states (states 1-4), and 
each state can transition in two directions - advancing to the next state or not advancing. User eye blinks, 
categorized into three types (normal, double, and long) and detected through EEG waveforms, control 
these state transitions. Normal blinks are ignored, while long and double blinks correspond to advancing 
and not advancing, respectively. If not advancing, the particular action depends on the particular state. 
Throughout all states except for state 1, the human eye blink is a reaction to what is displayed by the AR 
on the HoloLens. 
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Fig. 4 FSM and HRC based robot programming [23]                      Fig. 5 Real-time adjustment of the target point by head pose [23]. 

In all states, if no "abnormal" eye blinks (double or long blinks) are detected, no changes are made, and 
the system continues to do what it is currently doing. For example, in state 1, this implies "waiting." In 
state 2, where the robot's trajectory is programmed, the user first interacts with the visual display in the 
HoloLens to determine the final target point. This can be seen in Figure 5: the user's head pose (coordinate 
system H) aims at the target point, and the distance from the head pose to the target point is the same as 
the distance between the head pose and the robot's TCP (tool center point). When a double blink is 
performed, the target point is fixed, and a proposed trajectory is displayed. This displayed trajectory 
toward the target point consists of several points in the display. In the Trajectory Modification stage, also 
in state 2, the user can focus on a point in the trajectory and then perform a double blink to choose it as 
an intermediate point in the trajectory. This point changes color to blue to confirm the selection. Each time 
an intermediate point is confirmed, the trajectory is updated. Then, the user can focus on additional points 
if needed and select them by performing a double blink each time to choose additional intermediate 
points. Once all the intermediate points are selected, the user performs a long blink to leave state 2 with 
the updated trajectory to advance to state 3. In state 3, the user is displayed with the virtual movement 
of the robot along the trajectory for preview. If it is unsatisfactory, a double blink sends the system back 
to state 2. Otherwise, the system advances to state 4. In state 4, the user waits (no abnormal blinks) or 
accepts the trajectory and commands the robot to execute it with a double blink or restarts the 
programming with a long blink to advance to state 1. 
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Fig. 6 Application of AR enabled robot programming [23]. 

Fig. 6 shows a programming for robot by user with interaction with AR through HoloLens using the displays 
to the user. The interaction began with a long blink by the user at t=0s, which triggered the state transition 
from state 1 to state 2 for the interaction where human first determine the final target point which is 
indicated in the HoloLens snapshot by a red sphere appeared in the user's field of view. This point moves 
as the head pose moves (Fig. 6(2)-(4)) and always appears in the center of the user’s view in the HoloLens 
display. At t=2.6s (Fig. 6(4), the user performed a double blink to fix the target. In Fig. 6(5)-(8), an 
intermediate point is selected and confirmed. In Fig. 6(9)-(12), the user is displayed with a preview of the 
robot trajectory being considered for execution. In Fig. 6(13)-(16), the robot executed the programmed 
trajectory.   

Example 4: Coordination Learning [36] 

The examples presented earlier only involve jobs that are separatable and can be assigned to different 
team members. Complex jobs may not be separable and require coordination among team members to 
effectively perform. This highlights the crucial role of coordination in certain complex manufacturing tasks 
that require the collaboration of robots, machines, and humans. The study in [36] studies a particular 
coordination that involves followers adapting their motion speed by detecting changes in external force 
information and working closely with the leader. To study this type of coordination, human leaders and 
followers are used to provide the needed data in this study [36].  
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Fig. 7 Learning experimental set-up [36]                                 Fig. 8 Experimental set-up to generate data  
                                                                                                               to train a force estimation model [36]                                                                          
Fig. 7 shows the human-human experiment that is used to collect the force imposed by the leader and the 
speed from the follower. They are the input and output of the model to be learned. By using this model, a 
human leader can operate a robot and the robot can provide the right speed as a response to the force 
imposed by the human. This right speed from the robot is calculated using the learned model from the 
detected force. For the robot follower, a force sensor can be installed and the envisioned human-robot 
collaboration can be implemented. However, to learn this model, we need (force, speed) data. The 
experimental set-up in Fig. 7 can provide the speed of the follower but not the force imposed by the leader 
directly. As can be seen in Fig. 7, the leader has been installed with various sensors. The hope is that the 
force imposed by the leader can be estimated from the signals from these sensors.  

To estimate the force from the sensor signals, an experimental set-up shown in Fig. 8 is used to generate 
sensor data and measure the corresponding force by the force sensor installed on the robot. They will be 
the input and output of the force estimation model. With this model, the force in the experiment shown 
in Fig. 7 can be estimated so that the leader-follower model can be learned. As such, the experiments 
shown in Fig. 8 need to be conducted first. To this end, the arm is attached with six EMG sensors that are 
distributed on different locations of different muscles, two goniometers, and one IMU sensor. A peg is 
connected to a robot arm and the human operates the peg.  

Example 5: Coordinated Human-Robot Collaborative Welding [13, 90] 

This example demonstrated a control, coordinated by a human and robot, for precision welding, which 
requires control of both the weld bead (surface appearance) and weld penetration (internal quality). This 
is a job that demands not only extensive training and practice to appropriately respond and adapt to 
observed process phenomena, but also physical strength and motor controllability to hold the welding 
torch steadily and move it smoothly and accurately while making necessary adjustments. However, this is 
challenging for both robots and human workers. Appropriately responding and adapting to observed 
process phenomena depends on the human's understanding of welding phenomena and process 
dynamics, which is acquired through training and practice. Such understanding is unstructured and difficult 
to explain or export. This is a major challenge in robotizing such a welding process for precision welding. 
On the other hand, human welders, regardless of the training, practice, ageing, disability, etc. are all 
subjected to different limitation in physical strength and motor controllability to provide the needed steady, 
smooth, and accurate movement and adjustment. Such limitation is in general not concerned for a robot 
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but developing/equipping the intelligence and adaptation for a robot requires the knowledge about 
welding phenomena and process dynamics human gain through long training and practices. A human-
robot collaborative approach to combine human intelligence and machine physical strengths and 
repetition provides an effective solution.      

Fig. 9 demonstrates this welding job which is the root pass of the welding for the groove joint. For this job, 
the welding torch is supposed to weave transversely while moving along the central line of groove 
longitudinally. Ideally, the frequency and amplitude of the weaving need to be consistent during welding. 
This repetitive job is thus fully controlled by the robot through programming. The welding process also 
needs to be controlled to produce the needed weld bead and weld penetration as the bead and 
penetration are subjected to the influence of the welding conditions whose accurate control is considered 
not realistic. This requires a major welding parameter be real-time adjusted per the feedback of the 
welding process. In this example, the welding speed is chosen as the welding parameter that is adjusted 
in real-time. This is challenging for the robot to undertake as it must be based on understanding of process 
phenomena and process dynamics but may be better done by human. As such, fusing the actions from the 
robot which carries the welding torch to move forward and weave and the responses from the human 
which adjusts the welding speed to form a coordinated control is an appropriate solution.  

 

Fig. 9 Comparison of human-robot collaborative welding result with robotic and manual welding results 
[90] 

As shown in the left of Fig. 9, the robot is purposely programmed to carry the torch to travel in a direction 
deviating from the central line of the groove. As the torch also weaves transversely, the groove is scanned. 
The arc voltage increases approximately proportionally with the arc length, the distance from the torch to 
the work-piece surface. The arc volage is used to estimate the lowest point (where the arc voltage is the 
highest) for the robot to adjust its weaving center but not the weaving frequency and amplitude. As such, 
robotic welding has a consistent weaving pattern while assuring the weld be made at the right position. 
However, the welding current is purposely changed to generate a condition, which should be caused by 
the deviation of welding conditions from the nominal ones, where real-time adjustment of welding speed 
is needed. As there is no adjustment from the robot for the welding speed, the produced weld bead 
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(appearance) changes with the changed condition (current) and is thus not consistent as can be seen from 
the picture of the produced weld. In the middle of Fig. 9, the welding is done manually by a human welder. 
The weld appearance looks much consistent despite the changed current, but the weaving is not 
consistent. The weld appearance is much more consistent although the inconsistence on the weaving 
should also have affected the consistence of the produced weld but the adjustment of the welding speed 
partially compensated. The right of Fig. 9 shows the result from fused coordination from human 
adjustment in speed and robotic movement where the weaving and the produced weld bead are both 
consistent.  

A human-robot collaborative system is needed to realize this coordinated process control. To this end, a 
system shown in Fig. 10 has been developed where a human views the welding process from the display 
of an augmented reality (AR) system and operates a virtual torch which is light and easy to control. The 
sensors of the AR system capture the movement of the virtual torch. The speed can be calculated from 
their signals and human operation errors and fluctuations can be corrected/filtered. The corrected/filtered 
speed as a better representation of the human intent is sent to the robot for execution. The robot fuses 
the real-time adjusted speed with its movement program to form the entire command of the robot 
movement. The robot also carries a camera that provides the raw information of the welding process 
feedback for the AR system to generate the information on the display for the human to view the welding 
process away from the welding site as being present (immersive). As such, human and robot are effectively 
coordinated to outperform over human and robot for a complex welding job.  

 

Fig. 10 Human-robot collaborative welding system [90]. 

Example 6: Human-Robot Collaboration for Micromanufacturing [75] 

Micromanufacturing refers to the process of fabrication, alignment, attachment, packaging, and testing 
devices whose components span across several dimensional scales, nominally from 1 µm to 1 cm. 
Examples of such systems include many of the sensors in use today in consumer electronics, as well as 
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Micro-Opto-Electro-Mechanical Systems (MOEMS), that have active parts for processing motion, light, 
fluids, and so on. Due to the stringent precision requirements, automated handling of parts has long been 
recognized as a better way to complete micro-assemblies, in terms of both time and accuracy. A 
microassembly system typically consists of precision robots, one or several visual microscopes to monitor 
the assembly scene, and other, finer resolution sensors for final alignment steps with sub-micron accuracy 
that are often needed [76]. Although part handling can often be automated, calibration and 
bonding/processes often require human intervention, due to difficulties in compensation of unknown 
process conditions such as temperature, humidity, lighting, stiction, etc. These play a much more 
important role as disturbances at the small scales, than at the larger scales, and often prevent full 
automation of manufacturing. The NeXus is a custom micromanufacturing platform that contains five 
precision robots working in tandem to perform tasks such as additive manufacturing via Aerosol and Inkjet 
printing, thin-film curing via Intense Pulse Light (IPL), robotic microassembly, wirebonding and inspection, 
Fused-Deposition-Modeling (FDM) printing with a 6 DOF robot, electronic pick and place, and textile 
weaving and interconnect for wearable devices. The system is depicted in Figure 11. An operator interface 
consisting of a display system and joystick is used on the NeXus to bring the human operator into the 
micromanufacturing decision and execution processes.  

 

Fig. 11 NeXus robotic additive micromanufacturing system, showing overall design (top, left), automated 
thin-film aerosol jet printing, curing and inspection line (top, right) [75], microassembly station (bottom, 
left) [9], and 3 – robot collaborative fabric interconnection diagram (bottom, right) [76]. 
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Because a high magnification is required for the microscope to see the assembly site and features of 
interest, tradeoffs including limited field of view, sensitivity to ambient lighting, and occlusions due to 
micro-gripping tools must be navigated by the operator in a semi-automated fashion. Additionally, 
attachment processes such as dispensing of adhesive fluids, alignment of probes for electric contact or 
strain testing also require human intervention to interpret visual results, and achieve situational 
awareness in the assembly scene, and compensate for the lack of tactile feedback.   

In a study, we evaluated the performance of the user interface of our microassembly subsystem while 
performing assembly of a microrobot using semi-automated capabilities vs. complete teleoperation. 
Results clearly show that by automating 10 of the 13 assembly and packaging processes, mostly those 
related to alignment, assembly target identification, and motion execution, we increase assembly 
precision by an order of magnitude, while also slightly improving the fabrication time. The manual 
processes (e.g., those not automated) included difficult to perform adhesive dispensing, recovery from 
failed assembly, and inspection, where the operator’s experience is critical. Furthermore, by automating 
many of the precision alignment processes, the mental workload on the operator was considerably 
reduced during the operation of the NeXus [9].  

3. Key Elements in Human-Robot Collaborative Systems   

The goal of an HRC system is to either improve manufacturing productivity, assure quality, or accomplish 
jobs that are not possible to achieve by either humans or robots alone. Improving productivity involves 
allowing humans and robots to work in close proximity on separate subtasks, and ensuring the safety of 
humans in such an environment is often a primary concern for HRC systems. Assuring quality requires 
combining the actions and decisions of humans and robots to accomplish a task. 

Despite the goal, an HRC system typically has the following key components: human sensors that monitor 
human intent (such as commands, reactions, and actions), signal processing that interprets human intent 
from human sensor signals, presentation of information to the human for them to react, environmental 
sensors that monitor the environment, machines and processes to obtain the raw information that needs 
to be used as the basis for presenting to the human, and interface control that manages how the 
information is presented to the human, what reactions are expected from the human, and what needs to 
be presented next and expected. Additionally, there are humans and robots. These components form an 
HRC system as illustrated by Fig. 12. 

 

Fig. 12 Principle of HRC system 

As can be seen, interface control is the core of an HRC system. It decides when to present what information 
to the human, in what way, what human intents to expect, and what to do next, including what to present 
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further or what to inform the robot. The information sources it receives include processed human sensor 
signals and processed environmental sensor signals, but it further processes these signals using 
technologies such as deep learning, augmented reality, etc., to decide what to present and how to control 
the robot. The presentation to the human is typically realized in a way such that the human feels being at 
the process and within the environment. This is the immersive requirement and is better realized using 
VR, AR, or MR.  

3.1 Human Sensors  

The following sensors have been used to monitor human reactions, actions and intents: (1) External 
Sensors: voice sensors, and motion sensors including vision/cameras, IMUs and their combinations. They 
have been used for motion track including gesture, hand gesture, head pose; (2) Force Sensors: haptic 
control, force sensor; and (3) Internal Sensors: electroencephalogram (EEG), electrocardiograms (ECG) and 
electromyogram (EMG). They have been used to monitor brain and muscle activities. Table 1 lists the 
relevant papers with the sensors used, what the sensors are monitored and how the sensed information 
is used to improve the manufacturing. From Table 1, we can see:   

Ref # Sensor type Human intent Benefits/purposes 

2; EEG; brain activities; BCI to control robot. 

3; 
Voice, motion, 
force, EEG 

voice, hand gesture, haptic control, 
motion, brain activities; multi-sensors to allow human to control robot. 

5; motion; hand gesture; hand gestures to control robot. 

8; IMUs; gesture; 
work on the same job collaboratively (holding part for human  
to easily operate). 

13; camera, IMUs; VR system; human operates the robot/overcome the delay from human to robot. 

15; camera; human movement; monitor and supervise human activities. 

22; EEG; brain activities; human controls robot to stop if human feels danger. 

23; EEG, IMUs; 
brain activities, head pose, AR 
headset; human controls how robot should move. 

27; EMG; muscle gesture; human controls two arm robot to move. 

34; camera; human model; 
gesture recognition and body skeletal detection to enable human  
ergonomics analysis. 

36; EMG, IMUs; estimate the human force; learning from human collaboration through force to determine speed. 

49; motion; human gross and fine motions; 
using gross motion from Motion Capture and fine-grained motion to  
classify human tasks. 

53; ECG, EEG, EMG; full monitoring of human; developing a new class of skin-like, stretchable bioelectronics. 

69; motion hand gesture, hand motion track; 

human to operate a robot remotely for reducing task completion  
times, shortening the time needed for training, reducing unwanted  
collisions, and decreasing cognitive workload. 

 

External sensors: Cameras have been used for monitoring and supervising human activities [15]. In 
collaborative scenarios, IMUs have been used to track human gesture and allow for cooperative work with 
robots [8]. IMUs have also been combined with cameras in virtual reality (VR) systems to enable human 
operation of robots and to overcome delay from human to robot [13]. Motion sensors, such as those used 
to track hand gestures, have been used to allow humans to control robots [5, 49]. Gross motion from 
motion capture and fine-grained motion have been combined to classify human tasks [49]. Hand gestures 
and hand motion tracking have been used to enable humans to operate robots remotely, reducing task 
completion times, shortening training time, reducing unwanted collisions, and decreasing cognitive 
workload [69].  
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Internal Sensors: EEG sensors have been used in several studies for brain activity monitoring in order to 
control robots through brain-computer interfaces (BCI) [2, 22]. EMG sensors have been used to detect 
muscle gestures for human control of two-arm robots [27]. EMG sensors combined with IMUs have been 
used to estimate human force and to enable learning from human collaboration through force to 
determine speed [36]. 

Combined Sensors: Gesture recognition and body skeletal detection have been used to enable human 
ergonomics analysis [34]. Full monitoring of human activities using ECG, EEG, and EMG sensors has been 
used in the development of a new class of skin-like, stretchable bioelectronics [53]. Overall, these sensors 
are used to enable humans to control robots in various ways, including voice commands, hand gestures, 
haptic control, motion detection, EEG, and more. Additionally, these sensors can be used to monitor and 
supervise human activities, enable ergonomics analysis of human movement, and improve the safety of 
human-robot interactions. Multi-sensor systems combining voice, hand gesture, haptic control, motion, 
and brain activity (EEG) have been used to enable humans to control robots in various ways [3]. 

In addition, in [10], the force is sensed to provide the human operator the feedback for the human to 
operate machine. This is not for human sensing but for environmental and process sensing for which this 
paper will not discuss.  

 

Fig. 13 System design for multimodal robot control in HRC assembly [3]. 

3.2 Processing of Signals from Human Sensors  

Reference [3] used multiple sensors to control the robot as shown in Fig. 13. As can be seen, EEG, force, 
voice and gesture are monitored by headset, haptics, voice and leap motion sensor respectively for human 
intent in multi-sensor perception step. In step 2, the data is organized and fused to present to a deep 
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learning system as its input. The deep learning system detects the human intent directly from the fused 
data. The corresponding command for the robot is classified to decide what event is needed for the robot 
to execute. The corresponding robot code is automatically generated by an FB network and then pasted 
to the robot. As the true intent of the human is considered known, the needed label to train the deep 
learning system is available. Also, the fused data from relevant sensors assures the sufficiency of the raw 
information. A deep learning model is thus learnable to find the right human intent. Without deep learning, 
finding true human intent from the complex inputs could be complex and reliability would be difficult to 
assure.   

Reference [8] used a upper body gesture to control a robot. The proposed human-robot interaction (HRI) 
is to enable a robot to assist a human co-worker in delivering tools and parts, as well as holding objects 
for an assembly operation. To capture human upper body gestures, wearable IMUs are used. The captured 
data is segmented into static and dynamic blocks using an unsupervised sliding window method. The 
segmented data is then used to calculate the respective features. The features calculated from the 
respective data, static and dynamic data blocks, are then used to train an artificial neural network (ANN) 
for static, dynamic, and combined gesture classification. The classification result is then used by the Task 
manager to control the robot to provide the needed assistance to the human co-worker.  

 

Fig. 14 Gesture based robot control for robot to assist human co-worker [8]. 

This study utilized wearable IMUs in multiple positions to monitor the upper body movement, as 
demonstrated in Fig. 15. Each IMU sensor typically records the 3-axial acceleration and 3-axial angular 
speed, which can be utilized to determine the translation and rotation of the sensor and, consequently, 
the movement of the specific body part to which the IMU is attached. However, the signals from IMU 
sensors are often noisy, and there are multiple IMUs in use. Therefore, while algorithms can be developed 
to process the sensor data directly to identify human intent, they can be highly complex and time-
consuming to develop without adequate assurance of detection accuracy. An end-to-end approach with 
accurate labeling can result in better outcomes, with machine learning offering promising results. As such, 
the authors reported “the proposed solution accurately classifies static and dynamic gestures, trained with 
a relatively small number of patterns, and with an accuracy of about 98% for a library of 8 SGs and 4 DGs.” 
[8]. 
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Fig. 15 Using multiple IMUs to monitor the movement of the upper body [8]. 

Reference [36] aimed to investigate how a follower adjusts their hand movement speed based on their 
perception of the force from the leader. The study first assumed that the follower's speed was solely 
determined by the leader's force. To establish a model with the force from the leader as the input and the 
follower's speed as the output, accurate labels of the follower's true speed were required. As the 
relationship between force and speed could be complex, the researchers trained a machine learning model, 
called the "Skill Imitation Model," as shown in Figure 16. The model has two layers. The first layer is a 
classifier that categorizes the follower's movement into slow and fast modes based on the force waveform. 
Then, the force data is input into its respective model to predict the speed. The first layer is an 
unsupervised classification, and the second layer consists of two parallel models based on Gaussian 
process regression. The first layer determines which of the two models to use. 

   

Figure 16. Deep learning for speed estimation from human sensors and its training [36]. 

Although there are two layers, they form a single model. The parameters in both layers must be trained 
together using the imported force and output label. However, as the force originates from the human, the 
force data is not directly obtainable but must be estimated using the "Three-Dimensional Arm Force 
Estimation Model," which is also shown in Figure 16. This force estimation model employs signals from 
the human sensors discussed in Section 2 Example 4: Coordination Learning as its input to predict the 
force. The key component of this force estimation model is two parallel LSTM neural networks. LSTM 
stands for Long-Short Term Memory, and LSTM neural networks are popular recurrent deep learning 
networks used to process dynamic data, as is the case for force estimation from human sensors. To train 
this model, experiments were performed using a robot as the follower so that the force could be accurately 
measured as the label. This model was trained separately before the "Skill Imitation Model" was trained. 
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Once the Three-Dimensional Arm Force Estimation Model has been trained, the signals from the human 
sensors can be used to calculate a target speed for the robot. The robot speed can be realized, measured, 
and compared to the actual human speed. The resulting error, which represents the difference between 
the actual and target motions, is utilized to update the parameters in the Skill Imitation Model so that this 
model can be trained. 

3.3 Interface Control   

Human sensors are supposed to work continuously. Each manufacturing job follows a certain procedure 
with multiple steps. The logic of the interface control must be organized to provide the human with the 
information needed at the particular step for human to make a particular decision, often to select among 
possible choices. The design of the logic is often task specific and thus should not be discussed in detail 
here. We thus only use two examples to illustrate below in this paper.   

One example is to enable a human to program a robot using a Finite State Machine (FSM), as illustrated in 
Figure 4. The FSM consists of a decision tree with several (four in Figure 4) states. At each state, the FSM 
detects the human's response to decide what action to take next. The human's response is one of three 
options that are consistent across all states. However, the action taken for each response may differ 
depending on the current state. This approach is necessary because human sensors, particularly brain 
sensors, are often insufficient for deriving complex information. As a result, human's control over the robot 
may be limited, requiring the need for a well-designed logic system to ensure appropriate and effective 
control.   

Another example involves relative complex communication with the human which has been introduced in 
Section 2.1 Example 1 [2]. In that example, the human performs the assembly operation in the Assembling 
Area, while the robot retrieves the next part from the Picking Area, where there are many parts that are 
out of reach for the human, and then transfers it to the Releasing Area, which is located near the human 
and only contains the next required part. As there are multiple parts, it is more than just asking the robot 
to pick up and release. The human will also select the next part that needs the robot to transport. To 
provide an intuitive selection mechanism based on visual cortex signals, a relatively complex NextMind 
has been developed whose core is composed of two main components: NeuroTags and NeuroManager. 
NeuroTags (Figure 17) are identifiable by blinking or flickering textures that allow any object in the scene 
to become "mind-controllable." Each NeuroTag has a unique visual signature that triggers a response in 
the user's brain. NeuroManager, serving as the Interface Control, manages communication between the 
NeuroTags and the NextMind engine, which processes the signals received from the electrodes that detect 
human brain activities.  

 

Figure 17 NeuroTag example with flickering texture [2]. 

The communication between NeuroTags and the NextMind engine can be explained below: 

1) The NeuroManager is structured into three distinct scenarios, the main menu, calibration, and project, 
and this paper only reviews the main menu. Upon launching, the main menu is displayed, providing 
the user (human) with the options for the user to choose either view the assembled or exploded 
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version of the clamp. To ensure that the selection panel remains visible to the user, a gaze-tracking 
constraint is implemented. The option is decided based on the signals received from the electrodes. 
Due to the ten NeuroTags per scene limit, the clamp is divided into three sections (as exampled in 
Figure 18 for exploded version).  
 

 
Figure 18  Three sections of exploded clamp [2]. 

 
2) Each section is assigned a NeuroTag, with two NeuroTags assigned to each component: Explore 

and Select (refer to Figure 19). Selecting a section leads NeuroManager to present all the 
corresponding parts to the user via being displayed on the HoloLens. The Select mode then 
activates the robot directly to pick the selected objects. 
 

 
 

Figure 19 Display of all parts in section 1 in Fig. 18 [2]. 
 

3) To provide more effective feedback than the standard three green lines forming a triangle, a 
growing circle is used to associate with the selection mechanism when the user focuses on a 
NeuroTag. The green circle grows gradually until it reaches the size of the white circle, indicating 
that the user has focused on the NeuroTag for a specific period, typically two seconds, before 
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the NeuroTag triggers the selection (refer to Figure 20). This approach is useful in preventing 
unintended selections. 
 

 
Figure 20 Effective feedback by growing a green circle grows for the user to focus and select [2]. 
 

3.4 Presentation to the Human  

Environmental information, process feedback, and assistance from artificial intelligence for human to react 
are presented to the human in different ways using different devices. Out of them, reaction force in HRC 
environment provides human operators with feedback to decide how much force is needed to move the 
object. A projector projects an image onto a ground in HRC environment to provide humans safety alert. 
Computer display, GUI, and high-definition multimedia provide humans more detailed information for 
human to react and respond. 3D virtual interface uses three-dimensional models to represent objects and 
environments in a virtual space. Virtual reality headset (HTC Vive) and HoloLens are headsets for virtual 
reality, augmented reality and mixed reality that provide 3D immersive environment for human to react.  
allow users to see and interact with holographic images in their environment. Customized large AR displays 
use augmented reality (AR) to overlay digital information onto the physical world. In particular, high-
definition multimedia [1] has provided human the needed view and details for human to perceive and 
interpret robot’s surroundings for high precision trajectory planning for welding. HoloLens [2][23][35], 
Projector [4][24], and customized large AR displays [35] have provided a safe working environment for 
humans and robots. Computer displays [5][9][12][69], virtual reality headsets [13], and customized AR 
displays [35] have allowed humans to control robots using hand gestures or by selecting waypoints for 
path programming. Reaction force has provided feedback for remote object manipulation [10], while 
Unity3D game engine environment [31] has improved human learning and created immersive 
environments. Hololens [35][47] and Robot Operating System (ROS) [47] have been used for programming 
and operating robots with the assistance of AR, while GUI and computer displays [17] have guided human-
robot collaboration. Display usage has also enabled humans to remotely operate robots [69], reducing task 
completion times, training time, unwanted collisions, and cognitive workload. 

In particular, HTC Vive is a virtual reality headset developed by HTC and Valve Corporation. It uses room-
scale tracking technology, which allows users to move around a physical space and have their movements 
tracked and translated into the virtual world. The headset features a high-resolution display with a refresh 
rate of 90 Hz, providing users with an immersive and realistic experience. HTC Vive is commonly used in 
various applications, including gaming, education, and training. Its ability to track movements in a physical 
space makes it an ideal tool for simulating real-world scenarios and training users in a safe environment. 
For example, HTC Vive has been used in medical training to simulate surgeries, allowing medical students 
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to practice procedures before performing them on real patients [77]. It has also been used in astronaut 
training, allowing trainees to simulate tasks in a virtual environment that mimics the conditions of space 
[78]. In addition, HTC Vive has been used in human-robot interaction research to enable humans to 
remotely control robots in a more natural and intuitive way. By using the headset and its motion controllers, 
humans can control the robot's movements and interact with the environment in a more intuitive way, 
allowing for more efficient and effective collaboration between humans and robots [79]. 

Microsoft HoloLens [80-83] is a mixed reality device that uses a combination of sensors, cameras, and 
holographic displays to project virtual images onto the real world. It allows the user to see and interact 
with digital content in a physical space, creating an immersive and interactive experience. In human-robot 
interaction, HoloLens has been utilized to provide a safe region for the human to work with the robot [82-
84] and to enable the human to control the robot [80-83]. By using HoloLens, the human can visualize the 
robot's perspective [81], track its movements, and provide commands through gestures and voice 
recognition [80, 81]. In addition, HoloLens can be used to program and operate the robot with the 
assistance of augmented reality [83], as well as to guide human-robot collaboration [85]. The use of 
HoloLens in human-robot interaction has several benefits, including increased safety, improved control 
and communication, and enhanced efficiency and productivity. 

4. Summary: State-of-the-art, Challenges, and Future Directions     

4.1 State-of-the-art     

The state-of-the-art in sensor technology for human-robot collaboration involves a range of external and 
internal sensors. External sensors like cameras and motion sensors have been used to monitor and track 
human gestures and activities, enabling humans to control robots through hand gestures, voice commands, 
and haptic control. Internal sensors like EEG and EMG have been used to monitor brain and muscle activity, 
respectively, to control robots through brain-computer interfaces and detect muscle gestures for human 
control of robots. Combined sensor systems have been used for human ergonomics analysis and to 
monitor and supervise human activities. Multi-sensor systems combining voice, hand gesture, haptic 
control, motion, and EEG have been used to enable humans to control robots in various ways. 

Signal processing techniques have been applied in various fields such as robotics and human-robot 
interaction. Deep learning models have been utilized to detect human intent from multiple sensors and 
classify corresponding robot commands for execution. Wearable IMUs have been used to monitor human 
upper body movement, which is then segmented and processed for gesture classification using machine 
learning models such as artificial neural networks. Additionally, deep learning has been employed to 
estimate human speed from force perception, where the force estimation model utilizes parallel LSTM 
neural networks. These studies highlight the importance of accurate labeling and machine learning in 
processing complex sensor data to detect human intent and enable effective human-robot interaction. 

The state of the art in designing communication with humans involves developing logical interfaces that 
provide humans with the necessary information to make decisions during manufacturing jobs. Two 
examples are given, one using a Finite State Machine (FSM) to program a robot, and the other using 
NextMind technology to provide an intuitive selection mechanism based on visual cortex signals. The 
NextMind technology involves using NeuroTags and NeuroManager to manage communication between 
the NextMind engine and the user's brain activities. Effective feedback is provided using a growing circle 
that associates with the selection mechanism when the user focuses on a NeuroTag, preventing 
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unintended selections. Overall, these designs aim to provide humans with efficient and effective control 
over robots during manufacturing jobs. 

Presenting information, feedback, and assistance to humans can be achieved through various devices and 
technologies. Some of the state-of-the-art devices include HTC Vive, a virtual reality headset with room-
scale tracking technology, which allows users to move around a physical space and have their movements 
tracked and translated into the virtual world. It has been used in various applications, including medical 
training and astronaut training. Microsoft HoloLens is a mixed reality device that projects virtual images 
onto the real world, allowing users to interact with digital content in a physical space. HoloLens has been 
utilized in human-robot interaction to provide a safe region for humans to work with robots and to enable 
humans to control robots through gestures and voice recognition, among others. The use of these devices 
has several benefits, including increased safety, improved control and communication, and enhanced 
efficiency and productivity. 

We note that there is a fundamental difference between assembly and welding. In general, assembly 
involves a number of different steps or subtasks, while welding is a continuous process that requires 
careful control and adjustment of welding parameters based on feedback. While welding may seem 
relatively simple, it is actually much more complex, particularly when it comes to ensuring welding quality. 
This requires many years of training and practice. In contrast, assembly skills mainly determine 
productivity rather than quality and acceptability.  

Assembly can also be decomposed into subtasks that can be finished separately, and the pace of work 
typically only affects productivity rather than quality and acceptability. As such, assembly is generally 
easier for HCR systems to realize than welding. Hence, there are far more studies in HRC assembly than in 
welding. We also note that per the Bureau of Labor Statistics (BLS), as of May 2020, there were 
approximately 1.5 million workers employed as assemblers and fabricators in the US [86]. On the other 
hand, the BLS reports that there were approximately 404,800 welding, soldering, and brazing workers 
employed in the US as of May 2020 [87]. These figures suggest that, out of every three HRC assembly and 
welding papers, there should be one HRC welding paper. However, out of the 74 papers we uncovered, 
example 5 is probably the only one focusing on welding operations. The difficulty in realizing HRC welding 
is likely the reason for this.  

For the papers uncovered, almost all of them for assembly do not involve real-time collaboration from 
human and robots to accomplish a same job that is not accomplishable by either a human or a robot, 
except for [8] where a robot holds a workpiece while the human co-worker performs assembly operations. 
However, in this case, the work decouplable among human and robot and the collaboration is still not in 
real time and does not involve real-time changes.   

In summary, various advanced tools, including human sensors, AI-based signal processing, advanced RV, 
AR, and MR technologies to enable providing human with immersive environment and intelligent 
assistance, etc. have been developed. However, the examples presented for HRC assembly show that 
HRC provides only marginal improvements in productivity rather than fundamental solutions. While the 
presentation to humans appears to be advanced, intelligent, and reliable, human sensors are less ideal 
and reliable requiring comprehensive processing and deep learning to extract accurate human intent. 
Reliably interfacing human intent with machines remains a challenging task. Additionally, in most case 
studies, the roles of humans are not adaptive and may easily be replaced by better solutions except for 



22 
 

adaptive robot programming with human assistance through HRC interface. For welding, limited studies 
have been done.  

4.2 Challenges and Future Directions     

The challenge lies in achieving a more comprehensive, reliable, and quantitative understanding of human 
intent in real-time to effectively communicate with machines/robots. This allows humans to provide 
adaptive input to the robots rather than merely selecting a job from a pre-determined library or modifying 
the robot's trajectory planning outside of real-time. This challenge arises primarily because all human 
sensors are external, while critical human intents are often internal and difficult to accurately measure and 
monitor using external sensors, making reliability a significant challenge. 

It is important to emphasize that achieving a more comprehensive, reliable, and quantitative 
understanding of human intent in real-time requires a fundamental grasp of human operations. In general, 
we must determine the raw information that the human operators sense from their "outside world" as 
input and the output they generate to control their "outside world." This involves mapping a portion of 
their external environment (input to their model) to another portion of their external environment (output 
of their model). While this mapping is complex and often unknown, deep learning offers a powerful tool 
for approximating it using suitable models. With the advancement of deep learning techniques and 
algorithms, success primarily hinges on whether the model inputs contain sufficient raw information about 
the model outputs. 

It is evident that the necessary fundamental understanding is application dependent. Such comprehension 
can be particularly challenging for distinct manufacturing jobs, such as welding, which require extensive 
training. For instance, consider the case of a skilled human welder successfully controlling weld 
penetration [88]. While it is commonly believed that the welder responds to the weld pool, this notion is 
incomplete. The study in [88] revealed that weld penetration depends on the history of the weld pool. 
Consequently, the skilled welder's raw information must encompass the history of the weld pool rather 
than just its present state. To predict welder intent, a deep learning model should be a recurrent network, 
such as a RNN (recurrent neural network), rather than a simple convolutional neural network (CNN) [88]. 
Further investigation delved into the factors influencing the phenomena observed by human welders [89]. 
The study determined that the weld pool observed at a given time is influenced by the history of the weld 
penetration, rather than solely the current state of the penetration. Armed with the findings from these 
two studies, we can select more appropriate deep learning models to comprehend and predict human 
welder intent during weld penetration control. Different applications may necessitate different yet 
conceptually similar fundamental studies. 

Another challenge lies in acquiring the requisite data for learning human behaviors, such as training deep 
learning models. In assembly scenarios, the data exchanged among collaborators may involve forces, 
tactile sensations, and more, which are more challenging to present immersively than visual scenes. 
However, in welding, the primary data exchanged among collaborators pertains to the weld pool and arc, 
both of which can be represented using images and videos. Advanced tools like Virtual Reality (VR), 
Augmented Reality (AR), and Mixed Reality (MR) have been developed to enable immersion. Nonetheless, 
effective methods are still needed to capture what demonstrating welders see without affecting their 
operational skills. A potential approach involves operating robots with collaborating welders, allowing the 
robots to carry cameras while performing tasks. This method enables the collection of genuine 
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demonstration data and may guide the development of Human-Robot Collaboration (HRC) welding and 
the programming of a robot team with the requisite intelligence and collaborative skills. 

Given the challenges associated with HRC assembly for practical applications, it is prudent to focus on 
bottleneck applications for in-depth study. This approach holds the potential to uncover the most efficient 
HRC solutions. 
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