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(Communicated by Joachim Krieger)

ABSTRACT. The long time behavior of the wave equation subjected to boundary
dissipation with interior and boundary nonlinear sources of critical exponents is
studied. Of particular interest is a characterization of the asymptotic behavior
of the solutions in terms of attracting sets. As it is known, the corner stones
of any theory of attractors are the following two properties of the dynamics:
dissipation and compactness of the trajectories. Neither of the two is present in
our model. Since the damping is only partial and localized on the boundary, the
entire system lacks dissipation.This, then implies challenges to be overcome.
The criticality of both boundary and interior sources brings major difficulties
already for the proof of asymptotic compactness of the trajectories. While
the existence of global attractors for a related dynamics has been dealt with
recently [4, 14, 30], the issue of smoothness and finite dimensionality of the
attracting sets has been open in the critical cases [6, 30] . The present paper fills
in this gap by showing that the global attractors for the dynamics with “critical
exponents” are finite dimensional and smooth. The obtained result allows to
reduce (asymptotically) the dynamics from a PDE to an ODE. It is this aspect
of the problem which presents the biggest challenge due to the criticality of
both sources anda reduced dissipation which needs to be propagated through
the geometric region. To obtain the above stated result, a new methodology
will be developed. It is based on suitable Carleman’s estimates together with
“sharp” boundary trace results and dissipation integrals method [11].

1. Introduction. We shall study the following wave equation with nonlinear
boundary dissipation and boundary and interior sources fy, f1 of critical exponents.

ug(x,t) — Au(z, t) + folu) = p(z) in QF,
S+ g(us) + fi(u) =0 in 27, (1)
ult=0 = uo (), utt=0 = u1(x) in Q,
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where 2 C R? is a smooth, bounded connected domain with boundary I'. By
criticality, we mean critical exponents with respect to Sobolev’s embeddings u €
Hl(Q) — fo(u) S LQ(Q), fl(’uh‘) € LQ(F)

Let QF = Q x [0,T] and ¥ =T x [0,T]. As said,the nonlinearities fo(u) and
f1(u) are of critical exponents representing nonlinear sources, while g(u;) acts as a
nonlinear frictional damping and p(z) is an autonomous external force and bounded
in L2(Q).

The model equation in (1) is a classical semilinear wave equation subject to forc-
ing and boundary damping. This is a canonical, benchmark model which exhibits
the main features of semilinear hyperbolic dynamics for which long time behavior
analysis is sought after. This includes existence, regularity and characterization of
attracting sets. As is known, dissipation and compactness of the trajectories play a
major role in the analysis. While such properties are natural when external forcing
enjoys some compactness properties, much less is known in the critical cases when
the dynamics itself does not have any smoothing properties (unlike parabolic prob-
lems), dissipation is only partial and the effect of forcing leads to a non-compact
contribution. In such critical cases, we need to look for some compensation or can-
cellations of singularities, which is particularly demanding when boundary effects
are considered. The need to propagate dissipation from the boundary into the inte-
rior is one of the hurdles. As we shall see, methods previously developed within the
context of hyperbolic dynamics with boundary dissipation [1, 2, 4, 11, 13, 21, 34]
and references therein are no longer adaptable. The aim of this work is to elucidate
this type of situation on a simplest possible model which however retains the main
critical features. Thus, we deal with “the old” model for which “new” results are
obtained which answer several open questions raised in the past. We shall develop a
new, and rather general, methodology which could be also applied to other models
enjoying similar properties.

In order to proceed, we make the following assumptions and introduce the defi-
nitions of several useful concepts.

Assumption I
(i) (The internal source) fo € C*(R) satisfies

(i1) (The boundary source) fi € C%(R) satisfies
F(9)] < Cpy, Timinfiygsoofi(s)/s > 0. (3)

(iii) (the damping) g(-) € C1(R), g(0) = 0, is a strictly increasing function such
that there exist constants 0 < m; < mgy < 00

0<my <g'(s) <mg<oo, Vs€R. (4)

Remark 1.1. The assumptions imposed on the sources and the damping could
be relaxed with respect to differentiability. In order to streamline the exposition,
by focusing on the main challenges, we shall work within the framework assumed
above. The linear bound of the damping (4) is typical in problem with boundary
dissipation being the sole source of damping. Otherwise, one has counterexamples
regarding uniform convergence to equilibria of linear dynamics [33].

The growth conditions imposed on the sources are in line with critical growth in
three dimension.
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Let (-,-) or <-,-> denote the L?— inner product and |- || represent the L?(Q)—
norm, Q% denote Q x [s,t] and X! denote I' x [s,t], for all s < ¢t € R. Also, we
denote by H*(Q2) the L? based Sobolev space with norm ||- || z7<(). In the following,
we consider the Hilbert space

H=H'(Q) x L*(Q).

It will be convenient to introduce the following norm on H'(Q). Let 2\ = lim
infls|»oo fo(s)/s > 0. We write

—Au+ fo(u) = [-A+ Mu+ fo(u) — Au = —Ayu+ fo(u) — Iu.

Note that Ay with the homogenous Neumann’s boundary data is a positive operator
on L?(Q2) which can be denoted by Ay. Thus ||A}\?2u||2 = [|Vul|? + AJul|?>. The
above formula defines the H'(2) norm by

[l 3 ) = 11Vl ? + Allul[*.
Additionally, we define the norm of the phase space H.
IUCOIF = lu®)lin @ + lue@?, YUCE) = (u(t), w(t) € H.

The space H will denote the phase space for problem (1). It is known [30] that under
the assumptions imposed on the data, (1) generates a dynamical system which is
described by a continuous nonlinear semigroup S(¢t)U € H. The corresponding
dynamical system (H, S(t)) admits a global attractor-see [30] and [4, 14] in the case
the boundary forcing is zero,g = 0. Our goal is to show that the attractor generated
by (1) is smooth and finite-dimensional.

About the problem. Model (1) has attracted a lot of attention in recent years.
This is a benchmark model for semilinear waves with nonlinear boundary damping
defined on a 3 dimensional bounded domain. Due to a restricted support of the
dissipation and the hyperbolic nature of the problem with infinitely many unstable
modes [in contrast to parabolic models], establishing stability of the solutions along
with uniform decay rates to equilibria is a challenging endeavor. This leads to
the development of various techniques allowing for geometric propagation of the
damping - see [22] and references therein. The optimal decay rates to the equilibria
were shown in [22] for subcritical sources with unquantified damping at the origin.
This led to a description of stability properties in terms of comparison with solutions
of an appropriate nonlinear ODE’s. The theory developed in [22] later has continued
with the analysis of long time behavior of solutions subjected to dissipative internal
forces. This includes theories of attractors including some critical cases [5, 11,
13, 30]. Criticality of internal forcing gave rise to new techniques in the area of
hyperbolic dynamical systems which are based on compensated compactness [8, 11].
These techniques were further developed in [30], in order to treat fully critical forces-
both in the interior and on the boundary -the latter much more demanding due to
the limited regularity of the Neumann hyperbolic map in dimension higher than one.
In spite of this recent progress, the daunting question whether the sole boundary
damping reduces the asymptotic behavior of a wave solutions with critical sources
to a finite dimensional coherent structure has been awaiting for an answer. And
this is the question which is resolved positively in the present paper.

More specifically, the main goal of this paper is to establish estimates of finite
dimension and also regularity of global attractors for the system (1) with both
internal and boundary sources f; (i =0,1) of critical exponents.
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Past literature. Let us contextualize the above result within rather large ex-
isting literture. In recent years, there have been a lot of studies on the variation
of wave equations with Dirichlet homogenous boundary conditions. However, rel-
atively fewer papers dealt with Neumann or Robin boundary conditions of wave
equations, see [1, 2,4, 6, 8,9, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 30, 31]. Moreover,
most of them addressed linear dissipation supported in the interior of the domain
with nonlinear forces of subcritical growth, see, for instance, [1, 2, 6, 15, 17, 18, 30].
As we all have known, when exploring properties of attractors, criticality of the
source in hyperbolic problems brings the major difficulty due to the lack of com-
pactness. Indeed, the existence of attractors with finite dimension for a “critical”
wave equation with nonlinear damping supported on the entire domain has been
studied [8]. Earlier researches on critical exponents were limited to certain specific
situations, such as one-dimensional model [16] and so on. In addition, Lasiecka et
al. [4, 13] also studied the wave equation with nonlinear boundary dissipation and
nonlinear interior force of critical growth, where finite dimension and regularity
of global attractors were established. However, the analysis in [4, 13] did not ac-
count for boundary forces. Only recent article [30] dealt with boundary sources.The
results presented there are limited to existence of global attractors. Properties of
smoothness and finite dimension of global attractor are left open there. Our present
work has solved this open problem. That is, we have established an existence of
global attractor which is smooth and finite-dimensional, thus completing the pro-
gram of the study of attractors for a doubly critical benchmark model of semilinear
waves with boundary dissipation.

What is new and challenging-strategy of the proof. The presence of
critical sources both in the interior and the boundary provides for major challenge
in establishing “asymptotic attractiveness” of the dynamics. While criticality of
interior sources has been dealt with via compensated compactness method in the
presence of “interior” damping [8, 9, 11], the dissipation acting on the boundary
presents a series of new issues due to necessity of propagating the damping. The
first work in this direction was [4], which was followed by [13] and most recently
[30] where boundary critical sources are treated with a help of “hidden” boundary
regularity caused by the dissipation. However, the methods used in these papers
are not adequate to treat the issue of smoothness and dimension of the attractor.
Here are the reasons.

(e) Since the nonlinear damping and nonlinear forces of critical exponents exist
simultaneously in the interior and on the boundary, the needed estimates require
“sharp” trace regularity of hyperbolic traces on the boundary, which otherwise re-
main unbounded above energy level. This is accomplished by developing suitable
tangential estimates for the boundary traces, see Lemma 4.2 which takes the ori-
gin in microlocal analysis of hyperbolic traces [23]. The above estimate is critical
in propagating dissipation from the boundary into the interior in the presence of
critical forcings.

(e) The main novelty and challenge are to prove that the attractor is “smooth” and
asymptotic behavior is finite dimensional. We note that for “subcritical” sources,
this was accomplished in [6]. Criticality of the sources either interior or boundary
provides the main difficulty when trying to prove “quasi-stability”. To cope with
these, one needs three main new ingredients: (1) handle propagation of the damping
from the boundary into the interior in the presence of critical sources. For this, it
is necessary to work with flow multipliers and criticality of the sources. Carleman’s
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type of estimates [19] help in handling the issue at the level of potential energy. It is
with the help of large parameter in Carleman’s weights [internal sources] and sharp
[hidden] tangential boundary estimates for the boundary sources, that eventually
lead to recovery of potential energy but modulo kinetic energy contribution of the
sources -see Lemma 5.1. This leads to the second issue: (2) how to handle criti-
cality of both interior and boundary sources at the level of kinetic energy? At this
point, different strategy must be used for handling internal sources and the bound-
ary ones. For internal sources we use backward trajectory method by estimating
solutions near equilibria and then propagating forward the improved regularity [14].
However, this method does not apply to boundary sources-simply because there is
a loss of dimensionality when going from the intrerior to the boundary-trajectories.
Velocities near stationary point are “small” with respect to Lo (£2) but not with re-
spect to Lo(I")-which is needed. The above manifests the fundamental difficulty of
the problem. To handle this part, method of “dissipative integrals” [11] is suitably
adopted to the problem. Combining both principles leads to the final quasi-stability
estimate obtained for the full time scale.

Remark 1.2. It is believed that the method developed for the benchmark problem
of hyperbolic dynamics with boundary damping and fully critical interior/boundary
sources can be applied to many other systems sharing the same properties.

2. Main results.

2.1. Known results. We shall start with listing several relatively recent known
results on the problem. This will provide a better perspective and context for the
main contribution of this work.

Let’s begin with a fundamental result related to the well-posedness of the dy-
namical system corresponding to (1). This result has been shown in [30] with a
proof based on an extension of the semigroup-approximation method developed in
[22].

Theorem 2.1. ([30]) Consider the dynamics described in (1) under the assump-
tions (i) — (iii). Then, there exists a unique solution U(t) € H with the following
properties. For everyT > 0U € C([0,T];H) with the additional boundary regularity

ug, Opu € LZQOC(O7 00; La(T)).

Moreover, for smooth initial data U(0) € H?(2) N HY(Q) subject to boundary com-
patibility data, the corresponding solutions U (t) with U € C([0,T]; H*(2) x H'())
are strong.

As a consequence of Theorem 2.1, we obtain the existence of a well-posed dy-
namical system (#, S(¢)) with the additional information on “hidden” regularity on
the boundary. These properties will become critical for further development.

It has been recently proved [30] that the dynamical system (#,S(¢)) admits a
global attractor. The corresponding result pertaining to long time behavior and the
existence of a global attractor is formulated below. For reader’s convenience, the
definition of attractor and other concepts related to long time behavior are given in
the Appendix I.

Theorem 2.2. [30]. Under the Assumpttion I, the dynamical system (H,S(t)) is
asymptotically smooth and gradient, thus it possesses a global, compact attractor
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A C H that coincides with the unstable manifold of stationary points
A=M"(N) and tli)m disty(S)U,N) =0, YU € H.
where N denotes the set of stationary solutions which is also shown to be bounded.

Remark 2.3. It should be noted that the actual assumptions imposed in the ref-
erence cited [30] on the sources and the damping are slightly weaker than the ones
imposed in Assumption I-particularly with respect to the differentiability. In order
to focus the analysis on the main difficulties, we shall not dwell on this.

2.2. New results. Once a global attractor for the dynamics iis available, it is only
natural to investigate its properties, with an eye on the main question “whether
the orbits on the attractor are described by finitely many degrees of freedom-thus
reducing asymptotically the PDE to anODE?’. And the answer to this question is
positive, as documented by the theorem below. It should also be noted that ar-
riving at this result met with a number of challenges. The methods most recently
developed run into a number of obstructions due to the critical nature of the non-
linear forces-both in the interior and on the boundary- combined with geometrically
restricted dissipation and difficulties encountered in propagating it. In fact, the es-
timates developed earlier in [30] (along with established methods [1, 3, 11, 13, 26])
can not handle this issue due to the obvious loss of fraction of derivative encoun-
tered when treating boundary damping and forcing. The hyperbolic Neumann map
looses 1/3 derivative with respect to the energy space in dimension higher than
one [23, 25]. And this result is sharp [32]. The goal of this paper is to develop
a new methodology which allows to deal with criticality not only in the interior
but also on the boundary and in the presence of very weak dissipation restricted
to the boundary only. The ultimate result is formulated below. With reference to
Theorem 2.2

Theorem 2.4. The following properties of the global attractor A of the dynamical
system (H,S(t)) hold.

(1) Said attractor A has finite fractal dimension.

(2) A is bounded in H*(Q) x H ().

(3) There exists an exponential attractor A. D A for the dynamics, which is weakly
compact in H. Moreover, for any 6 € (0,1], the dynamical system (H,S(t)) pos-
sesses generalized fractal exponential attractor A C A.s C H, with finite fractal
dimension in the extended space H_s, defined as an interpolation of

Ho:=H and H_,:=[H(Q)] x L*(Q).

Organization of the paper. The rest of the paper is organized as follows. The
main results are formulated in Section 2. In Section 3, some background materials
and supporting estimates are given. Section 4 and section 5 are devoted to the proof
of the main results. The backbone of the proof is the “quasi-stability” estimate
which is valid for the double critical cases considered in this paper, see Proposition
4.1 with the proof accomplished via a string of lemmas and propositions. Section 6
contains some additional materials which are helpful to the reader.

Hereafter, it is noteworthy that all letters in the following may be different, which
may vary from line to line to each step and for convenience, we have omitted the
integral variable of many integral equations or inequalities.
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3. Background material and preliminary estimates. In this section, we shall
give some estimates and facts which play an important role in the proofs of the
subsequent theorems and lemmas.

3.1. Energy estimates. We define the energy functional by

+ / folw) + / Fitw) = [ ploy (5)

where E(t) = ||U(z,1)||3, and fo(s =[5 [fo(r) = ATldr, fi(s = [ fi(r)dr, for
seR.

The result below provides the energy equality rather than inequality valid for the
forced wave equation with weak forcing and initial data, see [22].

Proposition 3.1. ([22]) Let u be a given function in C(0,T; H'(2)) N C*(0,T
L2(Q)) such that

ue(w,t) — Au(z,t) = f € L1(0,T; L*(2)),
U|t:0 =Up € HI(Q), ut|t:0 =u € .[/2(9)7 (6)
ug and 9%l are in L2(0,T; L*(T)).

Then the following energy identity holds for any 0 < s <'t,

// O s — /:/qut:&(s)

where E1(t) = (||Vu( )”2 + [l )

Remark 3.2. The importance of the Proposition 3.1 lies in the fact that typically
one obtains the energy inequality only. It is the additional information on the
behavior of the solutions on the boundary which allows to obtain the equality.

We now give the energy identity valid for the nonlinear problem whose proof is
based on the above Proposition 3.1, see [22] and also Proposition 2, see [30].

Lemma 3.3. Let Assumption I holds. If u(xz,t) is a solution of (1) satisfying the
extra boundary regularity u|r, O ulr € L?(0,00; L3(T")), then for all s <t

//4” 3 - der//foutf// 2)u =E(s). (7)

In addition, if u and v are (weak) solutions of (1), then z = u — v wverifies the

identity
t
e | foremsien [ [ [ [
s JII

+ % /Q[zQ(t) _2(s)de, s<t (8)

where [ = fy(u) = fi(v) (i = 0,1), and g = glu,) — g(v,).

The proof of Lemma 3.3 follows from the above Proposition 3.1, see [22].
Using (5) and (7), we conclude

“f t [ stuunle = Buts),s <. ©)

Corollary 3.4.
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Lemma 3.5. Let Asuumption I holds, then there exist positive constants Cy and
C4 such that

CoE(u(t)) —Cy < E(t) < E(0), Vt>0, (u,u)ecH. (10)

Proof. Let (u,u:) € H. The RHS of (10) follows from (4) and (9). Next, we
estimate the LHS of (10). Since 2X\ = liminf|,_ fo(s)/s, there exists a positive
constant K, such that

fo(s)

S

>2\, for|s| > K.

Let’s consider first s > K [similar argument applies for s < —K].

K s
fo(s) 2/0 fo(T)Jr/Kfo(T)—%s2

A
> - 2 g2y _ A2
_Kogléleo(T)+)\(S K?) 55

A
> —Cfyrn + 582, (11)

where Cy, » = —K ming<,<x fo(7) + AK?, which implies

~ A
[ 7ot > ~Calel+ Sl (12

Similarly, using (3), one obtains

Fils) = / R > —Crxn (13)

Then, using (11)-(13), and Young’s inequality we derive

A
E(t) = E(t) - /Qp(x)u = Cro, x| + §||u||2 = Cr gl

2
x

> ()~ PO 00— gl (1)

This leads to the LHS of (10), completing the proof of Lemma 3.5. O

Corollary 3.6. (Uniform bound) Suppose that Assumption I holds. If U(x,t) =
(u,ut) is a solution of (1) with initial data (ug,u1) € B, where B C H is a bounded
set, then for any s < t, there exists a positive constant Cg, such that for all s <t

B <0 BO<Cs and [ t [ st < ca (15)

4. Quasi-stability on the attractor A. In order to establish both: finite di-
mensionality and additional regularity of the attractor, the following form of quasi-
stability estimate established on the attractor is critical.

Proposition 4.1. There exist constants C1,Cs,w > 0, which may depend on the
attractor A, such that for any y1,y2 € A, one has with (2(t), z:(t)) = S(t)y1—S(t)y=,
forallt >0

1St)yr — S(t)yell3, < Cre™!|ly1 — yol |3, + Cosupsepo,gll=(s)I*. (16)
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Stability estimate formulated above is the key estimate which allows to conclude
both: finite dimensionality, smoothness of the attractor and an existence of expo-
nential attractor. The corresponding results are given in Theorem 3.11 [7], Theorem
2.14 [11] and [8]. See also [3] for a comprehensive treatment of quasi-stability theory.
The crux of this estimate is that it shows that difference of any two solutions on
the attractor can be stabilized exponentially modulo compact perturbations but of
quadratic structure. The latter is very important and essentially used for the proofs.
We recall that the for proving just existence of the attractor, the structure of lower
order perturbation is immaterial.-rendering the task of the proof much simpler.

Thus the goal of the paper is precisely to show the validity of this estimate for
the model under study. What are the hurdles and obstacles requiring novel methods
to enter the game?

1. Reconstruction of potential energy. 2. Reconstruction of kinetic energy due
to internal forces. 3. Reconstruction of kinetic energy due to boundary forces.

The main difficulty is caused by the criticality of the exponents in both sources.
Propagation of dissipation from the boundary to the interior requires the so called
“flux” multipliers which are differential operators of the energy level. The finite
dimension or smoothness of attractors requires working on the difference of two
solutions. Thus, any hamiltonian based cancellations occurring for a single solution
is out of question. This, combined with the criticality of the exponents, leaves the
source related terms of energy level without any hope for a “smallness” [absorbtion]
or compactness. How to deal with this issue? This is the point when Carleman’s
estimates with large parameter come to picture. The large parameter 7 > 0 allows to
absorb the effect of internal source. However, boundary source needs an additional
“sharp tangential estimate” which allows to handle criticality on the boundary
(this is the situation when trace theory is not sufficient and loss of derivative in
Neumann hyperbolic map enters the game). The described method allows to obtain
good estimate - modulo critical terms resulting from potential energy. And these
will be handled by a method originally developed by Zelik [34] and referred to
“backward trajectories method”. The latter is applicable because the system is
gradient. However, this method is not applicable to “absorb” the boundary sources.
The reason is simple, small Ly(Q) neighborhood of velocities are not “small” in
Ly(T) topology. Handling this hurdle would require a different approach -ultimately
based on the theory of dissipative integrals [11]. And, at the end - both strategies
need to cooperate for the final estimate in Proposition 4.1.

4.1. Tangential trace estimates. In order to handle tangential derivatives on
the boundary above the energy level, which will appear due to the application of
Carleman’s estimates in section 4.2, the following “hidden” trace regularity will be
employed.

Lemma 4.2. Under Assumption I and u, v be any two solutions of (1) satisfying
(u(0),u¢(0)), (v(0),v,(0)) € B, where B C H is a bounded set, and the boundary
reqularity u;|r, Oyulr € L%(0,00; L*(T)). Then, for anyt >0, n >0, 2z = u—v
satisfies the following estimate

t+n t+n
/ /|ayz|2+/ /|V7z|2
n r n T

2 2 uv (|2
<Gy | Izell 2y + 19" 1122 ()
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t+2n
Oy / B(2(1))+ Comel-otopsom {2}, (17)
0

for any € > 0, where C,, Cp and Cy . are positive constants, and
Lot josqom{z} = sup {HZ(T)H%,(Q), 0<s< 1}
T€[0,t+2n]
is defined as a “lower order term”. V. z is the tangential derivative of z.
The lemma above states that tangential derivatives on the boundary are con-
trolled by time boundary derivatives, Neumann traces and the lower order terms.
Note that such estimate can not follow from any trace theorem, as there is a gain

of 1/2 derivative with respect to the trace theory. The proof relies on microlocal
analysis and it exploits, in a crucial manner, hyperbolicity of the waves dynamics.

Proof. We shall begin with quoting a related result from [23] applicable to a single
wave solution.

Lemma 4.3. ([23]) Let w be a solution of the problem (6). Then, for any t > 0,
neRand0 <¢ < %, there exist positive constants C , and Cy ., such that the
following estimate holds

b+ 2 b+ 2 2
/ / Vol < C. / w2y + [10v]22 )
n

+ Cran(wl? grreny T 1112 ) (18)

This estimate goes back to Lemma 7.2 in [23] and was also used in [30].

By using Lemma 4.3, we shall establish the relevant tangential estimate valid for
the nonlinear problem in hand. Using the boundary condition 9,z = —(f*¥ + g*¥)
a , we derive

nd (
t+n t+n
[t [ e
<0y [ (1o + 19 )
n

t+2n t+n )
#Cun [ (0, I )+ [ Iy (19

From (3), we can derive

t+ t+n
/ £ )20y < Cr, / / 221+ Ju] + Jo)? (20)
n n

where Cy, = 2[1 + max . <1 | f{(7)[].
Therefore, using the embedding Hz (') < L4(T") and (20), we have

t+n ) t+n 9 1 2
[ By <05 [ Ny (101 + sy + Tolloacr)
n n

H2+< H7§+<(Qt+2n)

t+n ) N 2
<cy, / ooy I+l 3y + 003 ) - (21)

Furthermore, from the trace theorem and (15), we can derive

tn , th
uv <(C z 1 . 22
/n 1A B < Cros / 212, (22)
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Next, applying interpolation between L2(T") and H(T) to (22), for any g9 > 0, we
have

80/
[ iy = IElee@llzlla e < Cris V2l 2ary) + CBeona
1.8

|ZHL2(F) (23)

c,  C
where Cp.coy = Ec(*]f/ = 455}& and we have used ||z||§{1(r) = ||Z||%2(1")+||v7’z||%2(1—‘).

Combining (21)-(22) and (23), we conclude

t+n . €0 t+n
£ 2y < c, IV 2 + Cp g enl-otiourag{zh,  (24)
U]

for any €9 > 0, where Cp o+ = thl + ( +20)CB.eo .-
Substituting (24) into (19), we obtain

t+n t+n
/ /|3l,z|2—|—(1—60)/ /|sz|2
n r n r

t+n
<Cy [ el + Comealiotiosan {2}
n

t+2v
<Cun [ (Il + IR, ) (25)
— 5 o H2+< H—§+<

We next use interpolation for 0 < ¢ < 1 5 to derive

212 goc gy < ||zuL2(Qg+zn>||z||H;Qé+2,7>

1
g + 2112

HL(Qy")
t+ 2¢)C, € t+2n
< (t+2)Cry Y0040, ran {2} + o / E(2) (26)
4e Ct,n

where € > 0 will be choosen later.
Additionally, using (2), the embedding H*(2) — L5(f2), along with a standard
duality argument we conclude

Il fo(u)llimr ) < Coallull, for all u e B. (27)

Then, from the Lipschitz property of foy, interpolation and (27), we derive

17617

t+2n) = 4e ||f(;“)||H T+s( t+2”)+5‘|f(§w”iz(@8+2n)

CB o +2n t+2n
<980 [ ey 4 [ BE)
€ Jo 0

< Cpalt+2n)C,
- 4e

H™3H5(Q

C t+2n
otpumle) + 522 [ @) @)
tn JO

where € > 0 will be determined later on.
Substituting (26) and (28) into (25) and choosing £ = €9 = 3, we thus get

t+n t+n
/ /|8Vz|2—|—(1—50)/ /|V7z|2
n r n r

t+2n
<0y [ (leliany + o™ )
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t+2n
< (14 Cy) / E((7)) + Copeenl-0.fo.0201 {2} (29)
0
which concludes the estimate in (17). O

4.2. Preliminaries on Carleman’s estimates applied to waves and the re-
sulting recovery estimate for the energy function. We begin with a construc-
tion of the appropriate vector field which captures the behavior on the boundary
and provides a suitable weight function for Carleman’s estimate.

Proposition 4.4. (Vector field)([14, 25]) There ezist a strictly convez scalar func-
tion d(x) € C*(Q) and a positive constant p, such that Vd(z) is tangent to T and
Jy > pl, where h :== Vd and Jy, denotes the Jacobian of h. In particular, consid-
ering the damping being effective over the boundary I, then the vector field can be
considered radial, i.e., h(x) =z — xg.

We shall also need the following preliminaries (see [14]) which are related to
Carleman’s estimates.

Choose any 7 > 0 and ¢ > 0 satisfying 0 < ¢ < min{1, §}, where p is determined
in Proposition 4.4 . Let T be large enough [related to the speed of propagation]
such that

T > leea%({\/d(y)} (30)

where d is defined in Proposition 4.4. The first task is to prove the following recovery
estimate which accounts for tangenetial spillowers due to criticality of the sources.
The latter is due to flow multipliers applied to the equation.

Proposition 4.5. With the notation of Proposition .4, (z,2) = (u — v,us — vy),
y1 = (uo,u1), y2 = (vo,v1), yi € B, where B C H is a bounded set, T > T, one has
T T
EZ(T) + CT/ EZ(T)dT < CTJ;/ | < gu’U,Zt > | + OT,BF
0 0

+ Cr.ssupsepo,m||2(s)I° (31)
where F < |f0T( oz )adt] + | fOT < [z > odt.
In order to prove the proposition we shall need several intermediate estimates.
4.2.1. Carleman weights. Set
T 2
B(o,t) = 0ot T) = dla) e (== 5 ) (32)

then we can conclude that there exists a constant § > 0 such that
®(x,n) = ®(z,n+T) :=d(z) — c% < —4. (33)
In particular, we can always redefine d(z) (only by adding a constant to it) so that
there exists subinterval [tg,t1] with n < o < t; < n+ T such that
O(x,t) >0 for all t € [to,t1]. (34)
The function ®(x,t) is the important weight function in Carleman’s estimates.

Remark 4.6. Indeed, we only need ®(x,t) > —0 for t € [to,t1], considering d(x)

to be taken any value and for convenience, we can choose ®(x,t) > 0. In addition
Vo = Vd(z) = h.
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The starting and critical part of the proof of Proposition 4.5 is the following
Carleman’s estimate written for the difference z of two solutions corresponding
to the original equation. We use the weight function ®(¢,z) and the vector field
h =Vd.

Lemma 4.7. Recall that Jy, is defined in Proposition 4./ and c,T,p,h,® are as
defined above (see (30), Proposition /.4, (32)). Let the Assumptions I be satisfied
and UY = (u,uy), U? = (v,v;) with initial data Ug = (ug,u1), U = (vo,v1) € B C
H, respectively, be strong solutions of (1), where B is a bounded set. Set z = u—v,
and choose any n >0, T > 0, then we have

/Qﬂn e™®(J, — plps)Vz-Vz + (g - c)/ - e? (|Vz|2 + |zt|2)

T
Qn +n

_ T4+ny _ (pT+ny -T2 uv
(ME77 )r (£77 )r T/Q;Me vy /QS*" o Wy

+ [Almost lower order] (35)
where
7 0z 0z (1 P
METHn) = = —z(sw—(5+0)e™®
(], / i +/ oos (G- (G rae)
1 TP 2 2 .
#3193 00 (36)
el . TP d 70
Uy :=e"(h-Vz—Piz); w(x,t):=div{e" h} — ﬁ(q)te );
[Almost lower order| :/ 2z 4 (f - (B + c)eﬂp)
T Jore Thdt N2 2
_ 3 uv E _ B TP\ .
and

1 7 1 7
(£l+my ::/QeT'I’zt(th - §<I>tzt)|g+" - §/§167¢@t|v,z|2|3;+"

n
1 T+n P T® | T+n
+3 ta2w|n - (5 +c¢) taze [ (37)

Proof. We note that since the estimate in Lemma 4.7 does not specify the boundary
conditions, we can borrow much of calculations from [13]. However, since some of
the estimates will be used for our specific model, we provide a quick and fairly
complete account of the estimates involved, including critical dependence on large
parameter.
We begin by applying weighted multipliers to the equation:
z — Az = —f§" in (0,00) x €,
Oz =—(fi"+g")  on (0,00) xT, (38)
zlt=0 = 20, 2tlt=0 =21 in Q,
Taking any 7 > 0 and defining “flux” multiplier U1 := e™®(h - Vz — ®;2;), then

multiplying (4.16); by ¥; and integrating by parts over [0,7] x £, hence, we have
the following equalities for every term in (4.16);. (Note that, here, we take the time
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interval [0, T] in the calculation, and in the corresponding results, we only need to
replace [0, T] with [n, T + 7] to obtain the final proof of (35).)
Calculations are as follows:
For fQT 201, we get
0

/ ZtteTcp(h -Vz— <I>tzt)
QF

1 o d, . 1 i
= Q/QT 22 (dw{e <I>h}—l—%(e <D<I>t)> _i/zT 22e™%h - v
0 0

- 7'/ 2h® ™V 2 + L1(2, ) (39)
Qg
where
1
L1(z,2¢) := / e™*2(h-Vz — 5@%2})\5. (40)
Q
Indeed, we have
/ ztteTq)(h -Vz— <I>tzt)
Qg
1 d
_ T@h . o 7/ T<I>(I) 2
/QOT zire Vz 5 OTe tdt(zt)
TP T d TP 1 T 2|\T
= [ zeh-Vz|; — 21— (€"%h-Vz)— = | 7Dz |;
1 2 d TP
g e (41)
0
and
/ z i(eﬂbh Vz)
Qg" tdt
= / zth(rlﬁteTq) Vz+e%Vz)
Qg
(42)

1 1
= T/ 2th®;e™® - Vz + f/ 22¢™h v — f/ 22div{e”®h}.
QF 2 )y 2 Jag
Therefore, combining (41) and (42), we can derive (39).
Next, for fQOT(—Az)\Ill, we have
/ (—A2)e™(h-Vz — ®,2)
QF

=— %eﬂb(h~v,z—<l)tzt)+r/ (h-V2)e™®(h-Vz— ®:2)
sy Ov Qr

— / P, V2V + / e™®Vz-V(h- Vz).
QT QF

For the last term of RHS in (43), we obtain

/ e™*Vz-V(h-Vz)
QF
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TP 1 TP 2
= eI\ Vz-Vz+ - e""hV|Vz|
QT 2 QT
0 0

:/ eT¢JhV,z.Vz+1/ eTq>|Vz|2(hou)fl/ div{e™*h}| V2|2, (44)
QF 255 2Jog

In addition, we also have

1 d
/ PP, V2 Vzy = 7/ eT‘1><I>t—|Vz|2
QT 2 QT dt
0] 0]

1 P o 1 / o104, o
- = H, |V - = v TEDy). 4
2/96 tIVz["lo D) Qg‘ z["[o dt(e t) (45)
Then, substituting (44)-(45) into (43), we thus derive

/ (—A2)e™(h-Vz — ®,2)
QF

== %eﬂb(h Vz—®iz) + T/ (Vz-h)e™(h-Vz—®2) — Loz, 2)
=g Ov QF

1
—l—/ eT(I’Jther—&—f/ eV (h-v)
QF 2 oy

- % /Q , V2|2 <dw{e7%} - jt(@te@)) (46)

where
1
Laleva) i= 5 [ PV, (47)
Q

Finally, combining (39) and (46), we get

1
/ %eTqD(h'szq)tzt)Jrf/ e™ (|| = V2*) (h - v)
Zg“ ov 2 Zg"

1 d 1
= */ (ze)* + |V2]?) —(@te”’)%/ (22 = [V2|?) div{e™®h}

+ / e V2 Vz+ 7'/ (Vz-h)e™(h-Vz —20,2)
Q7 Q4

+ fee™(h-Vz — ®z) + L1 — Lo (48)
QF

Next, multiplying (38) by the “equipartition” multiplier ¥y := zw(z,t) and in-
tegrating by parts over [0,7] x Q, where w(z,t) = div{e"™h} — &(Pe™?), we
obtain

/ Zpp 2w — Az zw+ f 2w =0. (49)
Q¥ QF QF

Calculating some terms of (49), we derive

/ zttzw:/ztzw\g—/ (|2¢]?w + ze2wy), (50)
QY Q Q¥

0

Az 2w = %zw—/ (V2w + 2z Vz- V). (51)
Qf sp v oy
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Substituting (50)-(51) into (49) and multiplying the resultant by 1/2, hence, (49)

can be rewritten as

1 . T
5/ (Jz¢|* — |V2|?) div(e™h)
QF

d
_ = 2 27(1) Ty &
2/QT(|Zt V") g (2ee™) = 3 g ov "
0

1
+ 7/ z2(Vz - Vw — ziwy) / V2w + = / zzw|L. (52)
2 Jor Q

Moreover, considering the definitions of ¥; and ® in (33), we have

/ z; ;t(q)te )+ 7'/ (Vz-h)e™ (h-Vz—2®,2)
QT T

= / Zt d ((bte ) —+ T/ (VZ . h)(\l’l - eTé(ptzt)
QT dt

T
0
= 7'/ ez P02 — 20/ ez + 7'/ (U 4 eTPD,2) (U — 7Dy 2)
i QF i
= 7'/ e TPy 20/ e |22 (53)
i i

Now, combining (48), (52) and (53), we can notice that our present result is
irrelevant to the value of p. We thus add the term fQT pe™®|Vz|? to the result and
0

consider J, > pI (see Proposition 4.4), to derive

0z 1 0z 1

el - hded 70 2 \v4 2 .
nT ov 1+2 ZT 8uzw+2/ZTe (|Zt| | Z| )(h V)
0 0

:/QT

]

1
2 QT

0

e (T, —pIRs)Vz-Vz—l—/ peT@|Vz|2—20/ ez 2
QF QF

2(Vz - Vw — zpwy) + 7'/ e T2
QF

+ f (* + V1) + Ls(z, ) (54)
where
L3(z,2e) = L1(z,2) — La(z,2¢) + %/tazwh)T, (55)
in which £4(z,2¢) and Lo(z, 2¢) are defined in (40) and (47), respectively.

Additionally, we apply the following equipartition relation to reconstruct the
quadratic energy ||Vz||2 + ||z]|? (see (54)),

/ pe? |V 2|2 —20/ e™®| 2|2
Qr QF

=G0 [ VL 2t G [T ) 6o

Moreover, replacing w with —e~"® in (49)-(51), we can obtain

0z d
TP \V4 2 2y 7O v v T® TP
/QT e (V2 l1%) nT 8I/Z€ /T ( zrve Zt(dte ))

0
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- féwzeT@f/zteTcsz. (57)
QF Q

Therefore, substituting (56)-(57) into (54), then replacing the time interval [0, T']
with [, T + 7], and defining

7 0z dz (1 1)
T+n — el e - (P TP
(M, ™)- /E?rn 81/\111 + /254'77 - <2w <2 T ele )

1
#3 e (et = 95F) (o0 (58)
TP - TP d TP
Uy :=e"(h-Vz—0iz); w(x,t) :=div{e" h} — %(fbte );
[Almost lower order] ':/ 2z 4 (f — (B + c)e“b)
T Jore Thdt N2 2

e (5 0.

and
— 1 — 1 —
(cT+), = /Q T AV — ST - /Q TP, (T[T
1 — —
+ 5/ zezw| T — (g + c)/ zpze” P[THN. (59)
Q Q
we obtain (35) and thus prove Lemma 4.7. O

5. Proof of Proposition 4.5. In what follows, we shall use Carleman’s estimates
to absorb -via the large parameter 7 - critical contribution of internal source along
with tangential estimates to absorb by the damping tangential derivatives on the
boundary resulting from applications of flow multipliers within Carleman’s esti-
mates. We begin with the potential energy first.

5.1. Potential energy and the sources. In the next lemma, we shall rewrite
Carleman’s inequality in terms of the energy function and the sources acting only on
velocity (part of kinetic energy). The latter will be later eliminated by a combination
of sharp trace tangential estimate and “backwards trajectory” method. The just
announced result reads as follows.

Lemma 5.1. Under the assumptions of Lemma 4.7, for to,t1 > 0 (see (34)) and
T :=T + 2n, we have

E(:(T)) + Cs / E(2)

T
< OT,B/ | < 9" 2z > |+ Crplotr{z}
0

T T T T
ca( [+ ) farve (o [} [ o
0 t+n r 0 t+n Q
T
+03< f{“’zt—i-/ 6”%) —04/ (/ ff”zt+/ éwzt>
=T QY 0 =8 Q8

0
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ty
G / ( / £z, 4 / 5%) (60)
to Zg Qg

where C; > 0(i = 1,...,5) depend only on specific parameters and the diameter of
B.

Proof. The main task for the proof is to eliminate critical terms entering the po-
tential energy. This will be accomplished by using the Carleman’s estimate in the
previous lemma along with appropriate scaling of large parameter 7.

Considering 5 — ¢ > 0(0 < ¢ < min{1, §}), €™ > 1 on [to, t1] (see (34)) and Jj,
(see Proposition 4.4) is strictly positive definite, then for C, > 0(small enough), we
can get

t1 T+n
Cp/ E(z(t)) + C’p/ : " E(2(t)) < (/QT“ e™®(Jp — plps)Vz - Vz)

to n

wG -0 [ e ). 6
QT+

Then, in order to further obtain the estimate (60) we want, we shall first perform
each term of RHS in (35) (see Lemma 4.7). Estimates as follows ((1) — (4)):
(1) For (L]*"),, from the conditions of ® in (32) and (33), applying Schwartz’s

inequality to (E;*”)T, we can get
_ 1 _ 1 _
(crm), :/QeTq’zt(th - §<I>tzt)|;‘lp+” -3 /Q e O VP[]

+ % /Q ztzw|nT+’7 - (g +¢) /Q ztzeTq>|nT+’7
<Ce™" (E(2(n)) + E(2(n + 1)) (62)

Indeed, for every terms in (L'WT*‘”)T, we have the following estimates

‘ / ez th|£+”
Q

/ e TN 2 (T + )V 2(T + 1) — / e™®M 2, (n)hV 2(n)
Q Q

< e ([loT + )1 + V(T +m* + lze()]® + IV2(n]*) . (63)

Applying the similar estimates as (63) to the orther terms in (CUT“’)T, we can thus
conclude (62).
(2) Next, using Young’s inequality, we derive

—7'/7 e‘Té\IJ%—/i 0 W
Q%"-%—n Q37"+n
S*T/i 677(1)\1’%+ /7 0 Wy
QI+ QT+

< 7 677'<I>\I,2 € e'r<I> uv\2 5—1 677'<I>\I,2' 64
S /QF" 1t+¢€o o (fo")" +eg QT+ 1 (64)
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Choosing 551 < 7 in the above estimate (64), (note the role of large parameter T
which allows to think of €9 as a small quantity), we derive

—7D 1,2 uv 7P/ puv\2
- Ui — Uy < . 65
T/pne 1 /er"fo 1_60/@25*"6 (f6) (65)

From (2), we obtain
1
TR f] < eﬂm/ [fohu + (1= Nv)dAu — v < C(1+ [u] + [v])e™/2|2].
0
(66)

Hence, by Holder’s inequality and the embedding theorem H'(2) < L5(Q) and
H'(Q) — L*(T), we can further get

e (£5°)2 1 < ClIL+ Jul + ooyl 2% | o) < Cille™ 2217

< Cplle™ V2| + Cp o |2, (67)
and similarly we can also have

e (S N2y < CIL+ ful + ol 2y lle™ 2|2y < Clle™ 223 g

< Oplle™ V2| + Cp .- |21, (68)

which plays an important role in the below estimates about (M EZ*”)T.
Then, based on the estimetes (66) and (67), (65) can thus be rewritten as

—T/f e_ﬂb‘ll%—/i f30w,
T+n QT+n
n n
<eo [ Y
QT+

TJrn o TJrn
s@%/ HJNVW+Qﬂﬂ/ Bk
n n

T+n
<&y / e"?E(z) + Cr 0T re0,8L-0- [0, 7 2m 12} (69)
"

We note that ¢, &y can be taught as an arbitrary small quantity due to the choice
of large parameter 7. Particularly, we can take 0 < &y < C,/2.

(3) Now, we deal with each term of [Almost lower order] in (35) (see Lemma
4.7). Firstly, applying integration by parts, Young’s inequality and the embedding
theorem H*(Q) — L%(Q)(0 < s < 1), we have

d (w P TP
(L?ﬂ%ﬁ<2‘%+@e)
_ 1 2 W P T®\|T+n w 4 TP
= [5G ~Graeii - [ s - G o)

T+n
< e, / E(2) + oy 1oy Lot 70 2} (70)
n

where €p, can be taken small enough.
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Then, we emply the local Lipschitz property of fy in (2), (67), Young’s inequality
and the embedding theorem H*(Q2) < L?*(0)(0 < s < 1) to obtain

uv (W P T
Lo 28 = G 0™
n
_ ﬂ uv B 7P ruv
n /QTTI+71 QZfO /QTTI+71 Z(2 + 0)6 0

T+n
< €0, / E(Z) + CT,n,T,sol l'o't'[O,T+2n]{Z} +
n

/7 z(g—i-c)eﬂb éw

T+
Q"

T+n T
< ep, / E(z) + Crn T, b0t o rpan {2} + €0 / " E(2) (71)
n n

where we can take eq, small enough and choose 0 < &, < C,/2.
As for the orther terms, using Young’s inequality and the embedding theorem,
we derive
w P T® T
/T 2Vz-z(= — (T +0¢)e™) < e, / E(z) + CryToeo l.o.t.[oj+2n]{z} (72)
QT+n 2 2 " 3

where ¢g, is sufficiently small.
Finally, combining (70)-(72), and taking €9 = €o, + €0, + €04, Which can be
choosen small enough, we thus get

T+2n T+2n
[Almost lower order] < éo/ e E(2) + 50/ E(z)
0 0

+ CTvT7€07€0l.0't.[O,T+27]]{Z} (73)

where 0 < &y < C,/2.

(4) We next estimate each term of (MXI+7). in (35), respectively. It follows
from the boundary condition, the estimate inequality (68), Young’s inequality and
sharp trace estimate in Lemma 4.2 that

0
/7 eTq)—Zh~Vz
sT+n v
:/ e™® (%)Z(h-y)—ff"(h-sz)—gu"(h-sz)
s+ ov
A 0z o 7| puv|2 -1 2
<Cirn - (57) +eo [ eTCIfIIT+ Cgy Ve
En+" 14 E%”rn E%”rn
+C~’2,‘r,h/, |gu’u|2+é3,7',h/, |v‘r2‘2
ZZ,UF" Zngn
_ T+277 _
SCT,'V],}‘L,EU /0 (HZtH%ﬁ(F) + ||guv||%2(1“)> + Ct,n,807€l'0't'[0,f+2n]{Z}
_ T+2n
+ (e0C3 +€51€CB,7-7}1)/ E(z)
0

N T+2n _
Crnnsa [ (Fallace) + 18 aqe)) + Concoclotioi i {2)

T+277
+ 506'5/0 E(2) (74)
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where ¢, g0 > 0 satisfy ¢ = 2. We apply Lemma 4.2 with € > 0 and choose gy = /2

which can be arbitrarily small due to the parameter 7.
Then, considering the definition of ® in (32), we have

0z
/7 Py =— | eTq)ff”@tzt— gD,z
mT+n ov T+ s+
T+n )
uv _
< CB/T+ fi Zt+CT,n,T/ 2ell72(ry
Xn " n

T+2n
<Co [ At Cora [l ()
0

T+2n
%o

where we have used the following estimate

T+2n T+2n
/ o2 < 0! / <1g" 2> |, (76)
0 0

under the assumption of g in (4).
Using the boundary condition and Lemma 4.2 again and (76), we derive the
“equipartition” of the energy on the boundary,

L =192 0 0)

0z
_ rd 2 (9% 2 ]
[ (zt| &y 9.2 ) (h-v)
T+2n ~ T+2n
SCopr [ lgmaPrals [ BG)
0 0

+ ét,ﬂ,fol'o't'[O,T—FQn]{z} (77)

where g9 > 0 depends on ¢, T, n, where £y can be taken arbitrarily small.
Finally, applying the boundary condition and Young’s inequality, we obtain

0
Lo 7 (5 -2 0e7)
n
s Lo g (B -trrort) w5 [ ar =g (5 - (/2 +0e)
2 JeT4n Qv \2 2 Joren 2
T+n
<a [ 150
n T 61/
T+n ) T+2n 9 )
beo [ U By + Crneres [ (6% By + Wl (78)
n

where €;(i = 1,2) can be small enough.
Next, we manage to deal with each term of RHS in (78) to get our desired
estimates. Applying (17) (see, Lemma 4.2) and the similar estimate as (24), we

derive
T+17 82’ T+77
o[ g [ IR
; - v " 1 L2(T)

T 9z o 2
S g (‘37‘ + ‘VTZ‘ ) + CT,E’UZ.O.t.[07T+2n]{Z}
n r ov
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T+277 T+27]
SE&%A E@H%%A Uzela + 19 2ay)
+ CTvEO:WZ'O't'[O»TJrQU]{Z} (79)

where e depends on ¢;(i = 1,2), and ¢ is sufficiently small.
Additionally, using assumptions for g in (i) — (iv), we get

T+2n T+2n
/’ mmmmsW/ 19 ]
0 0

T+2n T+2n
Jé a2y < a‘*'jg P (80)

and by the interpolation, we have
Crmereallzllz@y < Crpereallzllmiers o) < Cepllzll + €0l V2], (81)

for some g9 > 0, which gives

T+27] T+21]
07177,61,62 /O ||Z||%2(F) < EOA E(Z(T)) + CT,T,ED,nl'O't‘[O,T—i-Qn]{Z}' (82)

Therefore, now we substitute (79)-(82) into (78) to obtain the following our desired
estimate

0z [w

T+2n
ol = TP _ _
/z%n ov” (2 (p/2+c)e ) < 6008/0 E(z) + Cr 1 e ml-0t o, rpon {2}

T+277
+aj/ 19" ] (83)
0

where €y > 0 depends on 7, 7, h and can be small enough.
Then, combining (74)-(77) and (83), we can conclude

_ T+2n
T+ _ 2
(MEF) <Cpy [ el 4 Co [, 1
0

B T+277
+eoCis /0 E(2)+ Cy oy leotpo o L2} (84)

where g9 > 0 depends on 7,7, h, ¢, T and is sufficiently small.

Considering the above (1) — (4), we thus complete the estimates of every term
of the RHS in (35).

Now combining (35)(see, Lemma 4.7) and (61), and applying the above estimates
(62), (69)-(73) and (84) (in (1) — (4)), to (61), we thus get

c, /ttl E(z)—i—(Cp—éO)/nTJm e B(2)

0

T+2n B
sqm/ |wm+%/
0

_ T+2n
) Pz + €0C3/ E(z)
sl+em 0
+Ce™ (E(z(n)) + E(z(n+T))) + Cr 7 g nl-0t o, 72 {2} (85)

where &y can be choosen as &y < C,, ( see (69) and (73) and &y is only from (69)
and (73)).
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Next, we try to eliminate the term C, fttol E(z) in (85). To this end, we recall (8),
from (8), we have for 0 < s < T + 27,

BT o)+ [ o =) - [ e [ e
+3 [B@+m =20, (56)

Then, intergrating (86) over [to, t;], multiplying the result by C'), and using Assump-
tion 1 imposed on g , we can obtain for 0 <6 < T + 2n,

t1 t1
Cplts — to) E(2(T + 21)) SCp/ E(z) — Cp/ / g
to to Eg”r?n

t1
— Cp[ /2'37 f(l)L'UZt + C/\;T;ﬂl'o't'[o,'f+2n]{z}. (87)
0

T+2n
0

Finally, combining (85) and (87) and considering &y < C, in (85) (see (69) and
(73)), then we derive
B (T4
Cp(ty — to) E(2(T + 2n)) + £0Cp / E(z)
7

B T+2n _
< 2€0CB/0 E(z)+ Ce™°" (E(2(n)) + E(z(n+T)))

T+2n ~ t1
_ uv uv uv
+ CT,TJ]/ ‘g Zt‘ + CB /T o 1 2t — Cp/ /T R fl 2t
0 EO +2n to 28 +2n

t1
_ Op/ /T+2 félvzlg + CT,)\,EO,UZ'O't'[O,T+2n]{Z}- (88)
to 29 n
We now need to deal with the first two terms in RHS of (88), respectively. We

first use (8) again and integrate (8) over [0,7 + 2], then multiply the result by
2e0Cp to get the following for 0 < 6 < T + 27,

5 T+2'r] B B B T+277
22005 / E(2) <250Cis(T + 20) E(2(0)) — 250C's / fva
0 0 %5

~ T+2n
_ 2€OCB/0 o fg)“)Zt —+ CT,/\,Eo,nl'O't'[O,T+277]{Z}' (89)
0
In addition, from (8), we can obtain
BC) <ECA o)+ [ ot [ A
+ /QSTHU oz + C/\’njl.o.t.[ojﬁn]{z}, 0<s<T+ 2. (90)

Replacing s with n and ¢ + 7 in (90), respectively, we also have

Ben) < B2+ [ 0at [, R

2n

i ~/QT+27; 02+ O l0t o pag {2},
n



3398 XIAOYUE HAN, IRENA LASIECKA AND YUMING QIN
E((t <E(:(T+2 u v
Csm) < BE s+ [ o [ 12
t+n

+ /Q oo 8754 Crprlotio a2} (91)
where 0 < n,n+t < T + 2. o

Therefore, taking s = 0 in (90) and multiplying the result by 2eoCg(T + 27),
then adding the final result to (89), we can get

B T+2n
2e0Ch / E(z)
0

<2e0(T + 2n)CE(2(T + 21)) + Cpam,1l-0t 0 71212}

+2¢0(T + 21)C / ngt-f-/, 1m}2t+/ ) 0" 2t
2;1)"4—277 Eg"+271 Q§+277
~ T+2n T+2n
—269Cp / / 1z —|—/ / 0 2 (92)
0 =9 0 Q4

and from (91), we derive

’1_"+217 T+277
E(Z(n))+E(z(t+77))S2E(Z(T+2n))+</0 + / > / fioz

t+n

T+2n T+2n
crfpn ([T L)
notm 0 t+n Q

+ C)\,n,Tl'o't'[O,TJr%]{Z}' (93)

Now, we can substitute (92)-(93) into (88), take 2eoCr(T + 2n) + Ce™97) <<
Cy(t1 —ty), and T = T+ 2n, then the final result can imply (60). We thus complete
the proof of Lemma 5.1. O

Proof of Proposition 4.5 follows now from Lemma 5.1 after adjusting the con-
stants.

5.2. Kinetic energy and the sources.

5.2.1. Estimates for F terms in Proposition /.5. This is the final key part of the
proof which together with Proposition 4.5 and Lemma 5.1, will lead to the quasi-
stability of the system (#,S(t)) for the problem (1) -as stated in Proposition 4.1.
The latter will imply finite dimension and regularity of the global attractor A. How
to go about it? From Lemma 5.1, we see that the kinetic contribution of critical
sources needs to be eliminated. This step requires in depth analysis of “how does
the damping propagates in order to absorb the critical sources”. It turns out that
the situation is very different for the cases of internal source and boundary source.
Let’s explain-first at the quailitative level. Having criticality in the interior and dis-
sipation localised only on the boundary-the issue is of course that of propagation.
While propagation via Carleman’s estimate was helpful to control criticality of the
energy at the potential level [by playing with large parameter 7], this “trick” will
have no effect on kinetic part of the energy. The control of fOT( 3V, z¢) which is crit-
ical and non-structured term -due to the fact that the difference of two solutions is
considered- can not be achieved by the usual cancellations via energy methods. So,
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the idea is that of “backward trajectories” which exploits two facts: (i) we already
work on the attractor and (ii) the system is gradient. Thus estimating the energy of
difference of two trajectories near equilibrium [where u; = 0 in Q | provides badly
needed “epsilons” in the estimates. This will be executed later via the a priori
estimate in Lemma 5.2 along with the “backward trajectory” method introduced
originally by Zelik in [34] . The idea is that the velocities of the trajectories are
“small” near equilibria points (the system is gradient). So for time — —oo, one ob-
tains small quantities generated by external force fy. This will produce the needed
regularity that will be propagated forward on the attractor. Topological charac-
terization of the generated “smoothness” will follow from the higher order energy
estimates. Clearly, this method will fail when dealing with “boundary critical”
sources. The reason is that “smallness” of u; in Lo(2) topology [near the equilib-
rium] by no means implies smallness of wu;|r,. Therefore, being near equilibrium
can not be taken advantage of when dealing with the boundary source.

The question thus arises how to handle the “boundary criticality”? Indeed, one
needs to devise a different mechanism which will take an advantage of the fact that
the dissipation and criticality are “collocated”. This idea will lead to a different
estimate- with a first preliminary step in Lemma 5.3. The results of Lemma 5.2
and Lemma 5.3, when combined yield the estimate in Lemma 5.5 and eventually
“quasi-stability” estimate on negative scale (103).

Lemma 5.2. Assume that hypotheses of Theorem 2./ have been satisfied. Then,
for a given two trajectories (u(t),ut(t)) and (v(t),v,(t)) through the attractor A,
and any € > 0, s < t, the difference of trajectories z(t) = u(t) — v(t), satisfies

/:< )

<e(B(z(s)) + E(2() + Ca.e S 12(6)]1*

t
+CA/ (el + Toe DIV 212 (94)

where C 4, > 0 is independent of u and v.

Proof. We begin by applying the Newton-Leibniz formula to get

t t 1
/ (fo"s2t) = / / / fo(wz + )22 dwdQ’,
s s JQJO
I ! d
2
= 5/5 /Q/O f(')(wz—kv)%z dwdQ’.
1 L 2t
= f(wz +v)2%|Ldewwd
2 Ja Jo
1 t 1
- 5/ / / fl(wz +v) (w2 + vi) 22 dwwd . (95)
s JQJO
Using (2), the embedding theorem and Hoélder’s inequality, we obtain

1
/ / fé(wz—l—v)z?dwdﬂ < C’/(1+ |u|2+ |v\2)22d§2
QJo o

< O+ Jul + ol Zo o ll2l| 75 )
< Caell=®) + €| V202 (96)
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where € > 0 is arbitrary. Applying Holder’s inequality twice to the other integral
n (95), we derive

5/6
/ / (wz + v) (w2 + vy)22dwdQ < Cy (/(|Ut| + Ut|)6/5212/5d§2>
Q

< Callluell + llvel D116 0
< Callluell + e DI V201 (97)
Combining (96)-(97) and (95), we can get (94). O

Lemma 5.3. Under the assumptions stated above in Lemma 5.2, the following
estimate holds with s < t,

t
/ g Fi% 2 |r, dadr| <e(B(2(s)) + E(2(t))) + Cesuppeis,qgl|2(0)|

t t
[ Vel + Cet | Kellisaydr
S S

where K(r) =< g(ug),uy > + < g(vg), v, >€ L1(R), and € > 0 is arbitrary.

Proof. We apply the Newton-Leibniz formula, as above, to get

t
/ 1%z > = /// fi(wz +v)zzdwdX,
:5/5 /F/O f{(wz+v)%z2dwd22
1 1
—5// fi(wz +v)2%|Ldwdl
rJo
—5/// " (wz +v) (w2 + vy) 22 deodT. (98)
s JI'JO

Using (3), the embedding theorem and Hélder’s inequality and interpolating the
lower order terms, we obtain

1
// fi(wz +v)22dwdl’ < C’/(l + |u)® + |[v]?)22dT
rJo T
< O+ fu] + [0l oy 121172 oy
< Call2lZ2ry < Callzllim @
< Caclzl? + €l V| (99)

where e > 0 and 0 <n < 1.
From assumption (iii) about g, Holder’s inequality, Young’s inequality and the
embedding H'(Q) < L*(T"), we have for every ¢ > 0.

1/2
// (w2 4+ v)(wz + v,)2%dwdl < Oy (/(|ut|+vt|)2z4dF)
r

< Callluellzzry + llvell oyl Zary
< CaellluelZey + el Zo o)z sy + ell 2l Zar)
< Cae(< glue),ue > + < g(ve),ve >zl o) + ellz(O Q) (100)
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Substituting (99) and (100) into and (98), we can obtain

t
/ g Fi zelr, dadr| <e (B(2(s)) + E(2(t))) + Cesuppes,n|]2(0)]]*

t t
-H/Wﬂ%@+aA/me@mmr (101)

where K(r) =< g(ut),us > + < g(vt),vy >€ Li(R). The proof of Lemma 5.3 is
thus completed. 0

Remark 5.4. It is important that we have worked on the attractor already. The
critical term in Lemma 5.2 is accompanied by ||u¢|| + ||v¢]| -which is small near
the equilibrium. This suggest “backward trajectory method”. The critical term in
Lemma 5.3 has the term < g(ut),us > 4+ < g(v¢),v; > which has finite L1(0,7T)
norm due to the boundary dissipation. Thus, we have different mechanisms for
controlling criticality in internal and boundary sources. This will become more
clear later in the development.

In fact, the result of Lemma 5.2 is strengthen when considering time scale near
—o0o. This means taking s,t < T™", where T"" is close to —oo. This result is
formulated below in the Lemma 5.5, which is a revisited version of Lemma 5.2 and
Lemma 5.3. We also note that all the estimates in the previous lemmas are valid
on extended time scale s < t.

Lemma 5.5. Assume that hypotheses of Theorem 2./ have been satisfied. Then, for
a given two trajectories (u(t),ui(t)) and (v(t),vi(t)) through the attractor A, and
for any € > 0, there exists a time TV, such that for s <t < T™"<, the difference
of trajectories z(t) = u(t) — v(t), satisfies

t t
/( Uz + / <1z >’ SE(E(Z(S))+E(Z(t)))+CA,5981[IP]||Z(9)||2
S s €ls,t
t t
4+/Hd#mﬁf/|Wﬂ2
t
+Cos / K () 12120 oy (102)
S

where i = 0,1, C 4. > 0 is independent of u and v, and T := T (u,v,€).
Proof. Since the system is gradient and asymptotically smooth one obtains
VY € A, iiylm dist(S(t)Y,N) =0
Therefore, for every € > 0 there exists a time 7€ such that
[lut@)|| + loe(®)]| < €/Ca, YVt <TE (where Cy is as in (94)).

Inserting the above inequality into the estimate in Lemma 5.2 and Lemma 5.3 and
rescaling e gives the result of Lemma 5.5. O

5.2.2. Handling of K(r) term and Quasistability for negative times.

Lemma 5.6. Under the previous assumptions there exists a constant w > 0, such
that for s <T + s < T*V¢

s+T
Bls+T)+Ca [ B(:)
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T+s

< C1[E(2(s)e™" + Cr,a Ran 12(s + 0)[[*leap[Ce,a K(r)dr].  (103)
Proof. Using (91), we have
/,:T 9"z + E(2(T)) < E(2(0)) — /ET fivz — . fo2 4+ ATlot.om{z}. (104)
Hence, from (60) and (104), we derive
(Cra+ DBED)+Ca [ B
< Cr aFE(2(0)) + CT,AI?O.t.[OyT]{z} + Cp_a[source terms] (105)

where ¢ = 0,1 and [source terms] denote all integrals involving (f*?, z:)(¢ = 0,1)
from the RHS of (60) (see Lemma 5.1).

Cr.a

Furthermore, taking o = Crasi

<1, then from (105), we can derive

s+T
E(Z(S+T))+CA/ E(z) <oE(2(s)) + Cr,4 sup ||z(s+9)||2
s 0€[0,T]

+ Cr a[source terms]. (106)

From Lemma 5.5, applied to time scale s < t < T™"€, one obtains with s + T <
Tu,v,e,

s+T
E(z(s+T)) +C’A/ E(2) <oE(2(s)) + Cr.a sup |z(s+0)|?
s 0€[0,T]

T+s T+s
+eCra / 12l2 e + €Croa / V2P
S S

+ Cr a(e[E(z(s) + E(2(s + T)))

s+T
+C€,A/ K()[203 - (107)

The € terms are easily absorbed leaving [after adjusting the constants and taking
into consideration o < 1], so that we obtain for s < T+ s < T,

s+T
E(z(5+T))+CA/ E(z) <oE(z(s)) +Cr,a sup ||z(s+9)||2
s 0€[0,T]

s+T
+C€,A/ K(r)||2]F1 (@) dr- (108)

The last term in (108) is still at the critical level. In order to handle this, the
fact that the kernel K(r) is in L;(R) plays a fundamental role. Proceeding like in
[8] page 175 and using discrete version of Gronwall’s inequality one obtains with
some w > 0 the inequality in (103). This is “quasi-stabilty” estimate established on
negative time scale i.e., s <T 4+ s < T™"". 0

5.2.3. Smoothness of the orbits for negative time.

Lemma 5.7. Under the assumptions of Lemma 5.5, the following reqularity holds
on the attractor for negative times.

e ()N + llue ()7 (@) < Cas ¥ s ST -T. (109)
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Proof. Note that a given trajectory (u,u;) through attractor A can be extended to
a full trajectory for all t € R. Let v(t) = u(t + h), then 2""(t) = v(t) — u(t). Using
(103) and virtue of K € L1 (R), we obtain

s+T
E(z"(s+1T)) —|—C’B/ E(z) < C’l[E(zh(s))ef‘”T—FC'T,A sup ||z(s + 0)|?].

0€[0,T]
(110)
Multiplying (110) by h~2, letting y"* = h=12", we get for all s < T%"¢ —T,
E("(s+T)) < C4EW"(s))e ™" + Cera sup |ly"(s+0)|> (111)
0€(0,T]

Then, for small h and all § > 0, the term |y"(s + 6)||? is uniformly bounded by a
constant C'4 (depending on the initial data) because y" — u, as h — 0 in L?(Q).
Hence, we can obtain

E("(s4+7T)) < Cae™“TE"(s)) + Cx, Vs < T —T. (112)
Consequently
E"(s+T)<Cy  Vs<TW"¢—T (113)

where C'4 does not depend on h € [0, 1].
Finally, we take the limit A — 0%, and can obtain that (u,u;) belongs to the
domain of the differential operator 9, and

e ()7 + llue(s) 7 () < Cas Vs ST =T, (114)
which completes the proof of Lemma 5.7. O
5.2.4. Propagation of the regularity forward.
Lemma 5.8. A C H?(Q) x H'(Q) is bounded.

Proof. (Forward propagation of the regularity) It follows from the system (1), the
bounds of finite energy and (114) that [[Awu(t)|| is uniformly bounded for ¢ €
(—o0, T™"¢ — TJ, i.e., the trajectory is strong for t € (—oo,T%"¢ — T]. Using
forward well-posedness of strong solutions, we infer that ¢ — (u(t), us(t)) is a strong
solution to the system (1), which implies that all trajectories though the global
attractor A are strong trajectories. Therefore the global attractor A resides in
D(A) C H*(Q) x H' (). O

5.2.5. Quasi-stability for all times on the attractor. Our next goal is to obtain
“quasi-stability” estimate valid on the attractor for all times. This will be pos-
sible due to enhanced regularity of the attractor.

Lemma 5.9. Quasi-stability estimate in (103) can be extended to all s < t.

Proof. Considering A is compact, we can thus pick ¢ € R, then there exist two

velocity trajectories ug(t), vs(t) through A belonging to a compact set J in L?(Q),

(where J consists of the elements from D(A'/?) ¢ H'(Q) ). Hence, for any ¢ > 0,

we can always find a finite set {w;}2f) € D(AY/?), such that indices iy, iy satisfy
lJur = wiy || + llve — wi, || < e,

and

sup |lwill o) < Cq -
1<i<N(e)
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We refine the estimate (97) as
/ / f (w2 4+ v) (w2 + vy) 22 dewdQ
/ / (wz +v)2” (w2 + vp) — (Ww™™ + w;,)) dewd
/ / [ (wz + )22 (w2 + w;, ) dwd (115)
where w2 = w;, — w;,. Then, we have the following estimates

// [ (w2 4 v) (w2 + v¢) 22 dwdQ

S/C(1+|u|+|v\)z2(|zt—wil’i2|+|vt—wi2|)d9
Q

< O+ Jul + [olll Loyl 2 2o () (llze = w2 + lve — ws, )
< e1Ca| V2|2, (116)

an

(wz +v)2? (ww™ " + wh)dwdﬁ‘ < CEMAHsz{l,n(Q)
< &l Vz|* + Cepepallzl - (117)

where 0 <7 < 1 and €3 > 0. Substituting (116) and (117) into (115) and choosing
€1 = €3, we obtain

(wz +v) (w2t + vi)22 dwdf‘ < eCA||V2|? 4 Cey a2l (118)

Therefore, applying (118) and (96) to (95), we get for all s <t € R,

/:< )

<e(B(2(5)) + E(2(1)) + Caeer sup [2(0)]?

0€(s,t]

t
+610_A/ [Vz]?. (119)

Finally, substituting (101) and (119) into (106), we derive for all s < s+ 7T € R,
s+T
E(z(s+T))+ C’A/ E(z) <e(E(2(s))+ E(z2(s+T))) + o E(z(s))

s+T
Heraln) [ BG)+Cra swp (s +0)|?
s 0€[0,T]
T+s
+Cen K(r)E(z(r))dr. (120)
S
Then, for above estimate (120), we notice that for sufficiently small €, the term
€(E(z(s)) + E(2(s+1T))) can be absorbed by E(z(s 4+ T')) and 0 E(z(s)), and the

term (€ + €1C4) fs+ E(z) can be absorbed by C4 fs+T (2). Hence, we have
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(possibly for a different o = o(e) < 1)

T+s
E(z(s+T)) <oE(2(s)) + Cr.a S l2(s + O)1* + Ce,a K(r)E(z(r))dr.

(121)

Proceeding as before and taking advantage of the fact that K € Li(R) we apply
discrete Gronwall’s inequality to obtain

E(z(s+T)) < [E(z(s)e T + Cpa sup ||z(s + 0)]|2)e/rn K, (122)
00,7

which by virtue of K € L;(R) implies the desired estimate
E(2(s+T)) < Cre *TE(2(s)) + Cy sup |z(s +0)|? (123)
00,7

with non constraints on time scale. We have thus completed the proof of “quasi-
stability estimate” which is stated in Proposition 4.1, below in Lemma 5.10. O

Lemma 5.10. Let the Assumptions I hold and the initial data be from the attractor
A, then there exist constants Cy,Cy,w > 0, so for every s < t € R, the following
quasi-stabilty inequality holds

E(z(t)) < Cre “'E(2(s)) + Cy sup |z(0)]>. (124)

0€(s,t]

5.3. Completion of the proof of Theorem 2.4. The estimate (124) essentially
states that trajectories through the attractor converge exponentially to each other
up to a compact perturbation. Then from (124), we are in a position to claim finite
dimension of the attractor A (see Lemma 6.10 in the Appendix I), this completes
the first statement (1) in Theorem 2.4. From Lemma 5.7 and Lemma 5.8, we can
complete the proof of the first two statement (2) in Theorem 2.4. In order to prove
the last statement (3) in Theorem 2.4, we shall use just obtained “quasi-stability”
estimate (124) along with the arguments in [5, 11].

Proof. Define H_y := [H'(Q)] x L*(Q) and
Br:={U e H;E <R}

where R > 0 and E is the strict Lyapunov function.

Note that, for any R > 0 and some given Uy € Bg, there exists a unique solution
U € C(0,00;H), such that U(t) = S(t)Up. In addition, considering E is the strict
Lyapunov function, we have E(U(t)) < E(Up) < R, for every t > 0, which implies
that the set Bg is a positive invarivant set for all R > 0. Since the attractor A is a
compact set, there exists Ry > 0 satisfying

AcC B=B(0,Ry) c {UeH;E<R}=0DBg
where R is large enough and B = B(0, Ry) C H is a bounded absorbing set with

radius Ry.
Then, from the boundedness of the set B, we have

tllm disty (S(t)B, A) =0,
hence, there exists T > 0 such that S(¢)B C Bg, for any Vt > Tg. Based on the

above analysis, we can thus conclude that the set Br is absorbing and positively
invariant. Besides, it follows from Corollary 3.6 that Bg is bounded. Therefore,
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the dynamical system (#,S(t)) is quasi-stable on Br. Then, for any T" > 0 and
Uy € Bgr, U(t) = S(t)Uy, we obtain

[U @)l = [1S®)Uoll3 < Cs, Vvt €[0,T],

where Cz > 0.
From (1) and the Lipschitz conditions of f; (i = 0,1) in (2) and (3), we get

d
—S(#)U(0) <Cp, Vte|0,T]. (125)
dt A,
Therefore, we have for all 1,5 € [0,T],
d

[S(t1)U(0) — S(t2)U(0)[l_, < < Cplt1 —taf, (126)

/t2
t1

which gives us that the map U — S(t)U is Holder continuous in H_; for any
U(0) € Br with exponent 6 = 1. From Lemma 6.11, it follows that (#,S(t))
possesses a generalized exponential attractor 4, . with finite fractal dimension.

Next, we shall prove that there exists an exponential attractor in H_s for system
(H,S(t)) and any é € (0,1). Since

S(t)U(O)H dt

dt

-1

10O, <CIUO)3°IUO)%_, < Cs°lUO)% (127)
we have, for any t1,t5 € [0, 7],
1S(#)U(0) = S(t2)U(0)17_, < Cp °ISE)U(0) = SE)UO)5 - (128)
Using (126), we get
[S(t)U(0) = S(t2)U0)|lz_, < Cslt: — ta]®, Vti,ta €1[0,7T7. (129)

Hence, the map U — S(t)U is Holder continuous in H_; for any U(0) € By and
d € (0,1). It follows from Lemma 6.11 again that (H,S(t)) possesses a generalized
exponential attractor As . with finite fractal dimension. We thus complete the proof
of (3) in Theorem 2.4. O

6. Appendices.

6.1. Appendix I. Let S(t) be a strongly continuous semigroup and (H, S(t)) be a
dynamical system related to S(t).

Definition 6.1. ([29]) A bounded set By C E is called to be an absorbing set if
for any B € B(F), there exists a time ¢t = t(B) > 0, such that S(¢)B C By for
any t > tg, where {S(¢)}+>0 is a semigroup in the complete metric space E, B(E)
is the collection of all bounded sets in E.

Definition 6.2. ([3, 4, 5, 7, 10, 11, 12]) (1) (H, S(t)) is called to be asymptotically
smooth if for any bounded positively invariant set B C H, there exists a compact
set K C B such that

lim disty(S(¢)B,K) =0, (130)
t—o00
where disty is the Hausdorff semi-distance in H.

(2) A global attractor for (#,S(t)) is a compact set A of H if it satisfies S(t).A =
A for all t > 0 and

disty (S(t)B, A) = sup inf ||S(t)x —y|lx = 0, as t— occ. (131)
zeBYEA



WAVE EQUATION WITH NONLINEAR BOUNDARY DISSIPATION 3407

(3) We say that (H,S(¢)) is dissipative if it possesses a bounded absorbing set
B C H such that for any bounded set B C H, there exists a time tg > 0 satisfying

SHBCB, Vt>ts. (132)
(4) The fractal dimension of a compact set A C H is given by
) - Inn(A,e)

where n(A, ) is the minimal number of closed balls in H of radius ¢ which covers
A.

(5) A full trajectory in H is a continuous curve w = {u(t)|t € R} satisfying
St)u(r) =u(t+7) for allt > 0 and 7 € R.

Definition 6.3. ([3, 4, 5, 7, 10, 11, 12])(Lyapunov function) Let (H, S(¢)) be a
dynamical system with the phase space H and evolution semigroup S(t).

e The continuous functional V(Y") defined on # is said to be the Lyapunov function
for the dynamical system (H, S(¢)) if and only if ¢ — V(S(#)Y) is a non-increasing
function for any Y € H.

e The Lyapunov function V(Y") is said to be strict if and only if V(S(t)Y) =V (Y)
for all ¢ > 0 and for some Y € H implies that S(t)Y =Y for all t > 0, i.e., Y is a
stationary point of (H,S(t)).

e The dynamical system (#, S(t)) is said to be gradient if and only if there exists
a strict Lyapunov function on .

Definition 6.4. ([3, 4, 5, 7, 10, 11, 12, 27, 28]) (Exponential attractor) A
compact set A, C H is called a fractal exponential attractor if it has finite fractal
dimension, is positively invariant, and for any bounded set B C H, there exist
constants T, Cz > 0, and v > 0 such that for all t > T},

dist(S(t)B, A,) < Cge5(t=T8),

In some cases, one can prove the existence of an exponential attractor whose di-
mension is finite in some extended space H O H only. We frequently call this
exponentially attracting set a generalized exponential attractor.

Lemma 6.5. ([3, 4, 5, 7, 10, 11, 12, 27, 28]) Let B be any bounded positively
invariant set for H. Suppose that for any € > 0 and for any B, there exists T =
T(e,B) > 0 such that

|S(T)z — S(T)ylly < e+ ¢r(x,y), VYa,yecbB, (134)
where ¢ : B x B — R verifies for any sequence {U,} in B,
lim inf lim inf ¢7(Up, Up) = 0. (135)
n—oo m— o0

Then S(t) is asypmtotically smooth in H.

Lemma 6.6. ([3, 4,5, 7, 10, 11, 12]) Suppose (H,S(t)) is a gradient asymptotically
smooth dynamical system. Assume its Lyapunov function V(Y') is bounded from
above on any bounded subset of B and the set Vg = {Y : V(Y) < R} is bounded for
every R > 0. If the set N of stationary points of (H,S(t)) is also bounded in H ,
then (H,S(t)) possesses a compact global attractor A = M“(N).

Remark 6.7. The asymptotic smoothness guarantees the compact property of
trajectories, and the existence of strict Lyapunnov functional ensures the disspative
property of the dynamical system.
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Let X and Y be two reflexive Banach spaces with X compactly being embedded
into Y and put H = X x Y. We consider that (H, S(t)) satisfies

St Uy =U(t) = (u,uy) Up = (uo,u1) € H, (136)
where the function u has the regularity
ue C(RY; X)NCHRT;Y). (137)

To obtain the notion of quasi-stability, we introduce a seminorm nx(-) which is
compact if whenever a sequence x; — 0 weakly in X, one has nx(x;) — 0.

Proposition 6.8. ([3,4,5,7,10, 11, 12, 27, 28] ) If there exist a compact semi-norm
nx on X and two locally bounded nonnegative functions a(t) and c(t) satisfying

b(t) € LY(RY)  with Jim b(t) =0, (138)
IS@U* = SU3, < a@®)IU* — U?|3, (139)

and
ISOU=S@)U|3, < bt)||U'= U2[[3; +e(t) sup [nx(u'(s)u?(s))]*  (140)
0<s<t
for any UL (t) = (ut,u}) and U?(t) = (u*,u?) € B C H, then (H,S(t)) is called to
be quasi-stable on B.
The so-called stabilizability inequality has been given by (140).

Lemma 6.9. ([5, 11]) Let (X,d) be a complete metric space and M be a bounded
closed set in X. Assume that there exists a mapping V : M — X such that (i)
MCVM;

(ii) there exist a compact pseudometric o on M and a number 0 < n < 1 such that
d(Vuy, Vug) <n-d(vi,vs) + o(v1,v2),v1,v2 € M. (141)

Then M is a compact set in X with the fractal dimension

Lemma 6.10. ([3, 4, 5, 7, 10, 11, 12, 27, 28]) Let (H,S(t)) be a dynamical system

satisfying (136). If (H,S(t)) possesses a compact global attractor A and is quasi-
stable on A, then the attractor A has finite fractal dimension.

Lemma 6.11. Let (H,S(t)) be a dynamical system satisfying (136). Assume that
(H,S(t)) is dissipative and quasi-stable on some bounded absorbing set B. Assume
also that there exsits an extended space H D H such that

[S(t1)y — S(t2)ll;7 < Crlts — ta|®, Vi, t2 € [0,T]

where Cgr >0 and § € [0,1) are constants. Then the dynamical system possesses
a generalized exponential attractor A. C H whose dimension is finite in the space

H.
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