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ABSTRACT. This paper presents an adaptive mesh refinement (AMR) frame-
work integrated with the shifted boundary method (SBM) for incompressible
flow and coupled thermal-flow simulations. Our framework leverages octree-
based AMR, enabling hierarchical and dynamic mesh refinement driven by
vorticity magnitude. This strategy enables capturing complex vorticity struc-
tures and steep thermal gradients while significantly reducing computational
costs compared to traditional uniform refinement approaches, particularly for
flows around complex geometries. The octree-based architecture ensures effi-
cient data management, including robust intergrid transfer and load balancing,
which is critical for scalability in distributed-memory environments. Dynamic
mesh adaptivity is demonstrated for complex geometries where achieving ideal
refinement is often non-trivial due to the irregular boundaries. SBM enhances
this adaptability by accurately enforcing boundary conditions on intricate and
non-conformal geometries without requiring boundary-fitted meshes. Together,
these methods address longstanding challenges in computational fluid dynam-
ics, providing a resource-efficient yet accurate approach for capturing criti-
cal flow and thermal features. The utility of the framework is demonstrated
through numerical experiments, showcasing its ability to adapt dynamically to
evolving flow and thermal patterns in diverse and challenging geometries.

1. Introduction. The simulation of fluid flows governed by the Navier-Stokes
equations remains one of the most challenging problems in computational physics,
especially when resolving multi-scale structures like vortices. Traditional approaches
using uniform grid refinement, while effective, often impose prohibitive computa-
tional costs. AMR emerged as an innovative solution to this issue, fundamentally
transforming the landscape of computational fluid dynamics (CFD).

AMR’s foundational principles were set forth in the 1980s by Berger and col-
leagues [12, 11]. Their pioneering methods introduced dynamic grid refinement
strategies that adapt to local flow characteristics, especially in regions with steep
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gradients or discontinuities. This adaptability enabled high-resolution computa-
tions in critical areas while maintaining efficiency in smoother regions. Colella’s
contributions further advanced AMR for turbulent and shock-driven phenomena [1],
leading to practical implementations as the Chombo framework [21]. Building on
these numerical advances, AMR has been successfully deployed across diverse fluid
dynamics applications. The versatility of AMR has been demonstrated across nu-
merous fluid dynamics applications, including astrophysical phenomena [17], mul-
tiphase flows [79, 68, 46, 73], free surface problems [9], reactive and electrochemical
flows [25, 48], and aerodynamics [62, 71], highlighting AMR’s capability to effi-
ciently handle multi-scale flow problems while maintaining computational efficiency.
AMR is often combined with octree meshes to enable high-performance simulations.
Octree meshes were originally introduced as a spatial decomposition method and
were initially applied in computer graphics and computational geometry [58]. Over
time, they were adopted in scientific computing, particularly in FEM [14, 70] and
CFD [20, 47, 67] simulations. More recently, octree meshes have been widely used
to perform highly parallel scientific simulations [71, 3, 61].

While AMR has proven invaluable in adapting mesh resolution to fine-scale struc-
tures, challenges remain in automatically generating high-quality meshes for com-
plex geometries. This issue becomes especially pronounced in domains involving
irregular boundaries, multi-scale features, or evolving interfaces, where traditional
body-fitted meshing approaches can be computationally expensive and inflexible.
Immersed methods provide an attractive alternative by enabling the discretization
of governing equations on structured or Cartesian grids, bypassing the need for
complex mesh generation. Originally proposed by Peskin [65] for simulating blood
flow around heart valves, IBM has been extended to diverse applications, including
three-dimensional fluid-structure interaction (FSI) with robust formulations, as well
as biological systems, and thermal transport [60, 87]. However, traditional IBMs
often suffer from challenges in imposing accurate boundary conditions, especially
in the presence of sharp gradients, and are prone to issues such as spurious os-
cillations or inaccuracies near boundaries. The SBM [55, 56, 43, 7, 6, 5, 23, 72,
8, 99, 34, 22, 95, 4, 91], within the broader class of Immersed Boundary Meth-
ods (IBMs), addresses this issue by enabling accurate boundary condition enforce-
ment on irregularly shaped domains without requiring boundary-fitted meshes or
costly cut-element integration. Developed to address the limitations of traditional
immersed boundary techniques, such as the small cut-cell and load balancing is-
sues [95], the SBM on of complex boundaries. It has proven robust in handling
Poisson equations [55, 22, 95, 4], linear elasticity [6, 22, 95], Navier-Stokes equa-
tions [56, 97], and free surface flows [23]. It has also been successfully applied to
one-way coupled FSI problems [91]. However, its application to two-way coupled
FSI and thin-structure problems is still under development.

To date, SBM and AMR have not been jointly applied in time-dependent flow
and thermal simulations. This study presents the first framework integrating AMR
with the SBM to efficiently capture both vortical structures and thermal gradients
in complex domains. By adaptively refining the mesh in critical regions, AMR
optimizes computational resources, while the SBM ensures precise enforcement of
boundary conditions on non-conformal meshes, providing an effective and resource-
efficient solution.
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The paper is structured as follows: Section 2 details the AMR framework we
adopt, with specific emphasis on field-transfer operators between octree grids; Sec-
tion 3 describes the weak formulation of the PDEs and the corresponding SBM
formulation; and Section 4 presents a wide range of computational experiments to
test the proposed computational framework.

2. Adaptive mesh refinement framework.

2.1. Vorticity refinement/de-refinement indicator. The AMR framework we
propose is employed based on the magnitude of the vorticity. The vorticity w is
defined as the curl of the velocity field:

w=Vxu.

In the two dimensional case, it can be expressed as

_O0v Ou
w= oo R
with magnitude |w| given by
_|Ov Ou
jw| = ‘8:1: T oyl
The components of w in the three-dimensional case are:
_Ow  Ov
Wy = 8734 - &a
_Ou  Ow
T 9 ox
_Ov Ou
Wy =5 = %

with corresponding magnitude given by:

lw| = /w2 + w2 +w?.

Let wmax, Wmin, lmax, and Iy be the maximum vorticity, minimum vorticity,
maximum adaptive refinement level, and minimum adaptive refinement level, re-
spectively. The refinement level (1) inside the fluid domain is then based on the
magnitude of the vorticity |w| to obtain the corresponding values:

lmax; if |w‘ > Wmax »
I = { round (ﬁ(w — Wanin) +zmin) i wmin < @] < Wmax 5 (1)
lmina if Iw‘ S Wmin -

The AMR parameters (Wmax, Wmin, lmax, lmin) Were selected empirically. We pre-
viously conducted simulations using octree meshes with local mesh refinement in
specific regions [96, 97]. Based on these studies, we established the following general
principles for parameter selection: (a) For problems that generate time-dependent
vortices, we set wmax = 2 to ensure that vortices are adequately captured and well
refined. (b) For wmin, we typically choose 0.1. (¢) The choice of .y is based on
our previous simulations, where we observed that refining the mesh to this level in
specific regions, such as the wake region, improves the accuracy of the results. (d)
For lin, we generally select a value 3 to 4 levels lower than l,,x and ensure that
lmin > 5.
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2.2. Intergrid transfer. A key aspect of AMR is the efficient transfer of data
between the current mesh and the newly refined or coarsened mesh - a process
known as intergrid transfer. The DENDRO-KT [36, 72, 34, 32, 82] framework sup-
ports these intergrid transfers with traversal-based algorithms that allow for local
refinement or coarsening across different regions of the mesh. To ensure computa-
tional efficiency, DENDRO-KT restricts local refinement or coarsening to a single
level. The intergrid transfer between the current mesh, denoted as mesh A, and the
newly refined/coarsened mesh B, is performed by simultaneously traversing both
meshes in a synchronized fashion, ensuring proper data alignment. Since A and B
differ by only one refinement level, DENDRO-KT handles three possible scenarios:
(1) if both A and B are at the same refinement level and are leaf elements, the data
is directly copied; (2) if A is at the leaf level but B is further refined, values from
A are interpolated onto B using shape functions evaluated at the child nodes; and
(3) if B is at the leaf level but A is refined, values from A are projected onto B’s
parent element.

To track evolving solutions, the mesh must continuously adapt through refine-
ment and coarsening based on vorticity magnitudes. This periodic remeshing in
DENDRO-KT also requires repartitioning in distributed memory environments to
maintain load balance. After each remeshing step, the newly generated mesh un-
dergoes 2:1 balance enforcement [78, 36]. The remapping of data remains efficient
by leveraging space-filling curves (SFCs). Detailed approaches for efficiently imple-
menting these distributed-memory intergrid transfers in DENDRO-K'T are discussed
in [77].

The Compression Ratio quantifies the efficiency of AMR compared to a uniform
mesh by expressing the reduction in mesh nodes. Calculated as the ratio of nodes
in the uniform mesh to nodes in the AMR mesh, this metric highlights the degree
of optimization achieved through AMR:

Number of Nodes in Uniform Mesh
Number of Nodes in AMR Mesh

(2)

Compression Ratio =

3. The shifted boundary method.

3.1. Preliminaries: The true domain, surrogate domain, and maps. Fig-
ure la depicts a closed region 2 such that clos(Q2) C 2 (here clos(Q2) indicates
the closure of ) and the family 7,(2) of admissible and shape-regular discrete
decompositions (meshes/grids) of 2. In this work, we specifically focus on octree
grids aligned along the axes of the Cartesian space. Then, we restrict each 7,(2)
by selecting those elements T' € .7, (Z) such that

meas(T' N Q) > (1 — A) meas(T) , for some A € [0,1] . (3)

In other words, these are elements that have an intersection with the domain of inter-
est Q with an area/volume larger than 1 — A with respect to their total area/volume,
respectively in two/three dimensions. For example, choosing A = 0 selects the el-
ements that are strictly contained in the computational domain Q (see, e.g., Fig-
ure la), choosing A = 1 selects the elements that have a non-empty intersection
with , and choosing A = 0.5 selects elements whose intersection with 2 includes
at least 50% of their area/volume.
We define the family of grids that satisfies Eq. 3 as

) ={T € F,(2) : meas(T N Q) > (1 — ) meas(T)} .
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Iy = o0
I =00

ey

(a) The surrogate domain Q) C €, the difference
Q\ Q) between the true and surrogate domains,
true boundary I', and the surrogate boundary.

(b) The distance vector d, the true normal n, the true
tangent 7, and the surrogate normal n (horizontal).

Figure 1 The surrogate domain, its boundary, and the distance
vector d.

This identifies the surrogate domain
Qﬁ ::int( U T),
TET)
or, more simply, O, with surrogate boundary '), := 0%, and outward-oriented unit
normal vector n to I'y,. Obviously, ﬂ,f‘ is an admissible and shape-regular family
of decompositions of €}, (see again Figure la). Here, we make the optimal choice
A = 0.5, which minimizes the average distance between the surrogate and true

boundaries, and consequently the numerical error in computations, as discussed in
detail in [95]. Consider now the mapping, sketched in Figure 1b,

Mh : fh —T s (4&)

Tz, (4b)

which associates to any point & € I';, on the surrogate boundary a point & = M n(Z)
on the physical boundary I'. In this work, M} is defined as the closest-point

projection of & on I', as shown in Figure 1b. Through My}, a distance vector
function dps, can be defined as

dy, () =x—@ = [M - I|(2). (5)
For the sake of simplicity, we set d = dps, where d = ||d||v and v is a unit vector.

Remark 3.1. There are many strategies to define the map M, and, correspond-
ingly, the distance vector d. Whenever uniquely defined, the closest-point point
projection of & upon T is a natural choice for x (and, therefore, M). But other
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choices may be preferable, such as a level-set description of the true boundary,
where d is defined by means of a distance function. See also the discussion in [5, 6]
regarding domains with corners.

3.2. Shifted boundary conditions. Most of our focus will be on Dirichlet bound-
ary conditions, since to this type belong the no-slip boundary condition enforced on
the surface of shapes immersed into a fluid domain. Other types of boundary con-
ditions can also be treated with the SBM, but these are somewhat less interesting
in the context of CFD.

Consider then a surrogate Dirichlet boundary r D,k in proximity of a true Dirich-
let boundary I'p. Using the construction of the distance between the two bound-
aries, it is possible to introduce the Taylor expansion of the velocity vector:

w(@) + (Vu - d)(&) + (Rp(u,d)) (&) = up(My(&)), onTpy, (6)

where the remainder Rp (u, d) satisfies | Rp(u,d)| = o(||d||?) as ||d || — 0. We can
then define, on I'p 5, the extension operator

Bup(2) := up(Mn(z)) (7)
and the shift operator

Neglecting the higher-order residual term in Eq. 6, we obtain the final expression
of the shifted boundary conditions

SD’h’UJ = EUD s on fD,h . (9)

In what follows - for the sake of simplicity and whenever it does not cause confusion
- we will omit the symbol E from Eup (&) and simply write up(&).

Remark 3.2. While the SBM provides a convenient approach to enforcing bound-
ary conditions on irregularly shaped domains without the need for boundary-fitted
meshes or cut-element integration, we recognize that other IBMs, including direct
forcing IBM [59, 75, 2, 33, 15, 64, 29, 74, 76, 27, 39, 40, 93, 88, 35, 26, 101, 92, 41, 10]
and continuous forcing IBM [65, 66, 49, 81, 24, 80, 63, 100, 53, 90, 19], also enforce
boundary conditions correctly and accurately. Our intent is not to suggest that
these alternative methods lack accuracy but rather to highlight the differences in
implementation strategies, and ensuing computational overheads.

3.3. General definitions and notation. Let us denote by L?(2) the space of
square integrable functions over €. Here and in the following, (v,w), = fw VW
denotes the L?-inner product on a subset w C €, and (v, w), = fﬂ/ vw denotes the
L2-inner product on a subset v C I'. Let H™(Q) = W™P((Q) indicate the Sobolev
spaces of index of regularity m > 0 and index of summability p = 2, equipped with
the (scaled) norm

m 1/2
[0l m @) = (vllia(g) + Il(Q)’“Dkvll2L2<Q>> ; (10)
k=1

where D* is the kth-order spatial derivative operator and [(Q) = (meas,,,(€))'/™
is a characteristic length of the domain Q (introduced here to maintain dimensional
consistency in the definitions of the Sobolev norms). Note that H%(Q) = L?(Q2). As
usual, we use a simplified notation for norms and semi-norms, i.e., we set ||v||m.0 =
vl m () and |v[r0 = | D*vl|o.0 = ||Dkv||Lz(Q). Note that the above definitions
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are general, and the sets 2 and I' can be replaced by other sets, depending on the
situation.

3.4. SBM variational formulation. We now introduce the scalar and vector
discrete function spaces

vhan = {d" 14" € O N 21T), with T € F}} (11)
v = {wh | wh € (C°())? N (24T))?, with T € 9}3} . (12)

which will be instrumental in defining the variational formulations described next.
Specifically, 2'(T) is the set of functions, defined over T, that are tensor product
of linear polynomials along each of the coordinate directions. We note that time
integration is performed using the BDF2 time integrator.

3.4.1. Momentum and mass conservation equations. The shifted boundary varia-
tional formulation of the incompressible Navier-Stokes equations is inspired by the
corresponding Nitsche formulation and reads:

Find u" € Vh(flﬁ) and p" € V")) such that, for any w” € Vh(Qﬁ) and

q" e V),
0 = NS[Q% : jﬁ](wh’qh; ’u,h’,ph)

2 -
~ (W, (VU p D))

Consistency term

2
- <(Evswh +¢"In,u" + Vu' d - up)y,

Adjoint consistency term

1
+ E(h’l(wh + Vw" d), u" + Vu"d — up)z

D,h

Penalty term

where the residual of the Navier-Stokes equations is defined as:

1 s s
E(V wh7V ’U,h)fl));
- (V : wh?ph)flﬁ + (qh7 V- uh)ﬁﬁ - (wh7 fh>5~22

— Z (u" - Vw", u')r + Z (w",u - Vu")r

NSO s Z(w", ¢ ul, p") = (w", du” + " Vul)gy +

T Ted;
- Z (V" v @ u')p — Z (V-wh, p)r
Te ) TeT)
- Z (thau,)T ) (14)
TeF)

with V3ul = (Vu! + (Vul)!)/2 the symmetric part of the gradient of u”. The
primed terms (e.g., u/, p')] represent fine-scale variables associated with the VMS
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formulation and are defined, according to the Variational Multiscale (VMS) litera-
ture, as follows:

u' = —TMTM(Uh,Ph) ) (15a)
P = —1orc(ul) (15b)
where
TN = 3tuh—|—uh-Vuh—|—Vph—§ - f, (15c¢)
ro= V-u, (15d)
4 C’ -3
TC = (TMQ'Q) 1, (15f)
& O
Gij = (15g)
/ Z dx; Ox;
¢
i = Z o (15h)

The residuals 73; and r¢ are constructed replacing the coarse-scale (numerical)
solutions w” and p" inside the momentum and continuity equations, respectively.
The constant Cy is typically assigned a value of 36. Additionally, the quantities
G;j and g; are related to the isoparametric mapping between the reference element
and its physical counterpart in the computational domain. The parameter g in the
last term of Eq. 13 is a penalty that, if sufficiently large, ensures the numerical
stability of the overall formulation.

3.4.2. Heat transfer equation. In this work, we pair the incompressible Navier-
Stokes equations with a heat transport equation, function of a non-dimensional
temperature #. The weak form of the heat transfer equation incorporates convec-
tion (forced, mixed, or natural) as follows:

Forced or Mixed Convection: Find 6" ¢ f/h(flz), such that, for all ¢" €
Vi),

1
0= (0", 00" +u" - VO )gn + 5-(VO", V0" )g = (6", 0)ey
A8 gy

+ > msura(u - Ve, 00" + ul - V" — B2

Tey~A

} 1 N
<¢’L 5oV A, (5 Ve 0"+ VO d—Op)y,

Consistency term Adjoint consistency term
1 _
+a 5o (h Yo"+ Vo -d), 0" + V0" -d—0Op)s, - (16)

Penalty term
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Natural Convection: Find 0" € V(Q}), such that, for all ¢" € V),

_

vV Pr- Ra

+ Z TSUP(;(’u,h . V¢h, 8t0h + uh . V@h —
TeT)

—(¢", (PrRa)™%°Vo" - f):

0=(¢", 08" +u" - V65 + (Vo", V8")gn — (8", a)

1
vV Pr - Ra

((PrRa)~%5Ve" -7, 60" + V" - d - 6p)

Aeh - Q)Ta

D,h I'p.n

Consistency term Adjoint consistency term

+ a (PrRa)™"%(h(¢" + Vo - d),0" + V6" . d — 6p) (17)

I'pn-

Penalty term

Here, 6p represents the prescribed non-dimensional temperature at Dirichlet bound-
aries, and the consistency, adjoint consistency, and penalty terms are included to
ensure stability and accuracy in the shifted boundary approach for heat transfer.
The parameter « in Eq. 16 and Eq. 17 serves as a penalty parameter for the SBM
in the heat transfer equation.

Forced convection refers to flow dominated by inertial effects, while natural
convection is driven primarily by buoyancy forces due to temperature differences.
Mixed convection lies between these two extremes, incorporating aspects of both.
Here, Pr represents the Prandtl number, which is the ratio of momentum diffu-
sivity to thermal diffusivity. For the current simulation, Pr = 0.7 (air) is used.
Pe denotes the Peclet number, which can be expressed as Re x Pr. Ra is the
Rayleigh number, a dimensionless number characterizing buoyancy-driven flow. In
our framework, which employs linear finite element basis functions, the term A"
is negligible and is therefore omitted in the calculations. The term 7gypg refers to
the SUPG stabilization parameter, which is calculated as:

hz
=0 18
TSUPG 2Huh|| ) ( )

with A the element length, determined as:
2
h=——— (19)
|uh~VNA\ ’
2a llw”l

where VN4 denotes the gradient of the shape function N4, and the index A runs

over all the nodes of element 7. The parameter z is defined based on the local
_ s

55— as follows:

Reynolds number, Re,,
1 if Re,, > 3,
p={ g (20)

= if Re, <3.

To couple the Navier-Stokes and Heat Transfer equations, we employ a block-
iterative strategy [83, 94, 45]. In this approach, the convection-diffusion equation is
solved first, and the resulting temperature field is passed to the Navier-Stokes equa-
tion, which is then solved for velocity and pressure. Convergence is assessed within
this iterative block. If the convergence criterion is not satisfied, the velocity field
obtained from the Navier-Stokes solution is fed back into the convection-diffusion
equation, and the process repeats. This iterative loop continues until both equations
converge to a consistent solution.
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When addressing the coupling, it is essential to revisit Eq. 14, where the forcing
term fh depends on the non-dimensional temperature field #". Specifically, the
formulation of fh varies based on the convection regime, as shown below:

Oheg, Natural convection;

fh _ )0, Forced convection, (21)
G ghey — Rihe;,  Mixed ti
T2 eg = Ri0"eg, ixed convection,

Here, eg represents the unit vector in the direction of gravity, and Ri, the
Richardson number, quantifies the relative influence of natural and forced con-
vection.

3.5. Boundary-fitted implementation. We will also compare the SBM results
with the results obtained with boundary-fitted formulations, where the computa-
tional grid fits the shape boundaries and boundary conditions are enforced strongly.
For the sake of brevity, we omit the corresponding variational formulations, which
are obtained removing the “consistency”, “adjoint consistency”, and “penalty”
terms from Eq. 13, Eq. 16, and Eq. 17, and changing the definitions of the function
spaces so that u” = up and w” = 0 strongly on the Dirichlet boundary.

3.6. Backflow stabilization. Backflow stabilization [30, 50, 31, 37, 16, 13, 28, 54]
mitigates instabilities at outflow or open boundaries. Flow recirculation or vortices
can lead to backflow, destabilizing the simulation. Backflow stabilization introduces
a dissipative boundary term that activates when backflow occurs, maintaining sta-
bility. In this work, we implement the methods proposed in [30], and add the
following term to the right-hand side of (14):

— (w", Bo min(0, u" - n)u)r,, (22)

where 5, is a stabilization parameter for Navier-Stokes backflow stabilization, and
T, represents the outflow boundary. Similarly, backflow stabilization can be applied
to the heat transfer equation, adding the following term to the right-hand side of
Eq. 16 or Eq. 17:

—(w", By min(0, u" - )™\, (23)

where 3y is a stabilization parameter for heat transfer backflow stabilization.

For the simulations in Section 4.4, backflow stabilization for Navier-Stokes and
heat transfer equations was applied at the outlet boundary with 5, = 0.5 and
By = 0.5. For the simulations in Section 4.5, backflow stabilization for Navier-
Stokes equations was applied at the outlet boundary with 3, = 0.5.

4. Numerical results. The results presented in this section are primarily obtained
using the SBM with dynamic AMR. However, in certain sections, we compare SBM
with dynamic AMR to SBM without dynamic AMR. To distinguish between these
cases, we use the term AMR-SBM to denote simulations incorporating SBM with
dynamic AMR, while SBM specifically refers to simulations conducted using SBM
on meshes without dynamic AMR. When such comparisons are made, we explicitly
indicate this distinction within the respective sections.
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4.1. Two-dimensional unsteady flows past a fixed cylinder. We study the
flow around a circular obstacle at a Reynolds number of 100. The computational
domain is defined as a rectangle spanning [0, 30] in the z-direction and [0, 20] in the
y-direction, with a circular disk with radius equal to 0.5 centered at (10, 10). At all
external boundaries, except for the outlet, the non-dimensional velocity is enforced
to match the uniform, freestream velocity (1,0,0). At the outlet, the pressure is
set to zero, while a no-slip boundary condition is enforced on the circular obstacle
using the SBM. The simulation is conducted with a non-dimensional timestep of

Vorticity in Z-dir

b
o s Rt ks R et ekt e = =m !

(a) Mesh with AMR, highlighting vorticity on the meshes.

level of refinement
12
[ 11
— 10
—9

(b) Refinement levels during simulation with AMR enabled.

Figure 2 Flow past a two-dimensional circular cylinder at Re =
100: mesh with AMR vorticity contours are shown in the top pane,
while mesh refinement levels are shown in the bottom pane. The
figure highlights the refined mesh regions around the cylinder due
to AMR, which optimally reduces mesh elements while retaining
flow features.
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level of refinement
r 12
— 11
— 10

Figure 3 Flow past a two-dimensional circular cylinder at Re =
100: mesh with wake refinement (refinement level 12, mesh size
30 x 2712).

—AMR
,,,,,,,, | —Refine Wake

[=2)
I

—_
()

W

Mesh Count (nodes)
S

:
Time

Figure 4 Flow past a two-dimensional circular cylinder at Re =
100: history of the number of mesh nodes for AMR versus a regular
grid with uniform mesh refinement in the wake region (indicated
by the white box in Figure 2b). The significant reduction in node
count achieved by AMR emphasizes computational efficiency.

0.01. The base refinement level is set to 5, with boundary layer refinement near the
circular disk at levels 12, 13, or 14, to conduct a mesh refinement study. AMR is
applied according to equation (1), with parameters wimax = 2, Wmin = 0.1, lmax = 12,
and lnin = 8.

The AMR grid is shown in Figure 2a and Figure 2b. Figure 4 illustrates the
history of mesh sizes for the AMR mesh versus a base mesh (Figure 3) with uniform
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TABLE 1. Flow past a two-dimensional circular cylinder at Re =
100: comparison of drag coefficient (Cy) and Strouhal number (St).
The results of SBM with AMR are consistent with the literature,
confirming the accuracy of the proposed approach for different
mesh refinement levels.

Study Cy St
Liu et al. [52] 1.350 0.1650
Lai et al. [49] 1.447 0.1650
Uhlmann [85] 1.453 0.1690
Yang et al. [98] 1.393 0.1650
Kamensky et al. [40] 1.386 0.1700
Current (finest element size = 30/2'?) 1.401 0.1709
Current (finest element size = 30/2"%) 1.404 0.1707
Current (finest element size = 30/2'*) 1.405 0.1707

TABLE 2. Flow past a two-dimensional circular cylinder at Re =
100: Comparison of the drag coefficient (Cy) and Strouhal number
(St). The term AMR-SBM refers to simulations conducted with
dynamic AMR and the SBM, while SBM denotes simulations us-
ing SBM with local mesh refinement. Both AMR-SBM and SBM
simulations are performed with a base refinement level of 5 and a
boundary layer refinement level of 12 near the circular disk. For
SBM (without AMR), we locally refine the region up to levelyqke
just upstream of the circular disk and throughout the wake region,
as shown by the white box in Figure 2b. Below, we present SBM
simulations with levelqke set to 10, 11, and 12, and compare the
results with AMR-SBM. We treat the SBM simulation with the

highest refinement level in the upstream and wake region as the

ground truth|
_ 1Ca=Cy

ground truth and use it to calculate Errorc, = | GO ]
d

_ ‘St—Stground truthl

and E’]"TOTSt = W
Study Highest Mesh Nodes Cyq St Errorc, FErrors:
AMR-SBM 75464 1.401 0.1709 0.214% 0.0%
SBM (levelywake = 9) 29053 1.507 0.1685 7.336%  1.404%
SBM (levelyake = 10) 101694 1.411 0.1717  0.499%  0.468%
SBM (levelyake = 11) 389987 1.410 0.1717 0.427%  0.468%
SBM (levelyake = 12) 1544191 1.404 0.1709 0.0% 0.0%

refinement in the wake region (indicated with a white box in Figure 2b). We observe
that AMR reduces the number of mesh nodes by over 85%.

We achieve values of the drag coefficient (Cy) and Strouhal number (St) close
to those reported in the literature, as shown in Table 1, despite using significantly
fewer mesh elements than a uniformly refined mesh in the wake region. Table 1
also presents results from three different refinement levels at the boundary of the
circular disk (levels 12, 13, and 14), and we observe mesh convergence. To further
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evaluate the effectiveness of AMR in reducing computational costs while maintain-
ing accuracy, we compare the results of AMR-SBM with SBM simulations that use
local mesh refinement in the wake region (without AMR). Table 2 presents the drag
coefficient (Cy) and Strouhal number (St) obtained from these simulations. Despite
using significantly fewer mesh nodes, AMR-SBM achieves results that closely match
those of SBM with a wake-region refinement level of 12. Notably, AMR-SBM em-
ploys fewer mesh nodes than SBM simulations with wake-region refinement levels
of 9, 10, and 11 (see Table 2), yet it yields Cy and St values that are closer to those
of SBM with a refinement level of 12, which serves as the reference solution in this
study. This demonstrates that AMR effectively captures the relevant flow physics
without requiring excessive mesh resolution. Thus, AMR proves to be an efficient
approach for dynamically refining critical regions, reducing overall computational
costs while maintaining accuracy comparable to that of a globally refined mesh.

4.2. Lid-driven cavity flow with obstacles. We conduct simulations using a
complex geometry positioned at the center of a lid-driven cavity. The top wall has
a velocity boundary condition of (1,0), while the other three walls are set to no-
slip conditions. The boundary-fitted mesh (for comparing against SBM results) is
generated using Gmsh, with an approximate resolution of 272. We keep the base
refinement level of the mesh as 5 (element size = 27°) and utilize AMR. As illus-
trated in Figure 5, the SBM yields a velocity profile that closely matches the results
obtained with a boundary-fitted method (BFM), using a quasi-uniform grid near
the boundary (grid generation with Gmsh). Compared to the uniform octree mesh
with a size of 279, the reduction in mesh nodes achieved using AMR is shown in Ta-
ble 3. We chose a refinement level of 9 (mesh size = 279) as the base uniform mesh
for comparison based on the mesh refinement study conducted in [97]. As demon-
strated in [97], lid-driven cavity flow simulations with a circular disk at the center
showed that a uniform mesh with a refinement level of 9 produced grid-independent
results. We performed a mesh convergence study using SBM with uniform meshes
at different refinement levels, as shown in Figure 6. AMR-SBM results are also
included in the plot for comparison. We observe that AMR-~-SBM outperforms most
SBM simulations, except for the case with a uniform mesh refinement level of 9.
The number of mesh nodes for a uniform mesh with a refinement level of 8 is 60185.
AMR-SBM achieves approximately a 2x reduction in the number of mesh nodes
compared to the uniform mesh at refinement level 8, while still producing more
accurate results. The AMR parameters are wy,qz = 5, Wmin = 0.1, lnee = 10, and
lmin = 6. The base refinement level is set to 5.

TABLE 3. Lid-driven cavity flow with complex internal geometries:
grid size comparison (in terms of mesh nodes) for uniform mesh
versus AMR.

Reynolds Uniform Mesh AMR Mesh Compression

Number Ratio
50 34019 6.99
500 238100 34487 6.90

1000 34676 6.87
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Figure 5 Lid-driven cavity flow with complex internal geometries:
velocity profiles. The first row of pictures displays an overlay of
the vorticity with the AMR mesh, while the second row displays
velocity profiles around a cat-shaped obstacle, comparing results
between the SBM and a BFM. These simulations, conducted at
Reynolds numbers of Re = 50, Re = 500, and Re = 1000, illustrate
how both the obstacle shape and Reynolds number affect the flow
dynamics.

4.3. Mixed convection inside a lid-driven cavity. This is the first test in
our battery of tests in which we couple the Navier-Stokes with the heat transfer
equations (NSHT). A circular disk with temperature boundary condition § = 0 is
placed inside a lid-driven cavity. We perform simulations in the regime of mixed
convection, in which natural and forced convection effects are equally important.
The constant wall temperature boundary condition and no-slip boundary condition
on the circular disk are enforced using the SBM. The other boundary conditions
are the same as in Section 4.2. The temperature boundary conditions are set as
follows: the bottom wall has a non-dimensional temperature of 1, the top wall has a
non-dimensional temperature of 0, and the left and right walls are assigned zero-flux
boundary conditions. The non-dimensional parameters used are Re = 100, Pr =
0.7, and Ri values ranging from 0.01 to 5.0, covering the flow regime from forced
convection to mixed convection and natural convection. The AMR parameters are
Wimaz = 9y Wmin = 0.1, lhee = 7, and [,,;, = 5. The base refinement level is set to
4.

The simulation results for velocity magnitude and temperature, along with the
AMR mesh after the flow reaches a steady state, are presented in Figure 7. Fur-
thermore, the temperature profiles along x = 0.15, x = 0.85, y = 0.15, and y = 0.85
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Figure 6 Lid-driven cavity flow with complex internal geometries:
Plot of the y-direction velocity (v) along y = 0.5, with z ranging
from 0.06 to 0.2 inside the flow chamber. Comparison of AMR-
SBM and SBM at different uniform refinement levels. AMR-SBM
refers to simulations using dynamic AMR with SBM, while SBM
represents simulations with uniform meshes. AMR-SBM outper-
forms most SBM simulations with uniform meshes, except for the
case with a uniform mesh refinement level of 9.

are compared with the literature [18] in Figure 8. The mesh compression ratios
achieved using AMR for different Richardson numbers are detailed in Table 4. We
selected a uniform mesh with a refinement level of 7 (mesh size = 277) as the
benchmark for comparison in Table 4 based on two previous studies that conducted
similar tests. In [44], a boundary-fitted grid with 19520 nodes was shown to pro-
duce grid-independent results. The closest equivalent in our uniform mesh setup
consists of 14780 nodes, making it a reasonable choice. Additionally, in [18], mixed
convection lid-driven cavity flow simulations were performed using a grid size of
25171, Our uniform mesh size (277) is slightly coarser but remains comparable.
Furthermore, our results with the 2~7 uniform mesh align well with the literature,
as demonstrated in [96]. To demonstrate our AMR-SBM framework in compari-
son with SBM without AMR, we include Figure 9, which shows that AMR-SBM
achieves good agreement with SBM without AMR while requiring fewer mesh nodes,
as presented in Table 4. These results demonstrate that our AMR approach enables
efficient and accurate simulations.

4.4. Natural convection past a star-shaped domain. This problem involves
natural convection at Rayleigh number of 10® in a fluid domain of size [0, 16] x [0, 16],
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TABLE 4. Mixed convection inside a lid-driven cavity: grid size
comparison (in terms of mesh nodes) for uniform mesh versus

AMR.
Richardson Uniform Mesh AMR Mesh Compression
number Ratio
0.01 4252 3.48
1 14780 5237 2.82
5 9430 1.57

where a hot star-shaped object is placed at coordinates (8, 2.5). The initial condi-
tions are § = 0 and u” = 0. The boundary conditions applied to the chamber are as
follows: on the left and right sides, a no-penetration condition (or impermeable wall
condition, i.e., u” - m = 0 with n the outward unit boundary normal) is imposed
for the Navier-Stokes equations.

We employ a zero-flux boundary condition on the left and right walls for the
heat transfer equation. On the bottom side, a no-penetration condition is enforced
for the Navier-Stokes equations, and a Dirichlet condition with § = 0 is applied
for the heat transfer equation. On the top side, backflow stabilization is applied
for both the Navier-Stokes and heat-trasfer equations. A no-slip velocity boundary
condition and a temperature = 1 are enforced on the star-shaped object using the
SBM.

(d) Ri =0.01 (e) Ri=1 (f) Ri=5

Figure 7 Mixed convection inside a lid-driven cavity: Velocity
magnitude distribution (first row of plots) and temperature distri-
bution (second row of plots), for varying Richardson numbers (R3).
These plots demonstrates how changes in Ri affect the temperature
field, with the AMR approach capturing all essential temperature
gradients and flow patterns.
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Figure 8 Mixed convection inside a lid-driven cavity: tempera-
ture distribution for varying Richardson numbers (Ri). The figure
demonstrates how changes in Ri affect the temperature field, with
the AMR approach capturing essential temperature gradients.

The region near the star shape is refined to a level of 12, corresponding to an
element size of 16 x 27'2, while the rest of the domain is refined to level 5, with an
element size of 16 x275. The AMR parameters are wmax = 2, Wmin = 0.1, lmax = 10,
and [y, = 7. Figure 10 and Figure 11 illustrate the vorticity and temperature
contours at four non-dimensional times, corresponding to ¢ = 0, 10, 20, and 30.
This test case demonstrates that vorticity-based refinement for the Navier-Stokes
equations also benefits the solution of the heat transfer equation, as regions with
strong vorticity coincide with regions of high temperature gradients. The problem in
this section is designed to demonstrate the capability of our framework in handling
thermal flow simulations involving complex geometries. Due to the complexity of
these geometries, direct comparisons with existing literature are limited. For further
validation of natural convection simulations using Octree-SBM, we refer the reader
to [96].

4.5. Flow past a sphere at Re = 300. To simulate fluid flow past a sphere at a
Reynolds number (Re) of 300, we set up a computational domain as described in [2],
composed of a rectangular region spanning [0, 25] x [0, 10] x [0, 10] with a sphere
of radius 0.5 centered at coordinates (3, 5, 5). Our mesh refinement strategy closely
mirrors that of [2], in which several mesh refinement layers are progressively laid
near the sphere and along its wake. Specifically, we keep the base mesh refinement
at level 7 (element size = 25 x 277) and use three concentric spheres centered at
(3, 5, 5). The innermost sphere has a radius of 1 and a refinement level of 10 (with
element size of 25 x 2719) the next sphere has a radius of 1.5 and a refinement
level of 9 (with an element size of 25 x 27%), and the outer sphere has a radius
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Figure 9 Mixed convection inside a lid-driven cavity: Temperature
distribution for different Richardson numbers (R:). This figure
compares results obtained using the SBM with AMR, and uniform
meshes. The term AMR-SBM refers to simulations performed
with dynamic AMR and SBM, whereas SBM denotes simulations
using SBM with uniform octree meshes.

of 2 with a refinement level of 8 (with an element size of 25 x 27%). Near the
sphere, to ensure a detailed capture of the flow dynamics, we employ a finer mesh
with a refinement level of 13, which results in an element size of 25 x 2713, as
shown in Figure 12. The AMR parameters are wpq: = 2, Wmin = 0.1, lnae = 10,
and Uy, = 8. The left plot (Figure 12a) displays three concentric spherical slices
of the initial refinement setup prior to the application of AMR. The right plot
(Figure 12b) focuses on the refined mesh near the sphere boundary, highlighting
the level of detail in this region. We use a non-dimensional timestep of 0.025 for
the simulation. Backflow stabilization is applied at the outlet, while all other walls
are subjected to a uniform non-dimensional freestream velocity of (1, 0, 0). The
mesh obtained after applying AMR is shown in Figure 13a, alongside visualizations
of the Q-criteria of the flow in Figure 13b. These visualizations demonstrate that in
regions of higher flow rotation, the AMR mesh achieves finer resolution, effectively
capturing small vortex structures.

When compared to the existing references in terms of time-averaged drag co-
efficient (Cy) and Strouhal number (St), the present results match closely with
the reported values, as shown in Table 5. The time-averaged velocity profile also
matches well with the results of [84], as seen in Figure 13c. It is important to
note that the z-coordinate in Figure 13c is measured downstream from the sphere’s
centroid, consistent with the work of [84] and [42]. Both the instantaneous and time-
averaged velocity profiles demonstrate that our framework is in strong agreement
with findings in the literature.
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Figure 10 Natural convection past a star-shaped domain: vorticity
contours over time. The vorticity-based AMR allows for accurate
tracking of vorticity at different non-dimensional times.
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Figure 11 Natural convection past a star-shaped domain: tem-
perature contours at various non-dimensional times. The AMR
captures well the evolution of high thermal gradients over time.
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Figure 12 Visualization of the initial mesh refinement setup for
the flow past a sphere, highlighting the distribution before adaptive
refinement is introduced.

TABLE 5. Flow past a sphere at Re = 300: comparison of the
drag coefficient (Cy) and Strouhal number (St) against various ref-
erences. The proposed combined SBM-AMR, approach compares
well against previous experimental and computational studies.

Study Cd St
Roos and Willmarth [69] 0.629 -
(interpolated experiment value)

Le Clair et al. [51] 0.632 -
Johnson and Patel [38] 0.656 0.137
Marella et al. [57] 0.621 0.133
Vanella et al. [86] 0.634 0.132
Wang and Zhang [89] 0.680 0.135
Angelidis et al. [2] 0.665 0.132
Kang et al. [42] 0.663 0.134

Current 0.622 0.134

7
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Figure 13 Flow past a sphere at Re = 300. (a) and (b) illustrate
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compares the centerline average streamwise velocity profile with
benchmark data [84].
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5. Conclusions. In this study, we combined the SBM with AMR, to enhance com-
putational efficiency in complex flow simulations. Our case studies, including fluid
flow around obstacles and natural/mixed convection problems, demonstrate how
AMR effectively concentrates computational resources in critical regions. This
targeted approach captures essential flow features while optimizing computational
costs. The implementation of vorticity-guided mesh refinement helps preserve both
vortical and thermal structures, while the SBM ensures accurate boundary condi-
tion enforcement on irregular domains. The combined SBM-AMR approach has
proven effective across various fluid dynamics applications. Looking ahead, we plan
to extend this framework to handle moving boundary problems and FSI simulations,
opening new possibilities for multiphysics applications.
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