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ABSTRACT

This study aimed to explore how novices and experts differ in per-
forming complex psychomotor tasks guided by augmented real-
ity (AR), focusing on decision-making and technical proficiency.
Participants were divided into novice and expert groups based on
a pre-questionnaire assessing their technical skills and theoretical
knowledge of precision inspection. Participants completed a post-
study questionnaire that evaluated cognitive load (NASA-TLX),
self-efficacy, and experience with the HoloLens 2 and AR app,
along with general feedback. We used multimodal data from AR
devices and wearables, including hand tracking, galvanic skin re-
sponse, and gaze tracking, to measure key performance metrics. We
found that experts significantly outperformed novices in decision-
making speed, efficiency, accuracy, and dexterity in the execution
of technical tasks. Novices exhibited a positive correlation between
perceived performance in the NASA-TLX and the GSR amplitude,
indicating that higher perceived performance is associated with in-
creased physiological stress responses. This study provides a foun-
dation for designing multidimensional expertise estimation models
to enable personalized industrial AR training systems.
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1 INTRODUCTION

Industrial tasks vary widely in complexity and skill requirements.
Workers must master skills such as quick and accurate decision
making, knowledge transfer between tasks, and precise task exe-
cution techniques [1]. AR technology has proven to be effective in
developing these skills in workers by providing contextual informa-
tion in real time directly in their field of vision [2,3]. However, most
existing industrial AR systems often offer generic instructions that
overlook the knowledge and individual needs of the worker [3], thus
limiting the personalization of the intervention. Given the abun-
dance of rich multimodal data accessible through AR devices and
wearables, it is feasible to integrate new inference mechanisms into
industrial AR systems that dynamically estimate and adapt to the
worker’s expertise level during task performance. A key prereq-
uisite is understanding different dimensions of expertise in these
contexts, along with data-driven metrics that enable the estimation
and adaptation of real-time expertise.

Previous studies have aimed to estimate expertise levels and dis-
tinguish between novice and expert behavior patterns across various
tasks and dimensions of expertise. Examples include the dexter-
ity of surgeons in operating rooms [4–6], troubleshooting by tech-
nicians in industrial settings [7], and rapid and accurate decision
making by pilots [8, 9]. However, the specific patterns and fea-
tures of this expertise—and the extent to which they enhance task
performance—are yet to be fully explored, especially in the context
of AR-guided psychomotor tasks. There is a critical need to explore
how the existing knowledge about the quantification and estimation
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of expertise in psychomotor tasks translates into AR technologies
for industrial training and assistance [10]. This involves investi-
gating how expertise-related factors influence interactions with AR
interfaces, decision-making processes, and skill acquisition within
AR-guided environments. By addressing this gap, we can unlock
the full potential of AR in enhancing training effectiveness and per-
formance in psychomotor tasks, which involves the aforementioned
personalized and customized AR systems.

In this paper, we investigate multiple hypotheses under two key
dimensions of expertise to further our understanding of the nuances
of novice and expert performance of industrial psychomotor tasks.
(1) Decision making dimension: Experts significantly outperform
novices in making fast and correct decisions, more independently
and confidently, and are more capable of effectively transferring
their knowledge to new tasks and scenarios. (2) Technical profi-
ciency dimension: Experts show higher degrees of proficiency in
performing psychomotor tasks characterized by greater accuracy,
dexterity, and efficiency compared to novices. We use the term
“dimension” to emphasize that these are measurable indicators that
can vary independently. For example, a novice surgeon may be the
same as an expert in selecting the right instruments during an oper-
ation (decision making) but lack the same dexterity in using them
(technical proficiency). We also acknowledge that this list is not
comprehensive and that other dimensions may exist and should be
considered in future studies.

We tested the hypotheses by examining the performance of
novices and experts in AR-guided psychomotor tasks, using mul-
timodal data captured from AR devices and wearables, including
hand tracking data, GSR measurements, and visual gaze informa-
tion. We focus our experiments on precision inspection as an indus-
trial psychomotor task, which involves (1) selecting measurement
gauges based on the characteristics and tolerances of the parts, as
well as the configuration and precision of the gauges, (2) prepar-
ing the selected gauge for inspection through initial setup, clean-
ing, and calibration, and (3) measuring the characteristic of interest
and accepting or rejecting the part. Our rationale for choosing this
use case is the inherent complexity of the task and the need for
critical thinking, decision making, and technical proficiency, which
provides measurable performance metrics applicable to broader in-
dustrial tasks. The purpose of this paper is to lay the foundation
for designing expertise estimation models informed by expertise
dimensions in AR-guided psychomotor tasks and the data modal-
ities that facilitate their measurement. This is a crucial step towards
enabling industrial AR applications capable of dynamically adapt-
ing content and providing learning and accessibility interventions
to the worker’s level of expertise.

2 RELATED WORK

Expertise is a multifaceted concept that involves a variety of skills,
knowledge, and competencies acquired through training and expe-
rience in specific domains. An accurate assessment of an individ-
ual’s level of expertise from task performance metrics and physio-
logical signals can enable personalized training and assistance [11].
This is crucial for complex psychomotor tasks that involve coor-
dinated mental processes and physical movements, such as play-
ing instruments, performing surgery, driving, or operating equip-
ment [12, 13]. Recent advances in AR technology have opened
new avenues for improving the learning of these and similar com-
plex tasks, particularly in industry [2]. Further advances require a
deeper understanding of the interplay between expertise and task
performance.

Previous studies highlight the distinctions between novices and
experts in different fields. Experts demonstrate superior perfor-
mance marked by efficient information processing, pattern recogni-
tion, and adaptive decision-making abilities, which enable them to
navigate complex situations with greater ease and precision [14,15].

In contrast, novices often rely on analytical reasoning and explicit
rule-based knowledge, resulting in slower and less effective task
execution [16]. This contrast manifests itself in various psychomo-
tor domains, ranging from surgery [17] to aviation [18] and music
performance [19], underscoring the universal nature of the acquisi-
tion of expertise and its implications for the optimization of training
and performance. Several studies have attempted to analyze and
measure the differences between novices and experts from various
perspectives, including:

• Gaze behavior: Evidence suggests that experts focus longer
on relevant areas, indicating deeper cognitive processing and
greater familiarity with the task and its environment, while
novices exhibit more pronounced scattered gaze patterns and
scanning behavior [20, 21]. In aviation, for example, experi-
enced pilots exhibit shorter dwell times, more total fixations,
fewer altimeter fixations, and better-defined eye-scanning pat-
terns compared to novices [22, 23]. These findings concur
with the information reduction hypothesis, which posits that
experts optimize the amount of information processed by se-
lectively allocating their attention to task-relevant stimuli and
ignoring irrelevant stimuli [24, 25].

• Adaptability: Experts are shown to demonstrate better adapt-
ability and resourcefulness, flexibly and creatively applying
their knowledge in handling novel situations and solving new
problems [26]. The ability to dynamically adjust strategies
in response to unique challenges is crucial, not only for indi-
vidual experts but also for teams in high-stakes settings. Ev-
idence suggests the role of expertise in maintaining perfor-
mance through strategic planning and role flexibility, espe-
cially in scenarios like emergency management where impro-
visation is necessary [27, 28].

• Stress management: Physiological and cognitive differences
are reported between novices and experts during stress-
induced decision making. Stress is shown to considerably
impair the performance of novice surgeons [29]. Significant
differences between novices and experts are also identified in
their stress management, performance under pressure, use of
mental practice, and concentration abilities [30]. In contrast
to experts, who often maintain their performance under stress,
novices show higher physiological stress markers, leading to
less effective decision making as they rely more on learned
rules and are prone to biases [31, 32].

• Dexterity: Several studies have focused on comparing novice
and expert patterns of performance in terms of dexterity in
fields such as surgery, industrial troubleshooting, and avia-
tion [5–9]. For instance, expert surgeons are shown to ex-
hibit smoother and more stable hand motions compared to
novices, and have more coherent and consistent movements,
with greater long-range stability, while novices show more er-
ratic and less controlled hand motions [4]. This indicates that
the proficiency of expert surgeons is reflected in the refined
stability and coherence of their hand movements.

Despite the considerable progress reported in this section on the
differences between novices and experts, there remain gaps in un-
derstanding the interplay between expertise and task performance,
and especially how this can be translated to AR applications. Un-
derstanding this interplay in contexts where AR applications will be
used can lead to more effective and adaptive AR systems that tailor
instructions and interventions to varying expertise levels.

3 EXPERTISE DIMENSIONS AND HYPOTHESES

We systematically explore the specific aspects of behavior and
performance that characterize expert and novice interactions in
complex psychomotor tasks. The study is structured around two
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main dimensions of expertise: decision-making and technical pro-
ficiency. The former involves the speed, accuracy, independence,
and adaptability of a worker in making decisions. The latter fo-
cuses on accuracy, dexterity, and efficiency in executing the task.
This section introduces these dimensions along with their respec-
tive metrics and hypotheses.

3.1 Decision Making Dimension

The first dimension examines whether there is a notable difference
between experts and novices in their ability to make quick, accu-
rate, and independent decisions. It also explores whether experts
demonstrate superior capability in transferring their expertise to
novel tasks and situations. For instance, a key decision in our preci-
sion inspection study is selecting the appropriate gauge based on the
part’s characteristics and required tolerances, as well as the gauge’s
configuration and precision.

Metrics: Speed: Time taken to reach a decision. Correctness:
Whether the decision made is correct or not. Independence: Degree
of reliance on external support for decision making. Adaptation:
Ability to apply skills to new and varied tasks.

Hypotheses: H1: The correctness of decisions significantly
differentiates novice and expert performance in psychomotor tasks.
H2: There are significant differences in the time that experts and
novices spend scanning their environment before making a deci-
sion. H3: Novices and experts differ in their help-seeking behavior
and reliance on detailed instructions during tasks. H4: Previous ex-
periences influence decision-making, tool selection, and adaptation
to new tasks among novices and experts. H5: Experts exhibit lower
degrees of stress than novices in decision making.

3.2 Technical Proficiency Dimension

The second dimension explores whether experts demonstrate higher
levels of proficiency in performing psychomotor tasks in terms of
accuracy, dexterity, and efficiency compared to novices. The goal
is to assess the technical proficiency of both experts and novices
by measuring their performance using metrics related to precision,
manual coordination, and efficiency in task completion. In the con-
text of our precision inspection use case, technical proficiency in-
volves the worker’s ability to use the selected gauge efficiently and
accurately to make accurate measurements.

Metrics: Accuracy: Quality of task execution and inspection
outcomes. Dexterity: Continuity of hand movements—the fre-
quency and duration of hesitations/pauses during task performance.
Efficiency: The amount of time spent to complete the task.

Hypotheses: H6: There is a significant difference between
task execution by novices and experts in terms of the accuracy of
inspection report results. H7: Hand movement patterns differ be-
tween novices and experts in the execution of psychomotor tasks.
H8: The efficiency of task execution, measured by the time taken
to complete tasks, varies between experts and novices.

4 USER STUDY

This section details the study materials and data collection proce-
dures.

4.1 Participants

Twenty participants (4 females, 16 males; mechanical/industrial en-
gineering and arts/science students) were recruited based on their
experience with inspection gauge tasks. The participants were di-
vided into novice and expert groups based on a pre-questionnaire
that assessed their technical skills and theoretical knowledge of pre-
cision inspection. The study was approved by Northeastern Univer-
sity’s Institutional Review Board.

Figure 2: Study’s precision inspection gauges and parts.

Novice Group: This group included 10 students from non-
engineering fields with limited experience in precision inspection
using gauges. Familiarity ratings ranged from 1 (not familiar at all)
to 5 (strong familiarity), averaging M = 1.0, SD = 0.94. The group
consisted of 6 males and 4 females, including 5 master’s students, 3
PhD students, and 2 undergraduates. Commonly used gauges were
the Electronic Caliper, Depth Gauge, and Height Gauge, each used
by 3 participants.

Expert Group: This group included 10 engineering students
with strong experience in precision inspection using gauges. Fa-
miliarity ratings ranged from 1 to 5, averaging M = 4.1, SD = 0.74.
The group consisted of 1 junior undergraduate and 9 master’s
students, with 5 participants having relevant industry experience.
Commonly used gauges were the Electronic Caliper, Height Gauge,
and Electronic Micrometer, each used by 9 participants.

4.2 Task and Apparatus

We conducted a between-subjects study on the AR-guided inspec-
tion of 3D printed parts using various gauges (Figure 2). The task
involved selecting appropriate gauges based on part geometries and
required tolerances, as well as the gauge configurations and preci-
sions. The participants were responsible for setting up and calibrat-
ing the gauges for inspection, locating characteristics on the parts,
storing the gauge on the part, and measuring the respective charac-
teristic. They reported measurement values and decided whether to
accept or reject them based on the prescribed geometries and toler-
ances. The inspection accuracy was evaluated using binary scoring.

Session 1: Round Part with Instructions and Animation.
In Session 1, participants were guided to use specific gauges for var-
ious characteristics with detailed instructions and animations. For
example, the electronic caliper was used to measure Characteristic
5 (0.492-0.502 in, thickness), the depth gauge for Characteristic 13
(1.893-1.900 in, depth of hole) and the height gauge for Charac-
teristic 6 (3.680-3.700 in, overall length). The app provided inter-
active buttons for each characteristic, which activated step-by-step
instructions and animations to guide users through the inspection
process (Figure 3). This session aimed to introduce users to sim-
pler, more straightforward tasks using familiar and easier gauges.
The process started with short instructions and a start button. Upon
initiating the task, the system transitioned to full instructions ac-
companied by animations, ensuring that participants received full
guidance throughout the session.

Session 2: Round and Flat Part with Quiz Module. In Ses-
sion 2, participants selected appropriate gauges to measure char-
acteristics based on physical configurations and tolerances. For
example, Characteristic 35 (3.740-3.760 in, center-to-center slot
length) was measured with both the height gauge and the electronic
caliper, Characteristic 15 (1.246-1.250 in, inside diameter of hole)
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Figure 3: AR application interface (HoloLens 2) for inspection tasks. Left: Interface for Session 1, where participants follow detailed instructions
and animations for Characteristics 5, 6, and 13 using specific gauges. This session emphasizes step-by-step guidance with full instructions
always visible. Right: Interface for Session 2, featuring the Gauge Selection Quiz. Participants choose appropriate gauges and measure
Characteristics 15, 32, and 35 with optional access to full instructions. Each participant has three attempts per characteristic, with feedback
provided after incorrect responses.

with the internal micrometer, and Characteristic 32 (0.514-0.516
in, thickness) with the electronic micrometer. This session focused
on decision making, which required participants to measure both
flat and round parts. Session 1, Session 2 presented short descrip-
tions by default. The participants had the option to access the full
instructions and animations within the app as needed (Figure 3).
The design of this session reflected the increased complexity of the
tasks, encouraging a more active engagement with the instructions.
The participants also had three attempts per characteristic and re-
ceived immediate feedback after incorrect responses, reinforcing
the decision-making aspect of the session.

4.3 Procedure

The study was conducted sequentially, consisting of two sessions
separated by a brief break. The procedure followed the following
steps: Participants began by completing pre-questionnaires to col-
lect baseline information, including demographics and prior expe-
rience with AR and HoloLens 2. Following the pre-questionnaires,
participants received an introduction to the task and the AR ap-
plication, outlining the objectives and the procedure of the study.
The participants then participated in a 10-15 minute training ses-
sion with the HoloLens Tips app to become familiar with the de-
vice. During the experiment, the Shimmer GSR+ was calibrated
to ensure accurate physiological data collection. The first session
commenced immediately after the training. During this session,
participants interacted with the AR application using hand gestures,
which allowed them to access AR content such as instructions, an-
imations, and safety checklists. Gaze data, including gaze origin,
direction, and hit information, were recorded using the HoloLens 2.
After Session 1, participants took a 10-minute break to rest before
the second session. Participants were also allowed to take a longer
break if necessary. The second session started immediately after the
break and followed the same procedure as Session 1, with contin-
ued interaction with the AR application and data collection. Upon
completing both sessions, participants completed a post-study ques-
tionnaire. This included NASA-TLX to assess cognitive load, as
well as questions regarding self-efficacy, user experience with the
HoloLens and AR application, and general feedback on the study.
NASA-TLX was administered once at the end of the entire study to
assess the cognitive load experienced in both sessions. Data were
collected throughout both sessions using the HoloLens 2 and Shim-
mer3 GSR+ at a 128 Hz sampling rate. Gaze tracking, captured at
a 30 Hz sampling rate using the HoloLens Mixed Reality Toolkit
(MRTK), included detailed data on gaze origin, direction, and hit

Table 1: Mann-Whitney U test results for correctness of decisions.

Comparison U-Statistic P-Value Z-Value

Expert 15 vs Novice 15 39.5 0.433 -0.794
Expert 32 vs Novice 32 41.0 0.496 -0.680
Expert 35 vs Novice 35 50.0 1.0 0.0

points, providing insight into the specific targets (e.g., electronic
calipers, height gauges, and quiz modules) participants focused on.
The precision of the participants’ decisions was evaluated using bi-
nary scoring.

5 RESULTS

This section presents the experimental results organized according
to the eight hypotheses linked to the two dimensions of expertise.

5.1 Correctness of Decisions (H1)

We analyze the differences between the correctness of decisions
made by experts and novices, as indicated by the number of at-
tempts to complete tasks correctly. During Session 2, all partici-
pants completed a multiple choice quiz module before beginning
their tasks, designed to assess their knowledge and ability to prop-
erly operate inspection gauges. The participants had up to three
attempts to select the correct gauge; after three incorrect attempts,
the AR system highlighted the correct gauge. Fewer attempts in-
dicate greater proficiency and more experienced decision-making.
The results of the Mann-Whitney U test do not show significant
differences in the number of errors between novice and expert par-
ticipants in the quiz (see Table 1).

Interpretation: The lack of significant differences in the num-
ber of errors suggests that both groups faced similar challenges.
Both groups struggled most with Characteristic 35, likely due to
the complexity of using two gauges, indicating that this task was
equally challenging regardless of expertise.

5.2 Visual Scanning Time (H2)

Visual scanning time was measured by tracking the collision of
HoloLens 2 gaze rays with scanning markers on various gauges at a
sampling rate of 30 Hz (Figure 4). This data was analyzed to assess
the scanning patterns and the decision-making efficiency of the par-
ticipants. The experts demonstrated a consistent gaze distribution
across the gauges, indicating a high level of familiarity. In contrast,
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Figure 4: Left: Real-world view and AR application with visual scanning areas. Right: Blue highlighted regions indicate visual scanning areas,
tracking gaze on different components.

novices exhibited higher percentages of gaze on certain gauges,
suggesting a learning phase marked by frequent checks and broader,
less predictable scanning patterns, indicative of exploratory behav-
ior and uncertainty. The detailed findings and statistical analyzes
are as follows (see Table 2):

• Characteristic 15, internal micrometer: A t-statistic of 2.548
and a p-value of 0.020 indicate a significant difference be-
tween experts and novices, with experts’ gaze time suggesting
greater familiarity and clear decision-making.

• Characteristic 32, electronic micrometer: A t-statistic of
3.506 and a p-value of 0.0025 indicate a significant difference,
with experts showing greater familiarity with the electronic
micrometer.

• Characteristic 35, electronic caliper and height gauge: Ex-
perts exhibited more evenly distributed scanning time on the
electronic caliper and height gauge, with a t-statistic of 2.862
and a p-value of 0.010 indicating significance for the caliper.
However, for the height gauge, the t-statistic of 1.633 and a
p-value of 0.120 show no significant difference, likely due to
the complexity of using two gauges and varying participant
experience.

Table 2: Independent two-sample t-test for visual scanning time.

Characteristic #, Gauge t-statistic p-value

15, internal micrometer 2.548 0.020
32, electronic micrometer 3.506 0.003
35, electronic caliper 2.862 0.010
35, height gauge 1.633 0.120

Interpretation: The analysis identified clear differences in vi-
sual scanning and decision-making between experts and novices.
Experts demonstrated efficient gaze patterns, indicating familiarity
with the tools, which contributed to faster and more accurate deci-
sions. In contrast, novices exhibited broader and less predictable
scanning patterns, reflecting their learning stage and associated un-
certainty, which resulted in longer decision-making times. The sig-
nificant differences in scanning time for the internal micrometer
(Characteristic 15) and the electronic micrometer (Characteristic
32) highlight the contrast between novices and experts. For Charac-
teristic 35, the more evenly distributed scanning time by experts on

the electronic caliper and height gauge suggests greater efficiency.
These findings suggest that experts’ familiarity with key gauges
contributes to their efficient scanning patterns, whereas novices’
broader patterns indicate a need for thorough verification and con-
tinued learning.

5.3 Help-Seeking Behavior (H3)

Session 1: Full AR Instructions In Session 1, participants
were instructed to begin using the full AR instructions. All novice
participants used the full instructions, while 4 expert participants
relied on short descriptions instead. The remaining experts used
the full instructions similarly to novices. To compare usage pat-
terns and validate the hypothesis that novices and experts differ in
their help-seeking behavior, we analyzed the time spent reviewing
instructions and the frequency of use of instructional features, in-
cluding step-by-step 3D animations.

An independent sample t-test showed a significant difference
in the time spent reviewing the instructions for Characteristic 5
(t = −2.781, p = 0.012), with experts spending less time than
novices. No significant differences were found for Characteristics
13 (t = −1.887, p = 0.077) and 6 (t = −2.104, p = 0.050). The
frequency of instruction use showed significant differences across
all characteristics: for Characteristic 5 (t =−2.449, p = 0.037); for
Characteristic 13 (t =−2.449, p = 0.037); and for Characteristic 6
(t =−2.449, p= 0.037), with novices using the instruction features
more frequently than experts.

Session 2: Short AR Instructions In Session 2, participants
were instructed to use short instructions and only refer to the full
instructions if needed. The data revealed varying usage patterns.
The t-test for Characteristic 15 did not show significant differ-
ences in the time spent reviewing instructions between experts and
novices (t = −0.135, p = 0.895). However, significant differences
were found for Characteristics 32 (t = −2.881, p = 0.014) and 35
(t =−3.381, p = 0.007), with novices spending more time on these
instructions. The frequency of instruction use also showed no sig-
nificant differences for Characteristic 15 (t = 0.573, p = 0.574),
but significant differences were observed for Characteristics 32
(t =−2.787, p= 0.012) and 35 (t =−3.680, p= 0.003), indicating
more frequent use by novices.

Interpretation The findings from Session 1 suggest that
novices relied more heavily on detailed instructions, particularly
for Characteristic 5, spending more time and using the instruc-
tions more frequently than experts. Although no significant dif-
ferences were found for Characteristics 13 and 6 in terms of time
spent, novices consistently used instructions more frequently. In
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Session 2, a similar pattern emerged, with significant differences
in time spent and frequency of use for Characteristics 32 and 35,
where novices again relied more on the instructions. These char-
acteristics involved more specialized gauges and multiple gauges,
which may have contributed to novices needing additional guid-
ance. In general, the results indicate that novices are more depen-
dent on help-seeking behavior and detailed instructions, whereas
experts are more confident and efficient. This suggests the need
for instructional designs that provide structured support for novices
while allowing experts to take advantage of their experience.

5.4 Effect of Previous Experience (H4)

This section examines how previous experiences influence decision
making, tool selection, and adaptation to new tasks for individuals
with varying levels of expertise—novices and experts. Descriptive
statistics were used to explore the relationships between previous
experiences and metrics such as task performance and confidence
levels. These metrics offer insights into how each group lever-
ages their experience during task performance. The confidence and
preparedness ratings of the post-questionnaire, based on questions
such as ’How effectively did you use your previous experiences
(e.g., co-ops, internships, projects) to solve problems in the tasks
assigned to you’ and ’How effective were the tasks in Session 1 at
preparing you for the tasks in Session 2?” were rated on a scale
from 0 to 10, with 10 being the highest.

Data analysis centered on the evaluation of H4, suggesting that
previous experiences significantly affect decision-making, tool se-
lection, and adaptation to new tasks among novices and experts.
The responses of 10 experts and 10 novices were analyzed, detail-
ing their confidence levels in two sessions, the perceived effective-
ness of the tasks in session 1 to prepare them for session 2, and
their previous experiences. A t-test was performed to test this hy-
pothesis, producing a t-statistic of 3.987 and a p-value of 0.0019,
indicating a significant difference in previous experiences between
experts and novices (Table 3).

Interpretation: The results show that prior experience signif-
icantly impacts decision-making, tool selection, and task adapta-
tion. Experts, with their more extensive and consistent experience,
are better equipped to make informed decisions, choose appropri-
ate tools, and quickly adapt to new tasks, while novices tend to
rely more on trial and error. The statistical evidence supports the
hypothesis that experts handle these aspects more effectively than
novices.

5.5 Stress Management (H5)

This section explores whether experts experience lower stress lev-
els compared to novices and investigates the effectiveness of stress
management in relation to physiological signals such as GSR and
NASA-TLX. The goal is to understand whether expertise influences
stress responses and decision-making efficiency under pressure.

GSR Metrics: Analysis of GSR data revealed no statistically
significant differences between the expert and novice groups in both
decision-making sessions. In Session 1, the Mann-Whitney U test
for amplitude resulted in U = 38.0 with a p = 0.385, and for peaks
per minute, the test yielded U = 40.0 with a p = 0.473. Simi-
larly, in Session 2, the Mann-Whitney U test for amplitude showed
U = 47.0 with a p = 0.850, and for peaks per minute, the test pro-
duced U = 53.5 with a p = 0.820. These p values are all above
the conventional significance threshold of 0.05, indicating that the

Table 3: Hypothesis testing results for prior experiences.

Comparison t-statistic p-value

Prior Experiences (T-test) 3.987 0.0019

variations observed between experts and novices in both ampli-
tude and peaks per minute are not statistically significant. Con-
sequently, these results suggest that the physiological signals mea-
sured by GSR, specifically amplitude and average peak per minute,
do not exhibit significant differences between the expert and novice
groups in the context of decision-making tasks. This lack of signif-
icant variation implies that both groups experienced similar levels
of physiological stress, as indicated by their GSR responses.

After analyzing the GSR metrics, including the GSR peaks per
minute and the amplitude, we did not find significant differences
between experts and novices. Therefore, we decided to further eval-
uate the NASA-TLX scores to understand the relationship between
subjective and objective measures of stress.

NASA-TLX Scores: The NASA-TLX scores revealed that
both novice and expert groups experience a cognitive load, which
remains challenging even for experienced individuals. This finding
aligns with the concepts discussed in [33] regarding workload and
expertise in human factors engineering. Experts reported higher
physical demands, potentially indicating more intensive participa-
tion in the physical aspects of the task. They also experienced
higher temporal demands, possibly due to an increased awareness
of time constraints or higher performance expectations, as sug-
gested by [34] about situation awareness in dynamic systems.

Experts perceived their performance as significantly higher than
that of novices (t =−2.268, p = 0.035, reflecting their greater skill
and efficiency in managing complex tasks. The NASA-TLX perfor-
mance subscale assesses how successful individuals believed they
were in accomplishing the goals of the task set by the experimenters
or themselves and how satisfied they were with their performance in
accomplishing these goals. This phenomenon is discussed in [35]
in their review of expert performance. Despite facing higher men-
tal and physical demands, experts reported exerting less effort, sug-
gesting that experience can make tasks less strenuous through more
efficient strategies and greater familiarity with the task. In addi-
tion, experts experienced lower levels of frustration, indicating that
experience helps to effectively manage stress and challenges. This
supports the notion that expertise facilitates adaptation to task con-
straints. This trend toward reducing frustration among experts is
evidenced by the near-significant p-value (t =−2.001, p = 0.066).

Figure 5: Novice and expert NASA-TLX scores.

Correlation Between NASA-TLX Scores and GSR Metrics:
Understanding the relationship between subjective and objective
measures of stress is crucial. Subjective measures such as NASA-
TLX scores for performance and frustration provide insight into in-
dividuals’ perceived workload and emotional responses. Objective
measures like GSR metrics (amplitude and peaks per minute) offer
physiological data related to stress and arousal levels. By correlat-
ing these measures, we can determine how subjective experiences
of stress and workload relate to physiological responses, revealing
if individuals’ perceptions align with their physiological states.
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Pearson’s correlation analysis was performed between NASA-
TLX scores (Performance and Frustration) and GSR metrics for
both experts and novices, due to the significant results from the
t-test for Performance and the near-significant result for Frustration
in NASA-TLX. The results are summarized in Figure 5. For ex-
perts, the correlations were as follows: Performance and GSR Am-
plitude (r = 0.347, p = 0.326), Performance and GSR Peaks per
Minute (r = 0.161, p = 0.656), Frustration and GSR Amplitude
(r = 0.026, p = 0.943), and Frustration and GSR Peaks per Minute
(r = 0.099, p = 0.786). For novices, the correlations were as fol-
lows: Performance and GSR Amplitude (r = 0.723, p = 0.018),
Performance and GSR Peaks per Minute (r = 0.525, p = 0.120),
Frustration and GSR Amplitude (r =−0.290, p= 0.417), and Frus-
tration and GSR Peaks per Minute (r =−0.115, p = 0.752).

The novices showed a positive correlation between perceived
performance and GSR amplitude (r = 0.723, p = 0.018), indicat-
ing that higher perceived performance is associated with increased
physiological stress (Figure 6). Experts showed weak correlations,
suggesting a more effective stress modulation. This analysis indi-
cates the need for more research to determine why experts are better
at mitigating stress during tasks.

Interpretation: The analysis revealed that both experts and
novices experienced similar mental demand during decision-
making tasks. However, experts reported higher physical and tem-
poral demands, perceived their performance as higher, and reported
lower effort and frustration compared to novices. The correla-
tion analysis showed that experts had negative correlations between
GSR amplitude and several NASA-TLX subscales (e.g., physi-
cal demand, temporal demand), indicating that higher perceived
stress was associated with lower physiological responses. This sug-
gests that experts can better modulate their physiological stress.
In contrast, novices exhibited positive correlations, indicating that
higher perceived stress was associated with higher physiological re-
sponses, reflecting greater physiological stress.

The results suggest that stress management improves with ex-
perience, enabling experts to better control their physiological re-
sponses under stress. In contrast, novices tend to encounter higher
physiological stress in comparable situations. The potential factors
for the higher temporal demand reported by experts could be their
relative higher expectations from themselves. The greater physi-
cal demand might be attributed to their familiarity with performing
the task without the additional setup of the experiment (e.g., head-
set, GSR equipment), which could introduce physical discomfort or
distraction. Further experiments and analyses are indeed needed to
measure these potential factors more accurately and explore addi-
tional variables that can influence stress management and physio-
logical responses in decision-making tasks.

Figure 6: Scatter plots with regression lines showing the relation-
ship between performance and GSR amplitude for experts (left) and
novices (right).

Table 4: Pause metrics comparison between novices and experts.

Metric Novices Experts

Frequency 41,002 78,261
Ratio 0.75 0.67
Mean Duration (seconds) 16.2 12.7
Median Duration (seconds) 4 2
Longest Duration (seconds) 216 287

Duration Distribution Overview

0-10 seconds (%) 70.82 81.08
11-30 seconds (%) 17.52 13.33
31-60 seconds (%) 7.27 3.52
Over 60 seconds (%) 4.39 2.07

The study used a correlation analysis GSR and NASA-TLX
scores to assess the relationship between physiological stress and
subjective workload perception. The validity of this methodological
approach is supported by prior research, which has demonstrated
the efficacy of similar analyses in the context of workload assess-
ment. For example, Delliaux et al. highlight that GSR, as a measure
of autonomic nervous system activity, can be effectively correlated
with subjective workload assessments such as NASA-TLX to gauge
cognitive and emotional stress levels during task performance [36]
Furthermore, the broader literature on workload measurement fre-
quently employs physiological indicators such as heart rate vari-
ability (HRV) and GSR in conjunction with subjective tools like
NASA-TLX. This dual approach is validated by studies showing
consistent correlations between these measures in various task en-
vironments.

5.6 Accuracy of Inspection (H6)

The total correct inspections for both Session 1 and Session 2 (ac-
cept or reject) show a significant difference between novices and
experts. The results of the t-test are t = 3.07, p = 0.007, which is
below the significance threshold of 0.05. This indicates that experts
generally perform better on parts inspection compared to novices.
Although individual tasks do not show significant differences in
most cases, the overall performance metric reveals that experts per-
form better than novices in inspection tasks. This suggests that ex-
pertise plays a role in the overall accuracy of the inspections of the
parts. Accuracy is measured by analyzing task performance and
report scores that reflect the accuracy of task execution and inspec-
tion results. An error is defined as any deviation from the correct
inspection procedure or an incorrect inspection result. Thus, higher
accuracy corresponds to fewer errors and more correct inspections.

Interpretation: There is a significant difference in inspection
accuracy between novices and experts, and experts perform better
overall. Although individual tasks did not show significant differ-
ences, the aggregate performance metric highlights the importance
of expertise in inspection tasks. This suggests that experience and
skill substantially enhance overall inspection accuracy.

5.7 Dexterity (H7)

We observe that experts have a higher frequency of pauses (78,261)
compared to novices (41,002), as shown in Table 4. This suggests
that experts engage in more frequent but shorter reflective pauses to
optimize their performance.

• Frequency comparison: The results of the chi-square test
showed a significant difference in the frequency of pauses be-
tween novices and experts (χ2

= 15126.53, p < 0.001).

• Ratio comparison: The t-test for the ratio of pause time to task
time between novices and experts indicated a significant dif-
ference (t = 336.21, p < 0.001), with experts having a lower
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ratio (0.67) compared to novices (0.75), suggesting more effi-
ciency in their task execution.

• Mean and median duration comparison: The t-test for mean
duration showed a significant difference (t = 182.92, p <

0.001), with experts having shorter mean pause durations
(12.7 seconds) compared to novices (16.2 seconds). The
Mann-Whitney U test for median duration also indicated a
significant difference (U = 820712.5, p < 0.001), with ex-
perts having a median duration of 2 seconds compared to 4
seconds for novices.

• Duration distribution comparison: The chi-square test for the
distribution of pause durations across different categories (0-
10 seconds, 11-30 seconds, 31-60 seconds, over 60 seconds)
indicated significant differences between novices and experts
(p = 0.429).

• Longest pause duration comparison: The t-test for the longest
pause duration showed a significant difference (t = 94.59, p<
0.001), with experts having a longer maximum pause duration
(287 seconds) compared to novices (216 seconds).

Interpretation: The analysis of pause metrics suggests that
dexterity, as evidenced by pauses during manipulation tasks, varies
significantly between novices and experts. Experts not only pause
more frequently, but also manage to keep their pauses shorter on
average, indicating a higher level of proficiency and efficiency in
handling tasks. The lower ratio of pause time to task time in ex-
perts (0.67) compared to novices (0.75) further emphasizes this effi-
ciency. These findings align with theories of expertise that propose
that expert performance is characterized by the ability to quickly
navigate or recover from potential errors or uncertainties through
more effective cognitive and physical adjustments. These insights
into hand hesitation and pauses can help to understand the behav-
ioral nuances that distinguish expert performers from novices, po-
tentially guiding training methods to reduce pause durations and
frequency in novice learners. For this particular case, we have ex-
amined only the wrist joint. We would like to expand to more joints
and explore more fine-grained action movements to see how novice
and expert groups’ hand movements differ in future studies. Signifi-
cant differences in hand movement patterns were observed between
novices and experts in psychomotor tasks. The experts exhibited
shorter and more frequent pauses, indicating quicker decision mak-
ing and corrections.

5.8 Task Execution Efficiency (H8)

Figure 7: Differences between expert and novice task completion
times in Sessions 1 (statistically significant) and 2 (not significant).

The objective of this study was to compare the efficiency of task
execution between experts and novices over two sessions, measured
by task completion time. t tests were performed to compare the
groups. In Session 1, the t-test produced a t statistic of 2.768 (p =
0.013), indicating a significant difference, with experts completing
tasks faster. In Session 2, the t-test produced a t statistic of 0.676 (p
= 0.507), indicating that there were no significant differences. Al-
though experts generally completed tasks faster than novices, sig-
nificant differences were found only in Session 1. The variability
in task completion times, particularly in Session 2, suggests that
factors other than skill level may influence performance.

Interpretation: Experts completed tasks faster than novices,
but significant differences were only found in Session 1 (Figure 7).
This supports previous findings that expertise improves task perfor-
mance. In Session 2, no significant differences were found, sug-
gesting that other factors, such as task complexity or learning ef-
fects, may impact time completion. The results show that while
expertise enhances efficiency, it is influenced by multiple factors
beyond skill level.

6 CONCLUSIONS

This study aimed to explore the distinctions between novice and
expert performance in AR-guided industrial psychomotor tasks, fo-
cusing on two primary dimensions of expertise: decision-making
and technical proficiency. By examining the results across multiple
hypotheses, we identified significant differences and commonalities
that enhance our understanding of expertise in industrial settings.
The findings of this study highlight the multifaceted nature of ex-
pertise in industrial psychomotor tasks. Experts not only demon-
strate higher technical proficiency, but also exhibit more efficient
decision-making processes. However, many hypothesized differ-
ences, such as independence from instructions or mental demand,
proved to be insignificant. These insights can inform the design
of adaptive AR systems that dynamically tailor instructions and in-
terventions to the user’s level of expertise, providing personalized
guidance and support to enhance training and performance.

The psychomotor task utilized in this study represents only one
of many possible tasks. The results obtained may vary depending
on the nature and complexity of different psychomotor tasks, as
these factors could significantly influence both physiological and
subjective responses. Our findings should be viewed in the con-
text of this specific task, and further research is needed to explore
whether similar patterns emerge across a broader range of psy-
chomotor tasks. Future research should focus on larger sample sizes
and diverse tasks to further validate these findings. In addition, ex-
ploring cognitive and motivational influences on performance can
provide a more comprehensive understanding of expertise. Using
the multimodal data captured from AR devices and wearables, fu-
ture studies can refine expertise estimation models, ultimately con-
tributing to the development of adaptive AR systems that optimize
industrial training and assistance. In conclusion, this research lays
the foundation for improving AR technologies in industrial settings
by elucidating the critical dimensions of expertise and their im-
pact on task performance. The continued exploration of these di-
mensions will be essential for advancing personalized and effective
training solutions in industrial psychomotor tasks.
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Hüseyin Bektas, Verena Uslar, and Nader Francis. The development

of visuospatial abilities and their impact on laparoscopic skill acquisi-

tion: a clinical longitudinal study. Surgical Endoscopy, 36(12):8908–

8917, 2022.

[7] Trudi Farrington-Darby and John R Wilson. The nature of expertise:

A review. Applied ergonomics, 37(1):17–32, 2006.

[8] Angela T Schriver, Daniel G Morrow, Christopher D Wickens, and

Donald A Talleur. Expertise differences in attentional strategies re-

lated to pilot decision making. In Decision making in aviation, pages

371–386. Routledge, 2017.

[9] Michael A Vidulich, Christopher D Wickens, Pamela S Tsang, and

John M Flach. Information processing in aviation. Human factors in

aviation, pages 175–215, 2010.

[10] Mohsen Moghaddam, Nicholas C Wilson, Alicia Sasser Modestino,

Kemi Jona, and Stacy C Marsella. Exploring augmented reality for

worker assistance versus training. Advanced Engineering Informatics,

50:101410, 2021.

[11] Dong Woo Yoo, Sakib Reza, Nicholas Wilson, Kemi Jona, and

Mohsen Moghaddam. Augmenting learning with augmented reality:

Exploring the affordances of ar in supporting mastery of complex psy-

chomotor tasks. arXiv preprint arXiv:2305.09875, 2023.

[12] Erlend Fagertun Hofstad, Cecilie Våpenstad, Magdalena Karolina
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