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This paper is a continuation of a study of the properties and applications of quantum stress tensor
fluctuations. Here we treat the vacuum fluctuations of the electromagnetic energy-momentum flux operator
which has been averaged in space and time. The probability distribution of these fluctuations depends upon
the details of this averaging and may allow fluctuations very large compared to the variance. The possibility
of detecting their effects on electrons will be considered. The averaging of the flux operator will arise from
the interaction of an electron with a wave packet containing real photons. The vacuum radiation pressure
fluctuations can exert a force on the electron in any direction, in contrast to the effect of scattering by real
photons. Some numerical estimates of the effect will be given.
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I. INTRODUCTION

This paper will deal with quantum fluctuations of
radiation pressure and their possible observable effects.
The vacuum fluctuations of stress tensor operators has been
a topic of several investigations in recent years [1–7]. A key
result which has emerged is the probability distribution for
these fluctuations is very sensitive to the details of how they
are measured. On a formal level, a quadratic operator, such
as a stress tensor component, must be averaged in time in
order to have a well-defined probability distribution.
Physically, this averaging is linked to the details of the
measurement process. The rate of decay of the Fourier
transform of the averaging functions with increasing
frequency determines the asymptotic form of the proba-
bility distribution. Typically, this form is an exponential of
a small fractional power. As a result, the probability of large
fluctuations can be orders of magnitude larger than would
have been predicted by a Gaussian distribution. Some
possible observable effects of these large fluctuations might
include enhancement of the quantum tunneling rates [8,9],
or light scattering by zero point density fluctuations in a
liquid [10,11].
In the present paper, a different process will be

addressed: the effects of quantum radiation pressure fluc-
tuations on the motion of electrons. A discussion of
radiation pressure fluctuations on atoms was given in
Ref. [12]. A key feature of the probability distribution

for vacuum radiation pressure fluctuations is being sym-
metric; the pressure is equally to occur in any direction. In
contrast, the radiation pressure due to real photons exerts a
force in the direction in which the photons are traveling.
Here a model will be presented in which space and time
averaging of the electromagnetic momentum flux operator
is produced by a localized wave packet containing real
photons. The scattering of real photons by an electron can
give the electron linear momentum in the direction of
motion of the wave packet. However, the vacuum radiation
pressure fluctuations can potentially contribute momentum
in the opposite direction. If this contribution can be
observed, this could constitute observation of vacuum
radiation pressure fluctuations.
The outline of this paper is as follows: Sec. II will review

selected aspects of the quantum radiation pressure operator
and its fluctuations. In particular, Sec. II E will deal with
large fluctuations. Section III will present a model for the
interaction of both real photons and vacuum fluctuations
with an electron. Some numerical estimated of the magni-
tude of the vacuum effects will be given. The results of the
paper will be summarized in Sec. IV.
Units in which c ¼ ℏ ¼ 1 will be used unless other-

wise noted.

II. THE RADIATION PRESSURE OPERATOR

The electromagnetic momentum flux in the z-direction is

Ttzðt;xÞ ¼ ðE × BÞz ¼ ExBy − EyBx; ð2:1Þ

where E and B are the quantized electric and magnetic
field operators, respectively. Recall that in units where
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ℏ ¼ c ¼ 1, the electromagnetic momentum flux operator is
also the energy flux operator, the Poynting vector.

A. Coherent states and the classical limit

A classical electromagnetic wave may be considered to
be a highly excited coherent state. For the case of a single
excited mode, such a state may be defined as an eigenstate
of the photon annihilation operator for this mode

ajzi ¼ zjzi ð2:2Þ

where z is an arbitrary complex number, The mean number
of photons in this state is

ha†ai ¼ jzj2; ð2:3Þ

and the variance in this number is

hða†aÞ2i − ha†ai2 ¼ jzj2: ð2:4Þ

If jzj ≫ 1, then the fractional fluctuations are small, and
the expectation values of the electric and magnetic field
operators approximate classical solutions of Maxwell’s
equations. However, fluctuations around these mean values
are always present on some level, and can produce
physically observable effects including radiation pressure
fluctuations on a mirror.
The mean momentum flux in a coherent state, hzjTtzjzi,

is the classical radiation pressure. In quantum theory, this
pressure may be viewed as originating from the momentum
carried by the individual photons in the coherent state.
Similarly, quantum fluctuations around the mean value may
be viewed as arising from fluctuations in photon number
[13–15]. Consider the case of a coherent state for a
traveling wave mode moving in the þz direction., in which
case hzjTtzjzi > 0. Fluctuations in the number of photons
passing by per unit time lead to fluctuations around this
mean value, but will never change its sign. In this picture,
the minimum value of the radiation pressure is zero, and
this value is only reached when no photons arrive.
The situation is quite different in quantum field theory.

Here the vacuum state can be a source of rich phenom-
enology, including the Casimir effect and the Lamb shift.

B. Vacuum fluctuations and spacetime averages

The vacuum fluctuations of the radiation pressure
operator are well-defined only if it has been averaged in
time. Let Sz be the momentum flux sampled in both time
and space with averaging functions fðtÞ and gðxÞ

Sz ¼
Z

∞

−∞
Ttzðt;xÞfðtÞgðxÞdt d3x: ð2:5Þ

Note that the operators Ttz, and hence Sz, are automatically
normal ordered, as h0jTtzj0i ¼ h0jSzj0i ¼ 0. We assume

that fðtÞ and gðxÞ are infinitely differentiable, non-negative
functions which are normalized so that

Z
∞

−∞
fðtÞdt ¼

Z
gðxÞd3x ¼ 1: ð2:6Þ

Here fðtÞ and gðxÞ are interpreted as describing the
effect of a physical measurement of the averaged momen-
tum flux. Although spatial averaging is not essential for Sz

to be well defined, here we assume it is present as a part of
the measurement. Furthermore, we require that f ¼ g ¼ 0
outside of a finite spacetime region, as a physical meas-
urement should occur in such a region. As a consequence,
fðtÞ and gðxÞ cannot be analytic functions. Such functions
which are nonzero in a finite interval are referred to as
having compact support. Define their Fourier transforms by

f̂ðωÞ ¼
Z

∞

−∞
dt e−iωtfðtÞ; ð2:7Þ

and

ĝðkÞ ¼
Z

d3x eik·xgðxÞ: ð2:8Þ

Infinitely differentiable but compactly supported functions
must have a Fourier transform which decays faster than any
power ofω asω → ∞, but more slowly than an exponential.
A class of such compactly supported functions is

described in Sec. II of Ref. [2]. For these functions,
f̂ðωÞ decays as an exponential of a fractional power

f̂ðωÞ ∼ γe−βðτωÞα : ð2:9Þ

Here τ is the characteristic temporal duration of fðtÞ, and
the above form holds when τω ≫ 1. This asymptotic form
depends upon the constants 0 < α < 1, β > 0, and γ. The
value of α is especially crucial, as it determines the
magnitude of the vacuum fluctuations of Sz. Smaller values
of α cause f̂ðωÞ to fall more slowly as ω increases, leading
to larger fluctuations. We expect ĝðkÞ to have a similar
asymptotic form for large k, except with τ replaced by the
characteristic spatial sampling scale, l.
Suppose that the electric and magnetic field operators are

expanded in terms of plane wave modes, with photon
creation and annihilation operator coefficients, a†j and aj,
where j ¼ ðk; λÞ is a mode label describing a photon’s
wavevector k and polarization λ. In this basis, the averaged
flux operator Sz is represented as

Sz ¼
X
ij

ðAija
†
i aj þ Bijaiaj þ B�

ija
†
i a

†
jÞ: ð2:10Þ

Here
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Aij ¼
ffiffiffiffiffiffiffiffiffiffi
ωiωj

p
3V

f̂ðωi − ωjÞĝðki − kjÞ; ð2:11Þ

and

Bij ¼
ffiffiffiffiffiffiffiffiffiffi
ωiωj

p
3V

f̂ðωi þ ωjÞĝðki þ kjÞ; ð2:12Þ

where V is a quantization volume and ωj ¼ jkjj is the
mode angular frequency. Note that Eqs. (2.11) and (2.12)
have the same form as the corresponding relations for the
operator ∶φ̇2∶, given in Ref. [2], where φ̇ is the time
derivative of a massless scalar field. The origin of the
numerical factors in Eqs. (2.11) and (2.12) is explained in
Sec. II B of Ref. [8].
Recall that time averaging with τ > 0 is essential for a

quadratic operator such as Sz, but space averaging is not.
The averaged operator is still well defined in the limit
where we average in time at a single spatial point, in which
case gðxÞ → δðxÞ and ĝðkÞ → 1.

C. The moments and eigenstates of Sz

For the case of a massless scalar field in two spacetime
dimensions, it is possible to give explicit exact expressions
for the probability distribution of vacuum flux fluctuations
for selected choices of the temporal sampling function [16].
No such exact results are known in four dimensions, but
there are at least two approaches for approximately
determining the probability distribution PðxÞ for stress
tensor fluctuations. Here

x ¼ τ4Sz ð2:13Þ

is a dimensionless measure of the flux. The first approach
involves calculation of the moments:

μn ¼ h0jðSzÞnj0i; ð2:14Þ

and was used in Refs. [2,4]. The rate of growth of μn as n
increases may be used to infer asymptotic form, Eq. (2.22).
More specifically, the form of PðxÞ near a given value of x
is determined by the μn where [4].

n ≈ xα=3 ð2:15Þ

in the world line limit, and

n ≈ xα ð2:16Þ

in the spacetime averaged limit.
Unfortunately, the moments approach suffers from the

ambiguity that the moments grow too rapidly to satisfy the
Hamburger moment criterion, which is the condition under
which the set of moments fμng uniquely determine PðxÞ.
However, the moments do determine the averaged features

of the distribution. When two distinct distributions possess
the same moments, they typically differ by an oscillatory
function which averages to zero. Fortunately there is an
alternative method which is free of this ambiguity. This is
diagonalization of an operator of the form of Eq. (2.10) by a
Bogoliubov transformation. This involves a linear trans-
formation of the photon creation and annihilation operators
a†j and aj to a new basis with operators b†k and bk in which
Sz takes the diagonal form

Sz ¼
X
k

λkb
†
kbk þ C; ð2:17Þ

where C and the λk are constants. The eigenstates of Sz

are number eigenstates in the new basis, jnkib, where
b†kbkjnkib ¼ nkjnkib. The corresponding eigenvalues are
nkλk þ C. The probability distribution in the physical vac-
uum, j0i, is found from the probability amplitude, h0jnkib, to
find the k th eigenvalue in ameasurement on j0i. Theb-mode
eigenstates are multimode squeezed vacuum states in the
a-mode basis, which is the basis of physical photon states.
In practice, the diagonalization of Sz needs to be performed
numerically. This was done for the operator ∶φ̇2∶ in
Refs. [5,6], with results which agree well with the moments
approach.
For our present purposes, the eigenstates of Sz are the

outcomes of a physical measurement of the spacetime
averaged momentum flux, and hence of the radiation
pressure on an electron,whichwill be the topic of the Sec. III.

D. Typical fluctuations

The typical vacuum flux fluctuations have a variance
given by the second moment

μ2 ¼ h0jðSzÞ2j0i ¼ 2
X
ij

BijB�
ij; ð2:18Þ

and a root-mean-square value given by Szrms ¼ ffiffiffiffiffi
μ2

p ¼
xrms=τ4. Here xrms is a dimensionless constant whose
magnitude depends upon the specific choice of the sam-
pling function. The explicit form of μ2 in the V → ∞ may
be found from Eq. (2.12) to be

μ2 ¼
1

288π6

Z
d3k1 d3k2 ω1ω2jf̂ðωi þ ωjÞj2jĝðki þ kjÞj2:

ð2:19Þ
Now consider the worldline limit, where τ ≫ l. In this

case we have

μ2 ¼
1

18π4

Z
∞

0

dω1 dω2ðω1ω2Þ3jf̂ðω1 þ ω2Þj2: ð2:20Þ

As α decreases, μ2 and hence xrms increase, due to an
increasing contribution from high frequency modes, as may
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be seen from Eq. (2.9). An explicit example of an f̂ðωÞwith
α ¼ 1=2 is the function L̂ðωÞ in Sec. II B of Ref. [2], which
is approximated by the function ĥfitðωÞ in Appendix A of
Ref. [4]. In this case, xrms ≈ 2.5.
Quantum fluctuations of both linear fields and stress

tensors exhibit subtle correlations and anticorrelations.
These may be described by a correlation function, which
for the flux operator can take the form

Cðt; t0Þ ¼ h0jSzðtÞSzðt0Þj0i: ð2:21Þ

Here SzðtÞ and Szðt0Þ denote flux operators averaged over
different spacetime regions localized near times t and t0, If
Cðt; t0Þ > 0, then a flux measurement near t is positively
correlated with one near t0. Similarly, Cðt; t0Þ < 0 implies
anticorrelation. The correlations of vacuum energy density
fluctuations is discussed in Refs. [17,18], for example,
where it was argued that these fluctuations tend to be
anticorrelated. Thus negative energy density tends to be
either proceeded of followed by positive energy density. We
can expect a similar anticorrelation in vacuum energy flux
fluctuations. Note that Cðt; t0Þ describes the correlations of
typical fluctuations, and that Cðt; tÞ ¼ μ2ðtÞ, the variance
of the variance of the flux at t.

E. Large fluctuations

Here we summarize previous results on the asymptotic
probability distribution for stress tensor fluctuations. Recall
that x, defined in Eq. (2.13), is a dimensionless measure of
a momentum flux fluctuation. Then x ≈ xrms ¼ Oð1Þ rep-
resents a typical fluctuation, and x ≫ 1 is a large fluc-
tuation. For large x, the probability distribution PðxÞ has
the form

PðxÞ ∼ c0xbe−ax
c
; ð2:22Þ

where the constants a, b, c, and c0 depend upon the choice
of sampling function.
Often we are more interested in the probability of

fluctuations larger than a given magnitude. This is described
by the complementary cumulative distribution

P>ðxÞ ¼
Z

∞

x
PðyÞdy: ð2:23Þ

For x ≫ 1, the asymptotic form is

P>ðxÞ ≈
c0
ac

x1þb−ce−ax
c
: ð2:24Þ

Hence, both PðxÞ and P>ðxÞ decrease with the same
exponential of a fractional power.
A natural question which arises is, how to describe the

correlations of large fluctuations? This is still an unan-
swered question. The usual correlation function approach

using functions as Cðt; t0Þ describes the correlations of
typical, not large, fluctuations. Here an alternative approach
will be suggested. Recall that the large fluctuations are
determined by the large moments, as described by
Eqs. (2.15) and (2.16). This motivates the definition of
generalized correlation functions of the form

Cm;nðt; t0Þ ¼ h0jðSzÞmðtÞðSzÞnðt0Þj0i: ð2:25Þ

Thus, C11 is the usual correlation function, and Cnn is the
correlation function for the operator ðSzÞn. It will be a topic
of future research to study applications to the correlations
of large fluctuations.

1. Worldline averaging

In the limit when the spatial sampling scale is sufficiently
small, we are essentially averaging the stress tensor along a
timelike worldline. In this case, the exponent c in the
asymptotic form of the probability distribution is given by

c ¼ α

3
: ð2:26Þ

Because α < 1, this implies a slowly decreasing tail with
c < 1=3, with an enhanced probability for large fluctua-
tions. The criterion for the validity of the worldline
approximation is

x≲
�
τ

l

�
3

: ð2:27Þ

2. Spacetime averaging

When

x≳
�
τ

l

�
3

; ð2:28Þ

the worldline approximation no longer holds, and the
effects of spatial averaging become important. In this case,
the exponent c becomes

c ≈ α: ð2:29Þ

This behavior has been confirmed by the results of numerical
diagonalization [6]. As x increases for fixed τ=l ≫ 1, the
probability distributionPðxÞmakes a smooth transition from
the form described by Eq. (2.26) to that of Eq. (2.29). The
enhanced rate of decrease of PðxÞ reflects the role of spatial
averaging in suppressing large vacuum fluctuations.
Because α < 1, the probability distribution is still

decreasing more slowly than an exponential function,
and much more slowly than the Gaussian distribution
which describes random processes. This is a reflection
of the fact that quantum fluctuations are highly correlated.
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III. EFFECTS ON AN ELECTRON

A. Electron momentum fluctuations

Now we take up the possibility of observing radiation
pressure fluctuations by their effects on the motion of an
electron. Assume that the electron is initially at rest in the
laboratory frame, and is then subjected to radiation pressure
with a duration of τ and a magnitude of jSzj ¼ x=τ4. Here
we assume that the photons, whether real or virtual,
producing the radiation pressure have energies of the order
of the electron rest mass m or smaller. In this case the
photon-electron interaction may be treated as Thompson
scattering, for which the cross section is

σT ¼ 8πα2fs
3m2

; ð3:1Þ

where αfs ≈ 1=137 is the fine structure constant. The
characteristic change in the electron’s linear momentum is

Δp ≈ SzτσT: ð3:2Þ

If the electron’s motion in the laboratory frame remains
nonrelativistic, this corresponds to a change in speed of
order

Δv ≈
Δp
m

¼ 8πα2fs
3ðmτÞ3 x; ð3:3Þ

or

Δv ≈
1.5 × 10−4

ðmτÞ3 x: ð3:4Þ

The probability distribution for the resulting modifica-
tion of the electron’s momentum is given by Eq. (2.22) for
x ≫ 1, where x becomes a function of Δp

xðΔpÞ ¼ 3m2τ3

8πα2fs
: ð3:5Þ

The resulting function PðΔpÞ is an exponential function
which depends upon a negative power of the coupling
constant αfs, and is hence a nonanalytic function. Such a
function cannot arise in any finite order of perturbation
theory.

B. Need for spatial averaging

If we assume that the dimensions of the electron wave
packet dictate the spatial averaging scale, then we need to
enquire about possible transverse spreading of this wave
packet. If the initial transverse dimension is of order l, this
implies a transverse momentum of order

pT ≈
1

l
: ð3:6Þ

In a time τ, this will lead to transverse spreading of the
order of

δl ≈
pT

m
τ: ð3:7Þ

If we require that

δl ≲ l; ð3:8Þ

then we have

τ

l
≲ml: ð3:9Þ

We may rewrite Eq. (3.4) as

Δv ≈
1.5 × 10−4

ðmlÞ3
�
l
τ

�
3

x: ð3:10Þ

In the worldline approximation, where Eq. (2.27) holds,
we have

Δv≲ 1.5 × 10−4

ðmlÞ3 : ð3:11Þ

If we expect that l is large compared to the electron
Compton wavelength, ml≳ 1, this places a very strong
constraint on the magnitude ofΔvwhich can be achieved in
the worldline approximation. For this reason, we turn to the
case where spatial averaging is important.

C. Probability estimates

Here we wish to make some rough estimates of the
probability for a stress tensor fluctuation of a given magni-
tude using results obtained in Refs. [4,6]. These references
consider the case of the operator ∶φ̇2∶, and we assume that
the probability of a large fluctuation of this operator is of the
same order as those of Sz. We further assume that the spatial
sampling function, gðxÞ, is spherically symmetric, and that
its Fourier transform, ĝðkÞ ¼ ĝðkÞ, decays for large k as does
f̂ðωÞ in Eq. (2.9), but with τ replaced by l. As described in
Sec. II B ofRef. [4], ĝðkÞ is determined by a one-dimensional
function ĥðωÞ. The asymptotic spacetime averaged distri-
bution in the spacetime averaged limit is found to have
the form

PðxÞ ∝ e−ð1þ
ffiffiffiffi
2s

p Þ
ffiffiffiffiffiffi
x=B

p
; ð3:12Þ

for s ¼ l=τ ≳ 1, where α ¼ 1=2. The constant B in this
case is
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B ¼ fð0Þ
8πjh00ð0Þjs2 : ð3:13Þ

Note that as s decreases, B increases, and PðxÞ falls more
slowlywith increasing x. This reflects the fact that for fixed x
and decreasing s, PðxÞ will eventually transition to the
worldline form given by Eq. (2.26). The proportionality
constant in Eq. (3.12) is not uniquely determined by the
moments approach used in Ref. [4], but could be found by
the numerical diagonalization approach in Refs. [5,6]. For
the purposes of an order of magnitude estimate, we will
assume that this proportionality constant is of order one.
The probability of a fluctuation of x or greater is now

found from Eq. (2.24) to be of order

P> ≈
2

ffiffiffiffi
B

p

1þ ffiffiffiffiffi
2s

p x1=2PðxÞ: ð3:14Þ

If we use the specific sampling functions described in
Ref. [4], where

fð0Þ ≈ 1.5 and jh00ð0Þj ≈ 0.076; ð3:15Þ

we find B ≈ 1.0=s2 and

PðxÞ ≈ e−;ð1þ
ffiffiffiffi
2s

p Þs ffiffi
x

p ð3:16Þ

for the case α ¼ 1=2 and b ≈ 0. This result appears to be
supported by the numerical calculations in Ref. [6] in the
upper panel of Fig. 2, where s ≈ 0.14.
Now we consider a few numerical examples:

1. mτ = 100, l= 0.1τ, and x = 104

Here we find

Δv ≈ 1.5 × 10−6 ð3:17Þ

and

P> ≈ 2.3 × 10−4: ð3:18Þ

2. mτ = 1, l= τ, and x = 10

In this case, where we are at the limit of the non-
relativistic approximation, the results are

Δv ≈ 1.5 × 10−3 ð3:19Þ

and

P> ≈ 1.3 × 10−3: ð3:20Þ

Here we are considering a pulse of photons in the gamma
ray energy range. Such pulses might be generated by the

back scattering of optical frequency photons from high
energy electrons [19,20].

D. What constitutes a measurement of Sz?

The mathematical definition of the averaged momentum
flux operator is given in Eq. (2.5). However, we would like
to link the sampling functions fðtÞ and gðxÞ to a physical
measurement. One option seems to let them be determined
by the envelope function of a wave packet mode function.
Let gðxÞ be proportional to the envelope function at a fixed
time t, and let fðtÞ be proportional to the envelope function
at a fixed point in space as a function of time. Suppose that
the electromagnetic field is in a coherent state of this mode.
The scattering of the real photon in this state by an electron
not only produce radiation pressure, but can also serve to
measure changes in motion of the electron. Potentially, this
can include changes due to vacuum radiation pressure
fluctuations. If the real photons in the wave packet are
moving in the þz direction, a single photon-electron
scattering event produces a recoil in the same direction,
as discussed in the Appendix. In the presence of several
electrons, an electron can recoil in the opposite direction
due to back scattered photons, but is effect will depend
upon the electron density. The vacuum fluctuations are
equally likely to produce a force in the opposite direction,
and hence electron recoil in the −z direction.
A related question is how many photons need to be in the

coherent state for the scattering of the photons to constitute
a measurement of Sz? If we need a large mean number of
photons, jzj ≫ 1, then the scattering by real photons may
mask the effects of the vacuum fluctuations. An alternative
may be that repeated measurements by wave packets with a
relative small number of photons may be effective in
measuring Sz, and hence the vacuum radiation pressure
fluctuations. If this is the case, then a mean number of
photons which is small compared to one may suffice if the
number of repeated measurements is large. In this case,
vacuum fluctuations could dominate over the effects of
photon number fluctuations.

IV. SUMMARY

A model for the detection of quantum radiation pressure
fluctuations has been presented. The quantum radiation
pressure operator is averaged in space and time by the
interaction of a localized photon wave packet with an
electron. This averaged operator will have vacuum fluctu-
ations which are equally likely be in any direction and to
have an asymptotic probability distribution which decays as
an exponential of a fractional power, leading to the
possibility of large fluctuations. If the quantum state of
the electromagnetic field is a coherent of real photons
traveling in the þz-direction, the expectation value of the
radiation pressure on an electron will also be in this
direction, and is due to the effect of photon-electron
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scattering. However, there will be two sources of fluctua-
tions in this pressure: (1) Fluctuations in the number of
photons in the coherent state [15]. These cause variations in
the magnitude of the pressure, but cannot change its sign.
This is due to the fact discussed in the Appendix that an
electron at rest scattering with a photon moving in the þz-
direction will recoil in this direction. (2) Vacuum fluctua-
tions of the radiation pressure operator, which are equally
likely to impart momentum in either direction. If the
operator averaging function may be taken to be the wave
packet envelope function, then the probability of large
fluctuations depends upon the asymptotic Fourier trans-
form of the envelope function. and hence the asymptotic
power spectrum of the photon pulse.
Some numerical estimates for the probability of the

vacuum fluctuations required for various electron speeds
are given Sec. III C. At the limit of the nonrelativistic
approximation we see that Δv ≈ 10−3 could occur with a
probability of the order of a few times 10−3. This might be
observable if the vacuum fluctuation effect can be dis-
entangled from the effects of scattering by real photons.
This might be possible if the mean number of photons can
be made small enough. This is topic for further work. As
noted in Sec. III A, the effects of large vacuum radiation
pressure fluctuations on the state of the electron is a
nonperturbative effect.
Another future topicwill be extension of the presentmodel

beyond the nonrelativistic approximation. This approxima-
tion arises in part from the use of the Thomson cross section,
Eq. (3.1), to describe the scattering of virtual photons by an
electron. However, the Compton cross section decreases
slowly (as a logarithm) as the photon energy increases above
the electron rest mass energy. This suggest that the non-
relativistic approximationmay be a good order of magnitude
estimate at these higher energies.
Other topics for further work include a better under-

standing of the correlations between large fluctuations
discussed in Sec. II E, and of the nonperturbative correction
to the electron’s quantum state discussed in Sec. III A.
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APPENDIX: ELECTRON-PHOTON
SCATTERING KINEMATICS

Here we review the relativistic kinematics of an electron-
photon collision. We also derive the key result that an
electron which is initially at rest in the laboratory frame
cannot recoil into the direction from which the photon
came. In this frame, an initial photon moving in the þx

direction with energy ω0 collides with an electron at rest, as
illustrated in Fig. 1.
The electron recoils with a speed v at an angle θ, and the

photon with energy ω at an angle ϕ, as shown. The initial
four-momenta of the electron and photon are

pμ
i ¼ ðm; 0; 0; 0Þ ðA1Þ

and

kμi ¼ ω0ð1; 1; 0; 0Þ; ðA2Þ

respectively. The corresponding final momenta are

pμ
f ¼ mγð1; v cos θ; v sin θ; 0Þ ðA3Þ

and

kμf ¼ ωð1; cosϕ; sinϕ; 0Þ; ðA4Þ

where γ ¼ ð1 − v2Þ−1
2, or v ¼ ð1 − γ2Þ12=γ.

Conservation of energy and momentum, pμ
i þ kμi ¼

pμ
f þ kμf lead to

ω ¼ 1 − ω0 − γ; ðA5Þ

ω0 ¼ ð1 − γ2Þ12 cos θ þ ω cosϕ; ðA6Þ

and

ð1 − γ2Þ12 sin θ ¼¼ ω sinϕ: ðA7Þ

Here units in which m ¼ 1 have been adopted. Use of (A5)
to eliminate ω leads to

FIG. 1. A photon with initial four-momentum kμi , moving in the
þx-direction, collides with an electron at rest and scatters at angle
ϕ and four-momentum kμf. The electron recoils at angle θ and
four-momentum pμ

f.
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ω0 ¼ ð1 − γ2Þ12 cos θ þ ð1 − ω0 − γÞ cosϕ; ðA8Þ

and

ð1 − γ2Þ12 sin θ ¼ ð1 − ω0 − γÞ sinϕ: ðA9Þ

Finally, use of cos2 ϕþ sin2 ϕ ¼ 1 leads to the result

cos θ ¼
ffiffiffiffiffiffiffiffiffiffiffi
γ − 1

γ þ 1

s
ω0 þ 1

ω0

: ðA10Þ

Because γ ≥ 1, this implies cos θ ≥ 0, and hence
θ ≤ π=2. This is our key result, that the electron cannot
back scatter into the direction from which the photon came.
There is a simple intuitive explanation: energy conservation
requires ω < ω0. The final photon energy must be less that
the initial photon energy to provide kinetic energy to the
electron. As a result, the final þx component of the
photon’s momentum will be less than its initial value.
This requires that the electron recoil in the þx direction to
conserve momentum.
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