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Figure 1: (A) Processing data in iMotions Lab of a user in the VR training environment interacting with powder feeder; the yellow
circles are fixations. (B) The mean pupil dilation signal for both eyes is pink, and the fixation duration signal is the blue color; both
signals are processed in iMotions Lab. (C) User’s eyes captured in Varjo VR-3 eye tracking cameras.

ABSTRACT

Virtual Reality (VR) has been a beneficial training tool in fields like
advanced manufacturing. However, users could experience a high
cognitive load due to various factors, such as using VR hardware
or tasks within the VR environment. Various studies have shown
that eye-tracking has the potential to detect cognitive load, but in
the context of VR and complex spatiotemporal tasks (e.g., assem-
bly, disassembly), it is relatively unexplored. Here, we present an
ongoing study to detect users’ cognitive load using an eye-tracking-
based machine learning approach. We developed a VR training
system for cold spray and tested it with 22 participants, obtaining
19 valid eye-tracking datasets and NASA-TLX scores. We applied
Multi-Layer Perceptron (MLP) and Random Forest (RF) models
to compare the accuracy of predicting cognitive load (i.e., NASA-
TLX) with pupil dilation and fixation duration. Our preliminary
analysis demonstrates the possibility of using eye tracking to detect
CL in complex spatiotemporal VR experiences and motivates our
further explorations.
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1 INTRODUCTION

Virtual Reality (VR) provides an immersive, safe, and credible al-
ternative to real-life training environments [7, 5]. However, most
current VR training applications provide unvaried training to all
users and do not consider individual differences. One of these key
differences is that individuals can experience different Cognitive
Load (CL) levels while doing the same task. CL is the mental ef-
fort used in working memory [23], which can impact learning and
performance. A high CL can hinder learning, while an optimal
level—neither too frustrating/hard nor boring/easy—can improve
it. A promising solution to consider different cognitive abilities
is adapting the training and customizing the content based on the
user’s CL. Therefore, adaptive training based on the participant’s
CL can significantly improve training outcomes [26, 18]. However,
detecting high CL in VR environments poses unique challenges.
Unlike static environments, dynamic environments include contin-
uous interaction, shifting audio-visual stimuli, and multitasking, all
adding to the variation in cognitive demands and making it difficult
to accurately capture and analyze CL. In traditional settings, CL
can often be assessed using more controlled, static tasks, but these
methods fall short in dynamic scenarios where the cognitive de-
mands are constantly shifting [30]. Additionally, subjective meth-
ods of measuring CL, such as self-reports, may not be practical in
VR applications [10, 24]. A promising solution is using physiolog-
ical sensors to capture users’ cognitive state while they are in the
VR. Previous studies have explored CL using various physiolog-
ical sensors, including heart rate variables, electrodermal activity,
electroencephalography, and eye-tracking signals [3, 2, 6]. Eye-
tracking, in particular, offers a non-intrusive and practical means of
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measuring CL in VR [23]. Previous studies have shown correla-
tions between eye-tracking metrics and CL, specifically pupil dila-
tion [23, 27], but there is limited research on applying these findings
in dynamic VR environments [28]. A vital step towards developing
such adaptive training applications is investigating intelligent tools
that detect high CL reliably and non-intrusively. Due to complex
and non-linear relationships between eye-tracking metrics and CL,
Machine Learning (ML) techniques have been under attention in
recent years [24, 17]. Current findings reveal that ML models are
useful indicators of CL using eye features, obtaining an accuracy of
up to 88% [21, 22, 10].

Problem Statement While VR offers a helpful tool for training,
it often lacks the consideration of individual cognitive differences.
We aim to leverage ML techniques to predict user’s cognitive load
based on eye-tracking data. This approach aims to create a reliable
prediction system that can be integrated into VR training applica-
tions in real-time to personalize the training based on the user’s
cognitive load. This paper demonstrates this possibility by deter-
mining if eye-tracking features, particularly pupil dilation and fix-
ation duration, can accurately predict a user’s self-reported CL (as
measured through NASA-TLX).

2 METHOD

We developed a VR training for cold spray, an advanced man-
ufacturing technology that applies coatings of metallic or non-
conductive substances to another surface through gas-powered
high-velocity spray [19]. The virtual environment was developed
to simulate a cold spray laboratory. First, we designed a VR tuto-
rial room where participants could get familiar with the cold spray
environment and interact with objects they would later use during
the study. After completing the tutorial, they teleport to the main
VR cold spray lab to begin the assembly/disassembly of the Pow-
der Feeder (PF). For context, a PF is a device used to accurately
dispense and control the flow of powdered materials in industrial
processes, such as in cold spray. A table next to the PF contains all
the necessary virtual tools, such as wrenches and screwdrivers. In
front of the user, behind the PF, is a panel that displays the task in-
structions and buttons to request help, reset, or repeat a step (Fig. 1).
The disassembly task consists of 12 steps, where the user uses tools
to remove the parts of the PF in the correct order and manner. These
two tasks are designed to be completed in 15 minutes, although this
may vary depending on the participant. The task descriptions are
tailored for novices, so participants with varying expertise in the
cold spray process should be able to complete them successfully.
This study focused on evaluating the assembly and disassembly of
the powder feeder, a primary task in the cold spray process (Fig. 2).

2.1

The virtual environment was developed using the Unity engine (ver-
sion 2020.03.34f1) [25]. We used a VR-3 Varjo headset with a hor-
izontal 115° field of view, 90 Hz refresh rate, and 200 Hz frame rate
to capture eye movements, including gaze direction and pupil dila-
tion for each eye. We recruited 22 participants, all students at the
same university with varying levels of familiarity with VR, and re-
cruited them via posters and email ads around the campus. 19 self-
identified as male and 3 as female. Gender identification options
included were “woman, man, non-binary, prefer to self-describe,
and prefer not to say.” Due to technical issues, 3 were discarded,
and we had 19 valid eye-tracking datasets. Their age range was 19-
28 (M =23.33, SD = 3.12 ). Our study was approved by the IRB.
After they had signed a written informed consent form, we showed
an introductory video about cold spray to provide context to partic-
ipants who did not have prior experience with the process. Then,
the participants started the VR training. First, a standard 5-point
eye-tracking calibration routine was performed in the VR training.
Afterward, participants started a tutorial to get familiar with the VR
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Figure 2: A user while (dis)assembling the powder feeder.

interactions (e.g., grabbing). Next, participants disassembled the
powder feeder consisting of 12 steps. Then, they moved to the as-
sembly module, which consisted of 11 steps. After the VR session,
participants completed the short version of the NASA Task Load
Index (NASA-TLX) to assess the cognitive load of using VRTA
[11]. We also collected demographic information at this point. All
the surveys were collected via Qualtrics.

2.2 Predictors, target variables and Model Architec-
tures

In this study, our main goal was to explore a binary classification to
detect cognitive load. We used Python 3.12.0 with sklearn, Tensor-
Flow, Pandas, Matplotlib, and NumPy libraries. In pre-processing,
we removed the data before starting the VR training tutorial (e.g.,
calibration and waiting for the app to load). Then, we used the Fast
Fourier Transform (FFT) to denoise the signal. Afterward, we nor-
malized the data on a scale of 0 to 1. Previous studies show that
pupil dilation is strongly correlated with CL [2, 8, 14] and longer
fixation duration can reflect high CL [15, 16]. Hence, we extracted
fixation duration and pupil dilation using iMotions Lab software
(version 10) [12] with built-in R Notebooks. Based on established
protocols [20], we selected the Velocity-Threshold Identification (I-
VT) filter to extract fixations, and the minimum fixation duration
was set at 60 ms. Afterward, we calculated the average pupil dila-
tion of both eyes within each fixation and defined fixation duration
and pupil dilation as predictors. The target variable was the mental
demand subsection of the NASA-TLX, which reveals the mental
and cognitive effort required for the task. We analyzed the distri-
butions of the NASA-TLX mental workload subsection and found
that the population could be evenly split into low and high groups,
with scores of 1 to 4 classified as low and 5 to 7 as high. Accord-
ingly, we labeled participants into either a high or low group and as-
signed each the corresponding target variable. Due to the non-linear
nature of the predictors and target variables and high-dimensional
data, two classifiers—Multi-Layer Perceptron (MLP) and Random
Forest (RF)—were trained to predict the target variable. We used a
sliding window, a common approach in ML [9], with a size of 2000.

The MLP model was designed with five hidden layers. We used
the hyperbolic tangent activation function across all hidden layers
due to its ability to model complex, non-linear relationships. The
model was trained using the Adam optimizer with a learning rate
of 0.00001, which was selected to ensure stable convergence over
500 epochs. A batch size of 256 was chosen to strike a balance
between model convergence speed and predictability. Although
dropout layers were considered to mitigate overfitting, the model’s
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performance metrics indicated that the current architecture and set-
tings were sufficient to prevent overfitting. The MLP’s performance
was carefully monitored, and the training process was optimized to
maintain high precision and recall on both the training and test sets.
The RF model was fine-tuned using GridSearchCV, a hyperparam-
eter optimization technique that evaluates all possible combinations
of specified parameters to determine the best configuration [4]. The
parameters we tuned included the number of trees, maximum tree
depth, minimum samples required to split a node, minimum sam-
ples required at a leaf node, the number of features considered for
splitting, and whether to use bootstrap sampling. We used 3-fold
cross-validation to ensure that the selected parameters resulted in a
model that predicts unseen data well.

3 PRELIMINARY RESULTS

On average, the participants took around ~ 26 minutes to com-
plete the powder feeder module. Despite a relatively small dataset,
we obtained strong results. The MLP model, evaluated on the
test dataset, achieved an accuracy and precision of 0.84, indicating
strong prediction capability. The RF model reached an accuracy
of 0.72 and a precision of 0.73, suggesting reasonable performance
but with some overfitting compared to the MLP model. More de-
tails are depicted in Tabel 1.

Table 1: The results of predicting cognitive load with MLP and RF
models using fixation duration and mean of pupil dilation.

Model Accuracy Precision Recall F1
MLP 0.84 0.84 0.94 0.88
RF 0.72 0.73 0.90 0.81

4 DISCUSSION AND FUTURE WORK

This study investigated the feasibility of predicting cognitive load
(CL) in virtual reality (VR) training with complex spatiotemporal
tasks to develop a novel adaptive VR training. The Multi-Layer
Perceptron (MLP) model, with an accuracy of 0.84, performed bet-
ter than the Random Forest (RF), with an accuracy of 0.72. This
indicated that the MLP model better predicts new data, making it
suitable for adapting to VR training. While achieving high training
metrics, the RF model showed a potential overfitting. These find-
ings underscore the complexity of predicting CL in spatiotemporal
tasks in VR, where dynamic scenes and interactive tasks provide
more challenges.

However, several concerns must be addressed before implement-
ing an adaptive training system. Privacy is one the main concerns as
eye tracking data can be sensitive and reveal personal information
about the user such as age, ethnicity, personality traits, emotional
state, and certain measures may even reveal specific mental health
conditions [13]. Hence, ensuring data security and user privacy is
essential. Additionally, while our current models show promising
results, they are limited to pupil dilation and fixation duration. Fea-
tures such as saccade velocity, saccade amplitude, and blink rate
could enhance model accuracy and robustness [31, 1] but require
more advanced models and computational cost. This study should
be considered preliminary work due to its limitations, which are a
low number of participants and a limited number of eye features. In
future work, we will explore more complex models, such as Con-
volutional Neural Networks (CNNs) [29] and personalized mod-
els, which combine two or more models. A more complex model
could improve accuracy in predicting the user’s CL in spatiotempo-
ral tasks in VR training. Our future goal is to develop adaptive VR
training that personalizes the training experience in real-time based
on the user’s cognitive load captured in eye-tracking data.
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