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Abstract

The de novo design of small-molecule-binding proteins has seen exciting recent progress;
however, high affinity binding and tunable specificity typically require laborious screening and
optimization after computational design. We developed a computational procedure to design a
protein that recognizes a common pharmacophore in a series of PARP1 inhibitors. One of three
designed proteins bound different inhibitors with affinities ranging from <5 nM to low uM. X-ray
crystal structures confirmed the accuracy of the designed protein-drug interactions. Molecular
dynamics simulations informed the role of water in binding. Binding free-energy calculations
performed directly on the designed models are in excellent agreement with the experimentally
measured affinities. We conclude that de novo design of high-affinity small-molecule-binding
proteins with tuned interaction energies is feasible entirely from computation.

One Sentence Summary
Informatic sampling enables de novo creation of drug-binding proteins with accurate design and
prediction of binding affinity.



Main Text

Molecular recognition underlies small molecule binding by and catalytic activity of protein
receptors and enzymes. Although we have an advanced understanding of both protein design and
molecular interactions, the rational design of de novo proteins that specifically bind small
molecules with low nM to pM affinity is a major challenge (1, 2) that has not been achieved in de
novo proteins (3, 4) without experimental screening of large libraries of variants (5—-7). Even with
the application of recent advances in artificial intelligence to facilitate de novo design (8-10), it
has been necessary to screen thousands of independent designs to discover binders with low uM
to high nM dissociation constants (Kp) directly from design algorithms (3, 11-14). Proteins with
higher affinity are often desirable. Given the low success rate, screening large numbers of designs
often relies on biotinylated or fluorescently-labeled versions of their small molecule targets, which
restricts the region of the molecule available for binding. The cost of synthesizing thousands of
genes and the necessity of synthetic chemistry for conjugation places a practical limitation on the
access of these methods to many groups. Moreover, de novo design methods rely heavily on
structural informatics to guide sampling of protein structure and sequence, as well as scoring
functions that rely on a mix of statistical and physical terms without explicit representation of
dynamics, conformational entropy, or water (3—7). This dependence leaves open the fundamental
question of whether our understanding is grounded in physical forces or limited exclusively to
advanced pattern recognition (15). Here, we asked whether adherence to simple rules based on
physical principles might increase the success rate for designing drug-binding proteins, and
whether all-atom molecular dynamics simulations with explicit water might be able to recapitulate
the experimentally determined binding affinities of high affinity binders, starting with design
models that come directly from a computational design.

The recognition of polar groups presents a challenge in de novo design of binders, because
the polar groups must lose most or all of their highly favorable interactions with water molecules
upon binding to the protein. To compensate for this loss in hydration, the drug’s polar chemical
groups must form highly directional and distance-dependent hydrogen bonds and electrostatic
interactions with atomic groups in the protein. These polar interactions are not only required for
affinity, but they also provide the specificity of proteins for their substrates over other similarly
shaped molecules.

We recently developed a design method known as COMBS (Convergent Motifs for
Binding Sites) to enable sampling of only sequences and structures capable of forming such
interactions prior to searching for less specific and directional, but energetically favorable, van der
Waals and hydrophobic interactions that complete the binding site (3). To facilitate this process
COMBS uses van der Mers (vdMs) to search for preferred spatial positions where chemical groups
can interact with an amino acid (3). vdMs are similar to rotamers (16), which define favorable
positions to arrange an amino acid’s sidechain atoms relative to its backbone atoms. However,
instead vdMs define favorable positions of an interacting chemical-group fragment relative to a
residue’s backbone atoms. Each amino acid type can adopt multiple rotamers, which are widely
used in design algorithms to position sidechains onto pre-existing backbones. In vdMs we track
the positions of chemical groups that can interact with a given type of amino acid. For example,
a Glnconnz consists of a Gln residue that contacts a carboxamide group. Also like rotamers, vdMs
can be clustered into similar groups with associated probabilities based on their occurrence in the
pdb. The COMBS algorithm then finds multiple positions on a given protein backbone that can
simultaneously form favorable van der Waals, aromatic, and/or hydrogen-bonded interactions with



the chemical groups of a target small molecule. The remainder of the sequence is then filled in
using flexible backbone sequence design .

COMBS showed promise in identifying protein backbones and creating sites capable of
binding the drug apixaban. In previous work, we identified one protein that bound with Kp = 500
nM and a second with Kp =5 uM after screening only six designed sequences (3). In the process,
we learned lessons that could improve the use of COMBS in design pipelines. First, during the
final steps of sequence design and backbone optimization, sidechains were sometimes introduced
that ultimately did not form their intended favorable vdMs. Structural analysis showed that they
were not in optimal orientations to interact with the drug, and site directed mutagenesis showed
they made small or no contributions to the free energy of binding. We reasoned it should be
possible to improve binding by using backbone phi/psi-dependent vdMs and alternating rounds of
COMBS with Rosetta flexible-backbone sequence design. Secondly, binding affinity can be
optimized by pre-organizing a receptor’s conformation so that it loses minimal conformational
entropy upon binding. Originally, we analyzed preorganization using Rosetta ab initio folding;
now using AlphaFold2, we should be able to reliably determine whether a protein adopted the
desired, pre-organized conformation prior to experimental characterization.

Another feature of importance is the need to consider the energetically unfavorable loss of
hydrogen-bonds between water molecules and both the drug as well as the protein’s binding site,
which occurs when the drug binds into the pocket. While COMBS and other algorithms Please
add HBNet reference considered the need to form hydrogen bonds to compensate for the loss of
hydration, here we strive to form a more full set of compensatory ligand-protein hydrogen bonds
to every buried polar atom. We sample vdMs between the ligand and the first-shell amino acids,
as well as vdMs between the first shell and a second shell of interacting residues, which also
assures a favorable geometry for the binding partners. We also opted to bias the orientation of the
ligand such that formally charged groups are placed near the surface of the protein, thereby
minimizing energic penalties due to Born solvation. Finally, we evaluated MD simulations and
free energy calculations, which explicitly consider interactions with bulk and bound water
molecules that are not fully considered in protein design algorithms, to assess the usefulness of
physics-based methods for evaluating the affinity of the designs.

To demonstrate the utility of our refined methods, we chose to design inhibitors of PARP,
a recently developed class of clinically useful anticancer drug (17). De novo designed binders of
PARP1 drugs might serve as components in detectors, delivery agents, or detoxification agents for
these cytotoxic drugs. The predominant class of PARPi drugs share a tripartite pharmacophore
consisting of a fused 5,6-bicyclic core, an amide and a phenyl group bearing a positively charged
alkylamine (Fig. 1A). We chose to target rucaparib, the most structurally complex of several related
drugs, as our primary target (Fig.1A), as well as a series PARP1 analogues. By considering a series
of drugs, we at once provide reagents that might be widely useful, while simultaneously testing
our understanding of the essential features required for binding.

De novo design of high-affinity drug-binding proteins

We used a recursive version of the COMBS algorithm to design rucaparib-binding sites in
a family of mathematically generated four-helix bundle proteins. The key binding residues were
introduced using vdMs to identify multiple positions on a given protein backbone that could
simultaneously interact favorably with the chemical groups of a target small molecule (Fig. 1B,
1C, Supplementary Methods). Although vdMs are derived from statistics of sidechain and
mainchain interactions with one another in the pdbs they can be used to identify binding-site
residues capable of forming hydrogen bonds and aromatic interactions with diverse small



molecules, in much the same way that natural proteins bind a wide diversity of small molecules
using a set of 20 amino acids. While the energetics of these interactions can vary depending on the
specific small molecule bound, the fundamental geometries required to achieve binding remain
often remain relatively constant (18). Thus, a common set of vdMs should serve to bind a wide
range of compounds. We targeted three chemical groups in rucaparib’s structure: the indole NH,
and the C=0 and NH> groups of its carboxamide (Fig. 1C). Additionally, COMBS identified Asp58
as a second-shell interaction to the carboxamide of rucaparib (Fig. 1C). It is important to design
binding interactions with these groups with sub-A accuracy to engender specificity and a favorable
free energy of association. Next, the remainder of the sequence was designed using Rosetta flexible
backbone design (Fig. 1D) (3, 19), while retaining the identity of the keystone residues (identified
in the COMBS step). The mainchain moved 1 A rmsd during this step (Fig. S1), so a second round
of vdM sampling was performed on the relaxed backbone. This procedure identified three mutants
involving drug-contacting residues, including N29D, W90L and N131D (Fig.1E). A second round
of flexible backbone sequence design using this backbone and the newly fixed vdMs resulted in
converged sequence/structure combinations (Fig. 1E, 2A-B), as a third round of COMBS showed
the vdMs were now optimal. The final designs include numerous CH-m and hydrophobic
interactions interspersed with specific polar interactions, including four H-bonds (an H-bond donor
to the drug’s carboxamide oxygen as well as three H-bond acceptors to the drug’s carboxamide
NH, indole NH and charged ammonium group), as well as second shell interactions. (Fig. 2C, Fig.
S2).

Throughout the design process, we ensured that the designs would also retain favorable
interactions with most of the common pharmacophores of the three other drugs (see supplementary
methods for details). However, we predicted that the protein would have lower affinity for
niraparib and mefuparib, because they lack the H-bonding group indole NH of rucaparib. Also, we
expected veliparib to bind weakly, because it lacks a hydrophobic phenyl group and the position
of its charged ammonium group differs from that found in the other three drugs.

The final models were chosen based on multiple criteria: 1) favorable vdMs (highest total
vdM cluster scores); 2) satisfaction of all potential buried H-bond donors in the protein and ligand;
3) low Rosetta energy (lowest 50 of the 1000 total designs); and 4) avoidance of clashes with the
three other PARP inhibitors, which show structural variability near the amine end of the molecule.
The three top-scoring designs were selected for expression including: PiB (PARPi binder) and a
variant of this protein, PiB’ (Table. S1, Fig. S3), which differs only by the substitution of five
solvent-exposed charged residues with Ala to encourage crystallization. The other two (PiB-1 and
PiB-2) were less closely related to PiB in structure (r.m.s.d. = 0.93 and 0.79 for PiB-1 and PiB-2
to PiB, respectively) and sequence (41% and 42% identity for PiB-1 and PiB-2 to PiB, respectively,
Fig. S4). Circular dichroism spectroscopy showed all four had substantial alpha-helical character
(Fig. S5). However, PiB-1 and PiB-2 failed to induce large changes in the fluorescence emission
spectrum of rucaparib (Fig. S6). Therefore, we focused our efforts on PiB and PiB’ (Fig. S7 - S11).

Spectral titrations showed that PiB and PiB’ bound the PARPi drugs with high affinity.
Incubation of PiB with equimolar concentrations of rucaparib led to a marked blue shift and an
increase in intensity of its fluorescence spectrum, as expected if its indole core were bound in a
rigid, solvent-inaccessible site (Fig. S6, S7). NMR spectroscopy of PiB showed that it folded into
a well-defined structure, and the addition of a single equivalent of rucaparib led to a new set of
peaks, consistent with a stoichiometric, specific complex (Fig. S10, S11). Fluorescently monitored
titrations of protein into a solution of rucaparib showed that PiB and PiB’ bound with very low to
sub-nM affinity (Fig. 2D, 2E, 3A). Even at the lowest experimentally feasible rucaparib



concentration, the binding isotherms show a linear increase in intensity with respect to protein
concentration until a single equivalent is added, followed by an abrupt leveling at higher protein
concentrations. This behavior is indicative of a dissociation constant that is much lower than the
total rucaparib concentration. A non-linear least-squares fit to the data returned a Kp of 2.2 nM for
PiB and 0.37 nM For PiB’, and a sensitivity analysis showed that the Kp was less than 5 nM for
both proteins (Fig. 2D, 2E). Achieving single digit nM to pM binding affinity for de novo designed
proteins has previously required extensive experimental optimization (5).

UV/visible absorption titrations showed that PiB and PiB’ also bound to the remaining
ligands with affinities that grew increasingly weaker as the drugs’ structures diverged from
rucaparib (Fig. 3A, Fig. S12). PiB retained sub-uM affinity for mefuparib (Kp= 190 nM and 350
nM for PiB and PiB’, respectively) and niraparib (600 and 550 nM). The corresponding Kp values
were 14 uM and 24 pM, respectively for the structurally divergent drug veliparib, and no binding
was detected for the most divergent drug, olaparib (Fig. S13). This observed trend in binding
affinity matches the order expected from the structural differences mentioned above.

We next examined the in vitro stability and potency of PiB and PiB’ in serum and cellular
assays. PiB and PiB’ were highly stable in human serum, as are other de novo proteins designed
for medical applications (Fig. S14, S15) (3, 20). PARP inhibitors potently inhibit the viability of
cells with certain DNA repair deficiencies, including loss-of-function mutations in BRCA2 (17).
To determine whether PiB and PiB’ could attenuate the lethal effects of PARPi drugs, we measured
their effects on the growth of BRCA2 mutated DLD-1 cells and SUM149 cells (21) over after an
8-day incubation. Dose-response curves were first established in the absence of PiB, then the
titration was repeated with PiB or PiB’, at varying [protein]/[drug] ratios for each PARPi drug
concentration. Addition of a single equivalent of PiB or PiB’ resulted in a 4-fold increase in the
half maximal inhibitory concentration (IC)so value for rucaparib. Thus, PiB competes effectively
for binding of rucaparib to human PARPI, an enzyme reported to bind rucaparib with a
dissociation constant of 0.1 to 1 nM in biochemical assays (22, 23) (Fig. 3A, 3B, 3D, Fig S16, S17,
S18). The potency of PiB and PiB’ in the cell viability assay generally tracks with the spectroscopic
assays, with the protein showing effects on mefuparib and niraparib intermediate between that for
rucaparib and veliparib (Fig. 3B, 3D, Fig. S16, S17, S18). Moreover, PiB and PiB’ did not
appreciably change the cellular response to olaparib (Fig. 3C, 3D, Fig. S16, S17, S18) in line with
spectroscopic data that indicated that PiB and PiB’ does not bind this drug.

Structural and mutational validation of designs

The crystallographic structures of PiB’ were solved in the absence and presence of the four
active compounds at 1.3- to 1.6-A resolution (Table S2). The protein’s conformation is in excellent
agreement with the predicted AlphaFold2 model, particularly near the binding site (Cao RMSD of
the 60 surrounding residues was 0.2 to 0.5 A, Fig. 2A, 4A-B, S19, Table. S3). A similar degree of
agreement (< 0.5 A RMSD) was observed comparing the structure of the experimental structure
and the designed model. An important aspect of the design was that the binding site should be
preorganized. Indeed the binding pocket of PiB’ is nearly identical between the experimentally
determined apo and drug-bound structures (0.2 — 0.5 A Ca RMSD; Fig. 4B-4C, S20). Moreover,
the sidechains interact precisely as predicted in the design of the rucaparib complex (Fig. 4B, S20):
Asp29 makes a direct H-bonded salt bridge to the drug’s charged ammonium group. Rucaparib’s
carboxamide forms a two-coordinate hydrogen bond with GIn54, which in turn is stabilized by a
second-shell network of H-bonds predicted in the design; Asp131 formed a solvent mediated H-
bond to rucaparib’s indole NH group (Fig. 4B, S20). A search of water-mediated Asp sidechains



with related indole and imidazole sidechains showed this bridging interaction is frequently found
in the PDB (Fig. S21).

The structures of mefuparib and niraprib bound to PiB’ show a similar set of interactions
as rucaparib (Fig. S22). However, their aromatic 5-membered azole ring lacks a H-bonding group
to interact with Asp131, explaining their decreased affinity for the protein. As expected from its
divergent structure, veliparib has a less favorable fit with PiB’s binding site, and it lacks a salt
bridge to its ammonium group as in other complexes (Fig. S22, S23).

Three residues were changed to improve binding during the second round of COMBS
design of PiB. To determine whether these substitutions indeed increased affinity, we evaluated
mutants with the second-round substitutions reverted to their identities in the first round of design.
These changes each led to one to two orders of magnitude weaker binding affinity for rucaparib
Asp29Asn (Kp =13 nM), Leu90Trp (Kp =24 nM) and Asp131Asn (Kp =50 nM) (Fig. 4D, S24A).
Thus, iterative vdM selection successfully identified interactions with improved binding affinity.
We suggest that vdM guided amino acid optimization might provide a useful alternative to other
methods of affinity optimization. We also conducted an alanine scan to probe the energetic
contribution of each of the residues that lined the pocket in the rucaparib complex (Fig. 4E, S24B).
Each mutation was unfavorable with values of AAG ranging from 1.7 to 3.0 kcal/mol. These values
are within the range observed for substitutions of critical binding residues in natural protein
binding sites (24).

Computational prediction of binding thermodynamics

To provide insight into the experimental results for PiB, PiB’, PiB1 and PiB2 we next
conducted 2.0-microsecond all-atom molecular dynamics (MD) simulations to compare their
structural dynamics on this time scale. The simulations were performed on the designed models
(instead of the crystallographic structures) to assess the use of MD as a predictor of experimetnal
success. The protein backbone conformations were very stable for all four complexes. However,
rucaparib’s designed binding pose was stable only in PiB and PiB’ (Fig. S23) (as PiB and PiB’
behave similar in MD, we only use PiB to illustrate later): it retained its bivalent hydrogen bonding
interaction to GIn54 (Fig 5A), and Asp29 and Asp131 showed stable interactions with rucaparib’s
indole NH and ammonium groups through direct and water-mediated hydrogen bonds,
respectively (Fig. 5A). By contrast, PiB-1 and PiB-2 simulations deviated from rucaparib’s
designed pose, and their key buried H-bonds to GIn54 were broken within 50 nanoseconds in each
of three independent calculations (Fig. S25). Moreover, PiB shielded the apolar atoms in rucaparib
more efficiently in PiB than PiB-1 and PiB-2, as determined from solvent-accessible surface area
calculations within individual MD trajectories (Fig. S26). Furthermore, MD simulations of PiB in
complex with niraparib, veliparib, and mefuparib show similar binding-site conformational
stability as PiB: rucaparib over 2.0 microseconds (Fig. 5A, S27). MD can thus help rationalize
how interactions contribute to stability in predicted complexes and may be a useful tool in design.

We next turned to alchemical and physical-pathway methods to determine whether these
methods could predict the absolute binding free energies for PiB and PiB’ directly from molecular
dynamics simulations, using the computational designs (rather than experimental structures) as the
starting models. The alchemical transfer method (25, 26) was carried out by one of the authors,
who had no knowledge of the experimental results. This method has been shown to be comparable
to other alchemical methodologies such as Schrodinger’s FEP+ (25) or Amber’s thermodynamic
integration (26) given comparable sampling of the configurational space. An initial absolute
binding free energy calculation was used to evaluate the energetic contributions of the fused-ring
cores of the drugs and to ensure convergence of the calculations. An additional relative binding



free energy calculation was performed to transform each core into the target ligand to estimate the
contribution from non-core regions (Fig. S28). Universally, the alchemical transfer method tended
to overestimate the binding energy, possibly due to having two sets of restraint potentials.
However, this procedure correctly predicted the relative affinities of the four ligands (Table. S4).

We next used potential of mean force calculations, an orthogonal physical-pathway
methodology (27), to compute absolute binding energies (Fig. S29-S33), and the results were in
remarkably good agreement with experiment (Fig. 5B, 5C, Table. S5). The RMS error between the
predicted and experimental values is 1.3 kcal/mol, and the correct rank order of affinities was
observed. This error is close to the experimental error in the measurement of Kp for rucaparib. We
also obtained very good agreement between computation and experiment for a set of four mutants
of PiB (Fig. 5B, 5C, Table. S5). This agreement bodes well for the use of alchemical and physical-
pathway-based binding free energy calculations to evaluate potential binding energies of de novo
small-molecule binding proteins.

Discussion

These findings show that it is possible to design very high-affinity proteins for drugs using
minimal scaffolds such as the four-helix bundle. vdMs and COMBS were key to this achievement.
While they were used in conjunction with Rosetta sequence design, they could be easily adapted
to improve sampling and/or scoring of a variety of recently developed protein-design algorithms
based on diffusion models (3, 8-10). MD simulations of de novo proteins have only been
occasionally used to provide insight into de novo protein design (28-32). However, using this
method we were able to differentiate successful versus unsuccessful designs, suggesting it should
be helpful for prioritizing designs. Although we ran 2 microseconds simulations, the essential
features could be gleaned after 100 nanoseconds, suggesting that simulations on this time scale
should be useful. Free energy calculations have not previously been applied to designed proteins.
Although they are more computationally intensive and require more user-specified parameters, we
obtained excellent quantitative agreement between computed and experimentally measured
binding free energies using the designed models as the starting structures. These data demonstrate
the possibility of designing proteins with high affinity (< 5 nM) to small molecules using fully
rational criteria for design and “physics-based” force fields to evaluate the complexes.

Although we designed PiB’ without considering the natural binding-site interactions in
PARP1, very similar interactions were seen in the experimental structures of the two proteins (Fig.
S34): a ligand-Asp salt bridge, solvent-mediated hydrogen bond to rucaparib’s indole NH, and a
two-coordinate H-bond to the drug’s amide. This commonality likely reflects the fact that proteins
have only a limited repertoire of functional groups, and that COMBS is capable of identifying
highly favorable interactions, similar to those used in nature.

Rucaparib binds to the human PARP1 enzyme with a Kp ranging from 0.1 to 1.5 nM,
depending on the experimental conditions, close to the range observed for PiB and PiB’(22, 23).
Ligand efficiency is often used as a guiding rule in drug discovery to determine whether the affinity
of a molecule of a given size is within a range typically seen in highly optimized small-molecule
drugs and natural organic ligands for proteins (33, 34). As ligands become larger, they have more
opportunities to form favorable interactions with their target proteins. Thus, the maximal affinity
possible roughly scales with the size of a small molecule, and the ligand efficiency is defined as
the free energy of binding (1 M standard state) divided by the number of heavy atoms in the ligand.
Most drugs have ligand efficiency around 0.3 kcal/(mol * heavy atom count) (33, 34), although
higher values are observed for highly optimized drugs such as rucaparib, which has a ligand



efficiency of 0.5 kcal/(mol*heavy atom count). The ligand efficiency of a drug is similarly a good
measure of how well optimized a de novo protein is for binding to a small molecule. The 0.5
kcal/(mol * heavy atom count) ligand efficiency of PiB is a considerable improvement over the
0.21 to 0.26 ligand efficiency of the first COMBS-designed apixaban binders, demonstrating the
importance of incorporating the design principles discussed above. With these and similar
refinements, it should be increasingly possible to design high-affinity small molecule-binding
proteins with predicable binding energetics for a variety of practical applications in sensing and
pharmaceuticals.
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Figures

Figure 1. The computational design of poly(ADP-ribose) polymerase inhibitors (PARPi)
protein binders. (A) The PARPi analogues. The shared chemical features are marked in orange.
Olaparib is used as a negative control in the design and binding assay. (B — E) The overall design
strategy. (B, C) We first define the pharmacophore and use COMBS to sample vdMs on the
selected protein backbones. At the outset of the design, we chose chemical groups that should form
hydrogen bonds when the drug bound to the binding site. These groups included rucaparib’s indole
NH and carboxamide groups. The carboxamide group is present in our vdM library. However,
there were relatively few examples of indole NH vdMs in the database, so we used imidazole as a
proxy for the indole’s pyrole ring. We then used COMBS to discover sidechains at different
positions of a four-helix bundle template that could simultaneously form hydrogen bonds to the
indole and carboxamide chemical groups of the drug. (In brief, the COMBS algorithm samples
vdMs on a protein backbone and then performs superpositions of a ligand onto the chemical groups
of the vdMs; next, COMBS finds all the vdMs with nearby chemical groups to each superposed
ligand; and finally, COMBS computes a unique combination of vdMs for each ligand that
optimizes a score, such as the vdM prevalence or cluster score). We discovered a solution in which
the carboxamide formed bidentate hydrogen bonds with sidechain of GIn54, and the drug’s indole
NH interacted with the Asn131 (C, carbon atoms of protein green, those of rucaparib are orange).
A second-shell interaction to Q54 that was discovered by COMBS was Asp58 (carbons brown).
(D) We applied flexible backbone sequence design with a custom Rosetta script while fixing the
interactions selected from COMBS. (Rucaparib in purple). (E) Then we search vdM again based
on the design output from the previous sequence step. The slightly different (~ 1 A Ca RMSD)
backbone now preferred different vdMs at some locations (higher cluster scores) and these
mutations were made. Three residues at 29, 90, 131 (deep blue) were changed based on COMBS
results.

Figure 2. Assessing the computational model and experimental binding of PiB to rucaparib.
(A) The AlphaFold2 model agrees with the designed PiB very well, with the binding site Co. RMSD
of 0.41 A, the upper fold Ca. RMSD of 0.49 A and overall Ca RMSD of 0.67 A. (B) The predicted
local distance difference test scores (pLDDTs) concur with the trend of RMSD difference of the
design model. For example, the N-terminal, C-terminal and the middle loop with low pLDDTs
(<90) showed higher Ca. RMSD. (C) The design model showing the polar groups of rucaparib are
all hydrogen-bonded. (D) (E) A fluorescence titration shows that PiB and PiB’ bind rucaparib with
Kp < 5 nM. The fluorescence emission intensity at 420 nm of rucaparib (excitation wavelength
355 nm) was measured after titrating aliquots of PiB (D) or PiB’ (E) to a final concentration
indicated in the abscissa. The data are well described by a single-site protein-ligand binding model,
and a non-linear least squares fit to the data returned values of Kp of 2.2 (+ 0.9) nM for PIB, and
0.37 (= 0.29) nM for PIB’. Although the fitting error was relatively small, a sensitivity analysis, in
which the value of Kp was held constant at various values, showed that the data for both proteins
were fit within experimental error so long as the Kp is less than 5 nM. Therefore, while the most
probable binding constants were 2 and 0.4 nM, respectively, we can confidently conclude that the
values for PiB and PiB’ are less than 5 nM. The titration was carried out in in buffer containing 50
mM Tris, 100 mM NaCl (pH 7.4).

18



Figure 3. Spectral titrations and cell viability assay of PiB with PARPi. (A) The values of Kp
of various drugs for PiB as obtained from global fit of a single-site binding model to the
fluorescence changes (A, from Fig. 3) or absorbance changes as a function of the concentration of
PiB. Indicated wavelengths for the titration were chosen to maximize the difference in absorption
for the free versus bound drug. (B) Seven-day growth assays in DLD-1 BRCA2 mutated cells show
that PiB alleviates the effects of rucaparib, mefuparib, niraparib and veliparib toxicity in a dose-
dependent manner. The PARP inhibitors were pre-incubated with PiB in media at room
temperature for 5 minutes at multiple concentration ratios (ligand : protein) of 1:0, 1:0.2, 1:1, 1:2.5,
1:5 and 1:10. (C) Cell viability assay as in Figure 4B showing that PiB had no effect on the olaparib
dose response. (D) Table showing ICso values for the inhibition of cell proliferation by PARPi
drugs in the presence of increasing mole ratios of added PiB protein.

Figure 4. The structure of drug-bound PiB’ agrees with the design. (A) The design model
agrees well with the rucaparib-bound PiB’ crystal structure, with binding site (Fig. 3A) Cao RMSD
range between 0.38-0.46 A for the three monomers in the asymmetric unit. (B) The binding site of
PiB’. A 2mFo-DFc composite omit map contoured at 1.6 6. The map was generated from a model
that omitted coordinates of rucaparib. Overlay of the design (gray) and the structure (protein in
orange, rucaparib in pink). The sidechains of the binding pocket in rucaparib-bound PiB’ agrees
with the design. Asp131 interacts with the indole NH via a bridging water as in MD simulations.
(C) The structure of apo-PiB’ shows a preorganized open pocket filled with multiple waters, which
are displaced in holo structure. (D) Reversal of the three designed substitutions from the vdM
optimization procedure led to lower binding affinity (higher Kp) for rucaparib by fluorescence
emission titrations. (E) Alanine mutations of the direct binding residues decreased binding
affinities confirmed by fluorescence emission titrations.

Figure 5. The MD simulations of PiB, PiB’, and mutants. (A) Using unbiased molecular
dynamics simulations in Amber, we calculated (in triplicate) the frequency with which the
intermolecular hydrogen bonds formed between the protein scaffold and the bound drug molecule.
PiB was found to form a hydrogen bond between GIn54 and the targeted drug carboxamide in
100% of all simulations for each drug complex. The charged ammonium groups of rucaparib and
mefuparib interacted with Asp29 through a combination of direct and water-mediated hydrogen
bonds, totaling to more than half of the full simulation time, which contrasts niraparib and
veliparib’s inabilities to form equivalent hydrogen bonds (due to changes in chemical structure
around the ammonium tail of the ligand). In a small fraction of each rucaparib and veliparib
trajectory, Aspl31 engaged in water-mediated hydrogen bonds to the drugs. (B) Using biased
simulations in GROMACS, we calculated binding free energies for each ligand and found that
ranked affinity for each drug is consistent with experimental results. (C) Comparison of AG
binding from the GROMACS calculation with the experimental value from spectral titrations.
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