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Abstract— Tensor structures are fundamental in addressing the
intricate challenges posed by high-dimensional data across a spectrum
of scientific and computational domains. Within this context, low-
rank tensor approximation plays a pivotal role in enhancing data
processing efficiency. This paper develops a novel adaptive low-rank
tensor approximation method by introducing mixed-integer repre-
sentations to identify an appropriate low-rank approximation for
high-dimensional tensors. The approach takes into consideration both
tensor rank determination and approximation accuracy, leveraging
binary variables to represent tensor ranks that will be optimized
as unknowns with the tensor arrays. By integrating the alternating
least squares technique with the truncation method, the integrated
algorithm effectively achieves a proper low-rank tensor with high
approximation accuracy. To substantiate its efficacy and efficiency in
solving tensor approximation problems, the paper provides extensive
simulation results and analysis.

I. INTRODUCTION

In recent years, the exponential growth in data size across
multiple fields has prompted the demand for more effective and
efficient data processing structures. Tensors, with their inherent
advantages of versatility and efficiency, have attracted growing
interest across various scientific and computational domains. Con-
sequently, their applications have rapidly expanded to encompass
diverse fields, such as data analysis [1], machine learning [2], and
image processing [3], among others.

Tensors appear as an extension of vectors and matrices — a
multidimensional array indexed by three or more indices, whereas
matrices are indexed by two. Consequently, tensor algebra often
exhibits similarities to matrix algebra. Nevertheless, notable dis-
tinctions exist between these two algebras. For instance, while low-
rank tensor factorization tends to be essentially unique under mild
conditions, determining the tensor rank is NP-hard. On the other
hand, in contrast to matrices, tensors often involve significantly
larger datasets, leading to a heavier computational load [4]. One
of the most prominent domains where tensors find applications
is in numerical computation [5], [6]. For example, a multivariate
function f(x1, x2, . . . , xd) with dimension d can be approximated
by a mode-d tensor through grid-based sampling. In this case,
each entry of the tensor contains the value of function f at the
corresponding position. The function f itself may represent a
high-dimensional function or a solution to high-dimensional partial
differential equations (PDE). As the problem dimension increases,
problem size and complexity grow exponentially with d, causing nu-
merical computation or even storage of data intractable. To address
these challenges, one of the most effective approaches is to seek
low-rank approximations of large-scale tensors. However, recall that
determining the rank of large-scale tensors is a computationally
NP-hard problem, approximating a high-dimensional tensor without
precise knowledge of its rank remains another ongoing challenge.

In this context, tensor decomposition techniques play a pivotal
role, offering various tensor formats to address high-dimensional
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challenges. For example, Canonical Polyadic (CP) format enables
the efficient decomposition of complex and high-dimensional data
and operations into a combination of one-dimensional components
[7], [8]. This process is also known as separated representation
[9], [10]. As an outcome, the complexity scales linearly rather than
exponentially increase with dimensionality. Due to this advantage,
CP decomposition is widely applied in model order reduction for
large-scale nonlinear problems [11]–[14]. Different from CP format,
Tucker format decomposes a tensor array into one small core tensor
and a set of matrices to reveal the algebraic structure of a given
tensor [15]. Nevertheless, the need to manually predefine Tucker
ranks along all modes can pose practical difficulties [16]. Tensor
Train (TT) format [17], [18], as applied by Richter et al. [19]
has found utility in approximating solutions to high-dimensional
parabolic PDEs. It has demonstrated superior performance com-
pared to state-of-the-art neural network-based approaches, trading
a higher compression rate with the simplicity of one-dimensional
separated representation of CP decomposition. Tree tensor network
(TTN) factorizes a high-rank tensor into an acyclic network (tree)
formed of rank-3 tensors [20]. This format has gained success
in applications of quantum many-body physics [21]. However,
selecting appropriate decomposition for tensor trees often relies on
heuristics and problem-specific context [22].

In this paper, we focus on tensor decomposition in CP format
due to the simplicity and interpretability of separated representation.
Obtaining a tensor approximation through CP tensor decomposition
necessitates specifying the rank for a tensor to be decomposed.
However, if the rank is chosen too large, the resulting approximated
tensor may retain excessive scale. Conversely, estimating a rank
significantly lower than the actual value can negatively impact
the accuracy of the tensor approximation. Therefore, a balance
between computational cost and precise approximation is necessary
for tensor decomposition. Following this idea, this work focuses on
developing a computationally feasible low-rank tensor approxima-
tion algorithm, aiming to adaptively determine a precise estimate
of tensor rank and subsequently construct the approximation.

The alternating least squares (ALS) method is a widely adopted
approach for computing CP decomposition in existing literature
[23]. For instance, Beylkin et al. [9] approximated the solution
of high-dimensional Schrodinger equation in the CP decomposition
form via ALS. Similarly, Sun and Kumar [24] combined ALS based
CP decomposition approach with Chebyshev spectral differentiation
to solve high-dimensional stationary Fokker-Planck equations. Boe-
lens et al. [25] proposed a parallel algorithm based on canonical
and hierarchical numerical tensor methods that combine ALS and
hierarchical singular value decomposition to solve the Boltzmann
and Fokker–Planck equations. In the field of optimal control,
Horowitz et al. [26] proposed an ALS-based tensor representation
method to address the curse of dimensionality in solving the
high-dimensional linear Hamilton-Jacobi-Bellman (HJB) equation.
On this basis, Stefansson and Leong [27] proposed an improved
sequential ALS method to resolve the ill-conditioning issue of the
original ALS method by introducing boundary condition re-scaling
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and then computing the solution sequentially.
Furthermore, the ALS method is also a widely employed tech-

nique for achieving low-rank approximations. A commonly prac-
ticed strategy involves starting with a small rank and progressively
increasing it by introducing a randomly initialized one-dimensional
component [9], [24], [26], [27]. In each iteration, the tensor approx-
imation with a new rank needs to be recomputed through ALS, until
the approximation error is smaller than a threshold. Although ALS
has been proven to be a relatively efficient algorithm for tensor
decomposition [23], a large number of iterations may still lead
to a heavy computational load, especially for large-scale problems
with an inherent high rank. Besides, taking the approximation error
as a stop criterion is not straightforward for balancing between
the tensor rank and approximation accuracy. Alternative low-rank
tensor approximation methods include singular value decomposition
[28], projection method [29], and conjugate gradient method [30],
just to name a few. However, none of these approaches have an
explicit representation of the rank of the decomposed tensor.

The contribution of the proposed method in this paper can be
summarized in three key aspects.

• Through the incorporation of binary variables, the output
tensor’s rank can be rigorously ensured as an integer value,
thereby mitigating potential errors in the tensor reconstruction
process. The introduction of binary variables for tensor rank
representation also facilitates the low-rank approximation com-
putation, which formulates the low-rank tensor approximation
problem as a mixed-integer optimization problem.

• By simultaneously minimizing the tensor’s rank and the ap-
proximation error, the output tensor accurately estimates its
minimally required rank while maintaining high accuracy in
representing the original data.

• Combining the ALS method with truncation techniques serves
to reduce computational complexity while enhancing conver-
gence speed.

The paper is structured as follows: In Section II, we introduce
the notation and provide the necessary tensor preliminaries. Section
III presents the problem formulation, while Section IV details
our proposed adaptive low-rank tensor approximation method. In
Section V, we present and analyze the results obtained by applying
our method to a range of low-rank tensor approximation problems.
Finally, Section VI offers our conclusions.

II. NOTATION AND PRELIMINARIES

In this section, we aim to provide a concise introduction to
tensors, encompassing their fundamental properties, operations, and
essential concepts such as tensor rank. A tensor can be concisely
represented as X ∈ Rn1×n2×...nd , where n1, n2, · · · , nd denote
the tensor’s dimensions, with d being the terminology used to
describe the tensor’s order or mode. For example, a tensor with
a mode of 1 corresponds to a vector, while a tensor with a mode
of 2 corresponds to a matrix.

To enhance the reader’s understanding, we will now introduce
various tensor operations.
Tensor addition: Tensor Addition: When faced with two tensors,
denoted as A and B, sharing identical dimensions, the process of
adding them element-wise results in the creation of a new tensor
denoted as C, written as

C = A+B. (1)

Scalar multiplication: A tensor A can be multiplied by a scalar
k, achieved by multiplying each element of the tensor by the scalar

value k, expressed as

B = k ·A. (2)

Inner product: The inner product of two tensors of the same
size, denoted as A,B ∈ Rn1×n2×...nd , is obtained by summing
the products of their corresponding elements, expressed as

⟨A,B⟩ =
n1∑

i1=1

n2∑
i2=1

· · ·
nd∑

id=1

ai1i2···idbi1i2···id , (3)

where ai1i2···id and bi1i2···id are elements in tensors A and B,
respectively. Then naturally, it follows that ⟨A,A⟩ = ∥A∥.

Outer product: In contrast to the inner product, the outer
product involving two tensors, A ∈ Rn1×n2×...nd and B ∈
Rm1×m2×...mp , results in the creation of a new tensor, denoted as
C ∈ Rn1×n2×...nd×m1×m2×...mp . The elements of C are computed
by multiplying each element of A with each element of B, resulting
in a tensor with expanded dimensions, expressed as:

C = A⊙B (4)

where Ci1i2···idj1j2···jp = Ai1i2···id ·Bj1j2···jp .
Tensor transpose: Tensor transpose transforms the tensor A ∈

Rn1×n2×...nd into a new one B ∈ Rnd×nd−1×···×n1 , with dimen-
sions rearranged in reverse order. The mathematical representation
is

B = AT . (5)

Tensor Inverse: Tensor inversion, denoted as A−1, is the
operation of finding the inverse of a square tensor A ∈ Rn×n.
The inverse tensor, A−1, satisfies the equation

A ·A−1 = A−1 ·A = I, (6)

where I represents the identity tensor of the same dimensions as
A.

Tensor rank: The rank of a tensor, denoted as rank(A), is a
fundamental measure of its complexity. It represents the minimum
number of basis tensors required to express A. Mathematically, it
is written as

rank(A) = min{r : A =

r∑
i=1

U i}, (7)

where U i are basis tensors and r is the rank.

III. PROBLEM FORMULATION

A tensor X ∈ Rn1×n2×...nd with mode d and size n1 ×
n2 × · · · × nd can be used to approximate the discretization of
a multivariate function f(x1, x2, . . . , xd), where each entry of the
tensor X i1,i2,...,id(i1, i2, . . . , id ∈ N) corresponds to the grid-
based sampling of f(i1, i2, . . . , id).

A d-mode tensor is rank one if it can be written as the outer
product of d vectors, i.e.,

X = a1 ◦ a2 ◦ · · · ◦ ad, (8)

which can be seen as discretization of a separable function
f(x1, x2, . . . , xd) = f1(x1)f2(x2) . . . fd(xd), where each vector
ai with length ni corresponds to a discretization of fi (the basis
function [27]) within a certain range. A more compact form using
the Kronecker product can be written as

X = ⊗d
i=1ai. (9)
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The CP decomposition factorizes a tensor X ∈ Rn1×n2×...nd as
a sum of rank one tensors, i.e.,

X =

R∑
r=1

ar,1 ◦ ar,2 ◦ · · · ◦ ar,d, (10)

or

X =

R∑
r=1

⊗d
i=1ai, (11)

where the tensor rank is defined as the smallest number of rank-one
tensors (smallest decomposition rank R) that generate X as their
sum. With CP decomposition, the size of a tensor is reduced from
n1×n2×· · ·×nd to (n1+n2+. . . nd)R, which scales linearly with
both d and R and becomes computationally attractive with a small
R. However, in contrast to matrices, finding the rank of tensors has
been proven to be generally NP-hard [23]. On the other hand, with
dimension d often determined by the problem in hand, a small
R becomes essential for further reducing the complexity. Hence,
we seek to address the low-rank tensor approximation problem,
formulated as

min
X̂

||X − X̂ ||2 + αR

s.t. X̂ =

R∑
r=1

⊗d
i=1ai,

(12)

where X is a given tensor, and α is the weighting factor used to
balance the trade-off between approximation accuracy and decom-
position rank.

The challenge of solving problem (12) roots in the implicit
expression of the tensor rank R that is usually pre-given when
computing the tensor approximation problem. According to the
accuracy from the approximation results, adjustment on the rank
value may be required after each calculation, where the rank value
is increased or decreased by one for each adjustment [24], [26],
[27]. For example, if a tensor approximation algorithm, e.g., ALS,
stagnates before achieving the desired accuracy, a random rank-one
tensor is then added to X̂ . The procedure is repeated until a rank
that leads to the desired approximation accuracy is obtained. Several
iterations may be required till an appropriate rank value is sought
with satisfactory approximation accuracy, especially for problems
with a high rank. This rank adaption process is time and resource-
consuming. We aim to construct a formulation that explicitly repre-
sents the tensor rank such that the optimization problem formulated
in (12) allows for minimizing the approximation error and rank
value simultaneously. In the following, we first introduce a novel
mixed-integer tensor representation, followed by the description of
an adaptive low-rank tensor approximation algorithm.

IV. ADAPTIVE LOW-RANK TENSOR APPROXIMATION

A. Mixed-Integer Tensor Representation

we introduce a binary variable set kr ∈ {0, 1} (r = 1, . . . , R)
associated with each rank-one component in the CP decomposition,

X =

R∑
r=1

kr · ar,1 ◦ ar,2 ◦ · · · ◦ ar,d, (13)

where the binary constraint on kr can be written as kr(kr − 1) =
0, for r = 1, . . . , R. This mixed-integer representation allows
us to select which rank-one tensor elements should be included
in the approximation. According to the new representation, the

reformulated problem is written as

min
X̂

||X − X̂ ||2 + α

R∑
r=1

kr

s.t. X̂ =

R∑
r=1

kr · ar,1 ◦ ar,2 ◦ · · · ◦ ar,d,

kr(kr − 1) = 0, for r = 1, . . . , R,

(14)

where R is a sufficiently large integer we can assign to the unknown
tensor. The mixed-integer tensor representation allows determining
the rank-one tensor components as well as the tensor rank, denoted
by the summation of the binary variables, simultaneously when
solving the low-rank tensor approximation problem. To solve this
challenging nonlinear optimization problem with both binary and
continuous variables involved in a tensor representation, we propose
an ALS and truncation combined approach. For clarity, we will
first introduce the traditional ALS method [23] used for tensor
approximation with a given rank.

B. Alternating Least Square (ALS) Method

The ALS method is a widely adopted approach for computing
the CP decomposition of a tensor X ∈ Rn1×n2×...nd with a given
rank R, written as

min
X̂

||X − X̂ ||2

s.t. X̂ =

R∑
r=1

λrar,1 ◦ ar,2 ◦ · · · ◦ ar,d,
(15)

where λr is the coefficient obtained by normalizing vectors
ar,1,ar,2, . . . ,ar,d.

A minimum of ||X − X̂ ||2 satisfies ▽a||X − X̂ ||2 = 0, where
▽a denotes the gradient with respect to all vector elements ar,i(nj)
for r = 1, . . . , R, i = 1, . . . , d, and nj ∈ {n1, . . . , nd}. However,
▽a||X − X̂ ||2 is highly nonlinear with respect to the vector
elements ar,i(nj). ALS method resolves this issue by solving one
dimension at a time while fixing the others.

By collecting all vectors of the same dimension in all rank-
one components, the CP decomposition of a tensor can also be
represented as Khatri-Rao product of the factor matrix Ai =
[ai,1,ai,2, . . . ,ai,R] ∈ Rni×R, expressed as

X (i) = AiΛ(Ad ⊙Ad−1 ⊙ . . . Ai+1 ⊙Ai−1 ⊙ · · · ⊙A1)
T , (16)

where X (i) represents the mode-i matrixization of tensor X , Λ
is a diagonal matrix formed by normalization factor λr and ⊙ is
Khatri-Rao product.

We consider an example of a 3rd-order tensor for better illustra-
tion while noting that the extension of (16) to higher-order cases is
straightforward. With factor matrices, (15) can be written as

min
Â1,Â2,Â3

||X (1) − Â1Λ(Â2 ⊙ Â3)
T ||2. (17)

The ALS method first fixes Â2 and Â3, then problem (17)
becomes a linear problem that is to optimize the least square error,
i.e.,

min
Â1

||X (1) − Â1Λ(A3 ⊙A2)
T ||2, (18)

which leads to the optimal solution

Â1
∗
= X (1)[(A3 ⊙A2)

T ]−1. (19)

With the properties of Khatri-Rao product, the solution can be
rewritten as

Â1
∗
= X (1)(A3 ⊙A2)(A

T
3 A3 ∗AT

2 A2)
−1, (20)
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where ∗ is the Hadamard product (elementwise product) of matri-
ces. In this form, the pseudoinverse of an R×R matrix rather than
an n1n2 ×R matrix is calculated.

At each iteration for i = 1, . . . , d, the ALS method solves for the
optimal factor matrix in the corresponding dimension while keeping
the other dimensions fixed, and updates X̂ i by (16). The procedure
repeats until (a) the average point residual ||X̂−X ||2∏d

i=1 ni
is lower than a

prescribed approximation error tolerance ϵ; or (b) the improvement
of the objective function is smaller than a prescribed threshold; or
(c) a predefined maximum number of iterations T is reached. The
full ALS procedure for a general d-order tensor approximation is
shown in Algorithm 1.

Algorithm 1: ALS Method for CP Decomposition with
Given Rank
Data: Tensor X ∈ Rn1×n2×...nd , decomposition rank R
Result: Approximation of X with rank R in factor matrices

format (Λ, Ai for i = 1, . . . , d) of CP
decomposition

1 Initialize factor matrices Ai ∈ Rni×R for i = 1, . . . , d.;
2 Define residual tolerance ϵ.;
3 repeat
4 for i = 1, . . . , d do
5 V ←

(AT
1 A1 ∗· · ·∗AT

i−1Ai−1 ∗AT
i+1Ai+1 ∗· · ·∗AT

d Ad);
6 Ai ← X (Ad ⊙ · · · ⊙ Ai+1 ⊙Ai−1⊙···⊙A1)V

−1;
7 foreach column vector ar of Ai do λr ←

norm(ar);
// normalize columns of Ai

8 end
9 Λ←diag(λr);

10 X̂ (1) ← A1Λ(Ad ⊙ . . . A2)
T ;

11 until ||X̂ (1)−X (1)||
2∏d

i=1 ni
< ϵ;

12 return Λ, Ai for i = 1, . . . , d;

Although the ALS method is originally applied to computing
CP decomposition with a given rank R, it is straightforward to
extend it to a low-rank tensor approximation problem [24], [26],
[27]. By starting with a low-rank value, ALS is repeatedly used
to obtain an updated approximation result when a random rank-
one tensor is added to the tensor obtained in the last loop. The
procedure is repeated until the rank is high enough such that a
good approximation (average point residual < ϵ) can be obtained.
More details of the iterative ALS (iALS) method can be referred
to [26]. As we described above, the iALS process for low-rank
tensor approximation is time and resource-consuming. We now
propose a new algorithm to solve the mix-integer low-rank tensor
approximation problem formulated in (14).

C. Integrated ALS and Truncation Method for Mixed-Integer Tensor
Approximation

Following the tensor matrixization operation in (16), we first
transform problem (14) into a matrix formulation through the factor
matrices. For illustration simplicity, we consider the 3rd-order case
again, written as

min
A1,A2,A3,K

||X (1) −A1K(A3 ⊙A2)
T ||2 + α||K||2

s.t. K = diag(kr),

kr(kr − 1) = 0, for r = 1, . . . , R,

(21)

where K ∈ RR×R is a diagonal matrix with kr , r = 1, . . . , R, as
its diagonal entries.

To solve this challenging nonlinear problem with both binary
and continuous variables involved in X , we propose a two-stage
optimization framework based on integrated ALS and truncation
method. First, we relax the binary variables kr as continuous
variables. Then, problem (21) becomes

min
A1,A2,A3,K

||X (1) −A1K(A3 ⊙A2)
T ||2 + α||K||2

s.t. K = diag(kr).
(22)

In the first stage, we adopt the ALS algorithm to solve problem
(22) with all binary variables kr initialized as 1. By fixing matrix
K, problem (22) is a CP decomposition problem with a given rank,
akin to problem (15). Leveraging the ALS algorithm, in the inner
iteration, we take alterations for each optimal factor matrix Ai while
fixing the others. The optimal solution for the first-factor matrix is
given by

Â1
∗
= X (1)(A3 ⊙A2)(A

T
3 A3 ∗AT

2 A2)
−1K−1. (23)

After each iteration of ALS, i.e., each factor matrix has been
updated, we fix all factor matrices Ai and then start the second
stage to update K. The problem in the second stage can be written
as

min
K

||X (1) −A1K(A3 ⊙A2)
T ||2 + α||K||2

s.t. K = diag(kr),
(24)

or in the Kronecker product form

min
kr

||X −
R∑

r=1

kr · ⊗3
i=1ai,r||2 + α

R∑
r=1

k2
r . (25)

According to the first-order optimality condition, we have ▽krL =
0, where ▽kr denotes the gradient with respect to all kr , r =
1, . . . , R, and L denotes the objective function in problem (25).
Then for each individual kr , the optimal solution satisfies

▽krL = kr|| ⊗3
i=1 ai,r||2 + ||(X̂ r −X ) ∗⊗3

i=1ai,r||+αkr = 0,
(26)

where

X̂ r =

R∑
q=1
q ̸=r

kq · ⊗3
i=1ai,q. (27)

After obtaining each kr by solving the linear equation (26), we
proceed to a truncation step in order to reduce the decomposition
rank. In this step, we introduce a threshold, ϵt, that is chosen to be
a small value and serves as the truncation criterion. For kr ≤ ϵt, we
neglect the corresponding rank-one component. Consequently, the
corresponding columns of the factor matrices are also eliminated,
which reduces the computational cost for the ALS algorithm in the
first stage. The two stages are iterated until the objective function
reaches a threshold ϵs such that ||X − X̂ ||2 ≤ ϵs.

This two-stage optimization framework, aiming at solving the
original tensor approximation problem (15) while penalizing kr ,
allows us to gradually approach a low-rank CP decomposition of a
given tensor. Achieving a balance between approximation accuracy
and the decomposition rank is crucial, and we accomplish this
equilibrium by introducing a weighting factor denoted as α. The
value of α is related to tensor size (n1 × n2 × · · · × nd), which
reflects the trade-off between average point approximation error
and the value of decomposition rank. The entire framework of the
proposed algorithm for a general d-mode tensor X ∈ Rn1×n2×...nd

is outlined in Algorithm 2.
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Algorithm 2: Adaptive Low Rank Tensor Approximation

Data: Tensor X ∈ Rn1×n2×...nd , sufficiently large R
Result: Low-rank approximation of X in factor matrices

format (K, Ai for i = 1, . . . , d) of CP
decomposition

1 Initialize factor matrices Ai ∈ Rni×R for i = 1, . . . , d;
K ← IR×R

2 Define weighting factor α, truncation criteria ϵt and stop
criteria ϵs.

3 repeat
4 for i = 1, . . . , d do
5 V ←

(AT
1 A1 ∗· · ·∗AT

i−1Ai−1 ∗AT
i+1Ai+1 ∗· · ·∗AT

d Ad);
6 Ai ← X (Ad⊙· · ·⊙Ai+1⊙Ai−1⊙···⊙A1)V

−1K−1;
7 end
8 for r = 1, . . . , R do
9 X̂ r ←

∑R
q=1
q ̸=r

kq · ⊗d
i=1ai,q;

10 kr ←
||(X−X̂r)∗⊗d

i=1ai,r ||
α+||⊗d

i=1ai,r ||2
;

11 end
12 foreach kr < ϵt do kr ← 0 and eliminate

corresponding columns in Ai for i = 1, . . . , d;
13 K ←diag(kr);
14 until Improvement of objective function < ϵs;
15 return K, Ai for i = 1, . . . , d;

V. SIMULATION EXAMPLES

To demonstrate the advanced computational performance of the
proposed algorithm, we perform several numerical simulations
and compare the results with the iALS [26]. We also evaluate
how different prescribed parameters affect the performance of our
algorithm. All simulations are performed on an AMD Ryzen 9
5900HS CPU. The codes are implemented with Python and the
package Tensorly is used for basic calculation of tensor.

A. Comparison with iALS method

In the first experiment, we compare our method with the iALS
method in terms of computation time, approximation accuracy,
and decomposition rank. For the tensor to approximate, we ran-
domly generate d factor matrices with size N × R. The tensor
X ∈ RN×N×...N with d mode and rank R is then computed by
these random factor matrices. We applied the two algorithms to
approximate the resulting tensor and evaluate their performance
with different values of size N and rank R. As for algorithm
parameters, we set the weighting factor α = 10−2, truncation
criteria ϵt = 10−3 and stop criteria ϵs = 10−3. It is worth noting
that, due to normalization, we multiply α with the tensor size Nd

when the penalty term is introduced to the objective function, which
can be equivalently written as

min
X̂

||X − X̂ ||2∏d
i=1 ni

+ αR, (28)

where the first term represents the average point approximation
error. For the initial approximate rank, we set it to be 1 for iALS
and 2R for our algorithm, so that both algorithms have to increase
(or decrease) R from the initial rank to the ideal one. The above
setting of algorithm parameters is adopted throughout all simulation
cases.

For the first case, we set d = 3, N = 200 and change the
rank R of the tensor to be approximated to evaluate two algorithms
with different tensor rank values. In this ideal setting, since all
target tensors are generated without introducing any error, both
methods converge to the actual rank with small approximation
errors (< 10−3). However, due to the efficiency of the mixed-
integer tensor representation and proposed algorithm, our method
demonstrates the advantage in computation time with increasing R,
shown in Fig. 1(a). In the second case, we set d = 3, R = 20, and
N variate, the time efficiency advantage of our proposed method
becomes more significant with a large N . While both algorithms
converge to the actual rank with small approximation errors, our
proposed method uses much less computation time, especially for
a large N , as shown in Fig. 1(b). From the results of these two
cases, our proposed method is capable of efficiently computing the
low-rank approximation of given tensors, especially for large-size
problems with a high inherent CP rank.

Fig. 1: Computation time of iALS and Algorithm 2. (a) Dimension
d = 3, size N = 200 with variate designated rank R; (b) Dimension
d = 3, designated rank R = 20 with variate size N .

Fig. 2: Convergence of decomposition rank with different choices
of weighting factor α

B. Evaluation of weighting factor α

In this set of simulation cases, the tensor to be approximated
is computed by randomly generated 3 factor matrices of size
(200 × 20), resulting d = 3, N = 200, R = 20. However,
different from the ideal case, a Gaussian noise of relative mag-
nitude 5% is introduced to the generated tensor. In this setting,
an approximation with a higher decomposition rank may lead to
improved approximation accuracy, while a higher rank also implies
a low data compression rate. Hence, balancing the trade-off between
approximation error and decomposition rank becomes important.
Our method makes it feasible to achieve the trade-off by adjusting
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α 0.1 0.05 0.01 0.005 0.001 10−4

Error 0.0432 0.0367 0.0083 0.0079 0.0031 0.0015
Rank 23 23 24 24 24 25

TABLE I: Approximation error and decomposition rank with different
weighting factor α

the value of the weighting factor α. Note that α is multiplied by the
tensor size to normalize the objective function (28). As a result, a
reasonable choice for α should be on the same order of magnitude
as the relative fitting error required for the application problem.
To evaluate the effect of the weighting factor, we examine the
convergence of decomposition rank and the relative approximation
error (||X −X̂ ||/||X ||) with different choices of α. The results are
shown in Fig. 2 and Table I. It demonstrates that a larger weighting
factor α can lead to lower decomposition rank, but it also results
in lower approximation accuracy.

VI. CONCLUSION

In this paper, we propose an adaptive low-rank tensor approxima-
tion algorithm based on mixed-integer representations to efficiently
solve the CP decomposition problem of a given tensor with a bal-
ance between high approximation accuracy and a low-rank value. To
achieve this, we introduce the extra penalty term of decomposition
rank and transform the low-rank approximation problem into a
mixed-integer nonlinear optimization problem. We then develop an
alternating optimization framework to iteratively solve for tensor
approximation while minimizing the decomposition rank. Through
the combination of alternating least square method and truncation
approach, the computational cost is reduced and the convergence
rate is enhanced, especially for large-scale problems. Besides, by
adjusting the weighting factor of the penalty term, our proposed
algorithm is able to balance the trade-off between approximation
error and rank, which validates the effectiveness and versatility
of our approach for a wide range of tensor decomposition tasks.
Furthermore, the simulation results demonstrate the superiority of
our method in terms of both accuracy and efficiency when compared
to existing state-of-the-art approaches.
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