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How developments in natural language 
processing help us in understanding  
human behaviour

Rada Mihalcea    1 , Laura Biester    2, Ryan L. Boyd3, Zhijing Jin    4, 

Veronica Perez-Rosas1, Steven Wilson    5 & James W. Pennebaker    6

The ways people use language can reveal clues to their emotions, social 

behaviours, thinking styles, cultures and the worlds around them. In the past 

two decades, research at the intersection of social psychology and computer 

science has been developing tools to analyse natural language from written 

or spoken text to better understand social processes and behaviour. 

The goal of this Review is to provide a brief overview of the methods 

and data currently being used and to discuss the underlying meaning of 

what language analyses can reveal in comparison with more traditional 

methodologies such as surveys or hand-scored language samples.

Language is the common currency of most human communication. We 

have all overheard snippets of conversation between two strangers while 

out walking or sitting in a restaurant or on a plane. In very little time, we 

can detect the speakers9 general ages, possible relationship, education 

and social class, and much more. We also can determine the conversa-

tional topic and even the ways the people are thinking. In fact, these 

same clues are apparent in people9s text messages, personal emails and 

transcripts from random Zoom meetings. Many of the same linguistic 

signals we hear can also be detected through computational analyses.

Over the past 20 years, thousands of studies have documented that 

everyday language can tell us about the content of people9s thoughts; their 

relationships with their audience; their motives, goals and values; and 

essential aspects of their personality. These insights now go far beyond 

a single person or conversation. Through the analysis of social media and 

other large language datasets, we can begin to understand small groups, 

organizations and entire societies over days, years or even centuries.

The links between language, psychological state 
and behaviour
There is a long philosophical and scientific history that has attempted 

to disentangle the distinctions between language and thought1. People 

often talk about issues they think about. At the same time, the mere act 

of verbalizing issues can influence the ways people think about those 

issues. One common approach, the attention/language model, posits 

that people naturally talk about objects, people, emotions or events to 

which they are attending. If people hear or read about a disease, they 

often report feeling sensations of the disease and are more likely to visit 

a physician to see whether they have the disease (for example, when 

President Gerald Ford9s popular wife, Betty, was diagnosed with breast 

cancer, there was a surge of women who subsequently were tested for 

breast cancer2). If people in your social network mention losing weight, 

buying a particular brand of clothing or liking a particular political 

candidate, the odds of you thinking about these issues and changing 

your behaviours go up accordingly3.

It is a small leap to understand how the language of individual 

people or even groups of people can provide clues to their thoughts. 

Hungry people tend to talk about food; friends who are madly in love 

have difficulty not talking about it. Just as language can reflect our 

thoughts, our behaviours are often driven by both our thoughts and 

language. Language, psychological state, environment and behaviours 

are intertwined4. As researchers, if we are able to track people9s psychol-

ogy through natural language, we are better able to understand who 

they are, what they are thinking and how they might behave.

The psychological and computational 
approaches to language
For the purposes of this paper, we focus only on digitized verbal lan-

guage4either transcribed oral or written. Language, of course, is 
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The majority of NLP-driven personality research is built on this 

framework. For example, computational studies of language that cor-

relate self-reported Big Five scores often report that people scoring 

higher in extraversion tend to talk more, focus more on social topics 

and use a greater number of words indicative of positive emotions21323. 

Other studies of personality disorders adopt a similar approach, bring-

ing NLP methods to bear on the psychological mechanisms underlying 

maladaptive interpersonal traits24326. Other NLP work can differentiate 

psychological constructs such as empathy from compassion27 and 

depression from loneliness28.

Earlier work often used established psychological measures of 

language paired with machine learning algorithms to estimate per-

sonality traits from real-world data29, but over the years such meth-

ods have become heavily vocabulary driven, ranging from the use of 

n-grams to topics derived by topic modelling methods such as latent 

Dirichlet allocation30 to the most recent innovations in contextual 

embeddings31. Future work will probably see similar advances as it 

extends such methods to more objective forms of personality assess-

ment, such as behavioural and life outcome data32,33.

Values and behaviours
A related approach to personality explores how people navigate their 

daily lives in terms of goals, motives, values and personal strategies. Per-

sonal values represent the core beliefs and guiding principles that shape 

an individual9s attitudes, behaviours and decision-making processes.

infinitely complex and can be broken down by letter, morpheme, 

word, phrase, sentence, thought unit, paragraph or entire text. Rather 

than focusing on language itself, our primary interest is in under-

standing people9s everyday thinking patterns, emotions and social 

connections through their use of natural language. Computationally, 

this generally means collecting and analysing words from as many 

people as possible. In this paper, our goal is to review the space of 

methods for inferring human behaviour from language in a way that 

is relevant to both psychologists and computer scientists, particularly 

to the ones working in natural language processing (NLP; see Box 1 

for terminology)4a field that combines computational linguistics 

with statistical and machine learning models to understand and 

generate language. The paper therefore covers lines of work from 

both disciplines, eventually converging towards a unified approach 

to synthesize insights on human behaviour through the analysis of 

language. Figure 1 is an overview of our paper, moving from people to 

the language they use to the inference of behaviours at the individual, 

interpersonal and group levels.

Developments in NLP
The recent growth of NLP has been primarily driven by advancements 

in large language models (LLMs). These LLMs, including GPT4 (ref. 5), 

Llama6 and Mistral7, are trained on massive datasets of text, images and 

code, leading to major advances in our ability to perform automatic 

language understanding and generation, often across multiple lan-

guages. Breakthroughs in dialogue systems and the ability to generate 

human-quality conversation have been facilitated by techniques such 

as word embeddings, which map words to high-dimensional vectors 

capturing semantic relationships8, and the Bidirectional Encoder Rep-

resentations from Transformers (BERT) architecture for contextual 

embeddings9,10. To test these models, often in comparison with human 

abilities, much of the recent work has focused on probing tasks using 

survey-like instruments or benchmark evaluations. We are now seeing 

human-like performance on many tasks11,12, such as question answering 

and textbook knowledge, while at the same time revealing major limita-

tions on skills such as mathematical reasoning13 and cultural common 

sense14. To address some of these limitations, a research area that has 

seen extensive growth is the integration of knowledge in LLMs (also 

known as retrieval augmented generation)15, as well as the alignment 

of LLMs to given sets of values or opinions16.

Behaviour of the individual
Scholars have long understood language as a gateway to the mind. 

Over the past century, the empirical study of language has begun to 

reveal people9s motives, states, traits, social connections, identities and 

more4often tapping into aspects of the self about which the person 

is largely unaware17. Today, a growing body of research is pointing to 

ways in which language can be used to reliably quantify the individual 

person9s psychology, ranging from moment-to-moment changes in 

psychological states (such as emotions and cognitive processes) to 

broad, holistic and systematic variations between people that are key 

to defining who we are as people (for example, identity, personality, 

values and lifestyles).

Personality
8Personality9 refers to the relatively stable ways that individuals think, 

feel and behave across time and contexts. Independently and together, 

people9s traits, values and stories provide a general understanding of 

who they are18. Many, if not most, of these dimensions have important 

links to natural language4.

In the field of personality, traits are distinct characteristics. The 

dominant trait approach in academic psychology is the Big Five model, 

which assumes that most self-reported traits can be placed within a 

five-factor space: openness, conscientiousness, extraversion, agreea-

bleness and neuroticism19,20.

BOX 1

Terminology
NLP: a field that combines computational linguistics with statistical 

and machine learning models to understand language.

Dictionary-based (or lexicon-based) methods: text analysis 

approaches that rely on mappings between words and a set of 

corresponding predefined categories.

Machine learning: a group of computational and statistical 

modelling approaches that enable computer systems to recognize 

patterns and generalize from existing data to new data without 

explicit instructions.

Neural networks (also referred to as deep learning): a class of 

machine learning models, loosely based on interconnected 

neurons, that rely on connected layers of linear and nonlinear 

transformations of data and whose parameters are updated via the 

backpropagation algorithm.

Text encoder: a model that transforms raw text into a numeric 

representation that can then be used for analysis, clustering, input 

to a text classifier and so on.

Representation learning: methods for transforming words or 

entities into high-dimensional vectors in a way that captures their 

contextual and semantic relationships.

Word embeddings: vector representations of words.

Contextual embeddings: word embeddings that di�er on the basis 

of the context of the word.

LLMs: models based on contextual embeddings that can be used to 

generate text.

Latent Dirichlet allocation: a statistical model to automatically 

extract topics from text.

http://www.nature.com/nathumbehav
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To uncover values from language, earlier NLP methods relied on 

analyses of open-ended responses to prompts eliciting personal con-

cerns34 or those crafted to promote reflections on personal values35. 

Alternative approaches consist of topic modelling methods, such as the 

meaning extraction method36, which relies on identifying patterns in 

word co-occurrence to reveal recurring themes within texts. Compared 

with traditional forced-choice surveys, this open vocabulary approach 

often results in a set of value dimensions that exhibit meaningful cor-

relations with a wider range of everyday behaviours as measured in both 

behaviours extracted from self-reflective journaling and naturalistic 

instances of social media behaviours35. Subsequent work aimed to 

develop general-purpose dictionary-based resources37,38, or more 

complex representations using deep-learning-based text encoders39,40.

Similar strategies are currently underway for abstracting individ-

ual patterns of behaviour (for example, voting behaviours and health 

behaviours) at the community and society levels. For instance, analyses 

of language through social media can reveal high-level institutional 

processes such as political leadership41, or general patterns of human 

behaviour that reflect adaptations to external demands and pressures, 

such as mental health support-seeking42, addiction43 and violence44.

Thinking styles
Just as people differ in their traits and broader values, they also vary in the 

ways they think. Thinking styles can be reflected in the degree to which 

people rely on logical and analytic thinking and the degree to which they 

naturally construct stories to understand their world. Psychologically, 

the ability to build a coherent narrative about who they are and where 

they came from is generally associated with better adjustment18. There 

is a vast literature about the value of writing about emotional upheavals 

and how writing narratives about these experiences is associated with 

improved psychological and physical health45348.

Early research on language-based markers of narrative by Graesser 

and his colleagues relied on latent semantic analysis and other methods 

to identify features of coherent narratives49. His later development of 

Coh-Metrix50 popularized his technique to identify narrativity, which 

was helpful in the assessment of texts and in early attempts to evalu-

ate narrativity in student essays. Other researchers have attempted to 

identify narrative progression by tracking the emotional arcs within 

stories51,52. Another approach has been to focus more on the cognitive 

shifts that unfold over the course of a story with particular focus on the 

language of a story9s climax53.

The development of LLMs is ushering in a new perspective on 

human-like intuitive behaviours54, including the construction of narra-

tives55357 that are often indistinguishable from stories written by people. 

From a psychology perspective, the challenge for future research will 

be to determine what features of a story best reflect the personality of 

the writer4and, more broadly, the degree to which future LLMs write 

our stories for us.

Affect
Affect has an essential role in shaping our decisions, relationships and 

overall well-being, influencing the way we perceive and interact with the 

world. Numerous studies in psychology have shown how emotion lan-

guage58,59, self-reported feelings, the neural substrate of emotions60,61 

and perceptions of emotion by others are related62.

Research in NLP has primarily focused on emotion recognition and 

sentiment analysis63, where 8sentiment9 is defined as a coarse division 

of positive and negative affective states. The two seminal papers in 

sentiment analysis were simultaneously published in 2002 and involved 

categorizing reviews on the basis of their sentiment64,65, building off 

earlier work that explored the sentiment of phrases using syntactic 

rules66. Soon afterwards, the first large digital lexicons of emotions 

(WordNet Affect67) and sentiment (SentiWordNet68) were developed, 

and annotated datasets have been introduced69.

Earlier research heavily relied on lexicons used in conjunction with 

rule-based systems checking for the presence of affective words70372. 

They were soon replaced by statistical methods trained on data drawn 

from product reviews, blogs or other online sources. Much of this work 

has leveraged neural approaches, including distributional embeddings 

and techniques for representation learning, which involve methods 

for transforming words or entities into high-dimensional vectors in a 

way that captures their contextual and semantic relationships, includ-

ing, among others, algorithms such as recurrent neural networks73, 

attention74,75 and adversarial learning76. Work currently underway is 

considering affective reasoning77,78, which aims for a deeper under-

standing of the implications of affective state, as well as the integration 

of sentiment and emotion analysis methods into end applications or 

even emotion-aware robots79,80.

Mental health
A separate set of methods has emerged to infer psychological states 

related to mental health. In the 1980s, researchers first attempted to 

infer mental health diagnoses through computational methods81. 

Laboratory-based studies of language associated with depression con-

tinued into the 2000s, with studies in psychology using computational 

tools82 to build on and confirm earlier findings on the heightened use 

of first-person singular pronouns by individuals with depression83.

In the past decade, the quantity of data and the power of NLP 

tools have increased. Three studies stand out as highly influential to 

this shift: a data-driven analysis of college-related essays written by 

students who experienced depression, where 8I9 words were found 

to be the best predictors of depression82; a study demonstrating the 

• Personality and individual di�erences
• Values and behaviours
• A�ect 
• Mental health

• Morality
• Ideological behaviour
• Cross-cultural di�erences

• Status and leadership
• Deception
• Persuasion
• Close relationships

Assignments
Blogs
Digital conversations
Live conversations
Phone conversations
Text messages
Reddit
X (Twitter)

Behaviour of the individual

Interpersonal behaviour

Behaviour of the group and society

Fig. 1 | Layers of human behaviours. An overview of the paper, covering the inference of behaviours at the individual, interpersonal, group and society levels.
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feasibility of predicting depression prior to its onset using Twitter 

data and the potential value of tools to identify people who need to be 

connected to help84; and finally, a new data collection method where 

pattern-matching was used to identify social media users with clinical 

depression85.

Building on these studies, work in NLP has expanded the scope of 

language sources and methods to identify depression and anxiety86, 

including the use of NLP and temporal models to explore behavioural 

patterns on mental health forums during major events87,88. Recent work 

has adopted modern NLP methods based on contextualized embed-

dings89 and adopted additional signals beyond text, such as temporal 

information when detecting depression90,91 and audio for the detection 

of stress92. Studies are also underway to use modern methods for both 

more accurate and more interpretable mental health predictions93396.

Interpersonal behaviour
Language is contextual. In conversations with others, we adjust our 

speaking style depending on our shared backgrounds, our relative 

status, our conversational goals and the degree to which we like or trust 

them. It is often not what we say that conveys these styles but how we 

speak. Indeed, some of the most promising advances in computational 

language research have explored markers of status and leadership, 

deception and the dynamics of close relationships.

Status and leadership
Humans form social hierarchies that help them to negotiate their inter-

actions with others. We naturally defer to those with higher status and, 

at the same time, adjust our interactions with people of lower status. 

Even when two strangers talk for the first time, they quickly can discern 

their relative status.

Some languages, such as Korean and Japanese, have linguistic 

markers of status embedded so deeply that it is almost impossible for 

two strangers to have a conversation without knowing their relative 

status97,98. In most other common languages (Hindi, Russian, Manda-

rin and Spanish), relative status can be conveyed through the use of a 

formal versus informal 8you9, a distinction that has largely disappeared 

in English99.

Studies in psychology have discovered subtle word markers of 

social status in analyses of everyday spoken interactions as well as 

written correspondence. Across multiple studies of two-person interac-

tions, the individual who uses fewer first-person singular pronouns (for 

example, 8I9, 8me9 and 8my9) is the one with higher social status100. As the 

disparity in relative power increases, so does the difference in 8I9-word 

usage101. Lower rates of 8I9 words are also apparent in texts written by 

people who are older and have higher education102.

Closely allied with status and power is the nature of leadership. 

Consistent with the status hierarchy findings, people who assume 

leadership positions drop in their use of 8I9 words. Interestingly, this 

pattern holds for people who are randomly assigned to leadership 

positions in laboratory studies100. In recent years, many NLP studies 

have been conducted using big data methods to study CEOs9 language 

during quarterly earnings calls103 or the language of US presidents or 

other world leaders over time104,105; these studies have confirmed the 

previous findings on the use of first-person pronouns.

Deception
Interpersonal relationships, including status and leadership, are often 

based on trust, but deceptive interactions are also common. One of 

the earliest comprehensive analyses of computational methods for 

deception detection identified as many as 79 linguistic deception 

cues and obtained a robust analysis of verbal deceptive indicators106. 

Following those early studies, later work in NLP and social psychol-

ogy has covered both in-person and online deception. Interpersonal 

deception has been studied in personal essays107,108, legal statements109 

and police interrogations110. Online deception studies have covered 

a variety of communication outlets, including email111, social media 

platforms112, dating profiles113, identity deception114, consumer review 

sites115, online games116 and news117,118. Recent developments in LLMs 

have motivated the need for computational methods that can also 

detect machine-generated deception119.

Early NLP approaches on automatic deception detection focused 

on statistical text analysis to identify verbal cues associated with decep-

tive behaviour, which included basic linguistic representations such 

as counts of words and sentences, word diversity, positive and nega-

tive words and self-references107,120, and more complex linguistic fea-

tures derived from syntactic trees and part-of-speech tags121,122. Other 

research explored the inclusion of psycholinguistic aspects related to 

the deception process using lexicon-based resources such as the LIWC 

lexicon to build automatic deception models123,124. Although most 

approaches initially leveraged these linguistic cues using statistical 

machine learning approaches to build deception detection models, 

later work used deep learning approaches and word-vector representa-

tions (for example, word embeddings) to add semantic information.

Persuasion
A behaviour dimension orthogonal to trust and deception is per-

suasion, which involves an individual or entity trying to induce 

another party (the persuadee) into believing or disbelieving an idea 

or performing an action. The NLP community has been increasingly 

interested in the automatic identification of persuasive discourse to 

understand how people express and form opinions, how to represent 

them and ultimately how to predict whether a given text is persuasive 

or not, in areas such as congressional debates, online debate forums 

and news.

Early work focused on linguistic characteristics of persuasive text 

to study what makes an argument convincing125,126. Other research 

explored aspects related to the view holder and the audience, from 

several perspectives, such as prior beliefs and personality127,128. More 

recent work has addressed the task of generating persuasive dialogue 

focusing on enhancing the persuasiveness of a message. These systems 

often seek to change users9 thoughts, opinions or behaviours through 

natural conversations by influencing their cognitive and emotional 

responses. Work on this area has incorporated aspects such as polite-

ness, empathy and emotion1293131 to improve users9 acceptance of spe-

cific arguments4for instance, persuading individuals to improve their 

diet or health behaviours132,133, participate in charity events134 or counter 

vaccine misinformation135.

Close relationships
A central topic in the social sciences involves close relationships. Some 

of the earliest work on analysing language to identify how two people 

are connecting with one another relied on the similarity of the content 

of their speech. Later work focused on the linguistic style of speech, 

assessed through the use of function words, including pronouns, 

prepositions, articles and related short and frequently used words 

that supplement and shape language content. By calculating the rela-

tive use of function words between two or more texts, it is possible to 

determine the degree to which the texts match. Across multiple studies, 

language style matching was applied to the language of two people to 

determine the degree that they were socially connected1363138, or even 

as a predictor of young dating relationships139.

With the rise of social media platforms, NLP methods allow us 

to track close relationships over months and years at a scale that was 

unimaginable a decade ago. A recent study on thousands of social 

media posts identified and analysed the language of people who under-

went a major relationship breakup140. Over 6,800 people who had 

posted about their own breakup on a breakup subreddit were studied. 

In Fig. 2, the date of each person9s first post on the breakup is at week 0.  

All participants9 posts across all of Reddit from the year before to 

the year after their first post were analysed and aggregated by week.  

http://www.nature.com/nathumbehav
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The red line depicts all Reddit posts, and the blue line reflects only those 

posts that were not in a relationship subreddit. The separate graphs 

reflect analytic or logical thinking, cognitive processing or working 

through thinking styles, anxiety and self-focus. Across the various text 

dimensions, signs of the impending breakup begin to emerge between 

six weeks and four months before the breakup, and the effects last, on 

average, for about six months after the first breakup post. The findings 

highlight the power of computational methods to uncover patterns 

over thousands of occurrences of a social behaviour, which was not 

possible before.

Behaviour of the group and society
People naturally seek out groups. Across the lifespan, we routinely join 

and often leave multiple in-person and virtual groups. With the advent 

of large-scale text analysis, we can now track the language of people in 

virtual groups in a way that reveals some of the internal dynamics of 

group processes4including the moral values and norms of the group, 

their ideological behaviours or even how different groups compare 

among themselves.

Morality
Moral judgements, values and norms are not just individual cognitive 

functions but are deeply entrenched in the fabric of group interactions 

and collective identities. Social identity theory finds that group mem-

bership shapes individual moral perspectives141. Moral foundations 

theory posits that moral reasoning is influenced by innate, modular 

foundations that are heavily shaped by cultural and social contexts142. 

The group-level dynamics of morality have also been explored through 

the lens of intergroup conflict, cooperation and contact. The clas-

sic Robbers Cave experiment highlighted how completely randomly 

assigned social allegiances can sway moral decisions and intergroup 

attitudes143; recent work on intergroup contact has additionally shown 

that moral judgements are often influenced by our exposure to more 

diverse social groups144,145.

Building on this understanding of morality within group psychol-

ogy, linguistic analysis offers a nuanced lens to detect and interpret 

the moral leanings of individuals and groups. The way people express 

themselves4their choice of words, metaphors and narratives4can 

be an indicator of their moral frameworks and allegiances146. With 

advancements in NLP technology, there has emerged a variety of mod-

els for automatically categorizing the types of moral foundations 

underlying a piece of text147,148. These computational linguistic analyses 

have used diverse text sources, including partisan news articles149,150, 

microblog political discourse151 and Twitter1523154. Further research 

extends from general coarse-grained moral value classification to 

more nuanced analyses of stances towards political entities155 and 

cross-domain classification of moral values156. These advances in NLP 

research on morality are paving the way for high-level analyses of how 

morality changes157 and impacts society158.

Ideological behaviour
Morality can shape ideological behaviour, guiding individuals in their 

adherence to principles and belief systems. Researchers have tracked 

how ideological leanings influence the ways people process informa-

tion159. In the early stages, political scientists recognized the untapped 

potential of NLP methods in harnessing text as an invaluable data source. 

This led to a substantial integration of computational methods into 

political analysis1603163, a confluence of disciplines that fostered the emer-

gence of a robust 8text-as-data9 community within political science160,164.

Early work on the inference of policy positions through textual 

analysis involved a meticulous examination of political texts, focusing 

on topic detection and the analysis of stylistic elements that shape 

the political narrative. Resources such as legislative speech165, Senate 

press releases166 and electoral manifestos167 have been instrumental 

in these endeavours. With the availability of various political texts, 

NLP models have enabled automatic classification of ideology in news 

articles168,169, political speech170,171 and even social media posts162,172 and 

academic writings173.

Currently, various laboratories are pretraining specific language 

models on political text corpora to enable better ideology identifica-

tion174,175, together with techniques to make models perform better on 

unfamiliar text sources176. The inherently metaphor-rich and emotion-

ally charged nature of political rhetoric poses unique challenges for 

NLP technologies177, necessitating the development of specialized 

models and approaches178,179. Additionally, there is growing concern 

regarding the ethics of LLM usage. One example is political microtarget-

ing with LLMs to generate personalized persuasive text163,180. Another 

aspect is that these models might be limited due to ideological biases 

present in NLP models9 training data. Studies have revealed that these 

biases, often rooted in natural text written by humans with different 

ideologies, have leaked into NLP model behaviours, affecting their 

accuracy181 and fairness182.

Cross-cultural differences
People9s cultural backgrounds can shape their values, attitudes and ide-

ology in ways that impact behaviour183,184. Computational cross-cultural 

analyses of language have led to many insights into cultural differences, 

addressing slang terms185 or emotional expressions and markers of 

depression186, the linguistic features of politeness and taboos187, expec-

tations and stereotypes188, and the attributes of social roles189. It is worth 

noting that many studies applying NLP methods to study human behav-

iours are limited to language that comes solely from WEIRD (Western, 

educated, industrialized, rich and democratic) samples that are not 

representative of the world9s population190. This can have a detrimental 

effect on the generalizability of research findings even in the field of 

artificial intelligence191.

Topic modelling analyses of open-ended surveys and blogs have 

found that cultural background has a critical role in moderating the 

relationships between values and everyday activities192. For instance, 

50

S
ta

n
d

a
rd

iz
e

d
 s

c
o

re

Analytic thinking Cognitive processes Anxiety Self-focus

45

40

35

30

–50 –25

Week

0 25 50 –50 –50–25

Week

–250

Week

025 2550 50 –50 –25

Week

0 25 50

P
e

rc
e

n
ta

g
e

 o
f 

to
ta

l
w

o
rd

s 
(%

)

13.0 P
e

rc
e

n
ta

g
e

 o
f 

to
ta

l
w

o
rd

s 
(%

)

P
e

rc
e

n
ta

g
e

 o
f 

to
ta

l
w

o
rd

s 
(%

)

0.25
6

7

8

0.30

0.35

13.5

14.0

14.5

Fig. 2 | Change in language usage from one year before to one year after a first 

breakup Reddit post. Analytic thinking is a factor-analytically derived metric of 

logical, formal and hierarchical thinking (scaled from 0 to 100). 8Cognitive9 refers 

to word dictionaries reflecting the act of 8working through9 a problem. Anxiety 

words reflect words related to anxiety, nervousness or fear. 8I9 words (self-focus) 

are based on first-person singular pronouns. The cognitive, anxiety and 8I9-word 

variables reflect the percentage of total words within each post, using language 

dimensions based on the LIWC2015 dictionary.
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Fig. 3 illustrates the values that were identified in these analyses, along 

with their association with culture, gender and age as captured through 

a linear regression model where value theme usage was predicted from 

only author-level demographic variables.

Lexicon-based approaches have also been used to study short-text 

responses from respondents in a variety of countries193, finding that 

measurements of many of the values expressed through language 

were positively correlated with quantitative data obtained from the 

World Values Survey194. Later work analysed the information encoded 

in pretrained multilingual language models such as multilingual BERT9 

and found that these models also weakly capture cross-cultural differ-

ences as measured by the World Values Survey195.

Challenges and future directions
Our ability to analyse large corpora of text across millions of people is 

providing a tool to help us to understand and predict human behav-

iour with a precision and at a scale never previously imagined. We are 

witnessing a paradigm shift in the computer and social sciences that is 

reverberating across societies all over the world196. Many of our recent 

discoveries raise both exciting and sometimes disturbing questions 

about the very nature of data, theory, privacy and the roles language 

analyses may have in our lives197.

Data use and unintended consequences
The inventions of the printing press and the automobile transformed 

the entire world. Despite their great advancements at the time, these 

breakthroughs ultimately contributed to wars, nationalism and cultural 

polarization, and climate change. The dual-use problem4wherein an 

invention leads to unintended uses that can cause great harm4is inher-

ent in almost every finding we have discussed in this Review. We are 

now gradually learning how to handle technology with dual use. The 

active and growing field of ethical artificial intelligence198 is uncovering 

the weak points of our technologies with strategies to address them. 

Among others, this includes clear ethical statements associated with 

research publications and, at a broader level, governmental regula-

tions regarding how personal data can and cannot be used199 or what 

are unacceptable applications of technology200.

Data collection traps
Data-hungry big data and deep learning approaches require extremely 

large-scale datasets, which allow for the training of complex and 

powerful models. Collecting data at scale from social media APIs often 

results in unreliable content that may not represent the platform or the 

population at large201. Because of the difficulty of checking the quality 

of such large datasets, a host of problems are likely, including accepting 

data that are identifiable202, unreliable203 and explicitly prohibited204. 

Moving forward, privacy concerns in text analysis may become even 

more difficult to trace given the potential for LLMs to leak personally 

identifying information that was present in their training data, neces-

sitating tools that are able to help individuals to understand how their 

data are being used to train these models205.

Bias
Word representations206 and language models207 have been shown to 

replicate and even amplify208 the social biases and stereotypes that exist 

in their training data. These biases can be particularly strong for certain 

demographic groups, such as intersectional identities209. When mod-

els are trained to infer human behaviour, underlying bias in the train-

ing data (either for the downstream models or for lower-level models 

such as LLMs) can lead to unreliable models that perform poorly or are 

even harmful when applied to certain groups of people. For example, 

language-based classifiers to predict whether users have depression 

or post-traumatic stress disorder were found to perform on par with 

classifiers that used inferred age as the only input variable210. Awareness 

of these potential confounds and the resulting model and data biases 

can help to address them, so that the NLP models of human behaviour 

do not discriminate and are beneficial to all users.

Interpretability and transparency
NLP systems are becoming increasingly good at predicting human 

behaviours. However, as their predictive powers increase, our ability 

to understand the inner workings of our tools is decreasing. This is 

particularly problematic when it comes to inferring human behaviour 

from language. A simple behaviour prediction (for example, that a 

particular piece of text is deceptive) does not provide any insights into 

what linguistic features may be driving this prediction. Digging deeply 

into the algorithm for deception detection may yield the finding that 

the text was particularly low in 8I9 words. This would be an unsatisfying 

answer unless we knew that 8I9 words signal self-reflection, something 

that deceptive speakers avoid. As we move forward, it is important to 

acknowledge that interpretable models contribute to fairness, account-

ability and ethical deployment and facilitate compliance with regula-

tions and ethical standards, especially in fields where clear explanations 

are crucial (such as health care).

Connecting social and computer science
On the surface, social and computer scientists are interested in lan-

guage for similar reasons. Both believe that understanding the ways 

people use language can help us to understand and predict human 

behaviour. Despite these seemingly similar views, collaborations 

between these disciplines can often be complicated. Most social psy-

chologists, for example, mainly focus on people9s behaviours and use 

language as a way of understanding how people think and feel. By 

contrast, most computer scientists aim to predict behaviours4that 

is, whereas the psychologist wants to understand the behaviour, the 

computer scientist wants to predict it.

A good example of the different approaches concerns the differ-

ent ways women and men use common function words. Counter to 

many people9s expectations, women use more 8I9 words, social words 

(for example, 8he9, 8she9 and 8they9) and cognitive words (for example, 

8think9, 8wonder9 and 8understand9) than men do. Men, by contrast, tend 

to use more articles (8a9, 8an9 and 8the9) and prepositions (for example, 

8to9, 8of9 and 8for9) than women. Interestingly, there are very few sex 

differences for 8we9 words and emotion words211. For a psychologist, 

this information tells us how women and men differ in looking at their 

worlds. Women tend to be more self-reflective, socially oriented and 
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Fig. 3 | Data-driven cross-cultural values and their group associations inferred 
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cognitively engaged about social topics. Men are more focused on 

objects and things (articles and prepositions are typically used when 

referring to concrete nouns). Computer scientists, however, look at 

these results and ask whether these groups of words will help their 

predictions in identifying the gender of the person who generated the 

written or spoken text. Working together, social and computer scien-

tists can maximize their understanding of language and prediction of 

behaviour at the same time.

On the horizon, we see the new wave of research brought up by 

the rise of LLMs, which are increasingly entering many areas of life. 

They are bringing a new set of questions that consider not only human 

language but also the language automatically generated by the LLMs. 

In addition to using these models to infer human behaviour2123214, we 

increasingly see methods referred to as 8prompting9 and 8probing9 

that borrow strategies produced by decades of research on inferring 

human behaviour from language to gain insights into the NLP systems 

themselves215,216. We are thus continuing the virtuous cycle of discovery: 

the early work in psychology has fuelled research in NLP, which in turn 

has led to new discoveries in psychology, which are now being used 

to gain new insights into the NLP systems themselves. With the two 

fields informing and propelling each other forward, the future of this 

research space is bright.
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