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Abstract  
The de novo design of small-molecule-binding proteins has seen exciting recent progress; 
however, high affinity binding and tunable specificity typically require laborious screening and 
optimization after computational design. We developed a computational procedure to design a 
protein that recognizes a common pharmacophore in  a series of PARP1 inhibitors. One of three 
designed proteins bound different inhibitors with affinities ranging from < 5 nM to low µM. X-ray 
crystal structures confirmed the accuracy of the designed protein-drug interactions. Molecular 
dynamics simulations informed the role of water in binding. Binding free-energy calculations 
performed directly on the designed models are in excellent agreement with the experimentally 
measured affinities. We conclude that de novo design of high-affinity small-molecule-binding 
proteins with tuned interaction energies is feasible entirely from computation.  
 
One Sentence Summary  
Informatic sampling enables de novo creation of drug-binding proteins with accurate design and 
prediction of binding affinity. 
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Main Text 
Molecular recognition underlies small molecule binding by and catalytic activity of protein 
receptors and enzymes. Although we have an advanced understanding of both protein design and 
molecular interactions, the rational design of de novo proteins that specifically bind small 
molecules with low nM to pM affinity is a major challenge (1, 2) that has not been achieved in de 
novo proteins (3, 4) without experimental screening of large libraries of variants (5–7). Even with 
the application of recent advances in artificial intelligence to facilitate de novo design (8–10), it 
has been necessary to screen thousands of independent designs to discover binders with low µM 
to high nM dissociation constants (KD) directly from design algorithms (3, 11–14).  Proteins with 
higher affinity are often desirable.  Given the low success rate, screening large numbers of designs 
often relies on biotinylated or fluorescently-labeled versions of their small molecule targets, which 
restricts the region of the molecule available for binding.  The cost of synthesizing thousands of 
genes and the necessity of synthetic chemistry for conjugation places a practical limitation on the 
access of these methods to many groups. Moreover, de novo design methods rely heavily on 
structural informatics to guide sampling of protein structure and sequence, as well as scoring 
functions that rely on a mix of statistical and physical terms without explicit representation of 
dynamics, conformational entropy, or water (3–7). This dependence leaves open the fundamental 
question of whether our understanding is grounded in physical forces or limited exclusively to 
advanced pattern recognition (15).  Here, we asked whether adherence to simple rules based on 
physical principles might increase the success rate for designing drug-binding proteins, and 
whether all-atom molecular dynamics simulations with explicit water might be able to recapitulate 
the experimentally determined binding affinities of high affinity binders, starting with design 
models that come directly from a computational design. 

The recognition of polar groups presents a challenge in de novo design of binders, because 
the polar groups must lose most or all of their highly favorable interactions with water molecules 
upon binding to the protein.  To compensate for this loss in hydration, the drug’s polar chemical 
groups must form highly directional and distance-dependent hydrogen bonds and electrostatic 
interactions with atomic groups in the protein.  These polar interactions are not only required for 
affinity, but they also provide the specificity of proteins for their substrates over other similarly 
shaped molecules.   

We recently developed a design method known as COMBS (Convergent Motifs for 
Binding Sites) to enable sampling of only sequences and structures capable of forming such 
interactions prior to searching for less specific and directional, but energetically favorable, van der 
Waals and hydrophobic interactions that complete the binding site (3). To facilitate this process 
COMBS uses van der Mers (vdMs) to search for preferred spatial positions where chemical groups 
can interact with an amino acid (3). vdMs are similar to rotamers (16), which define favorable 
positions to arrange an amino acid’s sidechain atoms relative to its backbone atoms.  However, 
instead vdMs define favorable positions of an interacting chemical-group fragment relative to a 
residue’s backbone atoms. Each amino acid type can adopt multiple rotamers, which are widely 
used in design algorithms to position sidechains onto pre-existing backbones.  In vdMs we track 
the positions of chemical groups that can interact with a given type of amino acid.  For example, 
a GlnCONH2 consists of a Gln residue that contacts a carboxamide group.  Also like rotamers, vdMs 
can be clustered into similar groups with associated probabilities based on their occurrence in the 
pdb.  The COMBS algorithm then finds multiple positions on a given protein backbone that can 
simultaneously form favorable van der Waals, aromatic, and/or hydrogen-bonded interactions with 
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the chemical groups of a target small molecule. The remainder of the sequence is then filled in 
using flexible backbone sequence design .  

COMBS showed promise in identifying protein backbones and creating sites capable of 
binding the drug apixaban.  In previous work, we identified one protein that bound with KD = 500 
nM and a second with KD = 5 µM after screening only six designed sequences (3).  In the process, 
we learned lessons that could improve the use of COMBS in design pipelines.  First, during the 
final steps of sequence design and backbone optimization, sidechains were sometimes introduced 
that ultimately did not form their intended favorable vdMs.  Structural analysis showed that they 
were not in optimal orientations to interact with the drug, and site directed mutagenesis showed 
they made small or no contributions to the free energy of binding.  We reasoned it should be 
possible to improve binding by using backbone phi/psi-dependent vdMs and alternating rounds of 
COMBS with Rosetta flexible-backbone sequence design.  Secondly, binding affinity can be 
optimized by pre-organizing a receptor’s conformation so that it loses minimal conformational 
entropy upon binding. Originally, we analyzed preorganization using Rosetta ab initio folding; 
now using AlphaFold2, we should be able to reliably determine whether a protein adopted the 
desired, pre-organized conformation prior to experimental characterization.   

Another feature of importance is the need to consider the energetically unfavorable loss of 
hydrogen-bonds between water molecules and both the drug as well as the protein’s binding site, 
which occurs when the drug binds into the pocket.  While COMBS and other algorithms Please 
add HBNet reference considered the need to form hydrogen bonds to compensate for the loss of 
hydration, here we strive to form a more full set of compensatory ligand-protein hydrogen bonds 
to every buried polar atom.  We sample vdMs between the ligand and the first-shell amino acids, 
as well as vdMs between the first shell and a second shell of interacting residues, which also 
assures a favorable geometry for the binding partners.  We also opted to bias the orientation of the 
ligand such that formally charged groups are placed near the surface of the protein, thereby 
minimizing energic penalties due to Born solvation.  Finally, we evaluated MD simulations and 
free energy calculations, which explicitly consider interactions with bulk and bound water 
molecules that are not fully considered in protein design algorithms, to assess the usefulness of 
physics-based methods for evaluating the affinity of the designs. 

To demonstrate the utility of our refined methods, we chose to design inhibitors of PARP, 
a recently developed class of clinically useful anticancer drug (17). De novo designed binders of 
PARPi drugs might serve as components in detectors, delivery agents, or detoxification agents for 
these cytotoxic drugs. The predominant class of PARPi drugs share a tripartite pharmacophore 
consisting of a fused 5,6-bicyclic core, an amide and a phenyl group bearing a positively charged 
alkylamine (Fig. 1A). We chose to target rucaparib, the most structurally complex of several related 
drugs, as our primary target (Fig.1A), as well as a series PARPi analogues. By considering a series 
of drugs, we at once provide reagents that might be widely useful, while simultaneously testing 
our understanding of the essential features required for binding.  
De novo design of high-affinity drug-binding proteins 

We used a recursive version of the COMBS algorithm to design rucaparib-binding sites in 
a family of mathematically generated four-helix bundle proteins. The key binding residues were 
introduced using vdMs to identify multiple positions on a given protein backbone that could 
simultaneously interact favorably with the chemical groups of a target small molecule (Fig. 1B, 
1C, Supplementary Methods).  Although vdMs are derived from statistics of sidechain and 
mainchain interactions with one another in the pdbs they can be used to identify binding-site 
residues capable of forming hydrogen bonds and aromatic interactions with diverse small 
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molecules, in much the same way that natural proteins bind a wide diversity of small molecules 
using a set of 20 amino acids. While the energetics of these interactions can vary depending on the 
specific small molecule bound, the fundamental geometries required to achieve binding remain 
often remain relatively constant (18). Thus, a common set of vdMs should serve to bind a wide 
range of compounds. We targeted three chemical groups in rucaparib’s structure: the indole NH, 
and the C=O and NH2 groups of its carboxamide (Fig. 1C). Additionally, COMBS identified Asp58 
as a second-shell interaction to the carboxamide of rucaparib (Fig. 1C). It is important to design 
binding interactions with these groups with sub-Å accuracy to engender specificity and a favorable 
free energy of association. Next, the remainder of the sequence was designed using Rosetta flexible 
backbone design (Fig. 1D) (3, 19), while retaining the identity of the keystone residues (identified 
in the COMBS step). The mainchain moved 1 Å rmsd during this step (Fig. S1), so a second round 
of vdM sampling was performed on the relaxed backbone. This procedure identified three mutants 
involving drug-contacting residues, including N29D, W90L and N131D (Fig.1E). A second round 
of flexible backbone sequence design using this backbone and the newly fixed vdMs resulted in 
converged sequence/structure combinations (Fig. 1E, 2A-B), as a third round of COMBS showed 
the vdMs were now optimal. The final designs include numerous CH-π and hydrophobic 
interactions interspersed with specific polar interactions, including four H-bonds (an H-bond donor 
to the drug’s carboxamide oxygen as well as three H-bond acceptors to the drug’s carboxamide 
NH, indole NH and charged ammonium group), as well as second shell interactions. (Fig. 2C, Fig. 
S2).  

Throughout the design process, we ensured that the designs would also retain favorable 
interactions with most of the common pharmacophores of the three other drugs (see supplementary 
methods for details). However, we predicted that the protein would have lower affinity for 
niraparib and mefuparib, because they lack the H-bonding group indole NH of rucaparib. Also, we 
expected veliparib to bind weakly, because it lacks a hydrophobic phenyl group and the position 
of its charged ammonium group differs from that found in the other three drugs.  

The final models were chosen based on multiple criteria: 1) favorable vdMs (highest total 
vdM cluster scores); 2) satisfaction of all potential buried H-bond donors in the protein and ligand; 
3) low Rosetta energy (lowest 50 of the 1000 total designs); and 4) avoidance of clashes with the 
three other PARP inhibitors, which show structural variability near the amine end of the molecule.  
The three top-scoring designs were selected for expression including: PiB (PARPi binder) and a 
variant of this protein, PiB’ (Table. S1, Fig. S3), which differs only by the substitution of five 
solvent-exposed charged residues with Ala to encourage crystallization. The other two (PiB-1 and 
PiB-2) were less closely related to PiB in structure (r.m.s.d. = 0.93  and 0.79 for PiB-1 and PiB-2 
to PiB, respectively) and sequence (41% and 42% identity for PiB-1 and PiB-2 to PiB, respectively, 
Fig. S4). Circular dichroism spectroscopy showed all four had substantial alpha-helical character 
(Fig. S5). However, PiB-1 and PiB-2 failed to induce large changes in the fluorescence emission 
spectrum of rucaparib (Fig. S6). Therefore, we focused our efforts on PiB and PiB’ (Fig. S7 - S11).  

Spectral titrations showed that PiB and PiB’ bound the PARPi drugs with high affinity. 
Incubation of PiB with equimolar concentrations of rucaparib led to a marked blue shift and an 
increase in intensity of its fluorescence spectrum, as expected if its indole core were bound in a 
rigid, solvent-inaccessible site (Fig. S6, S7). NMR spectroscopy of PiB showed that it folded into 
a well-defined structure, and the addition of a single equivalent of rucaparib led to a new set of 
peaks, consistent with a stoichiometric, specific complex (Fig. S10, S11). Fluorescently monitored 
titrations of protein into a solution of rucaparib showed that PiB and PiB’ bound with very low to 
sub-nM affinity (Fig. 2D, 2E, 3A). Even at the lowest experimentally feasible rucaparib 
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concentration, the binding isotherms show a linear increase in intensity with respect to protein 
concentration until a single equivalent is added, followed by an abrupt leveling at higher protein 
concentrations. This behavior is indicative of a dissociation constant that is much lower than the 
total rucaparib concentration. A non-linear least-squares fit to the data returned a KD of 2.2 nM for 
PiB and 0.37 nM For PiB’, and a sensitivity analysis showed that the KD was less than 5 nM for 
both proteins (Fig. 2D, 2E). Achieving single digit nM to pM binding affinity for de novo designed 
proteins has previously required extensive experimental optimization (5). 
 UV/visible absorption titrations showed that PiB and PiB’ also bound to the remaining 
ligands with affinities that grew increasingly weaker as the drugs’ structures diverged from 
rucaparib (Fig. 3A, Fig. S12). PiB retained sub-µM affinity for mefuparib (KD = 190 nM and 350 
nM for PiB and PiB’, respectively) and niraparib (600 and 550 nM). The corresponding KD values 
were 14 µM and 24 µM, respectively for the structurally divergent drug veliparib, and no binding 
was detected for the most divergent drug, olaparib (Fig. S13). This observed trend in binding 
affinity matches the order expected from the structural differences mentioned above.  
 We next examined the in vitro stability and potency of PiB and PiB’ in serum and cellular 
assays. PiB and PiB’ were highly stable in human serum, as are other de novo proteins designed 
for medical applications (Fig. S14, S15) (3, 20). PARP inhibitors potently inhibit the viability of 
cells with certain DNA repair deficiencies, including loss-of-function mutations in BRCA2 (17). 
To determine whether PiB and PiB’ could attenuate the lethal effects of PARPi drugs, we measured 
their effects on the growth of BRCA2 mutated DLD-1 cells and SUM149 cells (21) over after an 
8-day incubation. Dose-response curves were first established in the absence of PiB, then the 
titration was repeated with PiB or PiB’, at varying [protein]/[drug] ratios for each PARPi drug 
concentration. Addition of a single equivalent of PiB or PiB’ resulted in a 4-fold increase in the 
half maximal inhibitory concentration (IC)50 value for rucaparib. Thus, PiB competes effectively 
for binding of rucaparib to human PARP1, an enzyme reported to bind rucaparib with a 
dissociation constant of 0.1 to 1 nM in biochemical assays (22, 23) (Fig. 3A, 3B, 3D, Fig S16, S17, 
S18). The potency of PiB and PiB’ in the cell viability assay generally tracks with the spectroscopic 
assays, with the protein showing effects on mefuparib and niraparib intermediate between that for 
rucaparib and veliparib (Fig. 3B, 3D, Fig. S16, S17, S18). Moreover, PiB and PiB’ did not 
appreciably change the cellular response to olaparib (Fig. 3C, 3D, Fig. S16, S17, S18) in line with 
spectroscopic data that indicated that PiB and PiB’ does not bind this drug.  
 
Structural and mutational validation of designs 

The crystallographic structures of PiB’ were solved in the absence and presence of the four 
active compounds at 1.3- to 1.6-Å resolution (Table S2). The protein’s conformation is in excellent 
agreement with the predicted AlphaFold2 model, particularly near the binding site (Cα RMSD of 
the 60 surrounding residues was 0.2 to 0.5 Å, Fig. 2A, 4A-B, S19, Table. S3). A similar degree of 
agreement (< 0.5 Å RMSD) was observed comparing the structure of the experimental structure 
and the designed model. An important aspect of the design was that the binding site should be 
preorganized.  Indeed the binding pocket of PiB’ is nearly identical between the experimentally 
determined apo and drug-bound structures (0.2 – 0.5 Å Cα RMSD; Fig. 4B-4C, S20). Moreover, 
the sidechains interact precisely as predicted in the design of the rucaparib complex (Fig. 4B, S20): 
Asp29 makes a direct H-bonded salt bridge to the drug’s charged ammonium group. Rucaparib’s 
carboxamide forms a two-coordinate hydrogen bond with Gln54, which in turn is stabilized by a 
second-shell network of H-bonds predicted in the design; Asp131 formed a solvent mediated H-
bond to rucaparib’s indole NH group (Fig. 4B, S20). A search of water-mediated Asp sidechains 
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with related indole and imidazole sidechains showed this bridging interaction is frequently found 
in the PDB (Fig. S21).  

The structures of mefuparib and niraprib bound to PiB’ show a similar set of interactions 
as rucaparib (Fig. S22). However, their aromatic 5-membered azole ring lacks a H-bonding group 
to interact with Asp131, explaining their decreased affinity for the protein. As expected from its 
divergent structure, veliparib has a less favorable fit with PiB’s binding site, and it lacks a salt 
bridge to its ammonium group as in other complexes (Fig. S22, S23). 

Three residues were changed to improve binding during the second round of COMBS 
design of PiB. To determine whether these substitutions indeed increased affinity, we evaluated 
mutants with the second-round substitutions reverted to their identities in the first round of design. 
These changes each led to one to two orders of magnitude weaker binding affinity for rucaparib 
Asp29Asn (KD = 13 nM), Leu90Trp (KD = 24 nM) and Asp131Asn (KD = 50 nM) (Fig. 4D, S24A). 
Thus, iterative vdM selection successfully identified interactions with improved binding affinity. 
We suggest that vdM guided amino acid optimization might provide a useful alternative to other 
methods of affinity optimization. We also conducted an alanine scan to probe the energetic 
contribution of each of the residues that lined the pocket in the rucaparib complex (Fig. 4E, S24B). 
Each mutation was unfavorable with values of DDG ranging from 1.7 to 3.0 kcal/mol. These values 
are within the range observed for substitutions of critical binding residues in natural protein 
binding sites (24).  
Computational prediction of binding thermodynamics 

To provide insight into the experimental results for PiB, PiB’, PiB1 and PiB2 we next 
conducted 2.0-microsecond all-atom molecular dynamics (MD) simulations to compare their 
structural dynamics on this time scale. The simulations were performed on the designed models 
(instead of the crystallographic structures) to assess the use of MD as a predictor of experimetnal 
success. The protein backbone conformations were very stable for all four complexes. However, 
rucaparib’s designed binding pose was stable only in PiB and PiB’ (Fig. S23) (as PiB and PiB’ 
behave similar in MD, we only use PiB to illustrate later): it retained its bivalent hydrogen bonding 
interaction to Gln54 (Fig 5A), and Asp29 and Asp131 showed stable interactions with rucaparib’s 
indole NH and ammonium groups through direct and water-mediated hydrogen bonds, 
respectively (Fig. 5A). By contrast, PiB-1 and PiB-2 simulations deviated from rucaparib’s 
designed pose, and their key buried H-bonds to Gln54 were broken within 50 nanoseconds in each 
of three independent calculations (Fig. S25). Moreover, PiB shielded the apolar atoms in rucaparib 
more efficiently in PiB than PiB-1 and PiB-2, as determined from solvent-accessible surface area 
calculations within individual MD trajectories (Fig. S26). Furthermore, MD simulations of PiB in 
complex with niraparib, veliparib, and mefuparib show similar binding-site conformational 
stability as PiB: rucaparib over 2.0 microseconds (Fig. 5A, S27). MD can thus help rationalize 
how interactions contribute to stability in predicted complexes and may be a useful tool in design. 

We next turned to alchemical and physical-pathway methods to determine whether these 
methods could predict the absolute binding free energies for PiB and PiB’ directly from molecular 
dynamics simulations, using the computational designs (rather than experimental structures) as the 
starting models. The alchemical transfer method (25, 26) was carried out by one of the authors, 
who had no knowledge of the experimental results. This method has been shown to be comparable 
to other alchemical methodologies such as Schrodinger’s FEP+ (25) or Amber’s thermodynamic 
integration (26) given comparable sampling of the configurational space. An initial absolute 
binding free energy calculation was used to evaluate the energetic contributions of the fused-ring 
cores of the drugs and to ensure convergence of the calculations. An additional relative binding 
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free energy calculation was performed to transform each core into the target ligand to estimate the 
contribution from non-core regions (Fig. S28). Universally, the alchemical transfer method tended 
to overestimate the binding energy, possibly due to having two sets of restraint potentials. 
However, this procedure correctly predicted the relative affinities of the four ligands (Table. S4).  

We next used potential of mean force calculations, an orthogonal physical-pathway 
methodology (27), to compute absolute binding energies (Fig. S29-S33), and the results were in 
remarkably good agreement with experiment (Fig. 5B, 5C, Table. S5). The RMS error between the 
predicted and experimental values is 1.3 kcal/mol, and the correct rank order of affinities was 
observed. This error is close to the experimental error in the measurement of KD for rucaparib. We 
also obtained very good agreement between computation and experiment for a set of four mutants 
of PiB (Fig. 5B, 5C, Table. S5). This agreement bodes well for the use of alchemical and physical-
pathway-based binding free energy calculations to evaluate potential binding energies of de novo 
small-molecule binding proteins.  

 
Discussion 

These findings show that it is possible to design very high-affinity proteins for drugs using 
minimal scaffolds such as the four-helix bundle.  vdMs and COMBS were key to this achievement.  
While they were used in conjunction with Rosetta sequence design, they could be easily adapted 
to improve sampling and/or scoring of a variety of recently developed protein-design algorithms 
based on diffusion models (3, 8–10).  MD simulations of de novo proteins have only been 
occasionally used to provide insight into de novo protein design (28–32).  However, using this 
method we were able to differentiate successful versus unsuccessful designs, suggesting it should 
be helpful for prioritizing designs.  Although we ran 2 microseconds simulations, the essential 
features could be gleaned after 100 nanoseconds, suggesting that simulations on this time scale 
should be useful.  Free energy calculations have not previously been applied to designed proteins. 
Although they are more computationally intensive and require more user-specified parameters, we 
obtained excellent quantitative agreement between computed and experimentally measured 
binding free energies using the designed models as the starting structures. These data demonstrate 
the possibility of designing proteins with high affinity (< 5 nM) to small molecules using fully 
rational criteria for design and “physics-based” force fields to evaluate the complexes. 
 Although we designed PiB’ without considering the natural binding-site interactions in 
PARP1, very similar interactions were seen in the experimental structures of the two proteins (Fig. 
S34): a ligand-Asp salt bridge, solvent-mediated hydrogen bond to rucaparib’s indole NH, and a 
two-coordinate H-bond to the drug’s amide. This commonality likely reflects the fact that proteins 
have only a limited repertoire of functional groups, and that COMBS is capable of identifying 
highly favorable interactions, similar to those used in nature.  

Rucaparib binds to the human PARP1 enzyme with a KD ranging from 0.1 to 1.5 nM, 
depending on the experimental conditions, close to the range observed for PiB and PiB’(22, 23).  
Ligand efficiency is often used as a guiding rule in drug discovery to determine whether the affinity 
of a molecule of a given size is within a range typically seen in highly optimized small-molecule 
drugs and natural organic ligands for proteins (33, 34). As ligands become larger, they have more 
opportunities to form favorable interactions with their target proteins. Thus, the maximal affinity 
possible roughly scales with the size of a small molecule, and the ligand efficiency is defined as 
the free energy of binding (1 M standard state) divided by the number of heavy atoms in the ligand. 
Most drugs have ligand efficiency around 0.3 kcal/(mol * heavy atom count) (33, 34), although 
higher values are observed for highly optimized drugs such as rucaparib, which has a ligand 
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efficiency of 0.5 kcal/(mol*heavy atom count). The ligand efficiency of a drug is similarly a good 
measure of how well optimized a de novo protein is for binding to a small molecule. The 0.5 
kcal/(mol * heavy atom count) ligand efficiency of PiB is a considerable improvement over the 
0.21 to 0.26 ligand efficiency of the first COMBS-designed apixaban binders, demonstrating the 
importance of incorporating the design principles discussed above.  With these and similar 
refinements, it should be increasingly possible to design high-affinity small molecule-binding 
proteins with predicable binding energetics for a variety of practical applications in sensing and 
pharmaceuticals. 
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Figures 

 
Figure 1. The computational design of poly(ADP-ribose) polymerase inhibitors (PARPi) 
protein binders. (A) The PARPi analogues. The shared chemical features are marked in orange. 
Olaparib is used as a negative control in the design and binding assay. (B – E) The overall design 
strategy. (B, C) We first define the pharmacophore and use COMBS to sample vdMs on the 
selected protein backbones. At the outset of the design, we chose chemical groups that should form 
hydrogen bonds when the drug bound to the binding site. These groups included rucaparib’s indole 
NH and carboxamide groups.  The carboxamide group is present in our vdM library.  However, 
there were relatively few examples of indole NH vdMs in the database, so we used imidazole as a 
proxy for the indole’s pyrole ring.  We then used COMBS to discover sidechains at different 
positions of a four-helix bundle template that could simultaneously form hydrogen bonds to the 
indole and carboxamide chemical groups of the drug.  (In brief, the COMBS algorithm samples 
vdMs on a protein backbone and then performs superpositions of a ligand onto the chemical groups 
of the vdMs; next, COMBS finds all the vdMs with nearby chemical groups to each superposed 
ligand; and finally, COMBS computes a unique combination of vdMs for each ligand that 
optimizes a score, such as the vdM prevalence or cluster score). We discovered a solution in which 
the carboxamide formed bidentate hydrogen bonds with sidechain of Gln54, and the drug’s indole 
NH interacted with the Asn131 (C, carbon atoms of protein green, those of rucaparib are orange). 
A second-shell interaction to Q54 that was discovered by COMBS was Asp58 (carbons brown). 
(D) We applied flexible backbone sequence design with a custom Rosetta script while fixing the 
interactions selected from COMBS. (Rucaparib in purple). (E) Then we search vdM again based 
on the design output from the previous sequence step. The slightly different (~ 1 Å Ca RMSD) 
backbone now preferred different vdMs at some locations (higher cluster scores) and these 
mutations were made. Three residues at 29, 90, 131 (deep blue) were changed based on COMBS 
results.  
 
Figure 2. Assessing the computational model and experimental binding of PiB to rucaparib. 
(A) The AlphaFold2 model agrees with the designed PiB very well, with the binding site Cα RMSD 
of 0.41 Å, the upper fold Cα RMSD of 0.49 Å and overall Cα RMSD of 0.67 Å. (B) The predicted 
local distance difference test scores (pLDDTs) concur with the trend of RMSD difference of the 
design model. For example, the N-terminal, C-terminal and the middle loop with low pLDDTs 
(<90) showed higher Cα RMSD. (C) The design model showing the polar groups of rucaparib are 
all hydrogen-bonded. (D) (E) A fluorescence titration shows that PiB and PiB’ bind rucaparib with 
KD < 5 nM. The fluorescence emission intensity at 420 nm of rucaparib (excitation wavelength 
355 nm) was measured after titrating aliquots of PiB (D) or PiB’ (E) to a final concentration 
indicated in the abscissa. The data are well described by a single-site protein-ligand binding model, 
and a non-linear least squares fit to the data returned values of KD of 2.2 (± 0.9) nM for PIB, and 
0.37 (± 0.29) nM for PIB’. Although the fitting error was relatively small, a sensitivity analysis, in 
which the value of KD was held constant at various values, showed that the data for both proteins 
were fit within experimental error so long as the KD is less than 5 nM. Therefore, while the most 
probable binding constants were 2 and 0.4 nM, respectively, we can confidently conclude that the 
values for PiB and PiB’ are less than 5 nM. The titration was carried out in in buffer containing 50 
mM Tris, 100 mM NaCl (pH 7.4). 
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Figure 3. Spectral titrations and cell viability assay of PiB with PARPi. (A) The values of KD 
of various drugs for PiB as obtained from global fit of a single-site binding model to the 
fluorescence changes (A, from Fig. 3) or absorbance changes as a function of the concentration of 
PiB. Indicated wavelengths for the titration were chosen to maximize the difference in absorption 
for the free versus bound drug. (B) Seven-day growth assays in DLD-1 BRCA2 mutated cells show 
that PiB alleviates the effects of rucaparib, mefuparib, niraparib and veliparib toxicity in a dose-
dependent manner. The PARP inhibitors were pre-incubated with PiB in media at room 
temperature for 5 minutes at multiple concentration ratios (ligand : protein) of 1:0, 1:0.2, 1:1, 1:2.5, 
1:5 and 1:10. (C) Cell viability assay as in Figure 4B showing that PiB had no effect on the olaparib 
dose response. (D) Table showing IC50 values for the inhibition of cell proliferation by PARPi 
drugs in the presence of increasing mole ratios of added PiB protein.  
 
Figure 4. The structure of drug-bound PiB’ agrees with the design. (A) The design model 
agrees well with the rucaparib-bound PiB’ crystal structure, with binding site (Fig. 3A) Cα RMSD 
range between 0.38-0.46 Å for the three monomers in the asymmetric unit. (B) The binding site of 
PiB’. A 2mFo-DFc composite omit map contoured at 1.6 σ. The map was generated from a model 
that omitted coordinates of rucaparib. Overlay of the design (gray) and the structure (protein in 
orange, rucaparib in pink). The sidechains of the binding pocket in rucaparib-bound PiB’ agrees 
with the design. Asp131 interacts with the indole NH via a bridging water as in MD simulations. 
(C) The structure of apo-PiB’ shows a preorganized open pocket filled with multiple waters, which 
are displaced in holo structure. (D) Reversal of the three designed substitutions from the vdM 
optimization procedure led to lower binding affinity (higher KD) for rucaparib by fluorescence 
emission titrations. (E) Alanine mutations of the direct binding residues decreased binding 
affinities confirmed by fluorescence emission titrations.  
 
Figure 5. The MD simulations of PiB, PiB’, and mutants. (A) Using unbiased molecular 
dynamics simulations in Amber, we calculated (in triplicate) the frequency with which the 
intermolecular hydrogen bonds formed between the protein scaffold and the bound drug molecule. 
PiB was found to form a hydrogen bond between Gln54 and the targeted drug carboxamide in 
100% of all simulations for each drug complex. The charged ammonium groups of rucaparib and 
mefuparib interacted with Asp29 through a combination of direct and water-mediated hydrogen 
bonds, totaling to more than half of the full simulation time, which contrasts niraparib and 
veliparib’s inabilities to form equivalent hydrogen bonds (due to changes in chemical structure 
around the ammonium tail of the ligand). In a small fraction of each rucaparib and veliparib 
trajectory, Asp131 engaged in water-mediated hydrogen bonds to the drugs. (B) Using biased 
simulations in GROMACS, we calculated binding free energies for each ligand and found that 
ranked affinity for each drug is consistent with experimental results. (C) Comparison of ΔG 
binding from the GROMACS calculation with the experimental value from spectral titrations.  
 


