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Abstract

Structural diversity—the volume and physical arrangement of vegetation
within the three-dimensional (3D) space of ecosystems—is a predictor of eco-
system function that can be measured at large scales with remote sensing.
However, the landscape composition and configuration of structural diversity
across macrosystems have not been well described. Using a relatively recently
developed method to quantify landscape composition and configuration of
continuous habitat or terrain, we propose the application of gradient surface
metrics (GSMs) to quantify landscape patterns of structural diversity and pro-
vide insights into how its spatial pattern relates to ecosystem function. We first
applied an example set of GSMs that represent landscape heterogeneity, domi-
nance, and edge density to Lidar-derived structural diversity within 28 forested
landscapes at National Ecological Observatory Network (NEON) sites. Second,
we tested for forest type, geographic location, and climate drivers of macro-
scale variation in GSMs of structural diversity (GSM-SD). Third, we demon-
strated the utility of these metrics for understanding spatial patterns of
ecosystem function in a case study with NDVI, a proxy of productivity. We
found that GSM-SD varied in landscapes within macrosystems, with forest
type, geographic location, and climate being significantly related to some but
not all metrics. We also found that dominance of high peaks of height and ver-
tical complexity of canopy vegetation and the heterogeneity of the vertical
complexity and coefficient of variation of canopy vegetation height within
120-m patches were negatively correlated with NDVI across the 28 NEON
sites. However, forest type always had a significant interaction term between
these GSM-SD and NDVI relationships. Our study demonstrates that GSMs
are useful to describe the landscape composition and configuration of struc-
tural diversity and its relationship with productivity that warrants further con-
sideration for spatially motivated management decisions.
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INTRODUCTION

Spatial variability is an inherent part of the study of the
ecological patterns and processes in nature (Guo
et al., 2023; Turner & Gardner, 2015). The characteriza-
tion of the landscape composition and configuration of
biological diversity across macrosystems is therefore a
critical part of the understanding of the interplay
between ecological pattern and process (Fei et al., 2016;
Gaston et al., 1995; Tscharntke et al., 2012). For instance,
biogeographers have long been fascinated by the pole-
ward decrease in species richness and its associated
eco-evolutionary causes and consequences (Brodie &
Mannion, 2023; Hawkins et al., 2003). With advances in
technology for measuring new aspects of biological diver-
sity beyond the traditional species richness, the landscape
composition and configuration of diversity need to be
quantified to better understand its underlying mecha-
nisms and their consequences for ecosystem function
(LaRue, Fahey, et al., 2023).

Three-dimensional (3D) structural diversity—the vol-
umetric capacity and physical arrangement of the biotic
components in ecosystems—is an understudied type of
diversity that has the potential to be a useful tool for
predicting ecosystem function across space (LaRue,
Fahey, et al., 2023). Metrics of structural diversity that
have been commonly described in the literature, such as
the vertical stratification or heterogeneity of vegetation
height within a forest stand or plot, can be easily mea-
sured with remote sensing techniques like Lidar
(Ogunjemiyo et al., 2005; Zimble et al., 2003). Structural
diversity has been found to be a strong predictor of eco-
system functions such as forest productivity when quanti-
fied in stands or plots (Gough et al.,, 2019; Hardiman
et al., 2011; LaRue, Knott, et al., 2023) and thereby can
be used as a tool to understand ecosystem function.

The composition and configuration of landscapes
varies significantly due to climate, regional species com-
position, and disturbance (Turner, 1990, 2010; Turner &
Gardner, 2015), which is anticipated to be reflected in the
spatial variation of structural diversity within landscapes
and across macrosystems as well (Dodonov &
Harper, 2022; Kane et al., 2011). Despite early ecological
origins (MacArthur & MacArthur, 1961), structural diver-
sity has not been widely measured at landscape scales
yet. Therefore, structural diversity’s application in
describing its landscape composition and configuration

patterns across macrosystems is even more limited
despite the availability of new remote-sensing tools
(Atkins et al., 2023; LaRue, Fahey, et al, 2023).
Meanwhile, its spatial patterns from within landscapes
and across macrosystems that vary in environmental con-
ditions could be quite important in regional management
applications (LaRue, Fahey, et al., 2023).

Landscape ecology has a long tradition in using patch
mosaic metrics to describe discrete landscape composi-
tion and configuration patterns of land cover, but previ-
ous work had not focused on continuous spatial
heterogeneity until recently (McGarigal & Dushman,
2005). Patch metrics that describe the landscape composi-
tion and configuration of categorical variables, such as
land use and land cover, have been used for decades
(i.e., Fragstats, McGarigal & Marks, 1995). However,
equivalent metrics for continuous variables were not
introduced until McGarigal et al. (2009) proposed gradi-
ent surface metrics (GSMs) as a comparable way to mea-
sure the gradient aspects of spatial composition and
configuration of continuous raster values. McGarigal
et al. (2009) described a suite of GSMs that clustered into
four groups of similarly behaved metrics describing
surface roughness, the shape of the surface height distri-
bution, and angular and radial surface texture of contin-
uous variables. GSMs, especially those in the surface
roughness group, are correlated with many traditional
patch mosaic metrics (McGarigal et al., 2009). Surface
roughness GSMs are conceptually analogous to (1) overall
surface spatial variability, such as nonspatially explicit
composition measures of patch diversity and dominance
and (2) local variability in height (slope or steepness of
the surface) such as spatially explicit configuration
metrics of edge density or contrast. A second group of
nonspatially explicit GSMs describe the shape of the
surface height distribution comparable to measures of
landscape dominance and evenness, whereas the angu-
lar and radial surface texture groups of GSMs do not
have readily analogous patch mosaic metrics, nor are
they strongly correlated with them (McGarigal
et al., 2009). In landscape ecology, GSMs have been
applied to continuous variables such as elevation
(Anderson et al., 2015; Read et al., 2020), vegetation
indices (Smith et al., 2021), or developed city environ-
ments (Kedron et al., 2019) and may provide additional
novel linkages between 3D ecological spatial patterns
of diversity and process.
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The previous successful applications of GSMs for
viewing landscapes as a 3D environmental surface
(McGarigal et al.,, 2009) led us to believe that GSMs
would also be valuable for quantifying structural diversity
at the landscape level. More specifically, GSMs can be
used to summarize the equivalent of patch-level composi-
tion and configuration landscape patterns of structural
diversity across local raster cells (e.g., to describe compo-
sition and configuration of 30 X 30 m structural diversity
cells across 120 X 120 m or any size unit of patches across
a landscape, e.g., Figure 1). Structural diversity in earlier
work has been typically described as a value of vertical
heterogeneity or height stratification at the stand or plot
level and has been shown to be positively correlated with
forest productivity (Aponte et al., 2020; Gough et al,
2019; Hardiman et al., 2011). However, the landscape
composition and configuration (i.e., horizontal spatial
patterns across smaller localized areas of structural diver-
sity cells) might result in spatial patterns in structural
diversity that will interact with ecosystem functions in
ways that have not been previously explored. Hence,
GSMs could provide a useful approach to quantify the
composition and configuration of structural diversity
metrics within landscapes and provide unique insights
into how landscape patterns of structural diversity relate
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to ecosystem functions. For instance, we would expect
that a GSM representing the heterogeneity (spatial com-
position) of structural diversity within an area would
have a negative relationship with ecosystem productivity,
because a higher horizontal spatial variation in structural
diversity will lead to a reduction in productivity due to
lower functional niche space filled over the patch (LaRue,
Knott, et al., 2023). Additionally, we could expect that a
measure of dominance of high structural diversity peaks
within an area would also have a negative relationship
with productivity (Torresan et al, 2020; Zhang
et al., 2024), because a dominance of many peaks of struc-
tural diversity values may cause a decrease in productivity
from lower functional niche space filled (LaRue, Knott,
et al., 2023). Furthermore, a spatially explicit measure of
edge density of structural diversity might have a negative
relationship with productivity, because high horizontal
spatial variation in structural aspects of the forest within a
patch will lead to lower filled niche space (LaRue, Knott,
et al.,, 2023) or edge effects from a successional/ecotone
transition that breaks up the forest canopy and reduces
resource uptake (Chaplin-Kramer et al., 2015; Fahey
et al., 2019; Ordway & Asner, 2020).

In this study, we are proposing a new set of measures,
GSMs of structural diversity (GSM-SD), that have a

Edge density (Sdr)
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FIGURE 1 Representative raster grids of mean canopy height within 120 X 120 m patches for the NEON site BART that had low (top
row) and high values (bottom row) of the three gradient surface metrics (GSMs) used in our study dataset. Metric definitions for GSMs can

be found in Table 1.
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conceptual parallel to classic landscape ecology measures
from the patch mosaic paradigm (e.g., heterogeneity,
dominance, and edge density; Table 1) and demonstrate
their usefulness by looking at GSM-SD correlations with
ecosystem function (productivity). To do this, we
addressed three objectives:

1. Generate GSM-SD to describe the landscape patterns of
structural diversity from within a set of 28 different for-
ested landscapes (i.e., sites across a macrosystem) from
the National Ecological Observatory Network (NEON).

2. Investigate how forest type, geographic location, and
climate are related to GSM-SD to take the first step to
understand potential common macroscale drivers of
their spatial patterns, because structural diversity has
been shown to vary by macroscale factors such as cli-
mate (Ehbrecht et al., 2021; LaRue, Knott, et al., 2023)
or ecosystem and forest type (Atkins et al., 2022;
Crockett et al., 2023).

3. Demonstrate the usefulness of GSM-SD by looking at
its correlation with ecosystem function with a case
study—forest productivity across our macrosystems
dataset. To do this, we tested if GSM-SD are corre-
lated with NDVI from Landsat 8 as a proxy of pro-
ductivity. We anticipated that greater heterogeneity,
a dominance of high peaks, and edge density
observed in the vertical structural diversity values
within a horizontal area (i.e., as measured by
GSM-SD) will be associated with a decrease in eco-
system productivity due to reduced niche space fill-
ing across the corresponding horizontal area (see
Table 1 for a summary of the GSMs and their hypoth-
esized relationships with productivity).

MATERIALS AND METHODS
Overview of study design

To address our study objectives, we first used Lidar for
measuring structural diversity from 28 forested NEON
sites that spanned 16 ecoclimatic domains in the USA
(Table 2; Appendix S1: Figure S1). We then generated
three GSM by four structural diversity metric combina-
tions (i.e., 12 GSM-SD) in 50 locations with forest cover
at two patch spatial grains (60 X 60 m and 120 X 120 m)
within each of the 28 NEON sites. We refer to the spatial
extent of each NEON site as a landscape (Appendix S1:
Figure S2) and the entire collection of landscapes as a
macrosystem (i.e., macroscale) for the spatial extent of
the whole study system (Appendix S1: Figure S1). From
each NEON site (landscape), we obtained climatic, forest

type, and geographic location information, to test for
macroscale predictors of GSM-SD. Finally, we tested
for linear relationships between GSM-SD and productiv-
ity (NDVI as a proxy) within individual sites and across
the macrosystem (with forest type and geographic loca-
tion as site-level covariates).

Structural diversity from NEON
aerial Lidar

We used a previously published structural diversity data
product (Wang et al., 2023, 2024) derived from the NEON
Airborne Observation Platform (AOP) level 1 Lidar
(Product No. DP1.30003.001, NEON, 2025). Detailed
methods can be found in Wang et al. (2024), but we pro-
vide an overview of the how structural diversity data
were processed in this data product. We focused primar-
ily on years of Lidar data that were predominantly col-
lected using the Optech Gemini payload (first generation
of Lidar payloads at NEON) to facilitate standardizing
the sensor used and that were collected during peak
growing season between 2017 and 2021 across the sites
(Table 2). The methods for structural diversity metrics
generated from the NEON AOP Lidar, included utilizing
all the Lidar tiles (extent of each tile: 1 x 1 km?) within
each site (wall-to-wall process within each site bound-
ary) (Table 2; Appendix S1: Figure S1) (Wang
et al., 2023, 2024). Noise points were filtered out whose
heights are greater than six standard deviations from
the mean height and lower than ground points. Then,
50-m buffers were set around each tile to alleviate the
edge effect when normalizing the ground height to
remove topographic height variation. Vegetation height
was normalized using a digital terrain model interpo-
lated through the k-nearest neighbor approach with
inverse-distance weighting with the normalize_height
function (Roussel et al., 2020). After height normaliza-
tion, the points below a height of 0.5 m were filtered out
for calculating Lidar-derived metrics. All Lidar data
processing and analysis were performed using the lidR
R package (Roussel et al., 2020).

We focused on a selection of four structural diversity
metrics to be used in the generation of the GSM-SD met-
rics. The four structural diversity metrics that we used
describe different aspects of the height and interior (verti-
cal canopy strata) complexity of vegetation—CHM, Q25,
VCI, and CV(ht) (Table 3). Each site boundary had been
gridded into 30 X 30 m (Wang et al., 2023), aligning both
locations and UTM projections of the grids with those of
Landsat 8 collections (U.S. Geological Survey, 2023). The
structural diversity metrics were calculated from Lidar
points within the grid across sites.
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TABLE 2 Characteristics of NEON sites and Airborne Observation Platform (AOP) Lidar data used in this study.

o
Ecoclimatic Total annual Mean annual §:
Forest type Site domain precipitation (mm) temperature (°C) AOQP year AOP area km?* g&
Deciduous SERC D02 1075 13.6 2019 139 %
UKFS D06 990 12.7 2019 170 %
MLBS D07 1227 8.8 2017 143 g
LENO D08 1386 18.1 2018 155 §:
CLBJ D11 926 17.5 2017 159 :;T
Evergreen DSNY D03 1216 22.5 2019 214 %E
OSBS D03 1302 209 2018 227 =
GUAN D04 840 23 2018 162 E
GUIL D04 1168 25 2018 33 §
DELA D08 1372 17.6 2019 132 jg
RMNP D10 731 2.9 2018 210 %
YELL D12 493 34 2019 284 g
NIWO D13 1005 0.3 2020 165 %
ABBY D16 2451 10 2017 166 g
WREF D16 2225 9.2 2017 251 g
SOAP D17 900 13.4 2019 198 §
TEAK D17 1223 8 2019 211 ;Cj
DEJU D19 305 -3 2019 242 g
PUUM D20 2657 12.7 2020 324 %
Mixed evergreen BART Do1 1325 6.2 2019 135 %
deciduous HARV DO1 1199 7.4 2019 347 £
SCBI D02 1126 11.6 2017 128 %
JERC D03 1308 19.2 2018 358 ﬁ;
CHEQ D05 797 4.8 2017 65 %
STEI D05 797 4.8 2017 182 :
UNDE D05 802 4.3 2017 182
GRSM D07 1375 13.1 2021 271
TALL D08 1383 17.2 2018 177

SULIA) W0 K[ 1M

Note: A random sample of 50 locations were taken from each site for a total of 1400 across 28 NEON sites.

Pt

TABLE 3 Overview of structural diversity metrics from Lidar.

IM uo (:

Metric Name (unit) Description Reference

CHM Mean value of canopy height model (m) CHM is the mean of maximum height (m) in individual Atkins et al. (2018)
1-m? grids within each 30 x 30 m? grid.

Q25 25th canopy height quantile (m) Q25 is the 25th quantile of the Lidar points in each Roussel et al. (2020)
30 x 30 m? grid was used as a measure of subcanopy
density.
CV(ht)  Coefficient of variation The coefficient of variation of vegetation heights, CV(ht), Roussel et al. (2020)
of the height (unitless) of the points in 30 x 30 m? grids was used as a measure

of internal canopy vegetation height heterogeneity.

VCI Vertical complexity index (unitless) Vertical complexity index (VCI) is the normalization of van Ewijk et al. (2011)
diversity and evenness (entropy) of 1-m height bins
within the plot to measure the diversity of stratified
vegetation layers in the canopy.
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We downloaded the four structural diversity metrics
as a landscape raster mosaic for each NEON site from the
Environmental Date Initiative website (Wang et al.,
2023). We conducted post-processing on the structural
diversity raster landscapes by masking out non-forest ras-
ter cells within each NEON site on a Microsoft Azure
Data Science Microsoft Virtual Machine. The landscape
that makes up each NEON site is composed of a variety
of land cover types, but we focused solely on forest land
cover that the structural diversity metrics were previously
developed for. Therefore, the terra R package (Hijmans,
2024) was used to exclude non-forest landcover from our
raster maps of structural diversity with a 2019 global
ESRI land cover data product (ESRI Living Atlas, 2019).

GSM-SD

GSM-SD were generated from structural diversity rasters
from two sampling grids—60 X 60 m and 120 X 120 m—
to quantifying the landscape composition and configura-
tion of structural diversity from within 28 NEON forested
sites. We selected three GSMs that have a conceptual ana-
log to patch mosaic metrics (Table 1, also see McGarigal
et al., 2009) to demonstrate their potential utility in under-
standing GSM-SD patterns and correlation with ecosystem
function. However, there is a larger suite of GSMs inter-
ested users can access (McGarigal et al., 2009) than we
could cover in the scope of this study. We used functions
from the geodiv R package (Smith et al., 2021) to calculate
three GSMs that describe heterogeneity (sq), dominance
(sbi), and edge density (sdr) (Table 1) of structural diver-
sity within 60 X 60 m and 120 X 120 m square areas or
patches (see Figure 1 for example low and high values of
120 x 120 patches for GSM-SDs). We selected a 60 and
120-m cell size, because Landsat data are provided in
30 x 30 m cell sizes, and this provides multiples of two
and four times the sampling grids, respectively, from our
base data spatial grain. First, we randomly generated coor-
dinates representing different locations within the land-
scape of each NEON site. A 0.5-km buffer around the
edges of each site was included prior to randomly sam-
pling coordinates to avoid taking patches right at the edge
of the landscape. These randomly selected points were
then used to create 60 X 60 m and 120 X 120 m square ras-
ter clips (patch) for which the respective GSM-SD were
then generated from geodiv functions. We retained
50 patches per site that had an average outer canopy
height of 3 m or greater and that did not overlap within
another 120 X 120 m patch for a total of 1400 patches for
the entire macrosystem. The site-level distribution of
values for each GSM-SD can be observed in Appendix S1:
Figures S3-S5.

NDVI as a proxy of productivity

We used NDVI as a proxy of productivity (Myneni
et al., 1995; Pettorelli et al., 2005) to examine its relationship
with GSM-SD across macrosystems. We downloaded
Landsat 8 Collection 2-Level 2 data (U.S. Geological
Survey., 2023) from the USGS Earth Explorer for calculating
NDVI at spatially overlapping locations for each of the
28 NEON sites. We selected the Landsat image that had the
lowest cloud cover and was collected within a couple of
months of the AOP Lidar. The red and near infrared bands
were used in the calculation of NDVI across the landscape
from (NIR — Red)/(NIR + Red). We employed a cloud
cover mask using the QA_PIXEL band provided with the
Level 2 data to remove pixels with a high confidence of
cloud cover. Finally, we employed the same non-forest
landcover mask with the 2019 global ESRI 10-m resolution
land cover data product (ESRI Living Atlas, 2019) to the
NDVI raster as was done to structural diversity using the
raster (Hijmans & van Etten, 2022) and rgdal R packages
(Biband et al., 2022). Finally, we extracted the mean of
NDVI across the cells in the same 120 X 120 m and
60 x 60 m patch areas that were used for GSM-SD.

Analyses

We first calculated Spearman correlation coefficients
between all GSM-SD to examine the strength of the linear
relationships between them. Metrics from the 60- and 120-m
patch sizes were often positively correlated (Appendix S1:
Figure S6), so we conducted analyses with the 120-m patch
size to avoid redundancy in our analysis output.

We tested for differences in GSM-SD by forest type, geo-
graphic location, and climate using simple linear models. A
site-level forest type, latitude, longitude, total annual precip-
itation (in millimeters), and mean annual temperature
(in degrees Celsius) values for each of the 28 sites were
obtained from NEON (see Table 2). Forest type, latitude,
longitude, precipitation, and temperature were tested indi-
vidually as a univariate predictor of each GSM-SD to under-
stand their individual linear relationships. GSM-SD were
natural log(x + 1) transformed to test for linear rela-
tionships, and all variables were standardized (zero
mean and unit variance) to assess effect sizes after the
same transformation. Negative values were removed
from longitude prior to transformation and standardi-
zation. A chi-square test statistic for each coefficient
was assessed at a significance level of alpha <0.05 in
addition to a 95% bootstrapped CI of the coefficient to
examine the magnitude and direction of the slope.

We used general linear models to test if individual
GSM-SD increase or decrease with NDVI. The GSM-SD,
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forest type, the GSM-SD X forest type interaction, lati-
tude, and longitude were included as fixed effects in the
model. A separate model was run for each GSM-SD
(Nmodets = 12 of three GSMs by four structural diversity
metric combinations). NDVI and GSM-SD were natural
log(x + 1) transformed to test for linear relationships,
because previous work has shown that structural diver-
sity and productivity relationships can be linear or
hump-shaped (LaRue, Knott, et al., 2023). All variables
were standardized (zero mean and unit variance) to
assess effect sizes after the transformation. A chi-square
test statistic for each coefficient was assessed at a signifi-
cance level of alpha <0.05. To visualize the direction and
magnitude of the overall macrosystems relationship
between GSM-SD and NDVI, we obtained a 95%
bootstrapped CI. We followed this up by site-level simple
linear regressions between all pairwise combinations of
GSM-SD as a correlate of NDVI. Significance of the linear
slope was assessed with a 95% bootstrapped CI
(if interval was not overlapping with zero).

RESULTS

Macrosystems patterns of variation in and
drivers of GSM-SD

We observed both positive and negative correlations
among the GSM-SD quantified across 28 NEON sites. We
saw moderate to strong positive correlations between
heterogeneity of structural diversity within a patch
(heterogeneity GSM-SD) and dominance of the struc-
tural diversity patch profile (dominance GSM-SD)
(Appendix S1: Figure S6), whereas the greater density
of edges in structural diversity within a patch (edge
density GSM-SD) were weakly to moderately nega-
tively correlated with the heterogeneity and dominance
GSM-SD (Appendix S1: Figure S6). This indicates that
these GSM-SD were describing different patterns of
landscape composition and configuration of structural
diversity across macrosystems.

Geographic location, forest type, and climate were
significantly associated with several GSM-SD. The hetero-
geneity and dominance GSM-SD, except for VCI, were
significantly different among forest types (Table 4,
Figure 2). We also saw substantial variation in the distri-
bution of the GSM-SD values across individual sites
(Appendix S1: Figures S3-S5). The heterogeneity of CHM,
Q25, and CV(ht) and dominance of CV(ht) increased with
latitude (Table 4). The heterogeneity of CHM decreased
with longitude (increased to east), but the dominance and
edge density of CHM increased with longitude (increased to
west), and the heterogeneity of Q25 and dominance of

CV(ht) decreased with longitude (increased to east)
(Table 4). All GSM-SD pertaining to CHM and Q25 and the
heterogeneity and dominance of CV(ht) increased with
mean annual temperature (Table 4). The heterogeneity
and edge density of CHM and Q25 increased with precip-
itation but the dominance of CHM decreased with pre-
cipitation (Table 4). The dominance of VCI decreased
with precipitation and was the only correlate of macro-
scale variation in GSMs of VCI (Table 4).

GSM-SD versus forest productivity across
macrosystems

Several GSM-SD that describe the heterogeneity and
dominance of structural diversity within patches, but
not edge density, were negatively related to NDVI
across macrosystems (Table 5). The heterogeneity of
VCI and CV(ht) had a significant negative relationship
with NDVI. There was also an overall negative correla-
tion between the dominance of CHM, Q25, and VCI
with NDVI. There was always a significant interaction
between the dominance or heterogeneity of the four
structural diversity metrics and forest type with NDVI
(Table 5, Figure 3). Forest type and longitude were the
strongest significantly correlated variables with NDVI,
respectively, across all GSM-SD. However, there were
no significant relationships between the edge density
of structural diversity or an interaction with forest type
with NDVI. Forest type and longitude had the stron-
gest significant relationships with NDVI, respectively,
across all GSM-SD. Latitude had a weaker correlation
of NDVI in three models (Sq CHM and Q25, Sbi
CV(ht)). Individual site-level regressions of GSM-SD
that were correlated with NDVI exhibited many insig-
nificant site-level regressions, but there were several
significant site-level positive and negative relationships
of GSM-SD and NDVI (Appendix S2: Table S1).

DISCUSSION

We generated GSM-SD reflecting the landscape heteroge-
neity, dominance, and edge density of structural diversity
across macrosystems and found that they varied by sev-
eral environmental factors and were negatively correlated
with productivity. First, the landscape composition and
configuration of structural diversity as measured by
GSMs often varied by factors that are indicative of or
commonly responsible for environmental heterogeneity
across macrosystems—forest type, geographic location,
and climate—indicating that environmental and biologi-
cal factors may influence the spatial patterns of structural
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TABLE 4 Macroscale variables that are related to GSM-SD: Forest type, geographic location, and climate.

Structural diversity GSM Forest type Latitude
df 2 1
CHM Sq 12.478 9.310
(0.029, 0.133)
Sbi 27.368 0.185
(—0.063, 0.040)
Sdr 4.341 0.456
(=0.070, 0.034)
Q25 Sq 124.95 86.956
(0.191, 0.292)
Sbi 4.032 2.384
(=0.011, 0.093)
Sdr 0.022 0.413
(=0.069, 0.035)
VCI Sq 4.521 1.994
(—0.014, 0.090)
Sbi 3.780 0.334
(~0.036, 0.067)
Sdr 4.066 0.422
(—0.035, 0.069)
CV(ht) Sq 17.712 14.438
(0.048, 0.153)
Sbi 154.25 88.962
(0.193, 0.295)
Sdr 2.664 2.389

(—0.093, 0.011)

Longitude Temperature Precipitation
1 1 1
8.286 74.909 108.64
(~0.129, —0.024) (0.174, 0.276) (0.218, 0.319)
9.265 3.964 10.925
(0.028, 0.133) (0.000, 0.105) (—0.140, —0.035)
7.604 6.715 10.233
(0.021, 0.125) (0.016, 0.121) (0.033, 0.137)
37.047 37.681 74.045
(~0.212, —0.108) (0.110, 0.213) (0.173, 0.275)
0.521 23.934 3.139
(=0.071, 0.033) (0.077, 0.181) (~0.005, 0.099)
1.642 7.251 10.328
(=0.018, 0.086) (0.019, 0.124) (0.033, 0.137)
0.034 3.227 0.926
(—0.047, 0.057) (—0.004, 0.100) (—0.078, 0.026)
0.158 0.021 22.456
(=0.063, 0.041) (~0.048, 0.056) (~0.177, —0.073)
0.301 2.218 5.033
(—0.037, 0.067) (—0.0125, 0.092) (—0.007, 0.112)
2.105 4.166 2.493
(~0.013, 0.091) (0.002, 0.106) (~0.010, 0.094)
25.49 0.256 1.042
(—0.185, —0.081) (~0.038, 0.065) (=0.079, 0.025)
0.168 6.678 3.562

(—0.041, 0.063) (0.016, 0.121) (—0.001, 0.102)

Note: A significant relationship in each univariate GLM is shown as a y? statistic in boldface. Variables were natural log(1 + x) transformed and then
standardized to show effect size. The bootstrapped coefficients are shown to demonstrate the magnitude and direction of their relationships for the continuous
variables, while differences in the mean and distribution of GSM-SD by forest type can be found in Figure 1.

diversity in predicable ways. Second, we found that domi-
nance and heterogeneity GSM-SD were negatively related
to ecosystem productivity (NDVI) across macrosystems,
but these relationships were moderated by forest type.
This study is a first step to applying a landscape gradient
surface approach to quantifying the landscape composi-
tion and configuration of a new aspect of biological diver-
sity (structural diversity) with GSMs and their potential
value for understanding spatial relationships of structural
diversity with ecosystem function across macrosystems.

Macrosystem patterns of spatial variation
in GSM-SD

Macrosystems are environmentally heterogeneous
(Dodonov & Harper, 2022; Kane et al., 2011) and biologi-
cal factors such as species composition and ecosystem
identity (Turner, 1990, 2010; Turner & Gardner, 2015) can
influence spatial patterns observed within macrosystems,

which was reflected by our finding that GSM-SD often dif-
fered by forest type. Structural diversity has been shown to
vary considerably at small footprints and across ecotones
(Atkins et al., 2022; Fotis et al., 2018, Hardiman
et al., 2018). We found that evergreen, mixed, or deciduous
forests had differences in their heterogeneity and domi-
nance GSM-SD but not edge density. The landscape pat-
terns of structural diversity may differ by forest type
because they have different species compositions that
exhibit different plant architecture (e.g., conical evergreen
versus wide canopy deciduous forests) (Fang et al., 2017).
Furthermore, differences in the competition for light and
other resources between evergreen, mixed, and deciduous
forests based on differences in species architecture and
functional traits may also influence spatial patterns
(McNeil et al., 2023), such as the dominance or heteroge-
neity of structural diversity.

Past work has shown that structural diversity corre-
lates with macroscale climate patterns (Ehbrecht
et al., 2021; LaRue, Knott, et al., 2023), so we expect that
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respectively.

climate, and geographic location, would also show associ-
ations with the landscape composition and configuration
of structural diversity. A productive or older ecosystem
found in warm, wet climates will have more plant spe-
cies, large individuals, and those of different sizes that
should create spatial heterogeneity of structural diversity
on the landscape (Franklin & Van Pelt, 2004; Kane
et al., 2011). Therefore, GSM-SD that reflect heterogene-
ity or edge density may increase with higher temperature
and precipitation (i.e., corresponding to lower latitude
and higher longitude). Indeed, geographic location and
climate were significantly related to several GSM-SD
across macrosystems in our study. Several heterogeneity
and edge density GSM-SD increased with precipitation,

while dominance GSMs decreased with precipitation; this
was consistent with a macroscale pattern of decreases in
heterogeneity and increases in dominance of peaks in
canopy height values toward the arid Western United
States. We saw GSM-SD that were positively associated
with both temperature and latitude. While the positive
relationships with temperature are consistent with the
expectation that warmer, productive ecosystems will
exhibit more landscape heterogeneity or edges in struc-
tural diversity, the positive relationship with latitude was
counter to this and may indicate another factor such as
disturbance or specific land use changes that increase
GSM-SD with latitude. Our study is a first step toward
understanding the complex set of factors that shape the
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TABLE 5 Relationship between GSM-SD with NDVI across macrosystems.
Structural diversity GSM GSM-SD (coefficient) Forest type Latitude Longitude GSM-SD X forest type
df 1 2 1 1 2
CHM Sq 1.34 (—0.143, 0.036) 491.35 5.52 177.76 97.21
Sbi 29.53 (—0.325, —0.152) 452.63 0.56 153.98 31.07
Sdr 3.14 (—0.170, 0.008) 444.04 0.19 167.98 3.24
Q25 Sq 1.23 (—0.043, 0.158) 446.18 10.43 146.32 46.65
Sbi 10.97 (—0.261, —0.067) 488.34 1.82 155.95 87.26
Sdr 0.51 (—0.058, 0.126) 443.30 0.14 170.42 4.28
VCI Sq 8.68 (—0.231, —0.046) 458.02 0.66 165.28 36.08
Sbi 13.75 (—0.271, —0.083) 449.43 0.32 159.56 24.88
Sdr 0.11 (—0.110, 0.078) 432.40 0.01 175.90 4.20
CV(ht) Sq 4.86 (—0.224, —0.013) 456.63 1.41 183.73 74.37
Sbi 2.24 (—0.183, 0.024) 430.65 4.79 146.64 47.93
Sdr 0.40 (—0.061, 0.120) 439.79 0.05 171.04 0.49

Note: A significant correlation in the GLM model, NDVI ~ GSM-SD + forest type + GSM-SD X forest type + latitude + longitude, is shown as a y” statistic in
boldface. Variables were natural log(1 + x) transformed and then standardized to show effect size (Npaches = 1400). The bootstrapped coefficient of GSM-SD is
shown to demonstrate the magnitude and direction of their relationship with NDVI.

landscape composition and configuration of structural
diversity across macrosystems, but future work should
continue to investigate the influence of a suite of distur-
bance and other biotic drivers that were beyond the scope
of this study.

GSM-SD as a correlate of forest
productivity across macrosystems

Our study results were consistent with the expectation
that there will be a negative relationship between the
patch heterogeneity of structural diversity and productiv-
ity. Structural diversity is thought to enhance ecosystem
function (Aponte et al., 2020; Gough et al., 2019; LaRue,
Knott, et al., 2023) through the filling of plants in differ-
ent vertical niche space (Hardiman et al., 2011; LaRue,
Knott, et al., 2023; Niinemets, 2010). Therefore, for high
heterogeneity of structural diversity within the same
patch (i.e., departure from the mean), we expected that
this could lead to a reduction in productivity due to a
breakup of the filling of vertical niche space in the can-
opy across space. Indeed, patch-level heterogeneity in
structural diversity had a negative relationship with
NDVI across macrosystems. This relationship with het-
erogeneity GSM-SD and productivity was moderated by
forest type with evergreen forested sites trending toward
a positive and deciduous or mixed forest a negative rela-
tionship with NDVI. At the site level, evergreen forests
also had most of the positive relationships (e.g., ABBY,
NIWO, and RMNP) and deciduous forests negative with

NDVI (SERC, UKFS, and LENO). The crown shape of
evergreen tree species may allow for differential light
capture and canopy packing at the patch level
(Horn, 1971; McNeil et al., 2023) such that there was a
benefit of landscape heterogeneity in structural diversity
for resource uptake in evergreen forests at the size of the
patches we measured. However, larger patches may or
may not see a consistently negatively relationship due to
cross-scale interactions that moderate the relationships
between heterogeneity in structural diversity and produc-
tivity. It was beyond the scope of this study, but scale,
species composition, or disturbance history may play a
critical role in shaping the landscape heterogeneity of
structural diversity (Atkins et al., 2020; Choi et al., 2023),
and thereby its consequences on ecosystem function.

A landscape that has a dominance in many high
peaks of structural diversity values should be negatively
related to ecosystem functions like productivity due to a
predominance of high peaks of values rather than a more
evenly peaked area (LaRue, Knott, et al., 2023). This
hypothesis was supported for three structural diversity
metrics in height and vertical complexity in our study such
that a higher patch-level dominance of high peaks in
structural diversity (as opposed to a more evenly distrib-
uted patch with few high peaks) was negatively related to
productivity across macrosystems. Additionally, we saw
differences in the direction of the relationship by forest
type with positive correlations for evergreen and negative
for deciduous or mixed for canopy height and vertical
complexity index (VCI). This opposing relationship by for-
est type may have occurred due to differential competition
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between evergreen versus deciduous tree species
(Alvarez-Yépiz et al., 2017; Givnish, 2002; Sprugel, 1989).
In general, dominance GSMs (i.e., Sbi) therefore appear to
represent useful metrics for quantifying patch-level domi-
nance in high peak values of structural diversity related to

ecosystem function, but there are GSMs that describe
other aspects of landscape dominance or evenness patterns
that may shed additional light on the landscape patterns
of structural diversity (see McGarigal et al., 2009). For
example, future work could investigate the minima and
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maxima of structural diversity values that would indicate
the location of old growth patches that represent the ideal
breeding habitat for the endangered Mexican spotted owl
(Durboraw et al., 2022; Witt et al., 2022) and other threat-
ened wildlife.

Over macrosystems, we saw forest and site variation
in the edge density of structural diversity but no relation-
ship with productivity. We predicted that a landscape
that had patches with high edge density of structural
diversity may be negatively correlated with forest produc-
tivity due to two potential mechanisms. First, a landscape
with many edges in its structural diversity metric (devia-
tions from the mean) could provide reductions in produc-
tivity as it would detract from the filling of vertical niche
space at different points within the patch (LaRue, Knott,
et al., 2023). Second, a greater edge density may mark a
transition in structural attributes that represent an eco-
tone or successional transition that may not promote pro-
ductivity (Fahey et al., 2019). Conventional knowledge is
that forest edges negatively influence forest structure and
thereby carbon as seen in the tropics (Chaplin-Kramer
et al., 2015; Ordway & Asner, 2020), but here, there was
no measurable relationship with the ecosystem function
of productivity when edge density of structural diversity
was high or low. However, work in temperature forests
observed elevated growth along forest edges (Morreale
et al.,, 2021). Edge density of structural diversity across
different forest types and regions might have variable
relationships to productivity or previous work may have
focused on abrupt forest edges that has different a rela-
tionship with GSM-SD of edge density in forested areas
(i.e., we did not look at edges between forest and other
land cover types) and productivity across the landscape
in our study.

Conclusion

Structural diversity can now be more readily measured
by remote-sensing tools across macrosystems (Fahey
et al, 2018; LaRue, Fahey, et al., 2023; Valbuena
et al., 2020) compared with the period of conceptualiza-
tion in the early 20th century (i.e., MacArthur &
MacArthur, 1961). Metrics derived from remote sensing
that describe the landscape composition and configura-
tion of structural diversity may therefore provide useful
for managing ecosystem function (LaRue, Fahey,
et al., 2023). We demonstrate the effectiveness of
employing GSMs as a method to quantify the landscape
composition and configuration of a novel aspect of diver-
sity. The GSM-SD exhibited variation through different
forest types, climate, and geographic location across
macrosystems, and landscape patterns of dominance and

heterogeneity, but not edge density, in structural diver-
sity were found to be linked to ecosystem productivity.
The utility of applying the patch mosaic paradigm to a
continuous 3D diversity variable across landscapes and
macrosystems may allow for a better understanding of
the environmental drivers and impacts to ecosystem
functions and in spatially motivated management
decisions.
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