

1 Evaluating Language Models for Assessing Counselor Reflections

2 DO JUNE MIN, Department of Electrical Engineering and Computer Science, University of Michigan, USA

3 VERÓNICA PÉREZ-ROSAS, Department of Electrical Engineering and Computer Science, University of Michigan,
4 USA

5 KENNETH RESNICOW, School of Public Health, University of Michigan, USA

6 RADA MIHALCEA, Department of Electrical Engineering and Computer Science, University of Michigan, USA

7 Reflective listening is a fundamental communication skill in behavioral health counseling. It enables counselors to demonstrate
8 an understanding of and empathy for clients' experiences and concerns. Training to acquire and refine reflective listening skills is
9 essential for counseling proficiency. Yet, it faces significant barriers, notably the need for specialized and timely feedback to improve
10 counseling skills. In this work, we evaluate and compare several computational models, including transformer-based architectures, for
11 their ability to assess the quality of counselors' reflective listening skills. We explore a spectrum of neural-based models, ranging
12 from compact, specialized RoBERTa models to advanced large-scale language models such as Flan, Mistral, and GPT-3.5, to score
13 psychotherapy reflections. We introduce a psychotherapy dataset that encompasses three basic levels of reflective listening skills.
14 Through comparative experiments, we show that a finetuned small RoBERTa model with a custom learning objective (Prompt-Aware
15 margin Ranking (PAIR)) effectively provides constructive feedback to counselors in training. This study also highlights the potential of
16 machine learning in enhancing the training process for motivational interviewing (MI) by offering scalable and effective feedback
17 alternatives for counseling training.

18
19 CCS Concepts: • Computing methodologies → Natural language processing; • Applied computing → Health care information
20 systems; • Human-centered computing → Human computer interaction (HCI).

21 Additional Key Words and Phrases: Motivational Interviewing, Computational Counseling, Reflective Listening, Large Language
22 Modeling

23 ACM Reference Format:

24 Do June Min, Verónica Pérez-Rosas, Kenneth Resnicow, and Rada Mihalcea. 2018. Evaluating Language Models for Assessing Counselor
25 Reflections. In *ACM Transactions on Computing for Healthcare Special Issue on Large Language Models, Conversational Systems, and*
26 *Generative AI in Health*. ACM, New York, NY, USA, 24 pages. <https://doi.org/XXXXXX.XXXXXXX>

27 1 INTRODUCTION

28 Counselor training is expensive and time-consuming due to the extensive expert supervision involved [4]. Current
29 strategies for counselor training usually rely on either role-playing or monitoring and live recording video interactions,
30 which are then manually evaluated to provide constructive feedback, thus limiting counselors' opportunities to practice
31 and receive timely evaluative feedback.

32 While several promising approaches have been proposed to automatically provide evaluative feedback to coun-
33 selors [10, 54, 56, 59], generating helpful feedback in real-time remains a challenge. This is particularly the case in

34 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
35 made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
36 of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
37 servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

38 © 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.

39 Manuscript submitted to ACM

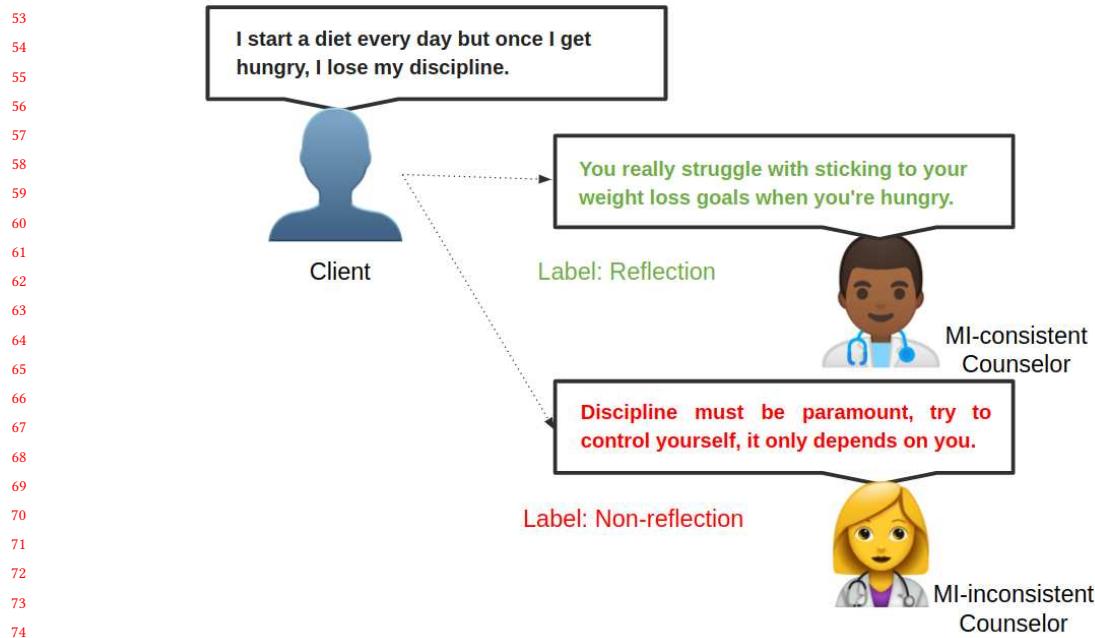


Fig. 1. Examples of Reflective and Non-reflective Counselor Behaviors.

79 educational settings, where counseling trainees could benefit from supportive learning environments that allow them
80 to make mistakes and learn at their own pace while acquiring counseling skills.

81 Seeking to address this need, we study the task of quantitatively evaluating the language of counseling trainees
82 when learning to formulate responses to clients' statements. We believe that the automatic assessment of counselors'
83 verbal behavior can enhance their training by allowing them to practice reflective listening skills in real-time and
84 provide immediate feedback. Among core counseling skills, we focus on responses containing reflections, i.e., counselor
85 statements aiming to understand and reflect on what the client is saying. Figure 1 shows an example of a counselor's
86 reflection in response to a client's situation.

87 We experiment with two approaches for automatic reflection assessment. First, fine-tuning a small transformer model
88 using a novel margin ranking-based approach that can output a continuous score learned from discrete annotations
89 of counseling reflections (PAIR (Prompt-Aware margIn Ranking)). Second, we use large language models (LLM) and
90 in-context learning to obtain reflection-quality evaluations.

91 We conduct a set of comparative experiments to evaluate each system's ability to learn the correct ranking of
92 counseling responses. Additionally, we evaluate a real scenario in which we deployed our fine-tuned system (PAIR)
93 in an educational setting. We conducted quantitative and qualitative evaluations showing that our system is a viable
94 alternative to manual human feedback.

95 Our main contributions include: (1) The formulation of the reflection scoring problem and a counseling dataset for this
96 task; (2) Two LM-based frameworks for reflection scoring using contrastive learning approaches (PAIR, Prompt-Aware
97 margIn Ranking), and LLMs with in-context learning; and (3) Quantitative and qualitative assessments of our models
98 on the annotated dataset and through in-the-wild deployment and feedback.

105 While not addressed directly in this work, having the ability to evaluate the quality of a counseling response can
106 serve as a guiding signal for dialog-based systems to provide evaluative feedback during the acquisition of counseling
107 skills. This could be implemented using text style transfer and controlled generation approaches, which have been
108 successfully used in the past for increasing politeness or empathetic tone in user responses [28, 35, 37].
109

110 .
111 Hence, an important application of our scoring system is being the evaluation component for a counselor response
112 rewriting system that provides trainees with direct suggestions for improving their responses. Furthermore, our scoring
113 system could also be integrated into a generation system to guide the production of responses that are more closely
114 aligned with the principles of effective counseling. We thus believe that our work aligns with the broader objectives of
115 utilizing NLP to enhance the training and proficiency of care providers, as evidenced by recent studies on the application
116 of LLMs in the mental health domain [6, 10–13, 57, 58, 67].
117

119 2 RELATED WORK

120 **NLP and Behavioral Counseling.** Automated analysis and evaluation of verbal strategies used in mental health
121 conversations has emerged as a promising intersection of psychotherapy and NLP [1]. With rising awareness of the
122 increased need for mental health care, several NLP models or techniques that aim to enable scalable, efficient processing
123 and analysis of counseling language have been proposed to understand counseling interactions [21, 39, 43]. Work
124 has also been done on addressing evaluation and feedback in counseling by measuring the fidelity to treatment via
125 automatic behavioral coding [2, 14, 47]. Work on this includes predicting and forecasting counselor behaviors, including
126 questions, reflections, or change talk [8], and also evaluating conversational aspects such as empathy, verbal mimicry,
127 and conversational tendencies [33, 46, 53, 66]. More recently, dialog-based systems have been explored to address
128 the issue of mental workforce shortage and assist in developing and evaluating basic counseling skills. Tanana et al.
129 [59] developed a patient-like conversational agent that interacts with counselors while practicing open questions and
130 reflections. It categorizes their responses to show percentages of questions and reflections used during the interaction.
131 Shen et al. [56] generated responses containing reflections using LLMs and context expansion strategies using retrieval
132 of relevant responses from previous interactions and expanding keywords from the client utterances. Subsequent
133 work [55] explored the inclusion of domain-specific and medical knowledge to be integrated into the generation of
134 reflective responses.
135

136 Our work proposes a task related to behavioral coding. However, we focus on detecting the overall quality of a
137 specific verbal behavior (a reflection) rather than categorizing it.
138

139 **Contrastive and Metric Learning.** Contrastive learning focuses on learning representations by contrasting positive
140 pairs against negative pairs, effectively teaching the model to distinguish between closely related examples [24]. Metric
141 learning extends this concept by aiming to learn a distance function that can measure the similarity or dissimilarity
142 between pairs in a meaningful space [25]. Our work uses contrastive learning to frame the scoring problem as a
143 learning-to-rank issue where training data labels denote pairwise relevance levels based on reflection quality [9, 30].
144 Inspired by works such as Lin et al. [30], we use binary contrastive estimations between examples of consecutive
145 reflection quality levels to refine model training. Although initial experiments considered contrastive representation
146 learning approaches like those proposed by Gao et al. [15], Liu et al. [31], we opt for using margin-ranking objectives
147 combined with a cross-encoder architecture for both prompt and response analysis, as they showed more adaptability
148 for our specific application.
149

Prompt	Response	Quality	Source	Definition	
157 158 159 160 161 162 163 164	My mother died of breast cancer, so I know I'm going to die of it too	Your mother death was devastating. You are worried you may die the same way she did.	Complex Reflection (CR)	Expert	A complex reflection adds meaning or emphasis, moving beyond what the person said to infer deeper concerns.
		You believe you will die from breast cancer, just like your mom	Simple Reflection (SR)	Expert	A simple reflection stays close to what the person said, simply restating or paraphrasing their words.
		You need to have genetic testing in order to know your own personal risk. We cannot make clinical judgments based on your mom.	Non-Reflection (NR)	Crowdsourced	A non-reflection offers information or advice without reflecting the speaker's emotions or thoughts.

Table 1. Example prompt-response pairs and their reflection labels

165
166
167
168
169 **Large Language Models (LLMs).** Recent research and application trends in machine learning have embraced
170 using LLMs. These models are usually transformer-based generative models with over several billion parameters
171 requiring extensive training on commercial-scale computing infrastructure. While more challenging to train and run
172 on most personal computing hardware, these models boast state-of-the-art performance on many natural language
173 benchmarks and offer easy adaptability to a wide array of domains, including mental health and psychotherapy [6, 10–
174 13, 57, 58, 67]. Several concerns regarding the deployment of LLMs as opaque systems potentially exacerbating implicit
175 biases and stereotypes or causing unintended detrimental outcomes have prompted practitioners to exercise caution
176 when integrating LLMs into patient-facing therapeutic applications [26, 29]. Concurrently, there has been a mounting
177 interest in leveraging LLMs to enhance care providers' and clinicians' training and proficiency. These applications hold
178 promise for enhancing the capabilities of care providers and clinicians. By harnessing the power of LLMs, professionals
179 can access a wealth of data-driven insights and personalized recommendations, thereby improving diagnostic accuracy
180 and treatment efficacy [19, 52]. In this regard, our work focuses on the effectiveness of NLP in providing scalable and
181 precise feedback for improving reflective listening skills in motivational interviewing training.

182
183
184
185 A particularly promising aspect of LLMs in therapeutic applications is their capability for in-context learning (ICL)
186 and prompting [18, 34]. ICL allows LLMs to generate responses or perform tasks relevant to the provided context
187 or instructions without the need for additional fine-tuning [38]. This is especially advantageous in mental health,
188 where understanding and generating nuanced language can significantly enhance therapeutic interactions [64]. While
189 prompting LLMs with specific scenarios or questions related to mental health can guide the models to apply their
190 generalized knowledge in ways that are directly beneficial to counseling and therapy, the design of effective prompts
191 for LLMs in mental health applications requires careful consideration of the therapeutic context, the objectives of the
192 interaction, and the client's specific needs [27, 65]. This approach not only capitalizes on the linguistic capability of
193 LLMs but also directs their capabilities toward supporting mental health professionals in providing high-quality care.

194 3 REFLECTIVE LISTENING DATASET

195
196 Motivational interviewing (MI) is a counseling style that motivates clients to make behavioral changes through
197 collaborative conversation. MI counselors are expected to use standard core counseling skills when engaging with their
198 clients. Among them, reflective listening is one of the most critical skills counselors must develop to become proficient
199 in motivational interviewing (MI). It entails responding in a way that recognizes and delves into the significance of
200 what the client has shared during the conversation [3]. Previous studies have shown that the quality and quantity of
201 reflection in counselor behavior is empirically correlated with the perceived quality of counseling [47] and treatment
202 outcome [16]. Given the importance of acquiring reflective listening skills and the need for actionable and immediate
203
204
205
206
207
208

209 feedback during this process, our work focuses on automatically providing evaluative feedback to counseling trainees
210 in real time.
211

212 3.1 Conversational Prompts

213 We compiled a new dataset of brief interactions between counselors and clients portraying different levels of reflective
214 listening skills. Each interaction is in English and includes a conversational prompt with a counseling scenario that
215 likely leads to a reflective response—usually given to the counseling trainee when learning to elicit reflective responses,
216 see an example in Table 1. For the remainder of the paper, we refer to these as client prompts.
217

218 We build the dataset using both expert and crowd-sourced annotators and leverage conversational data from an
219 existing counseling dataset [45] annotated with reflections to obtain additional prompt-response pairs containing
220 reflections.
221

222 **Hand-crafted Prompts.** We manually crafted 318 prompts with the assistance of a Motivational interviewing
223 expert, who is also one of the authors of this paper. The prompts cover health-related behaviors such as diabetes, weight
224 management, smoking cessation, vaccination, and alcohol consumption. We use these prompts to collect responses
225 from expert and non-expert annotators to portray diverse reflection skills.
226

227 **Prompts from Counseling Conversations.** We also use data from an existing conversational counseling dataset [45].
228 The dataset contains MI counseling conversations with MITI annotations for counselor utterances. We use the reflection
229 annotation subset to extract prompt-reflection pairs by taking the previous client's utterance as the prompt along
230 with counselor responses labeled as complex and simple reflections. We thus obtained 4,365 client prompt-counselor
231 reflection pairs, including 2,429 prompt-CR and 1,636 prompt-SR pairs. The statistics of the resulting dataset in terms of
232 the average number of tokens per prompt and reflection quality type, are shown in Table 2. Since this dataset is lower
233 in quality than our hand-crafted set due to annotation quality and style difference (spoken vs written), we only use this
234 data for validation and user study.
235

236 3.2 Expert Annotations

237 Two psychotherapists with MI expertise annotate the hand-crafted prompts. We ask them to write complex, simple, and
238 not-reflection responses for a given prompt using the guidelines of the Motivational Interviewing Treatment Integrity
239 (MITI) [40] scheme, the current gold standard for assessing the integrity of Motivational Interviewing interventions.¹
240 Annotators had previously undergone MITI training and had worked together on similar annotation tasks. However,
241 they worked independently, and each annotated half of the available prompts.
242

243 We use the MITI definitions as guidelines for labeling simple and complex reflections. Additionally, we defined a
244 third category to label responses that showed poor or nonexistent reflective skills.
245

246 **Simple Reflection (SR).** These responses reflect what the client said, using different words, e.g., paraphrasing.
247 Simple reflections typically do not include new insights or inferences. They tend to capture what was just said more
248 than what lies behind or ahead of the client's statement. In Table 1, the response “You believe you will die from breast
249 cancer, just like your mom.” is a medium-quality reflection containing a simple reflection because it adds no additional
250 meaning to what the client has already expressed. We categorize SRs as mid-quality reflections, whose quality lies
251 between complex and non-reflections.
252

253 ¹MITI <https://casaa.unm.edu/assets/docs/miti1.pdf>

Dataset	#Prompts	Average number of tokens				
		All	Prompt	CR	SR	NR-Expert
Hand-crafted	318	27	48	31	14	20
MI Conversations	4,365	31	31	33	27	NA

Table 2. Dataset statistics for each data source. “NR” standards for non-reflection responses.

Complex Reflection (CR). Complex reflections are responses that add or infer something new from the client’s statement. This may include naming a feeling or emotion that the client has not yet expressed, inferring why the client might have said something, or stating where they are headed. As an example, the counselor utterance, “Your mother’s death was devastating. You’re worried you may die the same way she did.” shown in Table 1 is a complex reflection (i.e., high-quality response) as it brings attention to the client’s traumatic experience, rather than merely rephrasing what was said. Complex reflections are considered a high-quality response.

Non-Reflection. These responses include unsolicited advice or questions asked when a reflection would have been a better response. NR are classified as low-quality and less desirable during the counselor learning process.

3.3 Non-expert Annotations.

To collect responses portraying beginner to nonexistent counseling skills, we obtain crowd-sourced annotations from lay individuals using [Amazon Mechanical Turk](#). We believe that such responses provide realistic scenarios of what our system might encounter in counseling training. This step is inspired by our clinical collaborator’s observation that providing unsolicited advice is a behavior frequently displayed when trainees are learning to craft reflections. This strategy allowed us to obtain diverse responses without the need for expert input. Additionally, we ensure response diversity by requesting three responses per prompt and annotations for unique workers. During the data collection, we showed a prompt to the worker and asked them to provide “advice” to the given scenario so their responses would likely contain directive rather than reflective language. Our annotation guidelines are shown below:

Task description. We are collecting responses to various conversational scenarios to help train a conversational AI system. Your task is to provide advice in response to a given situation or problem described.

Instructions. You will be presented with a description of a situation or problem that someone might be facing. Make sure you understand the context and the specific issue at hand. Write a response where you offer advice or suggestions on what the person should do. Think about what you would recommend if a friend came to you with this problem or situation, aiming to provide clear guidance.

We perform a validation step for crowd-sourced responses and reject them if they fail to follow the guidelines.

Table 2 shows our final dataset statistics and the average number of tokens for each type of reflection in the dataset.

4 LANGUAGE MODELS FOR ASSESSING COUNSELOR REFLECTIONS

We explore two computational approaches for evaluating counselor reflections: (1) fine-tuned language models, and (2) larger, prompt-based language models with in-context learning. Our choice of these models is driven by their complementary strengths in processing and analyzing reflective listening within psychotherapy contexts. Fine-tuned models, e.g., RoBERTa, can be optimized in-house and thus offer practical advantages in terms of computational efficiency and applicability in training settings. Conversely, larger models like Flan [61], Mistral [23], and GPT-3.5 [7], leverage their extensive training on diverse datasets to provide a broader, more generalized understanding of counseling

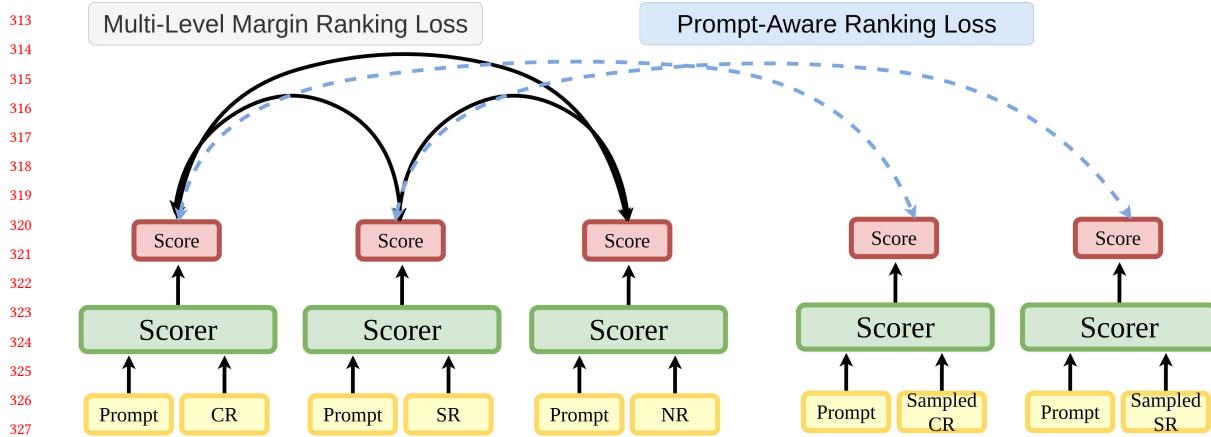


Fig. 2. Diagram of our model training framework. Our framework uses two types of contrasts between multiple levels of responses. The solid arrows represent the **multi-level margin ranking loss**, where different levels of responses to the same prompt are compared. This loss is designed so that the scorer learns to distinguish high-quality reflections from low-quality ones. The dashed arrows represent the **prompt-aware margin ranking objective**, where the comparison is on reflection pairs with different context prompts. This objective prevents the scorer from ignoring the context prompt when scoring.

language and empathy, essential for reflective listening. Their prompt-based interaction paradigm enables a flexible assessment of reflections, capturing a wide array of communicative subtleties. In this paper, we compare the efficacy and applicability of these strategies in evaluating counselor reflections to identify the most effective approach while providing scalable and effective feedback for counseling training.

4.1 Prompt-Aware margin Ranking (PAIR)

Reflection scoring consists of assigning a score s between $[0, 1]$ to an interaction pair containing a client prompt p and a candidate reflection by a counselor r . While this task can be considered regression, obtaining ground truth labels for model training can be expensive and noisy, even with expert annotations. Instead, we develop a scoring framework inspired by contrastive and metric learning strategies. We pose the scoring problem as a learning-to-rank problem, in which the training data labels are pairwise relevance levels based on skill level, i.e., depending on whether the response is labeled as complex reflection (CR), simple reflection (SR), or non-reflection (NR). [9].

For our model backbone, we use Robustly Optimized BERT Pretraining (RoBERTa) [60], but note that our approach is flexible enough to be used with other transformer-based models. We use a cross-encoder that takes the concatenated sequence of a prompt and a response pair as input. Since this design choice allows us to model the interaction of prompt and response tokens directly, we classify our primary model as a cross-encoder-based model, following the characterization of the encoder provided by Humeau et al. [20]. We draw upon work from Lin et al. [30] to build our learning objectives, where binary contrastive estimations are computed between examples for consecutive reflection quality levels.

Multi-level Margin Ranking Objective. We designed a margin ranking loss term to ensure a distance gap between quality levels of reflections, taking inspiration from Lin et al. [30]. The ranking objective uses a margin parameter μ or 2μ , depending on the distance between examples being compared in the loss term. Hence, we use μ when the quality

365 gap is within one level, i.e., distinguishing between medium-quality and high-quality pairs (SR or CR) or low-quality
 366 and medium-quality pairs (NR, SR), and 2μ when the gap is within two levels, i.e., low quality and high-quality pairs
 367 (NR, CR). The loss is calculated using the equation below, where p is the client prompt and r_{CR}, r_{SR}, r_{NR} respectively
 368 denote CR, SR, and NR responses to p . Similarly, $s(p, r_{CR}), s(p, r_{SR}), s(p, r_{NR})$ refer to the model predicted reflection
 369 score of the response r , given prompt p .
 370

$$\begin{aligned} \mathcal{L}_{\text{gap}} = & \max\{0, \mu - (s(p, r_{CR}) - s(p, r_{SR}))\} \\ & + \max\{0, \mu - (s(p, r_{SR}) - s(p, r_{NR}))\} \\ & + \max\{0, 2 * \mu - (s(p, r_{CR}) - s(p, r_{NR}))\} \end{aligned}$$

377 **Prompt-Aware Margin Ranking Objective.** In preliminary experiments using \mathcal{L}_{gap} , the model ignored the client
 378 prompt when making predictions, resulting in incorrect scoring for cases where responses are unrelated to the client
 379 prompt but follow a reflective language style. To address these cases, we designed a prompt-aware objective to penalize
 380 the model against such scenarios.
 381

382 We thus simulate examples where the model receives a high or mid-quality response but is matched with a non-
 383 relevant prompt context and ensure that cases receive low scores. To provide these examples to the model, we build
 384 an additional set of pairs by sampling CR and SR responses (m_{CR}, m_{SR}) from the training batch and matching them
 385 with random prompts from the same batch (p), with the condition that the matched prompts must be different from
 386 the original pairs. Then, we treat the constructed pairs of prompt and mismatched responses as low-quality examples
 387 (NR). The resulting pair should obtain a low score, even if the response itself is a valid reflection. We thus formulate the
 388 following prompt-aware ranking objective, where r_{CR}, r_{SR}, μ , and 2μ are defined as in \mathcal{L}_{gap} , while m_{CR}, m_{SR} refer to
 389 the mismatched responses.
 390

$$\begin{aligned} \mathcal{L}_{\text{prompt}} = & \max\{0, 2 * \mu - (s(p, r_{CR}) - s(p, m_{CR}))\} \\ & + \max\{0, \mu - (s(p, r_{SR}) - s(p, m_{SR}))\} \end{aligned}$$

396 Our final model combines the two metric-learning-based objectives to enforce the correct ranking and prompt
 397 relevance. Figure 2 shows an overview of the training process. The scoring function is the transformer encoder model,
 398 followed by a pooling layer and a sigmoid activation where we combine the \mathcal{L}_{gap} and $\mathcal{L}_{\text{prompt}}$ objectives with equal
 399 weights:
 400

$$\mathcal{L} = \mathcal{L}_{\text{gap}} + \mathcal{L}_{\text{prompt}}$$

4.2 In-context Learning with Large Language Models (ICL-LLM)

405 In-context learning (ICL) with LLMs represents a paradigm shift in how AI systems are leveraged to understand and
 406 generate human-like text. This approach involves using prompts or examples within the input to guide the model's
 407 output and capitalize on the extensive pretraining of LLMs across vast and diverse datasets. Pretraining empowers
 408 LLMs with a broad understanding of language and knowledge and enables them to apply this generalized knowledge to
 409 specific tasks or queries without requiring task-specific fine-tuning. This is particularly advantageous as it circumvents
 410 the need for additional computational resources, domain-specific datasets, and the extensive time typically required for
 411 retraining models for new tasks.
 412

413 ICL with LLMs can have an important impact on the counseling domain streamlining the process of training and
 414 assessing counseling skills by offering scalable and efficient means of providing feedback to practitioners.
 415

We explore the use of ICL in evaluating the quality of reflections in counseling by analyzing the depth, empathy, and accuracy of the counselor's responses.

Reflection Classification with ICL. For each client prompt p and counselor response r pair (p, r) , we seek to classify the response r into one of three categories: Complex Reflection (CR), Simple Reflection (SR), and Non-Reflection (NR). When crafting prompts for LLM-based reflection classification, it is important to concisely encapsulate the counseling context, provide clear definitions and examples for reflection categories (CR, SR, NR), and highlight the emotional and linguistic nuances of reflective listening. This ensures the model accurately classifies counselor responses by recognizing content and empathetic quality within a realistic therapeutic dialogue framework. To achieve this, we construct a system prompt by incorporating explicit task instructions, definitions of reflection types, and illustrative examples corresponding to each reflection quality class. The LLM prompt used during our experiments is shown in Appendix B.4.

5 EXPERIMENTS

5.1 Experimental Setup

PAIR model. Our models use the RoBERTa [32] architecture with pre-trained weights `mental-roberta-base` [22]. Our choice of pretrained weights is motivated by our domain being similar to the pretraining corpus used for `mental-roberta-base`, which contains mental-health topic posts from Reddit, in which counsel-seeking posts are paired with responding comments. Additionally, we conduct preliminary experiments using the pretrained weights and found that they improve overall performance.

Recent empirical findings also suggest that further fine-tuning on specialized domains improves performance on target tasks [17]. While this may come at the expense of performance degradation when applied to out-of-domain datasets, we prioritized performance over our domain (MI counseling) since we targeted a specific use case.

We implement our models using the PyTorch [44] and Huggingface Transformers [63] packages. For training, we use the Adam optimizer with a weight decay of 0.01, a constant learning rate of $2e^{-5}$, and a batch size of 64 samples. We also apply a dropout rate of 0.1 to all layers. To efficiently fit the training data into our computing device, we subsample each data row into a smaller row. Given a prompt-tuple with one prompt and eight responses (2/1/5 CR/SR/NR), we generate 20 sub-tuples with one prompt and four responses, composed of 1 CR, 1 SR, and 2 NR. In this manner, the total number of pairwise data is $318 * 20 = 6360$. We train for two epochs on one NVIDIA GeForce RTX 2080 Ti, with a batch size of 64 (using gradient accumulation).

ICL-LLM Models. We experiment with three state-of-the-art LLMs, Flan-T5-XL, Mistral, and GPT-3. More specifically, we use Flan-t5-XL [61] a T5-based model fine-tuned for instruction-following tasks [48]; Mistral-7B-Instruct-v0.2 [23] a version of the Mistral-7B model that is optimized for adherence to specific instructions; and GPT-3.5-turbo-16k [7], a model with advanced linguistic capabilities. These models, designed for instruction-following tasks, offer nuanced, context-aware assessments in therapeutic settings [10], demonstrating a significant capacity for understanding and processing complex language tasks. Their application in the mental health domain showcases the potential of leveraging broad contextual awareness and specific guideline adherence for effective scoring in the health conversation domain [64].

However, black box LLMs such as GPT-3.5 are inherently limited by their closedness. Therefore, they require careful consideration before deployment in real settings, especially in education or counseling, where understanding

Metrics / Model	Naive Classifier*	Naive Classifier	Naive Regressor*	Naive Regressor	PAIR*	PAIR	Flan	Mistral	GPT-3.5
Recall@1	0.8952	0.8349	0.9174	0.5873	0.9253	0.6444	0.3325	0.0539	0.3786
Pearson	0.8713	0.7652	0.8994	0.7998	0.8722	0.7205	0.2914	0.1001	0.5330
Spearman	0.8816	0.7858	0.8784	0.7994	0.8811	0.7415	0.2766	0.0900	0.5324
Kendall's Tau	0.6955	0.5685	0.8653	0.7389	0.8694	0.7216	-0.0936	-0.4173	0.2243

Table 3. Evaluation results on the set-aside test set. Our final model is PAIR. For Pearson and Spearman correlations, the values are statistically significant with p -value < 0.05 .

the decision process is important. Although researchers have devised different techniques such as chain-of-thought prompting [62] to improve reasoning and boost explainability, LLMs are still not good at offering explanations for their decisions in the clinical domain [42]. With this limitation in mind, we implement LLM-based prompting as a baseline, which requires no training data except for a few in-context examples.

Evaluation. To evaluate our models, we set aside 20% of our data as our test set. Our main performance metrics are recall@1, Pearson and Spearman, and Kendall's Tau correlation. We compute the Pearson and Spearman correlations between the model-predicted scores and the discrete label mapped to an integer level corresponding to their order. For recall@1 and Kendall's Tau, given a client prompt, counselor responses are arranged into ranked tuples according to the actual and predicted reflection levels, and we use the actual and predicted rankings to compute their correlation scores.

5.2 Baselines

We compare the different models against baselines sharing the same transformer encoder architecture and pre-trained weights as the PAIR model. We experiment with classifier and regressor models built using linear heads on top of the encoders. We use the same transformer model (`mental-roberta-base`) as our PAIR model and use the same parameter except for the prediction head. These baselines are primarily motivated by the need to separate the contribution of the PAIR loss from the contribution of the underlying model.

Naive Classifier. Given a prompt and a response, it outputs a discrete label for the reflection quality of the responses, i.e., NR, CR, or NR. The classification model is trained using standard cross-entropy loss against a set of discrete reflection quality labels in our annotated dataset.

Naive Regressor. Given a prompt and a response, it outputs a scalar score (between [0,1]) as the reflection quality level of the response. This model is trained using standard mean squared error loss. To train this model, we convert discrete labels into continuous scores using the following mapping: {CR: 1.0, SR: 0.5, NR: 0.0}.

We also conduct evaluations using the same baselines trained on a prompt-aware loss term on top of original losses for a fair comparison. As in our cross-encoder model, we introduce prompt-aware negative examples by switching the client context and labeling it as NR.

6 RESULTS

Table 3 shows the evaluation results for the different models and baselines on the set-aside test set while Table 4 shows the results when using the test set augmented with randomly-matched responses. In both tables, PAIR refers to our finetuned models trained with the complete set of our objectives, while * indicates that we remove the prompt-aware objective for ablation during training.

Metrics / Model	Naive Classifier*	Naive Classifier	Naive Regressor*	Naive Regressor	PAIR*	PAIR	Flan	Mistral	GPT-3.5
Recall@1	0.8952	0.8349	0.9174	0.5873	0.9253	0.6444	0.3325	0.0539	0.3786
Pearson	0.4892	0.6868	0.5317	0.6902	0.5108	0.7396	0.3644	0.0990	0.4609
Spearman	0.4896	0.7227	0.5018	0.6590	0.5001	0.6795	0.3394	0.0851	0.2766
Kendall's Tau	0.2397	0.4316	0.4539	0.5824	0.4485	0.5940	0.0371	-0.2757	0.1750

Table 4. Evaluation results on the set-aside test set augmented with randomly-matched responses. Our final model is PAIR. For Pearson and Spearman correlations, the values are statistically significant with p -value < 0.05 .

Prompt	Response	Model	Prediction
	You believe that I may not understand exactly how hard your struggle is. (Complex Reflection)	PAIR	0.82
		Flan	0.5
		Mistral	0.0
		GPT-3.5	1.0
Have you ever tried to get off coke? Do you have any idea how hard it is to quit this stuff?	Trying to get off coke has been really hard on you. (Simple Reflection)	PAIR	0.77
		Flan	0.5
		Mistral	0.0
		GPT-3.5	0.5
	You need to focus on sobriety and finding people that want to live clean and healthy. (Non-Reflection)	PAIR	0.11
		Flan	0.0
		Mistral	0.5
		GPT-3.5	0.0

Table 5. Sample Predictions from the models. The PAIR model outputs a continuous score, while other models' categorical labels (NR, SR, CR) are converted to scores for uniform presentation in this table.

In both sets of experiments, recall@1 results are identical, indicating that even after randomly matched responses are added, all the models can correctly identify responses with the highest reflection level (complex reflection). Moreover, we note that for the naive classifier models, Spearman correlation scores higher than Pearson correlation, likely because Spearman correlation measures monotonic relationships, and the naive classifier predictions contain frequent ties due to outputting a discrete categorization rather than continuous scores as the other models.

Comparison against baselines. The comparisons against baselines show exciting trends. First, when tested on data without randomly matched responses (Table 3), the best-performing baseline models (Naive Classifier, Naive Regressor) perform similarly to PAIR* (our PAIR model with the prompt-aware objective ablated). Although PAIR* outperforms baselines regarding recall@1 and Kendall's Tau, its Pearson and Spearman correlation coefficients are slightly worse than the naive models. However, results in Table 4 show that PAIR benefits from seeing mismatched responses. The experiments with the combined objectives show that PAIR outperforms the Naive Regressor model. When comparing the Naive Classifier and PAIR, we note that the Naive Classifier models are better for the recall@1 metric. However, we note that the two models are not directly comparable since they represent different frameworks of prediction and feedback. Additionally, because classifiers output a discrete label, they can be more robust against some noise in the output logits. Still, we argue that in scenarios where a continuous score is desired, our model is preferable to the classifier since it can provide more detailed feedback, better conveying the implicit preference ranking of different responses, as evidenced by its higher Kendall's Tau score.

PAIR ablations. We also evaluate our scorer models and baselines using ablations for the prompt-aware learning objective. In Table 3, when we measure the performance of our models on test cases where all prompt-response pairs are matched pairs (i.e., the response was in response to the matched prompt), prompt-aware models performed worse in

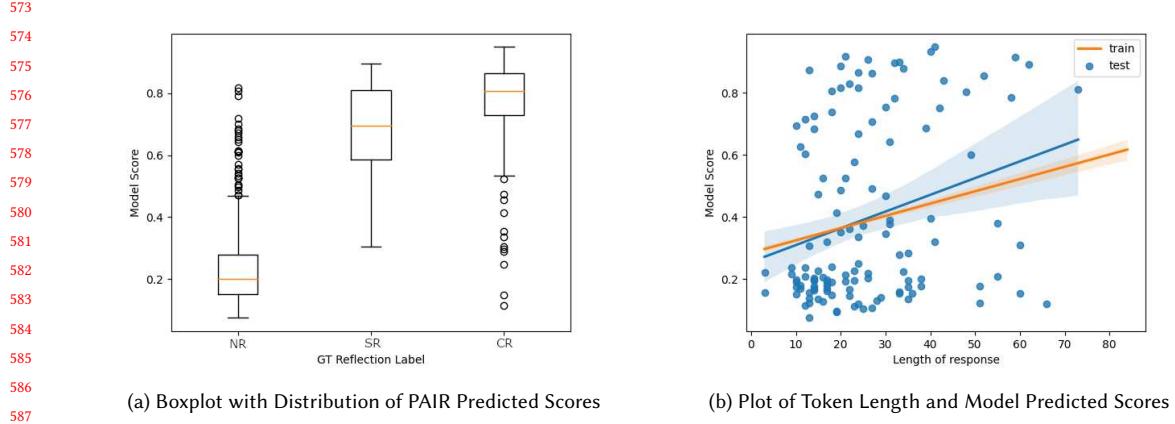


Fig. 3. Distribution of PAIR Predicted Scores and Relationship between Token Length and PAIR Predicted Scores.

all metrics than their * counterparts, showing that using the prompt-aware during training leads to performance losses when tested on data without randomly matched responses. This suggests a performance trade-off between reflection scoring and incoherence detection. When we test our models on a dataset augmented with randomly matched negative responses, we find that the prompt-aware loss leads to improved performance on data that includes random responses. In Table 4, prompt-aware models perform consistently better than their counterparts on all metrics except recall@1. This shows the effectiveness of the prompt loss function in preventing the model from ignoring the prompt when scoring responses, hence making our model robust to cases where relevant responses are not guaranteed.

Comparison against LLMs. Finally, the exploration of LLMs, including Flan, Mistral, and GPT-3.5, revealed that while these models bring the advantage of extensive pre-training and a broad understanding of language, they trail behind the PAIR model. As shown in Table 3, LLMs—recall@1, Pearson, Spearman correlations, and Kendall’s Tau—consistently underperform when compared to PAIR. These results highlight LLMs’ challenges in specialized tasks without targeted fine-tuning, particularly in nuanced domains like psychotherapy, where understanding subtle language cues and context is crucial. Notably, domain-specific adaptations and the effectiveness of custom training objectives, such as the ones in PAIR, are important in achieving higher alignment with expert judgments of reflective listening.

6.1 PAIR Score Distribution Analysis

We visualize the distribution of predicted scores of prompt and response pairs in our test data using our main model, PAIR. Not surprisingly, Figure 3a shows it is harder for the model to distinguish between simple and complex reflections. This may be due to (1) the inherent difficulty in differentiating between simple and complex responses [45], and (2) the relatively fewer number of SR examples in the compiled dataset.

We observe that in our dataset, CRs have more tokens than SRs, and also CRs are longer than NRs on average as shown in Table 2. Given that we want our models to learn meaningful semantic and stylistic features of reflection rather than just relying on token response length, we plot the relationship between token length and reflection levels predicted by our final model.

Figure 3b shows the scatterplot of response length in # of tokens and predicted reflection score, with two regression lines for the training set (blue) and testing set (orange) results. The regression line for the training set is computed using

625 model scores, while for the testing set, ground truth judgments are converted to a continuous score identical to that
626 used to train the Naive Regression model. The large dispersion in the distribution indicates that the response length is
627 only slightly positively correlated with the PAIR scorer, ensuring that the model is not making spurious generalizations
628 from the response length.s
629

630 631 **7 DEPLOYMENT OF PAIR TO PRODUCE FEEDBACK IN COUNSELING TRAINING**

632 In addition to PAIR on annotated data, we also deploy it in a real-life education setting – a graduate-level MI training
633 course taught by one of the authors of this paper ². The graduate students in this class are training to be MI counselors,
634 and our objective in deployment is to verify our system’s usefulness in providing feedback to trainee counselors.
635 Several factors drove the choice of PAIR over larger language models (LLMs). Firstly, during our experiments, PAIR
636 outperformed other approaches and showed (Section 6), a better alignment with an expert evaluation of reflective
637 listening. Secondly, since PAIR is a more contained model, it reduces the risk of data exposure compared to LLM use.
638 Furthermore, Regarding latency and reliability, a locally-run, smaller PAIR model offers lower response time and more
639 predictable and controllable output generation. These advantages make PAIR a better choice for embedding within
640 larger systems to enhance counseling skills training, aligning with frameworks suggested in prior research [51] while
641 also ensuring a practical, secure, and effective learning tool for MI training.
642

643 644 **7.1 Model Robustness for Deployment Safety**

645 We carried out comprehensive robustness evaluations to ensure the safety and reliability of the PAIR model, especially
646 in handling a wide array of student inputs. This precautionary measure was conducted to confirm that the model could
647 effectively manage the diverse and complex nature of student responses in educational settings without compromising
648 its integrity or the quality of its output.
649

650 Beyond measuring the model performance on the test data, we also evaluate the robustness of our models using
651 the Checklist framework by Ribeiro et al. [50]. We focus our tests on the counselor’s response rather than the client’s
652 prompt since the main goal is to provide feedback on trainee responses. We assess whether PAIR leverage both stylistic
653 cues or features of counselor language and semantics. We conducted three main types of tests, as described below.
654

655 *Minimum Functionality Test (MFT).*.. Evaluates whether the model correctly scores longer utterances that do not
656 contain reflection language that is also unseen during training time. We also check whether phrases or expressions
657 frequently used in reflections e.g., reflection starters such as: “it sounds like ...” are correctly identified as non-reflective
658 when used in isolation.
659

660 *Directional Expectation Test (DIR).*.. We test whether paraphrased versions of counselor language receive similar
661 scores as the originals. For this task, we used an off-the-shelf paraphrase model.³
662

663 *Invariance Test (INV).*.. We apply noise to the counselor’s language (typos, punctuation, contractions) and measure
664 the change in reflection scores. We also test if the resulting score remains low when reflective phrases, e.g., reflection
665 starters, are inserted into non-reflective counselor language.
666

667 For each test, we measure the amount of change in score to indicate scoring failure. For MFT tests, we use dialog
668 turns extracted from the MITI sessions. Results are shown in Table 6.
669

670 ²link
671 ³https://huggingface.co/tuner007/pegasus_paraphrase

Test Type	Description	#Samples	Error Rate
MFT_LONG	Lengthy NR responses receive low scores.	4,225	0.02
MFT_FRAME	Isolated reflective phrases receive low scores.	36	0.07
DIR_PARAPHRASE	Paraphrases receive similar scores to the original reflection.	495	0.11
INV_NOISE	Typos, contractions, and punctuation errors do not affect the score.	422	0.16
INV_FRAME	Reflection phrases followed by low quality (NR) response receive low scores.	315	0.03

Table 6. Failure rate for PAIR error checklist

The results show a low error rate in all the conducted tests, suggesting that PAIR is good at distinguishing a reflection-sounding language from semantically genuine reflections (MFT_LONG, MFT_FRAME, and INV_FRAME) and further showing robustness to different types of input perturbation.

7.2 Deployment Setup

To evaluate our model in a real-world setting, we collaborated with psychotherapy faculty at the University of Michigan School of Public Health. We deployed PAIR in a graduate-level MI training course⁴. The system was used by students as part of their course assignments.

System Design and Implementation. We deploy PAIR in a web-based application to provide real-time scoring feedback to students while learning to create reflective responses to a given client prompt. The system is implemented as a web server using Nginx,⁵ Gunicorn,⁶ and the Flask⁷ web framework and is run on a secure server. Running PAIR for 30 prompt evaluation and response pairs and providing feedback takes less than one second. The system presents five client prompts at a time, but students only need to provide at least one response to receive feedback. Students are allowed to complete their assignment at their own pace as the system is able to save and retrieve their work at any time. After the assignment is submitted, the model is run in the server and students are presented with detailed feedback to each response, including two ground truth high-quality reflections for each prompt, and the model predicted scores.

Participants. Our participant pool consisted of 30 students enrolled in a graduate-level psychotherapy class. The students used our system to complete three assignments that required them to practice their reflective skills. Over four weeks between January - February 2022, they completed three assignments, each consisting of a set of client prompts designed by the course instructor. Before using the system, participants were directed to a page where they read the consent form. If they agreed to participate, they were directed to the main system view showing the different prompts to be answered for the given assignment. A screenshot of our web interface can be found in Figure 5.

7.3 Usability Evaluation

We designed a 5-point Likert survey to assess the perceived accuracy and usability of our system that was presented to students after they submitted their assignments. Figure 4 shows the survey questions covering model error and system usability and the distribution of student responses. Overall, our system received a positive assessment in accessibility and performance aspects. We also asked users to submit free-form text feedback to learn more about their experiences while using the system. Among the submitted comments, positive answers focus on how the application allowed them

⁴<https://sph.umich.edu/academics/courses/syllabi/HBEHED671.pdf>

⁵<https://www.nginx.com>

⁶<https://gunicorn.org>

⁷<https://flask.palletsprojects.com/en/2.1.x/>

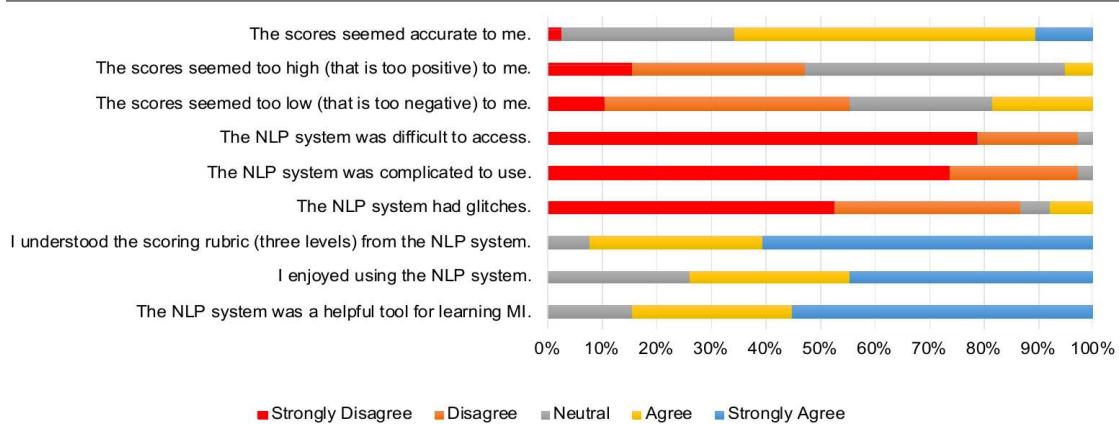


Fig. 4. User survey results on a 5-point Likert scale. For comparing answers in a unified positive scale, questions 5-9 were negated.

GT / Model	CR	SR	NR	Accuracy
CR	2341	183	14	0.9223
SR	32	324	26	0.8481
NR	1	24	54	0.6835

Table 7. Confusion matrix of the model predictions on student submissions.

to practice more and build confidence. At the same time, negative feedback is usually concerned with functionality aspects such as saving and loading their work.

7.4 Evaluation on User-generated Responses

We evaluate PAIR performance in scoring actual responses from students using expert annotations. One of the course instructors reviewed students' responses and annotated them as CR, SR, or NR. We use these annotations as our ground truth set to evaluate the performance of our model. To compare scores and categorical labels, we first convert the PAIR-predicted score into a discrete label using the following mapping: {CR : [0.7, 1.0], SR : [0.3, 0.7], NR : [0.0, 0.3]}. We then evaluate the system performance regarding accuracy and correlation with the ground truth. Results are shown in Table 7.

As indicated by the confusion matrix and accuracies in Table 7, our model performs the best on correctly identifying CRs, while performing less well on SRs and NRs. As the distribution of ground truth labels shows, identifying and encouraging reflective listening is a priority for this class, and hence the low false positive rate shown by the system is aligned with this design objective.

7.5 Quantitative Error Analysis

To further understand the system performance, we conduct an error analysis based on the false positive and negative rate. False positives occur when the model provides high scores for responses that have low to nonexistent reflective language. Conversely, false negatives happen when the model assigns low scores to responses with highly reflective language. According to MI experts feedback, false negatives are considered more detrimental for MI training as they

781 may inadvertently reinforce inadequate counseling responses, potentially hindering the development of effective
 782 reflective listening skills. Table 8 shows a false positive and a false negative example. In the first example, the model
 783 overestimates the reflection score. The response empathizes with the client's frustration but fails to explore deeper
 784 feelings or alternative solutions, which would be characteristic of a higher-quality reflection. In the second example,
 785 the response shows a nuanced understanding of the clients' situations and express empathy, yet it was scored lower
 786 than their qualitative content suggests. These discrepancies highlight the challenges in accurately assessing reflections.
 787

Prompt	Response	Score
False positive		
791 Well, how am I supposed to cook red beans and rice if I 792 can't use sausage because of salt?	793 You are angry because you feel like something you enjoy 794 has been taken away from you. You aren't sure yet how 795 to handle that loss of freedom.	0.41
False negative		
796 I tried giving my kids fruit for snack, if they don't have 797 their cookies, they make a huge fuss. They expect sweets 798 after school, and I can't stand the sound of their whining 799 when they don't get what they want. Plus, I kind of like baking homemade treats.	800 You want to make beneficial dietary changes for your 801 children, but their poor behavior makes it difficult for you 802 to follow through. You enjoy preparing food for them and 803 wish you could find something they would not complain 804 about that has less sugar.	0.21

Table 8. Sample false positive and negative examples

8 ETHICS STATEMENT

805 *Privacy and Data Protection.* We ensure that users of our systems are informed of our data collection practices.
 806 Moreover, we conduct data cleaning and anonymization to remove any personal or sensitive information from the
 807 collected data.

808 *Bias and Impact of the Model.* Since our model provides feedback on human behavior, there is a risk that the model
 809 may have negative consequences. For instance, biases or artifacts contained in expert annotation can be encoded in
 810 such models and may exert influence on students who are trying to mimic or learn from the model. Although we have
 811 not detected any such examples or trends during the model testing and deployment, we plan to further study and
 812 evaluate the impact of our models in future work.

9 LIMITATIONS

813 Our work has several limitations, which we aim to address in our future work.

814 First, our PAIR model is finetuned using data manually annotated by a group of experts for a predefined collection of
 815 simulated client prompts. We included real counseling data in our framework through pretraining, but this data is not
 816 directly used in the supervised training or downstream evaluation of the model. Although we evaluate our model in
 817 the wild through system deployment and user evaluation, we hope to further understand and bridge the gap between
 818 models trained using our data and models trained using counseling data collected in the wild.

819 Second, in this study, we confined our exploration of large language models (LLMs) to in-context learning using
 820 general-domain frameworks, opting not to finetune LLMs on our specific dataset [64]. This approach is motivated
 821 by prior research indicating that employing LLMs through in-context learning, without fine-tuning, yields superior
 822 outcomes for therapist behavior classification [10]. Additionally, our research focuses on comparing two distinct
 823 paradigms: one utilizing a smaller model with a highly specialized PAIR loss, and the other employing expansive,
 824

833 generalized LLMs, which are increasingly recognized for their versatility across a broad spectrum of NLP tasks. Moving
834 forward, we intend to study the potential of LLMs to be effectively fintuned and trained on our dataset, aspiring to
835 combine the strengths of both targeted and generalized approaches.
836

837 Finally, the PAIR system proposed in this paper mainly provides numerical scoring feedback to trainees along with
838 good reflection feedback that has been designed by the course instructor. We plan on expanding the system to include
839 models for different types of feedback, beyond mere reflection level scoring. For instance, by exploring generative
840 models to automatically create counselor responses, reference responses can be provided for students, even when
841 annotated ground truth is unavailable. Additionally, rewriting models can provide more valuable feedback by presenting
842 improved versions of students' responses.
843

844 10 CONCLUSION AND FUTURE WORK

845 In this work, we explored the application of computational models, from RoBERTa variants fintuned on custom losses
846 to sophisticated large-scale language models like Flan, Mistral, and GPT-3.5, for the assessment of reflective listening in
847 mental health counseling. Through the use of the PAIR dataset, we have demonstrated the effectiveness of a fintuned
848 RoBERTa model equipped with a Prompt-Aware marginRanking (PAIR) learning objective in providing targeted
849 feedback for the development of counseling skills. Our findings reveal that the comparatively smaller, fintuned PAIR
850 model surpasses the performance of more generalized LLMs across an array of evaluation metrics. The PAIR framework
851 learns to predict continuous scores from discrete label training data and outperforms simple baselines on several metrics,
852 and we showed its deployment in an educational setting with real students and instructors. We plan to extend our model
853 to incorporate diverse information that can assist counselors in understanding their clients, such as dialog context,
854 client background, or medical knowledge.
855

856 We make our data available at <https://lit.eecs.umich.edu/downloads.html#PAIR>.
857

858 ACKNOWLEDGEMENTS

859 The authors would like to thank researchers and students from the University of Michigan School of Public Health,
860 for their valuable feedback and participation in this project. This material is based in part upon work supported by a
861 National Science Foundation award (#2306372). Any opinions, findings, conclusions, or recommendations expressed in
862 this material are those of the authors and do not necessarily reflect the views of the NSF.
863

864 REFERENCES

865 [1] Tim Althoff, Kevin Clark, and Jure Leskovec. 2016. Large-scale Analysis of Counseling Conversations: An Application of Natural Language
866 Processing to Mental Health. *Transactions of the Association for Computational Linguistics* (2016).
867 [2] Victor Ardulov, Torrey A. Creed, David C. Atkins, and Shrikanth Narayanan. 2022. Local dynamic mode of Cognitive Behavioral Therapy.
868 <https://doi.org/10.48550/ARXIV.2205.09752>
869 [3] Miller W. R. Arkowitz, H. and S Rollnick. 2015. Motivational interviewing in the treatment of psychological problems, 2nd edition.
870 [4] Norma G. Bartholomew, George W. Joe, Grace A. Rowan-Szal, and D. Dwayne Simpson. 2007. Counselor assessments of training and adoption
871 barriers. *Journal of substance abuse treatment* 33 2 (2007), 193–9.
872 [5] Alain Braillon and Françoise Taiebi. 2020. Practicing “Reflective listening” is a mandatory prerequisite for empathy. *Patient Education and Counseling*
873 103, 9 (2020), 1866–1867. <https://doi.org/10.1016/j.pec.2020.03.024>
874 [6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
875 Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
876 Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
877 Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In *Advances in Neural
878 Information Processing Systems*, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 1877–1901.
879 https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bf8ac142f64a-Paper.pdf

885 [7] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
 886 Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey
 887 Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam
 888 McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. arXiv:2005.14165 [cs.CL]

889 [8] Jie Cao, Michael Tanana, Zac Imel, Eric Poitras, David Atkins, and Vivek Srikumar. 2019. Observing Dialogue in Therapy: Categorizing and Forecasting
 890 Behavioral Codes. In *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics,
 891 Florence, Italy, 5599–5611. <https://doi.org/10.18653/v1/P19-1563>

892 [9] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning to Rank: From Pairwise Approach to Listwise Approach. *Proceedings
 893 of the 24th International Conference on Machine Learning* 227, 129–136. <https://doi.org/10.1145/1273496.1273513>

894 [10] Yu Ying Chiu, Ashish Sharma, Inna Wanyin Lin, and Tim Althoff. 2024. A Computational Framework for Behavioral Assessment of LLM Therapists.
 arXiv:2401.00820 [cs.CL]

895 [11] Munmun De Choudhury, Sachin R. Pendse, and Neha Kumar. 2023. Benefits and Harms of Large Language Models in Digital Mental Health.
 arXiv:2311.14693 [cs.CL]

896 [12] Neo Christopher Chung, George Dyer, and Lennart Brocki. 2023. Challenges of Large Language Models for Mental Health Counseling.
 arXiv:2311.13857 [cs.CL]

897 [13] Debadutta Dash, Rahul Thapa, Juan M. Banda, Akshay Swaminathan, Morgan Cheatham, Mehr Kashyap, Nikesh Kotecha, Jonathan H. Chen, Saurabh
 898 Gombar, Lance Downing, Rachel Pedreira, Ethan Goh, Angel Arnaout, Garret Kenn Morris, Honor Magon, Matthew P Lungren, Eric Horvitz, and
 900 Nigam H. Shah. 2023. Evaluation of GPT-3.5 and GPT-4 for supporting real-world information needs in healthcare delivery. arXiv:2304.13714 [cs.AI]

901 [14] Nikolaos Flemotomos, Victor R. Martinez, Zhuohao Chen, Torrey A. Creed, David C. Atkins, and Shrikanth Narayanan. 2021. Automated Quality
 902 Assessment of Cognitive Behavioral Therapy Sessions Through Highly Contextualized Language Representations. *CoRR* abs/2102.11573 (2021).
 arXiv:2102.11573 <https://arxiv.org/abs/2102.11573>

903 [15] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. SimCSE: Simple Contrastive Learning of Sentence Embeddings. In *Proceedings of the 2021
 904 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, Online and Punta Cana, Dominican
 905 Republic, 6894–6910. <https://doi.org/10.18653/v1/2021.emnlp-main.552>

906 [16] Jacques Gaume, Gerhard Gmel, Mohamed Faouzi, and Jean-Bernard Daepen. 2009. Counselor skill influences outcomes of brief motivational
 907 interventions. *Journal of Substance Abuse Treatment* 37, 2 (2009), 151–159. <https://doi.org/10.1016/j.jsat.2008.12.001>

908 [17] Suchin Gururangan, Ana Marasović, Swabha Swamyamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A. Smith. 2020. Don't Stop Pretraining:
 909 Adapt Language Models to Domains and Tasks. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*. Association
 910 for Computational Linguistics, Online, 8342–8360. <https://doi.org/10.18653/v1/2020.acl-main.740>

911 [18] Yaru Hao, Yutao Sun, Li Dong, Zhixiong Han, Yuxian Gu, and Furu Wei. 2022. Structured Prompting: Scaling In-Context Learning to 1,000 Examples.
 912 *ArXiv* abs/2212.06713 (2022). <https://api.semanticscholar.org/CorpusID:254591686>

913 [19] Shang-Ling Hsu, Raj Sanjay Shah, Prathik Senthil, Zahra Ashktorab, Casey Dugan, Werner Geyer, and Diyi Yang. 2023. Helping the Helper:
 914 Supporting Peer Counselors via AI-Empowered Practice and Feedback. arXiv:2305.08982 [cs.HC]

915 [20] Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. 2020. Poly-encoders: Architectures and Pre-training Strategies for Fast and
 916 Accurate Multi-sentence Scoring. In *ICLR*.

917 [21] Zac E. Imel, Mark Stevvers, and David C. Atkins. 2015. Computational psychotherapy research: scaling up the evaluation of patient-provider
 918 interactions. *Psychotherapy* 52 1 (2015), 19–30.

919 [22] Shaoxiong Ji, Tianlin Zhang, Luna Ansari, Jie Fu, Prayag Tiwari, and Erik Cambria. 2022. MentalBERT: Publicly Available Pretrained Language
 920 Models for Mental Healthcare. In *Proceedings of LREC*.

921 [23] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna
 922 Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
 923 Timothée Lacroix, and William El Sayed. 2023. Mistral 7B. arXiv:2310.06825 [cs.CL]

924 [24] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. 2020.
 925 Supervised Contrastive Learning. *ArXiv* abs/2004.11362 (2020). <https://api.semanticscholar.org/CorpusID:216080787>

926 [25] Brian Kulis. 2013. Metric Learning: A Survey. *Found. Trends Mach. Learn.* 5 (2013), 287–364. <https://api.semanticscholar.org/CorpusID:55485900>

927 [26] Sachin Kumar, Vidhisha Balachandran, Lucille Njoo, Antonios Anastasopoulos, and Yulia Tsvetkov. 2022. Language Generation Models Can Cause
 928 Harm: So What Can We Do About It? An Actionable Survey. In *Conference of the European Chapter of the Association for Computational Linguistics*.
 929 <https://api.semanticscholar.org/CorpusID:252907607>

930 [27] Tin Lai, Yukun Shi, Zicong Du, Jiajie Wu, Ken Fu, Yichao Dou, and Ziqi Wang. 2023. Psy-LLM: Scaling up Global Mental Health Psychological
 931 Services with AI-based Large Language Models. *ArXiv* abs/2307.11991 (2023). <https://api.semanticscholar.org/CorpusID:260125719>

932 [28] Juncen Li, Robin Jia, He He, and Percy Liang. 2018. Delete, Retrieve, Generate: a Simple Approach to Sentiment and Style Transfer. In *North
 933 American Chapter of the Association for Computational Linguistics*.

934 [29] Inna Lin, Lucille Njoo, Anjalie Field, Ashish Sharma, Katharina Reinecke, Tim Althoff, and Yulia Tsvetkov. 2022. Gendered Mental Health
 935 Stigma in Masked Language Models. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, Yoav Goldberg,
 Zornitsa Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics, Abu Dhabi, United Arab Emirates, 2152–2170. <https://doi.org/10.18653/v1/2022.emnlp-main.139>

937 [30] Zibo Lin, Deng Cai, Yan Wang, Xiaojiang Liu, Haitao Zheng, and Shuming Shi. 2020. The World Is Not Binary: Learning to Rank with Grayscale
938 Data for Dialogue Response Selection. In *EMNLP*.

939 [31] Che Liu, Rui Wang, Jinghua Liu, Jian Sun, Fei Huang, and Luo Si. 2021. DialogueCSE: Dialogue-based Contrastive Learning of Sentence Embeddings.
940 In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*. Association for Computational Linguistics, Online and
941 Punta Cana, Dominican Republic, 2396–2406. <https://doi.org/10.18653/v1/2021.emnlp-main.185>

942 [32] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019.
943 RoBERTa: A Robustly Optimized BERT Pretraining Approach. *CoRR* abs/1907.11692 (2019). arXiv:1907.11692 <http://arxiv.org/abs/1907.11692>

944 [33] Sarah Lord, Elisa Sheng, Zac Imel, John Baer, and David Atkins. 2014. More Than Reflections: Empathy in Motivational Interviewing Includes
945 Language Style Synchrony Between Therapist and Client. *Behavior Therapy* 46 (11 2014). <https://doi.org/10.1016/j.beth.2014.11.002>

946 [34] Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, and Iryna Gurevych. 2023. Are Emergent Abilities in Large Language
947 Models just In-Context Learning? *ArXiv* abs/2309.01809 (2023). <https://api.semanticscholar.org/CorpusID:261531236>

948 [35] Aman Madaan, Amrit Sethur, Tamay Parekh, Barnabas Poczos, Graham Neubig, Yiming Yang, Ruslan Salakhutdinov, Alan W Black, and Shrimai
949 Prabhumoye. 2020. Politeness Transfer: A Tag and Generate Approach. In *Proceedings of the 58th Annual Meeting of the Association for Computational
950 Linguistics*. Association for Computational Linguistics, Online, 1869–1881. <https://doi.org/10.18653/v1/2020.acl-main.169>

951 [36] William R Miller and Stephen Rollnick. 2013. *Motivational interviewing: Helping people change, Third edition*. The Guilford Press.

952 [37] Do June Min, Veronica Perez-Rosas, Ken Resnicow, and Rada Mihalcea. 2023. VERVE: Template-based ReflectiVE Rewriting for MotiVational
953 IntErviewing. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association
954 for Computational Linguistics, Singapore, 10289–10302. <https://doi.org/10.18653/v1/2023.findings-emnlp.690>

955 [38] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the Role of
956 Demonstrations: What Makes In-Context Learning Work? *ArXiv* abs/2202.12837 (2022). <https://api.semanticscholar.org/CorpusID:247155069>

957 [39] Adam S. Miner, Nigam Shah, Kim D. Bullock, Bruce A. Arnow, Jeremy Bailenson, and Jeff Hancock. 2019. Key Considerations for Incorporating
958 Conversational AI in Psychotherapy. *Frontiers in Psychiatry* 10 (2019). <https://doi.org/10.3389/fpsyg.2019.00746>

959 [40] Theresa Moyers, Lauren Rowell, Jennifer Manuel, Denise Ernst, and Jon Houck. 2016. The Motivational Interviewing Treatment Integrity Code
960 (MITI 4): Rationale, Preliminary Reliability and Validity. *Journal of Substance Abuse Treatment* 65 (01 2016). <https://doi.org/10.1016/j.jsat.2016.01.001>

961 [41] Theresa Moyers, Lauren Rowell, Jennifer Manuel, Denise Ernst, and Jon Houck. 2016. The Motivational Interviewing Treatment Integrity Code
962 (MITI 4): Rationale, Preliminary Reliability and Validity. *Journal of Substance Abuse Treatment* 65 (01 2016). <https://doi.org/10.1016/j.jsat.2016.01.001>

963 [42] Zabir Al Nazi and Wei Peng. 2024. Large language models in healthcare and medical domain: A review. arXiv:2401.06775 [cs.CL] <https://arxiv.org/abs/2401.06775>

964 [43] Jihyun Park, Abhishek Jindal, Patty B. Kuo, Michael J Tanana, Jennifer Elston Lafata, Ming Tai-Seale, David C. Atkins, Zac E. Imel, and Padhraic
965 Smyth. 2021. Automated rating of patient and physician emotion in primary care visits. *Patient education and counseling* (2021).

966 [44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
967 Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
968 Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In *Advances in Neural
969 Information Processing Systems* 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc.,
970 8024–8035. <http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf>

971 [45] Verónica Pérez-Rosas, Rada Mihalcea, Kenneth Resnicow, Satinder Singh, and Lawrence An. 2016. Building a Motivational Interviewing Dataset. In
972 *Proceedings of the Third Workshop on Computational Linguistics and Clinical Psychology*. Association for Computational Linguistics, San Diego, CA,
973 USA, 42–51. <https://doi.org/10.18653/v1/W16-0305>

974 [46] Verónica Pérez-Rosas, Rada Mihalcea, Kenneth Resnicow, Satinder Singh, and Lawrence An. 2017. Understanding and Predicting Empathic Behavior
975 in Counseling Therapy. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Association
976 for Computational Linguistics, Vancouver, Canada, 1426–1435. <https://doi.org/10.18653/v1/P17-1131>

977 [47] Verónica Pérez-Rosas, Rada Mihalcea, Kenneth Resnicow, Satinder Singh, Lawrence An, Kathy J. Goggin, and Delwyn Catley. 2017. Predicting
978 Counselor Behaviors in Motivational Interviewing Encounters. In *Proceedings of the 15th Conference of the European Chapter of the Association for
979 Computational Linguistics: Volume 1, Long Papers*. Association for Computational Linguistics, Valencia, Spain, 1128–1137. <https://aclanthology.org/E17-1106>

980 [48] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2023. Exploring
981 the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv:1910.10683 [cs.LG]

982 [49] Erik Rautalinko, Hans-Olof Lisper, and Bo Ekehammar. 2007. Reflective Listening in Counseling: Effects of Training Time and Evaluator Social
983 Skills. *American journal of psychotherapy* 61 (02 2007), 191–209. <https://doi.org/10.1176/appi.psychotherapy.2007.61.2.191>

984 [50] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020. Beyond Accuracy: Behavioral Testing of NLP Models with
985 CheckList. In *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*. Association for Computational Linguistics,
986 Online, 4902–4912. <https://doi.org/10.18653/v1/2020.acl-main.442>

987 [51] Ashish Sharma, Inna Wanyin Lin, Adam S. Miner, David C. Atkins, and Tim Althoff. 2021. Towards Facilitating Empathic Conversations in Online
988 Mental Health Support: A Reinforcement Learning Approach. *Proceedings of the Web Conference 2021* (2021).

989 [52] Ashish Sharma, Inna W. Lin, Adam S. Miner, David C. Atkins, and Tim Althoff. 2022. Human-AI Collaboration Enables More Empathic Conversations
990 in Text-based Peer-to-Peer Mental Health Support. arXiv:2203.15144 [cs.CL]

989 [53] Ashish Sharma, Adam S Miner, David C Atkins, and Tim Althoff. 2020. A Computational Approach to Understanding Empathy Expressed in
990 Text-Based Mental Health Support. In *EMNLP*.

991 [54] Ashish Sharma, Kevin Rushton, Inna Lin, David Wadden, Khendra Lucas, Adam Miner, Theresa Nguyen, and Tim Althoff. 2023. Cognitive Reframing
992 of Negative Thoughts through Human-Language Model Interaction. In *Proceedings of the 61st Annual Meeting of the Association for Computational
993 Linguistics (Volume 1: Long Papers)*, Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational Linguistics,
994 Toronto, Canada, 9977–10000. <https://doi.org/10.18653/v1/2023.acl-long.555>

995 [55] Siqi Shen, Veronica Perez-Rosas, Charles Welch, Soujanya Poria, and Rada Mihalcea. 2022. Knowledge Enhanced Reflection Generation for
996 Counseling Dialogues. In *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*. Association
997 for Computational Linguistics, Dublin, Ireland, 3096–3107. <https://doi.org/10.18653/v1/2022.acl-long.221>

998 [56] Siqi Shen, Charles Welch, Rada Mihalcea, and Verónica Pérez-Rosas. 2020. Counseling-Style Reflection Generation Using Generative Pretrained
999 Transformers with Augmented Context. In *Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue*. Association
1000 for Computational Linguistics, 1st virtual meeting, 10–20. <https://aclanthology.org/2020.sigdial-1.2>

1001 [57] K. Singhal, Shekoofeh Azizi, Tao Tu, Said Mahdavi, Jason Wei, Hyung Won Chung, Nathan Scales, Ajay Kumar Tanwani, Heather J. Cole-Lewis,
1002 Stephen J. Pfohl, P A Payne, Martin G. Seneviratne, Paul Gamble, Chris Kelly, Nathaneal Scharli, Aakanksha Chowdhery, P. A. Mansfield, Blaise Agüera
1003 y Arcas, Dale R. Webster, Greg S. Corrado, Yossi Matias, Katherine Hui-Ling Chou, Juraj Gottweis, Nenad Tomaev, Yun Liu, Alvin Rajkomar, Joëlle K.
1004 Barral, Christopher Semturs, Alan Karthikesalingam, and Vivek Natarajan. 2022. Large language models encode clinical knowledge. *Nature* 620
1005 (2022), 172 – 180. <https://api.semanticscholar.org/CorpusID:255124952>

1006 [58] Elizabeth Stade, Shannon Stirman, Lyle Ungar, H. Schwartz, David Yaden, João Sedoc, Robert DeRubeis, Robb Willer, and Johannes Eichstaedt. 2023.
1007 Artificial intelligence will change the future of psychotherapy: A proposal for responsible, psychologist-led development. <https://doi.org/10.31234/osf.io/cuzvr>

1008 [59] Michael J Tanana, Christina S Soma, Vivek Srikanth, David C Atkins, and Zac E Imel. 2019. Development and Evaluation of ClientBot: Patient-Like
1009 Conversational Agent to Train Basic Counseling Skills. *Journal of medical Internet research* 21, 7 (July 2019), e12529. <https://doi.org/10.2196/12529>

1010 [60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is
1011 All you Need. In *Advances in Neural Information Processing Systems*, I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
1012 and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. <https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fb0d053c1c4a845aa-Paper.pdf>

1013 [61] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and Quoc V Le. [n. d.]. Finetuned
1014 Language Models are Zero-Shot Learners. In *International Conference on Learning Representations*.

1015 [62] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought
1016 Prompting Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL] <https://arxiv.org/abs/2201.11903>

1017 [63] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan
1018 Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
1019 Drame, Quentin Lhoest, and Alexander Rush. 2020. Transformers: State-of-the-Art Natural Language Processing. In *Proceedings of the 2020
1020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*. Association for Computational Linguistics, Online, 38–45.
1021 <https://doi.org/10.18653/v1/2020.emnlp-demos.6>

1022 [64] Xuhai Xu, Bingsheng Yao, Yu Dong, Hongfeng Yu, James A. Hendler, Anind K. Dey, and Dakuo Wang. 2023. Mental-LLM: Leveraging Large
1023 Language Models for Mental Health Prediction via Online Text Data. <https://api.semanticscholar.org/CorpusID:260203216>

1024 [65] Kailai Yang, Shaoxiong Ji, Tianlin Zhang, Qianqian Xie, and Sophia Ananiadou. 2023. On the Evaluations of ChatGPT and Emotion-enhanced
1025 Prompting for Mental Health Analysis. *ArXiv* abs/2304.03347 (2023). <https://api.semanticscholar.org/CorpusID:258040984>

1026 [66] Justine Zhang, Sendhil Mullainathan, and Cristian Danescu-Niculescu-Mizil. 2020. Quantifying the Causal Effects of Conversational Tendencies.
1027 *Proc. ACM Hum.-Comput. Interact.* 4, CSCW2, Article 131 (oct 2020), 24 pages. <https://doi.org/10.1145/3415202>

1028 [67] Tianyi Zhang, Faisal Ladha, Esin Durmus, Percy Liang, Kathleen McKeown, and Tatsunori B. Hashimoto. 2023. Benchmarking Large Language
1029 Models for News Summarization. arXiv:2301.13848 [cs.CL]

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041 A REFLECTION LEVELS AND EMPATHY COMMUNICATION

1042 One of the core tenets of MI counseling is expressing empathy [36, 49]. However, the notion of desirable empathetic
 1043 behavior is more specified than general empathetic behavior, since MI emphasizes accurately reflecting client sentiments
 1044 and concerns, rather than expressing similar feelings or offering support [5, 33, 41]. Sharma et al. [53] studies different
 1045 communication mechanisms for empathetic communication in the text-based mental support domain. In this experiment,
 1046 we explore the relationship between empathetic communication and counselor reflection in MI.

1047 To study the relationship between reflective verbal behavior and empathy in mental health exchanges, we adopt
 1048 Sharma et al. [53]’s computational framework for analyzing expressed empathy. Their EPITOME framework studies
 1049 three communication mechanisms of empathy: explorations, interpretations, and emotional reactions, each of which
 1050 focuses on expressing emotions, conveying understanding or sympathy, and seeking further information, respectively.
 1051

1052 Reflection Source / Empathy Mechanism	1053 Emotional Reactions		1054 Interpretations		1055 Explorations	
	1056 Pearson	1057 Spearman	1058 Pearson	1059 Spearman	1060 Pearson	1061 Spearman
1057 Ground Truth	-0.1454	-0.1533	0.0156*	0.0192*	-0.3308	-0.3426
1058 Model Score	-0.1355	-0.1319	0.0329*	0.0372*	-0.3639	-0.3476

1059 Table 9. Correlation between reflection levels (both ground truth labels and model predicted scores) and EPITOME-detected
 1060 communication mechanisms over the entire expert annotated dataset. * indicates results with p -value > 0.05 .

1061
 1062
 1063 We show the correlation between reflection levels and epitome communication mechanisms by computing the Pearson
 1064 and Spearman correlations between the grown truth and model reflection levels, and the empathy communication
 1065 levels predicted from the EPITOME model proposed in [53]. We train the model on the Reddit mental health dataset
 1066 used in the paper to derive the communication mechanism scores and present the results in Table 9. We note a domain
 1067 shift of the dataset used in training (Reddit posts and replies) and testing (client-counselor exchanges), which likely
 1068 leads to the suboptimal performance of the trained model on our dataset. However, we observe that the EPITOME
 1069 model, despite the domain shift, still provides meaningful insights into the relationship between reflection levels and
 1070 empathy communication mechanisms.

1071 We observe that emotional reactions and explorations are negatively correlated with reflection levels, indicating
 1072 that the reflected verbal behavior of MI counselors is distinct from general empathetic behavior in mental health
 1073 exchange. For example, explorative counselor utterances are often in question form, which is low in reflection. Moreover,
 1074 although the correlation results are not statistically significant, the small but positive relationship between reflection
 1075 and interpretation coincides with the characterization that reflection is a statement that expresses understanding.
 1076 Finally, we note that this result is limited by model error and domain mismatch between the Reddit dataset used in
 1077 EPITOME and our MI dataset.

1083 B ADDITIONAL INFORMATION ON OUR USER STUDY

1084 B.1 Obtaining Consent from Participants

1085 Before they could access the assignments, participants were asked to read and sign an informed consent form, which
 1086 informed them that their submissions would be securely stored and used for academic research. In the case that some
 1087 participants were not comfortable doing this assignment, they could choose from alternatives provided by the class
 1088 instructor, but no one opted to do so in this study.

1093 B.2 Data Anonymization and Protection

1094 To ensure that user data is securely stored without compromising privacy, we only ask for 8-digit student IDs for
 1095 assignment submission, which then are mapped to unrelated hash strings for storage in a secure server.
 1096

1098 B.3 Annotator Guideline for Crowdsourced Data**1100 Project Overview**

1101 We are collecting responses to various scenarios to help train a
 1102 conversational AI. Your task is to provide advice in response to a given
 1103 situation or problem described in a client prompt.
 1104

1105
 1106 Read the Client Prompt Carefully: You will be presented with a description of
 1107 a situation or problem that someone might be facing. Make sure you
 1108 understand the context and the specific issue at hand.
 1109

1110
 1111 Provide Your Advice: Based on the prompt, write a response where you offer
 1112 advice or suggestions on what the person should do. Think about what you
 1113 would recommend if a friend came to you with this problem, aiming to
 1114 provide clear, directive guidance.
 1115

1117 B.4 LLM Prompt

1118
 1119 1120 `llm_prompt = f"""Your task is to score a counselor response to the client's`
 1121 `prompt \`
 1122 `according to the categories of Complex Reflection, Simple Reflection, and`
 1123 `Non-Reflection in motivational interviewing.`
 1124

1125
 1126 Complex Reflection goes deeper than what the client has directly expressed,
 1127 offering a new perspective or insight. \

1128 It often involves paraphrasing or expanding on the client's feelings or
 1129 thoughts in a way that suggests a deeper understanding.

1130 Simple Reflection involves mirroring or paraphrasing the client's statement
 1131 without adding significant new meaning or interpretation.

1132 Non-Reflection responses do not mirror or expand upon the client's \
 1133 feelings or statements but may offer advice, provide information, ask a
 1134 question, or change the subject.

1135
 1136 1. Complex Reflection Example:
 1137

1138 `Prompt: {complex_prompt}`

1139 `Response: {complex_response}`

```
1145 2. Simple Reflection Example:  
1146 Prompt: {simple_prompt}  
1147 Response: {simple_response}  
1148  
1149  
1150 3. Non-Reflection Example:  
1151 Prompt: {non_prompt}  
1152 Response: {non_response}  
1153  
1154  
1155 Target Client Prompt: {prompt}  
1156 Target Counselor Response: {response}  
1157 Output 1.0 for a response that is a Complex Reflection, 0.5 for a Simple  
1158 Reflection, and 0.0 for a Non-Reflection.  
1159  
1160 Score:  
1161 """  
1162
```

B.5 Web Interface

Our web interface used for the user study is shown in Figure 5.

```
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196
```

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248

Motivational Interviewing Reflection Feedback Application / University of Michigan

MI Assignment Week 3

Disclaimer

Please note that as part of our natural language processing (NLP) project, we will collect data from your submissions. We will save your responses, your assignment scores, and any feedback you might give us. Your data will be stored in a secure server owned by our team. Your personal information such as your name or UMID will not be associated with your submissions, will only be used to distinguish authorship of submissions.

Instructions

Please write at least one reflection for each of the prompts below. You can save your progress using the 'Save' button at the end of the page. To resume your work with saved responses, type your UMID and click the 'Load' button at the end of the page. Once you have completed your assignment each of your responses will be automatically scored by our system.

When you are finished with the assignment, press the 'Submit' button at the end of the page to submit your responses. Please note that there might be a latency of 5-10 seconds for the model to process your responses.

For each prompt, you can submit up to 2 responses using the two input fields provided.

UMID (Your 8-digit student number, **NOT** your uniqname) *

Prompt 1: Of course, I would like to lose weight and not feel gross all the time. But I hate all the diets my mom puts me on. I've tried them all. Every time I end up feeling deprived and hungry. Then I gain all the weight back. I'm getting ready to give up.

Prompt 2: We eat at Wendy's a few times a week. It's cheap, fast, my kids like it, and it's better than those other places. There's a lot worse we could be eating. Sure, there are better foods than that, but I don't have time to cook.

Fig. 5. A view of our web interface