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Exponential traffic growth in the Cislunar realm emphasizes the need for precise trajectory
prediction within the circular restricted three-body problem. Traditional numerical trajectory
prediction methods in situations with complex dynamics are often computationally expensive.
Thus, low-complexity algorithms are needed for trajectory prediction. This study builds upon
previous work on a low-complexity algorithm and explores its capabilities for extrapolating
orbital trajectories. The extended LCA method is demonstrated on various Cislunar trajectories,
showcasing its effectiveness in minimizing errors while predicting future trajectories. In cases
where limited measurements are known of an object, the eLCA provides relatively successful
trajectory prediction with fast computation.

I. Introduction

N recent years, the Cislunar region has garnered significant attention from government and commercial space entities

due to its potential for scientific discovery and strategic value. This region is foreseen to become increasingly
congested with a multitude of missions planned for the near future [1]. Lunar programs, such as Artemis [2], Luna
[3], and Chang’E [4], all aim to establish a constant human presence on the lunar surface. Additionally, the Gateway
program aims to establish a long-term orbital station about the Moon in a near-rectilinear halo orbit (NRHO), further
exemplifying the growing interest in establishing a sustained presence in this region [5, 6]. Historical debris analysis
indicates that the increase in missions will lead to a corresponding debris increase, necessitating sophisticated tracking
and management strategies [7-9]. Also, there is increased interest in tracking other satellites for both defense and
collision avoidance purposes [10-12]. Thus, there is a need for comprehensive space domain awareness (SDA) in
the Cislunar region, which requires the tracking and monitoring of objects, both operational and debris. However,
sufficient computational resources may not always be available to track these objects using traditional methods, such as
aboard a spacecraft or on the Lunar surface. Given this potential for computationally stringent scenarios where orbit
propagation and prediction is needed in Cislunar space, it is crucial to develop more accessible and efficient methods.
These tools must operate at lower complexities compared to expensive numerical techniques in order to fill the need for
low cost trajectory prediction algorithms. By doing so, spacecraft can ensure that they have the necessary capabilities to
effectively navigate and anticipate orbital movements in a cost-effective manner.

Traditionally, tracking the state of space objects under the gravitational influence of many bodies involves integrating
position and velocity using established dynamic equations of motion. Numerical integration techniques commonly
employed include the Runge-Kutta, Gauss-Legendre, Dormand-Prince, Chebyshev-Picard [13], Gragg-Bulirsch-Stoer
[14], Adams—Bashforth, or Adams—Moulton [15] methods. While these techniques achieve high accuracy, they do so at
the cost of significant computational resources through iterative processes, which may be prohibitive to systems with
limited computational resources,i.e., onboard a spacecraft. Previously, the authors have developed a low-complexity
algorithm (LCA) for orbit prediction in the CR3BP [16]. The LCA uses polynomial interpolation between known
boundary conditions to build a piece-wise continuous function that predicts trajectories. To operate, the LCA requires
knowledge of position, velocity, and acceleration at distinct times. It is a computationally efficient method with an
arithmetic complexity of O(n?), as opposed to the brute-force calculation having the complexity of O(n?). This is
achieved through a sparse matrix decomposition based on the coefficient matrix of a system of equations formulated by
the polynomial and known boundary conditions. This method has demonstrated its capability to produce relatively
accurate results within the bounds of the circular restricted three-body problem (CR3BP) dynamics, offering a significant
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reduction in computation time compared to traditional numerical methods [16]. Previously, the LCA is only analyzed
on its accuracy to interpolate between boundary conditions.

This investigation now focuses on the accuracy of the LCA to predict trajectories outside the known boundary
conditions as well as developing a technique to lower prediction error when using the LCA, referred to as the extended
LCA (eLCA). The eLCA technique incorporates pseudo-measurements that lay outside of known boundary conditions,
along with corrected dynamics at that point, that are then used to produce a new arc, estimating the trajectory between
the final boundary condition and the psuedo-measurement. This correction technique ensures that the LCA may adapt
predictions to evolving trajectories in the Cislunar region, providing more accurate trajectories. Thus, the primary
objectives of this investigation are: a) formulate the eLCA technique, b) investigate the limitations and implications of
the eLCA, and c) carry out a comparison between the prediction capabilities of LCA, a traditional numerical technique,
and the eLCA for orbits in Cislunar space.

The paper is structured as follows. Section II discusses the dynamics of the CR3BP used for modeling and
simulations. Subsequently, Section III explains the theory of the LCA and the techniques utilized in the eLCA to achieve
the desired results. Section I'V details the results of the modelling and simulation of the eLCA, comparing it to the LCA
and a numerical method for various Cislunar orbits. Lastly, Section V summarizes the findings of this investigation and
outlines opportunities for future efforts.

I1. Dynamical Model

The CR3BP is often employed to model the gravitational influence of the Earth and Moon in Cislunar space [17].
The model consists of a large primary body (Earth), a smaller primary body (the Moon), and a third body of negligible
mass representing the spacecraft (s/c). The barycenter of the Earth-Moon system acts as the origin of the rotating
frame and is defined by the center of mass of the two primaries. It is assumed that the primaries move in circular
orbits about the common barycenter. The CR3BP rotating frame is defined as follows: the %-axis lays the centers
of the Earth, the barycenter, and the Moon, the Z-axis points out of the Earth-Moon orbital plane, and the j-axis
completes the right-handed coordinate system. Furthermore, the CR3BP characteristic quantities non-dimensionalize
the system: characteristic length is defined as the distance between the two primaries, characteristic time is the period of
the Earth-Moon system, and characteristic mass is the total mass of the Earth and Moon. The mass parameter of the
CR3BP system defines the location of the barycenter and is given by: u = n”;":—"sw, where the mg and mj, are the mass
of the Earth and Moon, respectively. The position 7 = [x, v, z]T € R? and velocity 7 = [, y,Z]T € R? of the spacecraft
in the Earth-Moon CR3BP are governed by the following equations of motion:
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such that U* is the pseudo-potential function of the system:
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where double bars denote magnitudes and 7, _ ¢ Je andr,, Jc are the relative position vectors of the Earth and Moon to
the spacecraft, respectively. According to [18, 19], the existence of a solution to the governing differential equations, Eq.
(1) gives the equilibrium points known as Lagrange points, i.e., L - Ls. These unique locations within the CR3BP are
where gravitational and rotational forces find balance, enabling the spacecraft to maintain equilibrium relative to the
Earth and the Moon in the rotating frame. A schematic of the CR3BP is provided in Figure 1. Finally, a constant of
integration exists within the CR3BP derivation, known as the Jacobi Constant (JC). The JC is calculated via:

JC=2U" - (> +y% + ). 3)

where the former term (2U*) describes the spacecraft’s potential energy, and (x> + y? + Z?) its kinetic energy.

II1. Low-complexity trajectory prediction

A. Theory of the LCA
Predicting trajectories in the chaotic regime of the circular restricted three-body problem often entails the use
of numerical methods [20]. These numerical methods are iterative and can produce approximated solutions at the
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Fig. 1 CR3BP in the Earth-Moon rotating frame.

cost of higher computation. Due to such reasons, these methods may not always be suitable for on-board processes.
Alternatively, one could utilize the polynomial interpolation techniques to predict spacecraft trajectories [16, 21-23].
The LCA, as proposed by the authors in [16], is utilized to develop an extrapolation algorithm, the so-called extended
LCA (eLCA). The proposed eLCA enables the determination of trajectories beyond the defined interval, facilitating
accurate measurements to track objects beyond the interpolation. The LCA produces piece-wise and analytical functions
that describe trajectories based on the boundary conditions of intervals within the known spacecraft measurements.
Consequently, one can utilize the LCA to obtain the spacecraft’s position, velocity, or acceleration at any point within the
specified interval, eliminating the need for iterative methods to derive spacecraft trajectories from the outset. To achieve
higher computational efficiency, the LCA utilizes a distinct system formulation that allows for the decomposition of the
system into lower bi-diagonal matrices and an upper triangular matrix. Through the decomposition of a dense system
into sparse matrices, the solving process is completed with fewer operations as compared to brute-force system solving
methods. This method of trajectory generation is investigated for interpolation between boundary conditions [16], and
demonstrates the ability to sufficiently reproduce trajectories in the CR3BP, at significantly lower computational time
compared to conventional iterative methods, given the proper sampling of boundary conditions. The goal of this work is
to investigate the extrapolation potential of the algorithm beyond the known boundaries.

Before we proceed with formulating the eLCA, let us recall the LCA. The LCA was formulated based on the
spacecraft’s position, velocity, and acceleration measurements. Take the position, velocity, and acceleration vectors of the
spacecraft are given via, r(#;), 7(¢;), and #*(¢;) € R3, and are known atatime #; fori =0, 1,--- ,nandtg < t] < --- < t,,.
Knowing n + 1 boundary conditions of the spacecraft at distinct times allows for z intervals to be defined based on the
boundaries, or over the time interval I} = [f, fx+1], where k =0, 1,--- ,n — 1. The LCA distinctively executes in each
dimension, thus the vector 7(z;) € R? is reduced to x(#;) € R. Therefore, in a single dimension, the trajectory of the
spacecraft over interval [ is described as

Gi(x(0)) = gox + g1kt + goxt® + g3xt> + gast* + gsit>, @

T . o .
where 8, = [go,k, 8l.ks 82.k> 83.ks 84.k> g5,k] represents the coefficients of the polynomials in each interval that
depends on the states of the spacecraft at the boundaries of the I time interval. The corresponding velocity and
acceleration across [ are then defined using the explicit time derivative:
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Thus, the coefficient vector (gk) shall be determined for each interval to represent the trajectories of the spacecraft in
order to determine spacecraft trajectories within the time intervals Iy = [tg, fx+1] for k =0, 1,--- ,n— 1. It is important



to note that, to ensure a smooth and continuous piece-wise function between time intervals, the boundary conditions
connecting two intervals shall be satisfied by the respective polynomials. Thus, utilizing Egs. (4) - (5) as well as the
known position (x), velocity (x), and acceleration (X) of the spacecraft on the boundaries of 1:
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to determine spacecraft trajectories within the time intervals Iy = [t, tx41] for k =0,1,--- ,n— 1. From this point, it is

possible to take the explicit inverse of Ay within each interval to solve for the polynomial coefficients, 8, Note that this

approach is computationally expensive, costing O(n?) operations as one has to determine 6n coefficients explicitly. On
the other hand, the explicit inverse is rarely computed to solve equations [24]. Thus, to reduce the complexity, the LCA
is proposed while factoring Ay into an upper triangular and bi-diagonal matrices such that

5
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where Uy € R is an upper triangular matrix and L, € ROX6 »=1,2,...5 are bi-diagonal matrices. These matrices
and their entries are explicitly shown in the Appendix. Once the bi-diagonal matrices-vector product is computed, b 1S
obtained. Next, the backward substitution is used with the upper triangular matrices to solve for the coefficient vector
g The computational costs associated with various processes are as follows: the pre-computation of the matrix entries

incurs a cost of O(n), while the matrix-vector product involving bi-diagonal matrices to obtain b, also has a complexity
of O(n). Moreover, the backward substitution process demands a higher complexity of O(n?). Thus, the LCA cost
O(n?) as opposed to the brute-force calculation with O(n*) complexity. For more information on the LCA, refer to [16].

B. The extended LCA (eLCA)

The LCA is determined based on the piecewise and smooth functions derived from position, velocity, and
acceleration data, enabling trajectory estimation within the time intervals I} = [f, fx41] for k =0,1,--- ,n — 1. Thus,
any extrapolation beyond the interval [zg, ,,] will inevitably deviate from the true dynamics. Hence, the eLCA is
proposed to correct this by taking repeated “pseudo-measurements” throughout the extrapolated arc. Based on this
point, the position and velocity are derived from the calculation of the LCA-based polynomials. While the acceleration
computed using LCA starts to diverge from the original dynamics, it is still possible to estimate an approximate
acceleration by utilizing the state from the pseudo-measurement and applying the dynamics of the CR3BP. Despite the
inherent error associated with the polynomial approximation in such a state, aligning the acceleration at this juncture
with dynamics that more accurately reflect the true behavior helps refine the LCA approximation. This approach
effectively mitigates error propagation without necessitating any additional measurements. Hence, the computed
acceleration generates a pseudo-measurement state that is utilized alongside the initial measurement point of the arc. By
leveraging these two reference points—the first measurement and the newly created pseudo-measurement—a refined
LCA trajectory is established, characterized by a reduced rate of error accumulation. This process is then repeated at
regular intervals to continually slow down the error propagation significantly. These repeated arc segments are then
independently combined to form the predicted arc.

Figure 2 illustrates a diagram based on the eLCA technique. The spacecraft’s position, velocity, and acceleration
can be measured at two prior points: Measurement 1 (M1) and Measurement 2 (M2). Let these measurements be
r(tar), 7(tarn), F(tpg1) for M1, and r(tps2), 7 (tpr2), F(tag2) for M2. These data are utilized to estimate the spacecraft’s
trajectories of the form represented in Eq. (4), resulting in the LCA indicated by the dashed black line. This
deviates significantly from the true path, represented by the solid black line. At some point along the LCA arc, a
pseudo-measurement is taken. In this context, the position and velocity are determined using the LCA, utilizing the
Eqgs. (4) and (5)-say r(t,s), F(tps), respectively. Meanwhile, the acceleration is derived from the equations of motion



referenced in Eq. (1). The measurements r(p), 7 (¢ps), F(¢ps), Which signify the pseudo-measurement, along with
r(tan), 7(ta1), F(2ar1) that correspond to M1, are employed in conjunction with the LCA to obtain the arc depicted in
blue. It is important to emphasize that only the segment following the pseudo-measurement is of use. This process is
subsequently repeated for each new arc, consistently utilizing M1 as the initial LCA boundary in every calculation. The
arcs between pseudo measurements are then combined to form a much better estimate of the trajectory of the spacecraft.
The pseudo-code for this process, i.e., eLCA, is shown in Algorithm 1. This process then starts over when given a new
true satellite measurement.

spacecraft Pseudo-measurement

1
Ly (SR Pseudo-measurement

-~

~
~
~~o
~
~
~

Moon

Fig. 2 eLCA diagram with example pseudo-measurements.

Algorithm 1 Pseudo-code for the eLCA

Take Measurements M1 and M2
Complete LCA and extrapolate arc
while No New Measurement do
Make a pseudo-measurement of the previous arc position and velocity at some interval past M2
Calculate acceleration at pseudo-measurement
Complete LCA analysis utilizing M1 and pseudo-measurement, forming a new arc
Append an extrapolated arc segment between the current pseudo-measurement and a new pseudo-measurement
to the running eL.CA arc
8: end while

A o e

One of the benefits of the eLCA is that the spacing of the pseudo-measurements may be varied to balance accuracy
requirements with computational costs. Additionally, when calculating a trajectory using the eLCA, the procedure may
be immediately discontinued when a new measurement is obtained. However, in the case where satellite measurement
frequency is unknown, numerical integration requires the trajectory to be calculated to an arbitrarily far point. This
would require excessive and likely unnecessary computation.

IV. Results

To demonstrate the eLCA, simulations are completed using a variety of scenarios. The eLCA is initially tested on
the Distant Retrograde Orbit (DRO) [25], as the DRO offers simple, planar dynamics to offer a simple introductory case.
Further analysis on the more complex NRHO is conducted. The NRHO provides a dynamically more challenging case,
where the trajectory contains dynamically sensitive regions along the perilune of the trajectory. The discrepancy between
the slower dynamics near the apoapsis and the rapidly changing dynamics near the periapsis allow for a more nuanced
analysis on the performance of the eLCA. Once the details of the eLCA are demonstrated, the eLCA is demonstrated for
full orbits across several cases. Throughout this work, all results are presented in the barycentric Earth-Moon rotating
frame.

A. Case 1: Distant Retrograde Orbit (DRO)
Initial studies are completed to demonstrate the extent in which the eLCA compounds error in comparison to the
LCA when predicting a trajectory in the CR3BP. A simulation of a DRO is completed using both the LCA and eLCA. A



Runge-Kutta integrator of order 5(4) (RK45) is used to propagate the dynamics of the spacecraft and serves as the “truth”
model, from which “measurements” for the LCA are obtained, and serves as the benchmark for error comparisons.
Generating measurements for the LCA in this manner allows more freedom to the selection of trajectories to be used in
the analysis. In real applications, true spacecraft trajectory data may always be inserted. In the simulation, a single orbit
consists of 10,000 time steps, divided into eight equal time sections, with the first and last points of each section serving
as measurement boundary conditions. The LCA and eLCA then extrapolate past the last boundary condition (final
measurement). The interval between consecutive pseudo-measurements for the eLCA is selected to be 20 time-steps,
corresponding to approximately 2,300 seconds. The extrapolation was done to 300 time-steps past M2, or approximately
34,300 seconds. The results for a given segment in the DRO are shown in Figure 3. From this demonstration, it is clear
that the LCA’s poor performance in dynamics prediction results in a quick deviation from the true path. On the other
hand, the eLCA is able to predict a trajectory that has a dramatically lower error than the LCA. Particularly, not only is
the error lower, but the rate at which the error accumulates is also lower. This means that as time progresses, the eLCA’s

error reduction gets comparatively better.
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Fig.3 DRO track (left) and error buildup (right).

One of the most influential variables associated with the eLCA is the pseudo-measurement interval. As noted

in section III, the pseudo-measurements are regularly taken from the resulting trajectory arc that corresponds to M1
and the previous pseudo-measurement. The interval between pseudo-measurements directly influences the frequency
with which the CR3BP dynamics are reintroduced into the trajectory estimate, correlating to the extent to the error
buildup rate. A study is completed to compare various pseudo-measurement intervals for the DRO (Figure 4). For
context, the simulations are completed with each orbit consisting of 10,000 time-steps. This results in each time-step
being approximately 114.3 seconds. The extrapolation was then completed to 600 time-steps past M2. These results
demonstrate that even with a relatively coarse time step of up to 50 time-steps, the eLCA still provides a drastic
improvement compared to the LCA. When looking at interval lengths of 10 to 50-time steps, there appears to be a nearly
linear spacing between errors, indicating that the relationship between error buildup rate and interval length is nearly
linear. However, it is crucial to note the primary reason pseudo-measurements are not taken at an unreasonably high rate
is due to the increased computation time required. To demonstrate this trade-off with computation time and interval
length, the above eLCA analysis with varying pseudo-measurement intervals is completed and timed. The computation
time is averaged over 1000 runs to minimize random errors in hardware computation. The results are summarized in
Figure 5 comparing the final error of the arc shown in Figure 4 with the computation time. It should be noted that the
measured computation time includes both calculating the LCA coeflicients as well as completing the extrapolation to
find the states at each position in time.

From these results, it is seen that decreasing the interval between pseudo-measurements increases the computation
time to varying extents. At every new pseudo-measurement, the eLCA executes a run of the LCA, which operates
at a fixed arithmetic. The fixed arithmetic defines a linear relationship between number of pseudo-measurements
(i.e., number of times the LCA runs) and total computation time. However, there seems to be diminishing returns in
computational efficiency with the eLCA. For example, the computation time using pseudo-measurement intervals of 20
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Fig.4 eLCA error comparison for various pseudo-measurement intervals in the DRO, zoomed on right.
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i5-9300H, 8.0 GB memory).

time-steps is a noticeably larger than half of the computation time of an eLCA with pseudo-measurement intervals of 10
time-steps. This benefit continually decreases approaching larger interval lengths. Despite this, as noted previously, the
final error in the arc appears to be nearly linear with the various interval lengths. This means that for a given mission,
error requirements, and computational limits, there is likely some optimal interval length.

B. Case 2: Near-rectilinear Halo Orbit (NRHO)

To demonstrate a more challenging case to the eLCA, the analysis is now conducted on an NRHO. Similar to the
DRO, the NRHO orbit is divided into eight equal segments over 10,000 time steps, with the endpoints of each segment
used as measurement boundary conditions. The LCA and eLCA are then used to extrapolate past the measurement points.
For the eLCA, pseudo-measurements are spaced at 20 time-steps (approximately 1,149.6 seconds), with extrapolations
extending 300 time-steps past M2 (around 17,245 seconds). Due to the drastic difference in dynamics between the
apoapsis and periapsis of the orbit, two segments along each section are analyzed. The results for a segment near the
apoapsis of the orbit are shown in Figure 6, and a segment near the periapsis is shown in Figure 7.

Similar to the results of the DRO, these results illustrate that the eLCA significantly reduces the error build-up
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compared to the LCA. A closer inspection of the results, particularly near periapsis, shows the extent to which the
dynamics start to quickly deviate. When looking at the track on the left side of Figure 7, it is immediately seen
that the LCA track deviates further laterally from the true orbit. On top of this, it is seen that the distance of the
LCA extrapolation is much shorter than the eLCA extrapolation. Approaching the periapsis of an eccentric orbit, the
spacecraft is expected to speed up due to the increasing gravitational force. However, the short distance traveled in the
LCA arc indicates that the LCA fails to account for these dynamics and does not speed up the estimated trajectory of the
orbiting object. Although directly comparing the results from the apoapsis and periapsis demonstrations may appear to
show that the eLCA provides more error reduction for portions of an orbit with slower dynamics, like the apoapsis
of the NRHO, this is not the case. As will be shown in further analysis, there are a very large number of factors that
influence the error build up rate for the eLCA.

To determine what selection of measurement points may be optimal for an eLCA estimation, an analysis is completed
using boundary points further away from the pseudo-measurements to find a potentially optimal spacing between
measurement points for the eLCA extrapolation. For the NRHO, similar to the initial simulation discussed, the full
orbit is divided into 8 segments of equal time. The LCA and eLCA extrapolations are completed for "Far" and "Close"



measurement, consisting of M1 to M2 distances of ith of an orbit and %th of an orbit, respectively. This analysis is done
for both insensitive and sensitive portions of the NRHO, as seen in Figures 8 and 9, respectively. In Figure 8, it is seen
that with the relatively tame dynamics near the apoapsis of the NRHO, a closer distance between M1 and M2 provides
significantly better results for the extrapolation of both the LCA and the eLCA. Figure 9 suggests that the opposite is
true in situations with stronger dynamics. When the trajectory arc is set to extrapolate the spacecraft’s path just after the
periapsis of the NRHO, there is a slight decrease in error for both the LCA and eLCA with a further distance between
M1 and M2. This suggests that for a given M2 after which an LCA or eLCA analysis is completed, there is some
optimal M1 point that leads to the smallest error build up rate in the predicted trajectory. This optimal point is a function
of the dynamics in the region of interest. Due to the polynomial nature of the LCA and eLCA, utilizing information
about the jerk along the trajectory may provide an opportunity to further decrease error without numerical integration.
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Fig. 8 NRHO low dynamics M1 points track (left) and error buildup (right).
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In addition to establishing the optimal boundary points for the LCA and eLCA, another important factor affecting
error buildup in the eLCA is the interval between pseudo-measurements. As described in Section III, these measurements
are taken along the arc between M1 and the prior pseudo-measurement. The measurement’s spacing significantly
influences the propagation of errors in the polynomial model. Similar to the DRO case, a study is conducted to compare



different pseudo-measurement intervals. Specifically, near the periapsis of the NRHO where the fastest rate of error
buildup is previously seen. The subsequent results are shown in Figure 10. For context, the simulations are completed
with each orbit consisting of 10,000 time-steps. This results in each time-step being approximately 57.3 seconds. The
extrapolation is then completed to 600 time-steps past M2. As shown, even relatively coarse intervals of up to 50
time-steps result in a marked improvement with the eLCA compared to the LCA. The nearly linear increase in error
between intervals of 10 to 50 time-steps mirrors the trend seen in the DRO case, indicating a proportional relationship
between interval length and error accumulation. However, as before, the key trade-off is the increased computational
cost associated with shorter intervals.
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Fig. 10 eLCA error comparison for various pseudo-measurement intervals in the NRHO, zoomed on right.

To evaluate computation times for different interval lengths, the eL.CA is executed and the times are averaged over
1,000 runs to reduce random errors, following a similar approach to the DRO analysis. The results are summarized
in Figure 11 comparing the final error of the arc shown in Figure 10 with the computation time. As with the DRO
case, it should be noted that the measured computation time includes both calculating the LCA coefficients as well as
completing the extrapolation to find the states at each position in time. Similar to the DRO case, reducing the interval
between pseudo-measurements leads to a nearly linear increase in computation time. Each new pseudo-measurement
requires a complete LCA analysis, establishing a direct relationship between the number of measurements and total
computation time. However, diminishing returns become evident; for instance, the computation time for 20 time-steps is
noticeably more than half of that required for 10 time-steps. This diminishing efficiency highlights the need to balance
error reduction and computational resources based on mission-specific requirements, error tolerances, and available
processing power.

C. Full Orbit Demonstrations

The results presented thus far characterized the performance of the eLCA in small test cases. However, the eLCA
shall be compared to LCA over the course of a full orbit. For high SDA, orbits may have to be tracked with a limited
number of measurements. As a result, a simulation is devised, providing a comprehensive investigation of tracking over
a full orbit. In this simulation, a short, initial section of the orbit is used to initialize the first arc, with the first and
last points of this arc serving as the M1 and M2 for the subsequent LCA or eLCA extrapolation. While propagating,
the error is continuously monitored. Once the error exceeds some arbitrarily set error threshold, the extrapolation is
stopped, and a point from the numerically integrated arc is used as a new measurement. The previous M2 serves as the
new M1, and the new measurement serves as M2. Using these two boundary points, a new extrapolation is completed.
Over a full orbit, the total number of measurements needed to keep the error below the set threshold is compared for
the LCA and eLCA. This is then completed with a range of orbits to characterize the performance of LCA and eLCA
extrapolation for a range of Cislunar dynamics. In each simulation, a full orbit consists of 10,000 time-steps, with the
true time of each time-step varying by orbit. The first 100 time-steps are used for the initialization, and for the eLCA
extrapolation, a pseudo-measurement interval of 20 time-steps is selected as a reasonable balance between error and
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Fig. 11 eLCA error and computation time for various pseudo-measurement intervals in the NRHO (System:
Intel i5-9300H, 8.0 GB memory).

computation, as seen in Figure 11.

The first demonstrated orbit is the NRHO, due to the highly varying dynamics across the orbit. The full orbit takes
572,640 seconds, or about 6.63 days. For comparison, two runs are completed, one utilizing 25 km as the error threshold,
and another utilizing 100 km, with the results shown in Figures 12 and 13, respectively. As expected, to maintain a
lower error threshold, more measurements are needed to adjust for the varying dynamics, through comparisons between
the corresponding sides of Figures 12 and 13. In addition, the distribution of the eLCA measurements sheds light on the
manner in which the eLCA may be optimized. As the object approaches the apoapsis, the eLCA requires regular, but
increasingly spaced measurements to maintain a low error. Immediately before reaching apoapsis, there is a relatively
quick change in orbital radius, as is typical on the periapsis and apoapsis of an elliptical orbit. After this measurement
just prior to the apoapsis, the tracked object remains well track for a long portion of the flight. In further studies to
optimize the use of the eLCA, this may provide insight for choosing optimally spaced boundary points. Finally, through
these simulations, it is clear that in both cases, the eLCA dramatically reduces the total number of needed measurements
to keep the error below the threshold. In the case of a 25 km error limit, the LCA and eLCA required 26 and 15
measurements, respectively, including the two measurements used for initialization. In the case of a 100 km error
limit, the LCA and eLCA required 21 and 11 measurements, respectively, including the two measurements used for
initialization. From the analysis of the test case shown in Figure 10, it was seen that at all points, the rate of change of
the slope was always higher for the LCA than the eLCA. This means that not only is the error rate always higher for
the LCA, but this error rate also grows faster for the LCA compared to the eLCA, proving that the LCA’s predictions
tend to have errors that compound to deviate from the true dynamics as time progresses. As a result, when the LCA
and eLCA are used for trajectory extrapolation, the performance benefits of the eLLCA relative to the LCA improve
with extrapolation distance. This is directly seen in the demonstrated results as the eLCA orbit required ~ 42% fewer
measurements than the LCA with a 25 km error threshold while the eLCA required ~ 48% fewer measurements than the
LCA with a 100 km error threshold.

This analysis is next completed for a DRO and a Lyapunov orbit around the L, point in the Earth-Moon system to
study the eLCA over key Cislunar trajectories. These results are shown in Figures 14 and 15 for the DRO and L, Lyapunov
orbits, respectively. For each test, an error threshold was chosen that would allow for a proper comparison between the
LCA and eLCA. With an error threshold too small for a given orbit, there would not be enough pseudo-measurements
taken to properly show the benefits of the eLCA. With an error threshold too large, the eLCA may not take enough
measurements to demonstrate the limitations of the eLCA. In the DRO simulation, an error threshold of 50 km is
selected, resulting in the LCA and eLCA requiring 15 measurements and 6 measurements, respectively, including the two
measurements used to initialize the trajectory. In the L, Lyapunov simulation, an error threshold of 25 km is selected,
resulting in the LCA and eLCA requiring 11 and 4 measurements, respectively, including the two measurements used to
initialize the trajectory. The total results are summarized in Table 1. As demonstrated, the eLCA provides significant
improvements compared to the LCA in trajectory prediction, minimizing the need for large numbers of measurements to
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Fig. 12 NRHO full orbit tracking with LCA (left) and eLCA (right) with an error threshold of 25 km.
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Fig. 13 NRHO full orbit tracking with LCA (left) and eL.CA (right) with an error threshold of 100 km.

extrapolate the trajectory of a body in complex dynamics.

Table 1 Full orbit extrapolation summary.

Required Measurements Decrease

Orbit LCA Measurements | eLCA Measurements
NRHO, 25 km error 26 15 42.31%
NRHO, 100 km error 21 11 47.62%
DRO, 50 km error 15 6 60.00%
L, Lyap, 25 km error 11 4 63.64%
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V. Conclusion

In this work, the eLCA is introduced, building on the previously developed LCA. The eLCA incorporates knowledge
of the system’s dynamics into the LCA measurements to allow for high accuracy in orbit trajectory prediction. As
demonstrated, the eLCA significantly improves performance relative to the LCA in the CR3BP. In certain SDA problem:s,
such as tracking objects in different orbits, or tracking large amounts of objects at once, the number of measurements
made should be minimized. The eLCA demonstrates its ability to accurately track objects while minimizing position
estimate errors. The eLCA is proven to require minimal measurements for orbits with low and consistent dynamics
throughout the full period, such as the DRO and L, Lyapunov orbits. Due to the highly varying dynamics in the NRHO,
the eLCA comparatively requires more measurements compared to the other demonstrated orbits. Regardless, the
eLCA is still proven to improve tracking estimates compared to the LCA. Additionally, insight has been gained into
opportunities to optimize the measurement locations for the eLCA. For any location in an orbit, there exist some optimal
boundary points to minimize the eLCA’s error depending on the local dynamics. Finally, the performance benefits and
losses associated with varied eLCA pseudo-measurement spacing are analyzed. The eLCA can be further developed
by analyzing methods to determine the most optimal measurement points for a given orbit, potentially allowing for
additional performance gains by requiring fewer measurements and decreasing error when tracking an object. There
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also exist many opportunities to refine the eLCA to decrease error as well as computation time, such as utilizing varying
pseudo-measurement intervals to optimize the algorithm for the local dynamics.
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Appendix

Consider the one-dimensional position, velocity, and acceleration of a spacecraft, x(¢), x(¢), ¥(¢) € R, at known
times t and #x+] on the boundaries of the I, where k =0, 1,--- ,n — 1. Note that there are n + 1 known spacecraft
states at distinct times. The resulting bi-diagonal and upper triangular matrices from the decomposition of Eq. (6) are

found to be:

~

[ 1
—dy d,
l =
1
1
L[;=
1
1
[s =

[1
1
~ , Z,z = Jk _Jk
—di  dy 1
1 dp —dy
—Cik cik
[1
1
i L= 1 ,
dy 1
1 3diy  —dy
—2dy  di| 1
1w 15 o1 15 0
I cix cox €3k Cak
. U= I eix ek e3x
1 1 ch,k fk
1 2 2my
-2dy  dx| 2 |

in which the pre-computed entries are given by
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where the lower bi-diagonal triangular matrix L, € R®%, r = 1,2, .., 5, upper triangular matrix U € R®*%, and the
empty entries in the matrices represent zeros. These matricies and quantities are then used to formulate the LCA system
shown in Eq. (7).
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