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The ways people use language can reveal clues to their emotions, social
behaviours, thinking styles, cultures and the worlds around them. In the past
two decades, research at the intersection of social psychology and computer
science has been developing tools to analyse natural language from written

W Check for updates

or spoken text to better understand social processes and behaviour.
The goal of this Review is to provide a brief overview of the methods
and data currently being used and to discuss the underlying meaning of
what language analyses can reveal in comparison with more traditional
methodologies such as surveys or hand-scored language samples.

Language is the common currency of most human communication. We
have all overheard snippets of conversation between two strangers while
outwalkingorsittinginarestaurantoronaplane.Inverylittle time, we
candetect the speakers’ general ages, possible relationship, education
and social class, and much more. We also can determine the conversa-
tional topic and even the ways the people are thinking. In fact, these
same clues are apparentin people’s text messages, personal emails and
transcripts fromrandom Zoom meetings. Many of the same linguistic
signals we hear can also be detected through computational analyses.
Overthe past 20 years, thousands of studies have documented that
everydaylanguage cantellus about the content of people’sthoughts; their
relationships with their audience; their motives, goals and values; and
essential aspects of their personality. These insights now go far beyond
asingle personor conversation. Through the analysis of social mediaand
otherlarge language datasets, we canbegin to understand small groups,
organizations and entire societies over days, years or even centuries.

Thelinks between language, psychological state
and behaviour

Thereisalongphilosophical and scientific history that has attempted
to disentangle the distinctions between language and thought'. People
oftentalk aboutissues they think about. At the same time, the mere act
of verbalizingissues can influence the ways people think about those
issues. One common approach, the attention/language model, posits

that people naturally talk about objects, people, emotions or eventsto
which they are attending. If people hear or read about a disease, they
oftenreport feeling sensations of the disease and are more likely to visit
aphysician to see whether they have the disease (for example, when
President Gerald Ford’s popular wife, Betty, was diagnosed with breast
cancer, there was asurge of women who subsequently were tested for
breast cancer?). If peoplein your social network mention losing weight,
buying a particular brand of clothing or liking a particular political
candidate, the odds of you thinking about these issues and changing
your behaviours go up accordingly’.

It is a small leap to understand how the language of individual
people or even groups of people can provide clues to their thoughts.
Hungry people tend to talk about food; friends who are madly in love
have difficulty not talking about it. Just as language can reflect our
thoughts, our behaviours are often driven by both our thoughts and
language. Language, psychological state, environment and behaviours
areintertwined®. Asresearchers, ifwe are able to track people’s psychol-
ogy through natural language, we are better able to understand who
they are, what they are thinking and how they might behave.

The psychological and computational
approaches tolanguage

For the purposes of this paper, we focus only on digitized verbal lan-
guage—either transcribed oral or written. Language, of course, is
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infinitely complex and can be broken down by letter, morpheme,
word, phrase, sentence, thought unit, paragraph or entire text. Rather
than focusing on language itself, our primary interest is in under-
standing people’s everyday thinking patterns, emotions and social
connections through their use of natural language. Computationally,
this generally means collecting and analysing words from as many
people as possible. In this paper, our goal is to review the space of
methods for inferring human behaviour from language in a way that
isrelevant to both psychologists and computer scientists, particularly
to the ones working in natural language processing (NLP; see Box 1
for terminology)—a field that combines computational linguistics
with statistical and machine learning models to understand and
generate language. The paper therefore covers lines of work from
both disciplines, eventually converging towards a unified approach
to synthesize insights on human behaviour through the analysis of
language. Figure 1is an overview of our paper, moving from people to
the language they use to the inference of behaviours at the individual,
interpersonal and group levels.

Developmentsin NLP

Therecent growth of NLP has been primarily driven by advancements
inlarge language models (LLMs). These LLMs, including GPT4 (ref. 5),
Llama®and Mistral’, are trained on massive datasets of text, images and
code, leading to major advances in our ability to perform automatic
language understanding and generation, often across multiple lan-
guages. Breakthroughs in dialogue systems and the ability to generate
human-quality conversation have been facilitated by techniques such
as word embeddings, which map words to high-dimensional vectors
capturing semantic relationships®, and the Bidirectional Encoder Rep-
resentations from Transformers (BERT) architecture for contextual
embeddings®'°. To test these models, often in comparison with human
abilities, much of the recent work has focused on probing tasks using
survey-like instruments or benchmark evaluations. We are now seeing
human-like performance on many tasks™'?, such as question answering
and textbook knowledge, while at the same time revealing major limita-
tions onskills such as mathematical reasoning” and cultural common
sense'. To address some of these limitations, a research area that has
seen extensive growth is the integration of knowledge in LLMs (also
known as retrieval augmented generation)”, as well as the alignment
of LLMs to given sets of values or opinions'.

Behaviour of the individual

Scholars have long understood language as a gateway to the mind.
Over the past century, the empirical study of language has begun to
reveal people’s motives, states, traits, social connections, identities and
more—often tapping into aspects of the self about which the person
is largely unaware". Today, a growing body of research is pointing to
waysinwhichlanguage canbe used to reliably quantify the individual
person’s psychology, ranging from moment-to-moment changes in
psychological states (such as emotions and cognitive processes) to
broad, holisticand systematic variations between people that are key
to defining who we are as people (for example, identity, personality,
values and lifestyles).

Personality

‘Personality’ refers to the relatively stable ways that individuals think,
feel and behave across time and contexts. Independently and together,
people’s traits, values and stories provide a general understanding of
who they are’®. Many, if not most, of these dimensions have important
links to natural language®.

In the field of personality, traits are distinct characteristics. The
dominanttraitapproachinacademic psychology is the Big Five model,
which assumes that most self-reported traits can be placed within a
five-factor space: openness, conscientiousness, extraversion, agreea-
bleness and neuroticism'%,

BOX1

Terminology

NLP: a field that combines computational linguistics with statistical
and machine learning models to understand language.

Dictionary-based (or lexicon-based) methods: text analysis
approaches that rely on mappings between words and a set of
corresponding predefined categories.

Machine learning: a group of computational and statistical
modelling approaches that enable computer systems to recognize
patterns and generalize from existing data to new data without
explicit instructions.

Neural networks (also referred to as deep learning): a class of
machine learning models, loosely based on interconnected
neurons, that rely on connected layers of linear and nonlinear
transformations of data and whose parameters are updated via the
backpropagation algorithm.

Text encoder: a model that transforms raw text into a numeric
representation that can then be used for analysis, clustering, input
to a text classifier and so on.

Representation learning: methods for transforming words or
entities into high-dimensional vectors in a way that captures their
contextual and semantic relationships.

Word embeddings: vector representations of words.

Contextual embeddings: word embeddings that differ on the basis
of the context of the word.

LLMs: models based on contextual embeddings that can be used to
generate text.

Latent Dirichlet allocation: a statistical model to automatically
extract topics from text.

The majority of NLP-driven personality research is built on this
framework. For example, computational studies of language that cor-
relate self-reported Big Five scores often report that people scoring
higher in extraversion tend to talk more, focus more on social topics
and use a greater number of words indicative of positive emotions™ .
Other studies of personality disorders adopt a similar approach, bring-
ing NLP methods to bear on the psychological mechanisms underlying
maladaptive interpersonal traits®* 2, Other NLP work can differentiate
psychological constructs such as empathy from compassion” and
depression from loneliness®,

Earlier work often used established psychological measures of
language paired with machine learning algorithms to estimate per-
sonality traits from real-world data®, but over the years such meth-
ods have become heavily vocabulary driven, ranging from the use of
n-grams to topics derived by topic modelling methods such as latent
Dirichlet allocation® to the most recent innovations in contextual
embeddings®. Future work will probably see similar advances as it
extends such methods to more objective forms of personality assess-
ment, such as behavioural and life outcome data®**.

Values and behaviours

Arelated approach to personality explores how people navigate their
daily livesin terms of goals, motives, values and personal strategies. Per-
sonal values represent the core beliefs and guiding principles that shape
anindividual’s attitudes, behaviours and decision-making processes.
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Fig.1|Layers of human behaviours. An overview of the paper, covering the inference of behaviours at the individual, interpersonal, group and society levels.

To uncover values from language, earlier NLP methods relied on
analyses of open-ended responses to prompts eliciting personal con-
cerns® or those crafted to promote reflections on personal values™.
Alternative approaches consist of topic modelling methods, such asthe
meaning extraction method*®, which relies on identifying patternsin
word co-occurrence to reveal recurring themes within texts. Compared
with traditional forced-choice surveys, this open vocabulary approach
often results in a set of value dimensions that exhibit meaningful cor-
relations with awider range of everyday behaviours as measuredin both
behaviours extracted from self-reflective journaling and naturalistic
instances of social media behaviours®. Subsequent work aimed to
develop general-purpose dictionary-based resources®?%, or more
complex representations using deep-learning-based text encoders®*°.

Similar strategies are currently underway for abstracting individ-
ual patterns of behaviour (for example, voting behaviours and health
behaviours) at the community and society levels. For instance, analyses
of language through social media can reveal high-level institutional
processes such as political leadership*, or general patterns of human
behaviour that reflect adaptations to external demands and pressures,
such as mental health support-seeking*, addiction* and violence**.

Thinking styles

Justas peopledifferintheir traits and broader values, they also vary inthe
ways they think. Thinking styles canbereflected in the degree towhich
peoplerely onlogical and analytic thinking and the degree to which they
naturally constructstories to understand their world. Psychologically,
the ability to build a coherent narrative about who they are and where
they came from is generally associated with better adjustment’. There
isavastliterature about the value of writing about emotional upheavals
and how writing narratives about these experiences is associated with
improved psychological and physical health* %,

Early research onlanguage-based markers of narrative by Graesser
and his colleaguesrelied on latent semantic analysis and other methods
toidentify features of coherent narratives*. His later development of
Coh-Metrix*° popularized his technique to identify narrativity, which
was helpful in the assessment of texts and in early attempts to evalu-
atenarrativity instudent essays. Other researchers have attempted to
identify narrative progression by tracking the emotional arcs within
stories”*2, Another approach has been to focus more on the cognitive
shifts that unfold over the course of a story with particular focus onthe
language of a story’s climax®’.

The development of LLMs is ushering in a new perspective on
human-like intuitive behaviours™, including the construction of narra-
tives™ ™ that are oftenindistinguishable from stories written by people.
Fromapsychology perspective, the challenge for future research will
beto determine what features of astory best reflect the personality of

the writer—and, more broadly, the degree to which future LLMs write
our stories for us.

Affect

Affect hasanessential role in shaping our decisions, relationships and
overall well-being, influencing the way we perceive and interact with the
world. Numerous studies in psychology have shown how emotion lan-
guage’®*, self-reported feelings, the neural substrate of emotions®*®!
and perceptions of emotion by others are related®.

Researchin NLP has primarily focused on emotionrecognitionand
sentiment analysis®’, where ‘sentiment’ is defined as a coarse division
of positive and negative affective states. The two seminal papers in
sentimentanalysis were simultaneously publishedin 2002 and involved
categorizing reviews on the basis of their sentiment®*®, building off
earlier work that explored the sentiment of phrases using syntactic
rules®®. Soon afterwards, the first large digital lexicons of emotions
(WordNet Affect®) and sentiment (SentiWordNet®®) were developed,
and annotated datasets have been introduced®.

Earlier research heavily relied onlexicons used in conjunction with
rule-based systems checking for the presence of affective words™ 72,
They were soon replaced by statistical methods trained on datadrawn
from productreviews, blogs or other online sources. Much of this work
hasleveraged neural approaches, including distributional embeddings
and techniques for representation learning, which involve methods
for transforming words or entities into high-dimensional vectorsina
way that captures their contextual and semantic relationships, includ-
ing, among others, algorithms such as recurrent neural networks”,
attention’” and adversarial learning’. Work currently underway is
considering affective reasoning’”’%, which aims for a deeper under-
standing of the implications of affective state, as well as the integration
of sentiment and emotion analysis methods into end applications or
even emotion-aware robots’**’.

Mental health
A separate set of methods has emerged to infer psychological states
related to mental health. In the 1980s, researchers first attempted to
infer mental health diagnoses through computational methods®.
Laboratory-based studies of language associated with depression con-
tinuedinto the 2000s, with studiesin psychology using computational
tools*? to build on and confirm earlier findings on the heightened use
of first-person singular pronouns by individuals with depression®.
In the past decade, the quantity of data and the power of NLP
tools have increased. Three studies stand out as highly influential to
this shift: a data-driven analysis of college-related essays written by
students who experienced depression, where ‘I’ words were found
to be the best predictors of depression®; a study demonstrating the
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feasibility of predicting depression prior to its onset using Twitter
dataand the potential value of tools to identify people who need to be
connected to help®*; and finally, a new data collection method where
pattern-matching was used to identify social media users with clinical
depression®,

Building on these studies, work in NLP has expanded the scope of
language sources and methods to identify depression and anxiety®®,
including the use of NLP and temporal models to explore behavioural
patterns on mental health forums during major events®*, Recent work
has adopted modern NLP methods based on contextualized embed-
dings® and adopted additional signals beyond text, such as temporal
information when detecting depression®** and audio for the detection
of stress’”. Studies are also underway to use modern methods for both
moreaccurate and more interpretable mental health predictions™ .

Interpersonal behaviour

Language is contextual. In conversations with others, we adjust our
speaking style depending on our shared backgrounds, our relative
status, our conversational goals and the degree to which we like or trust
them. Itis often not what we say that conveys these styles but how we
speak.Indeed, some of the most promising advances in computational
language research have explored markers of status and leadership,
deception and the dynamics of close relationships.

Status and leadership

Humans formsocial hierarchies that help them to negotiate their inter-
actions with others. We naturally defer to those with higher status and,
at the same time, adjust our interactions with people of lower status.
Evenwhen two strangers talk for the first time, they quickly candiscern
their relative status.

Some languages, such as Korean and Japanese, have linguistic
markers of status embedded so deeply that it is almost impossible for
two strangers to have a conversation without knowing their relative
status”’®, In most other common languages (Hindi, Russian, Manda-
rin and Spanish), relative status can be conveyed through the use of a
formal versusinformal ‘you’, adistinction that has largely disappeared
in English”.

Studies in psychology have discovered subtle word markers of
social status in analyses of everyday spoken interactions as well as
written correspondence. Across multiple studies of two-personinterac-
tions, the individual who uses fewer first-person singular pronouns (for
example, T,‘me”and ‘my’) is the one with higher social status'°°. As the
disparity inrelative power increases, so does the differencein ‘I'-word
usage'”’. Lower rates of ‘I’ words are also apparent in texts written by
people who are older and have higher education'®.

Closely allied with status and power is the nature of leadership.
Consistent with the status hierarchy findings, people who assume
leadership positions drop in their use of ‘I’ words. Interestingly, this
pattern holds for people who are randomly assigned to leadership
positions in laboratory studies'’. In recent years, many NLP studies
have been conducted using big datamethods to study CEOs’ language
during quarterly earnings calls'® or the language of US presidents or
other world leaders over time'**'%; these studies have confirmed the
previous findings on the use of first-person pronouns.

Deception

Interpersonal relationships, including status and leadership, are often
based on trust, but deceptive interactions are also common. One of
the earliest comprehensive analyses of computational methods for
deception detection identified as many as 79 linguistic deception
cues and obtained a robust analysis of verbal deceptive indicators'*®.
Following those early studies, later work in NLP and social psychol-
ogy has covered both in-person and online deception. Interpersonal
deception has been studied in personal essays'”'%®, legal statements'”’
and police interrogations™®. Online deception studies have covered

avariety of communication outlets, including email™, social media
platforms', dating profiles', identity deception™*, consumer review
sites', online games"® and news"”"", Recent developments in LLMs
have motivated the need for computational methods that can also
detect machine-generated deception™.

Early NLP approaches onautomatic deception detection focused
onstatistical text analysis toidentify verbal cues associated with decep-
tive behaviour, which included basic linguistic representations such
as counts of words and sentences, word diversity, positive and nega-
tive words and self-references'””'*, and more complex linguistic fea-
tures derived from syntactic trees and part-of-speech tags'*'*2, Other
research explored the inclusion of psycholinguistic aspects related to
the deception process usinglexicon-based resources suchasthe LIWC
lexicon to build automatic deception models'**'**, Although most
approaches initially leveraged these linguistic cues using statistical
machine learning approaches to build deception detection models,
later work used deep learning approaches and word-vector representa-
tions (for example, word embeddings) to add semantic information.

Persuasion

A behaviour dimension orthogonal to trust and deception is per-
suasion, which involves an individual or entity trying to induce
another party (the persuadee) into believing or disbelieving anidea
or performing an action. The NLP community has beenincreasingly
interested in the automatic identification of persuasive discourse to
understand how people express and form opinions, how to represent
them and ultimately how to predict whether a given text is persuasive
ornot,inareas such as congressional debates, online debate forums
and news.

Early work focused on linguistic characteristics of persuasive text
to study what makes an argument convincing'>>'*, Other research
explored aspects related to the view holder and the audience, from
several perspectives, such as prior beliefs and personality’?”?*, More
recent work has addressed the task of generating persuasive dialogue
focusing on enhancing the persuasiveness of amessage. These systems
often seek to change users’ thoughts, opinions or behaviours through
natural conversations by influencing their cognitive and emotional
responses. Work on this area has incorporated aspects such as polite-
ness, empathy and emotion'” "' to improve users’ acceptance of spe-
cificarguments—forinstance, persuading individuals toimprove their
dietor healthbehaviours®>'*, participatein charity events™* or counter

vaccine misinformation'®.

Closerelationships

A central topicinthe social sciences involves close relationships. Some
of the earliest work on analysing language to identify how two people
are connecting with one another relied on the similarity of the content
of their speech. Later work focused on the linguistic style of speech,
assessed through the use of function words, including pronouns,
prepositions, articles and related short and frequently used words
that supplement and shape language content. By calculating the rela-
tive use of function words between two or more texts, it is possible to
determine the degree to which the texts match. Across multiple studies,
language style matching was applied to the language of two people to
determine the degree that they were socially connected”*"*%, or even
asapredictor of young dating relationships'®.

With the rise of social media platforms, NLP methods allow us
to track close relationships over months and years at a scale that was
unimaginable a decade ago. A recent study on thousands of social
media postsidentified and analysed the language of people who under-
went a major relationship breakup'°. Over 6,800 people who had
posted about their own breakup onabreakup subreddit were studied.
InFig. 2, the date of each person’s first post on the breakupis at week O.
All participants’ posts across all of Reddit from the year before to
the year after their first post were analysed and aggregated by week.
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words reflect words related to anxiety, nervousness or fear. ‘I’ words (self-focus)
arebased on first-person singular pronouns. The cognitive, anxiety and ‘I'-word
variables reflect the percentage of total words within each post, using language
dimensions based on the LIWC2015 dictionary.

Theredline depicts all Reddit posts, and the bluelinereflects only those
posts that were not in a relationship subreddit. The separate graphs
reflect analytic or logical thinking, cognitive processing or working
through thinking styles, anxiety and self-focus. Across the various text
dimensions, signs of theimpending breakup begin toemerge between
six weeks and four months before the breakup, and the effects last, on
average, for about six months after the first breakup post. The findings
highlight the power of computational methods to uncover patterns
over thousands of occurrences of a social behaviour, which was not
possible before.

Behaviour of the group and society

People naturally seek out groups. Across the lifespan, we routinely join
and often leave multiple in-person and virtual groups. With the advent
oflarge-scale text analysis, we can now track the language of peoplein
virtual groups in a way that reveals some of the internal dynamics of
group processes—including the moral values and norms of the group,
their ideological behaviours or even how different groups compare
among themselves.

Morality

Moral judgements, values and norms are not just individual cognitive
functionsbutare deeply entrenched inthe fabric of groupinteractions
and collective identities. Social identity theory finds that group mem-
bership shapes individual moral perspectives*'. Moral foundations
theory posits that moral reasoning is influenced by innate, modular
foundations that are heavily shaped by cultural and social contexts'**.
The group-level dynamics of morality have also been explored through
the lens of intergroup conflict, cooperation and contact. The clas-
sic Robbers Cave experiment highlighted how completely randomly
assigned social allegiances can sway moral decisions and intergroup
attitudes'; recent work onintergroup contact has additionally shown
that moral judgements are often influenced by our exposure to more
diverse social groups™*'*.

Building on this understanding of morality within group psychol-
ogy, linguistic analysis offers a nuanced lens to detect and interpret
the moralleanings of individuals and groups. The way people express
themselves—their choice of words, metaphors and narratives—can
be an indicator of their moral frameworks and allegiances'*®. With
advancementsin NLP technology, there hasemerged avariety of mod-
els for automatically categorizing the types of moral foundations
underlying a piece of text'”"*®, These computational linguistic analyses
have used diverse text sources, including partisan news articles'****°,
microblog political discourse™ and Twitter®*>*, Further research
extends from general coarse-grained moral value classification to
more nuanced analyses of stances towards political entities' and
cross-domain classification of moral values™. These advances in NLP
research on morality are paving the way for high-level analyses of how
morality changes"’” and impacts society™.

Ideological behaviour

Morality can shape ideological behaviour, guiding individuals in their
adherence to principles and belief systems. Researchers have tracked
how ideological leanings influence the ways people process informa-
tion'’. In the early stages, political scientists recognized the untapped
potential of NLP methods in harnessing text as aninvaluable datasource.
This led to a substantial integration of computational methods into
political analysis'*®**, a confluence of disciplines that fostered the emer-
gence of arobust ‘text-as-data’ community within political science'**'®*,

Early work on the inference of policy positions through textual
analysisinvolved ameticulous examination of political texts, focusing
on topic detection and the analysis of stylistic elements that shape
the political narrative. Resources such as legislative speech', Senate
press releases'*® and electoral manifestos'® have been instrumental
in these endeavours. With the availability of various political texts,
NLP models have enabled automatic classification ofideology in news
articles'®®', political speech”*”* and even social media posts'**"?and
academic writings'”.

Currently, various laboratories are pretraining specific language
models on political text corpora to enable better ideology identifica-
tion'*'”, together with techniques to make models perform better on
unfamiliar text sources"®. The inherently metaphor-richand emotion-
ally charged nature of political rhetoric poses unique challenges for
NLP technologies'”’, necessitating the development of specialized
models and approaches”®'”°, Additionally, there is growing concern
regarding the ethics of LLM usage. One exampleis political microtarget-
ing with LLMs to generate personalized persuasive text'***°, Another
aspectis that these models might be limited due to ideological biases
presentin NLP models’ training data. Studies have revealed that these
biases, often rooted in natural text written by humans with different
ideologies, have leaked into NLP model behaviours, affecting their
accuracy'® and fairness'2.

Cross-cultural differences
People’s cultural backgrounds canshape their values, attitudes and ide-
ology inways thatimpact behaviour®*'®*, Computational cross-cultural
analyses of language have led to many insights into cultural differences,
addressing slang terms'™ or emotional expressions and markers of
depression'*®, the linguistic features of politeness and taboos'”, expec-
tations and stereotypes'®, and the attributes of social roles'®. It is worth
noting that many studies applying NLP methods to study human behav-
ioursare limited tolanguage that comes solely from WEIRD (Western,
educated, industrialized, rich and democratic) samples that are not
representative of theworld’s population'®. This can have a detrimental
effect on the generalizability of research findings even in the field of
artificial intelligence™".

Topic modelling analyses of open-ended surveys and blogs have
found that cultural background has a critical role in moderating the
relationships between values and everyday activities'”>. For instance,
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Fig.3illustrates the values that were identified in these analyses, along
with their association with culture, gender and age as captured through
alinear regression model where value theme usage was predicted from
only author-level demographic variables.

Lexicon-based approaches have also been used to study short-text
responses from respondents in a variety of countries', finding that
measurements of many of the values expressed through language
were positively correlated with quantitative data obtained from the
World Values Survey™*. Later work analysed the information encoded
in pretrained multilingual language models such as multilingual BERT’
andfound that these models also weakly capture cross-cultural differ-

ences as measured by the World Values Survey'”.

Challenges and future directions

Our ability to analyse large corpora of text across millions of peopleis
providing a tool to help us to understand and predict human behav-
iour with a precision and at a scale never previously imagined. We are
witnessing a paradigm shiftinthe computer and social sciences that is
reverberating across societies all over the world"°. Many of our recent
discoveries raise both exciting and sometimes disturbing questions
about the very nature of data, theory, privacy and the roles language

analyses may have in our lives'”.

Data use and unintended consequences

Theinventions of the printing press and the automobile transformed
the entire world. Despite their great advancements at the time, these
breakthroughs ultimately contributed to wars, nationalism and cultural
polarization, and climate change. The dual-use problem—wherein an
invention leads to unintended uses that can cause great harm—isinher-
entin almost every finding we have discussed in this Review. We are
now gradually learning how to handle technology with dual use. The
active and growing field of ethical artificial intelligence'® is uncovering
the weak points of our technologies with strategies to address them.
Among others, this includes clear ethical statements associated with
research publications and, at a broader level, governmental regula-
tions regarding how personal data can and cannot be used'”’ or what
are unacceptable applications of technology?*°.

Data collection traps
Data-hungry big dataand deep learning approaches require extremely
large-scale datasets, which allow for the training of complex and

powerful models. Collecting data at scale from social media APIs often
resultsinunreliable content that may not represent the platform or the
populationatlarge®®. Because of the difficulty of checking the quality
of suchlarge datasets, a host of problems are likely, including accepting
data that are identifiable’®?, unreliable?®* and explicitly prohibited®**.
Moving forward, privacy concerns in text analysis may become even
more difficult to trace given the potential for LLMs to leak personally
identifying information that was presentin their training data, neces-
sitatingtoolsthat are able to help individuals to understand how their

data are being used to train these models*®.

Bias

Word representations®*® and language models®” have been shown to
replicate and even amplify?*® the social biases and stereotypes that exist
intheir training data. These biases can be particularly strong for certain
demographicgroups, such asintersectional identities**”. When mod-
els are trained to infer human behaviour, underlying bias in the train-
ing data (either for the downstream models or for lower-level models
such as LLMs) canlead to unreliable models that perform poorly or are
even harmful when applied to certain groups of people. For example,
language-based classifiers to predict whether users have depression
or post-traumatic stress disorder were found to perform on par with
classifiers that used inferred age as the only input variable*°. Awareness
of these potential confounds and the resulting model and data biases
canhelp toaddress them, so that the NLP models of human behaviour
do not discriminate and are beneficial to all users.
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Interpretability and transparency

NLP systems are becoming increasingly good at predicting human
behaviours. However, as their predictive powers increase, our ability
to understand the inner workings of our tools is decreasing. This is
particularly problematic when it comestoinferringhumanbehaviour
from language. A simple behaviour prediction (for example, that a
particular piece of text is deceptive) does not provide any insights into
what linguistic features may be driving this prediction. Digging deeply
into the algorithm for deception detection may yield the finding that
the text was particularly lowin‘I’words. This would be an unsatisfying
answer unless we knew that ‘I’ words signal self-reflection, something
that deceptive speakers avoid. As we move forward, itisimportant to
acknowledge thatinterpretable models contribute to fairness, account-
ability and ethical deployment and facilitate compliance with regula-
tions and ethical standards, especially in fields where clear explanations
are crucial (such as health care).

Connecting social and computer science

On the surface, social and computer scientists are interested in lan-
guage for similar reasons. Both believe that understanding the ways
people use language can help us to understand and predict human
behaviour. Despite these seemingly similar views, collaborations
between these disciplines can often be complicated. Most social psy-
chologists, for example, mainly focus on people’s behaviours and use
language as a way of understanding how people think and feel. By
contrast, most computer scientists aim to predict behaviours—that
is, whereas the psychologist wants to understand the behaviour, the
computer scientist wants to predict it.

A good example of the different approaches concerns the differ-
ent ways women and men use common function words. Counter to
many people’s expectations, women use more ‘I’ words, social words
(for example, ‘he’, ‘she’ and ‘they’) and cognitive words (for example,
‘think’,‘wonder’ and ‘understand’) than men do. Men, by contrast, tend
to use more articles (‘a’, ‘an’ and ‘the’) and prepositions (for example,
‘to’, ‘of” and ‘for’) than women. Interestingly, there are very few sex
differences for ‘we’ words and emotion words®". For a psychologist,
thisinformation tells ushow women and men differinlooking at their
worlds. Women tend to be more self-reflective, socially oriented and
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cognitively engaged about social topics. Men are more focused on
objects and things (articles and prepositions are typically used when
referring to concrete nouns). Computer scientists, however, look at
these results and ask whether these groups of words will help their
predictionsinidentifying the gender of the personwho generated the
written or spoken text. Working together, social and computer scien-
tists can maximize their understanding of language and prediction of
behaviour at the same time.

On the horizon, we see the new wave of research brought up by
the rise of LLMs, which are increasingly entering many areas of life.
They are bringing a new set of questions that consider not only human
language but also the language automatically generated by the LLMs.
In addition to using these models to infer human behaviour®?2"*, we
increasingly see methods referred to as ‘prompting’ and ‘probing’
that borrow strategies produced by decades of research oninferring
human behaviour from language to gaininsightsinto the NLP systems
themselves”>*'°, We are thus continuing the virtuous cycle of discovery:
the early workin psychology has fuelled research in NLP, whichinturn
has led to new discoveries in psychology, which are now being used
to gain new insights into the NLP systems themselves. With the two
fieldsinforming and propelling each other forward, the future of this
research spaceis bright.
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