

1 Single neuron diversity supports area functional

2 specialization along the visual cortical pathways

3 Authors

4 Feyerabend M^{1-3,*}, Pommer S^{4-6,*}, Jimenez-Sosa MS¹⁻³., Rachel J⁴, Sunstrum J¹, Preuss F⁴,
5 Mestern S¹, Hinkel R⁷⁻⁹, Mietsch M⁷, Viyajraghavan S¹⁻³, Everling S¹, Treue S¹⁰, Arnsten AFT¹¹,
6 Lewis DA¹², Wolf F^{6,13-16}, Murray J¹⁷⁻²⁰, Steve McCarroll²¹⁻²², Lyle Muller²³⁻²⁶, Krienen F²⁷, Datta
7 D^{11,28}, Wang XJ²⁹, Tripathy SJ³⁰⁻³³, Gonzalez-Burgos G¹², Inoue W^{1**}, Neef A^{5,6,13,14,34,35**}, Staiger
8 JF^{4**}, Martinez-Trujillo J^{1-3**}

9
10 *First authors contributed equally to the study

11 **Senior Authors contributed equally to the study

12 1. Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University,
13 London, Ontario, Canada
14 2. Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
15 3. Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University,
16 London, Ontario, Canada
17 4. Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
18 5. Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
19 6. Göttingen Campus Institute for Dynamics of Biological Networks, Göttingen, Germany
20 7. Laboratory Animal Science Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen,
21 Germany.
22 8. German Center for Cardiovascular Research (DZHK), Partner Site Lower Saxony, Göttingen, Germany
23 9. Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
24 10. Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen,
25 Germany.
26 11. Departments of Neuroscience, Yale Medical School, New Haven, CT USA
27 12. Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
28 13. Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
29 14. Bernstein Center for Computational Neuroscience, Göttingen, Germany
30 15. Faculty of Physics, Georg-August-Universität Göttingen, Göttingen, Germany
31 16. Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells", Georg-
32 August University, Göttingen, Germany
33 17. Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
34 18. Manifest Technologies, New Haven, CT, USA
35 19. Department of Physics, Yale University, New Haven, CT, USA
36 20. Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
37 21. Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
38 22. Department of Genetics, Harvard Medical School, Boston, MA, USA
39 23. Department of Mathematics, Western University, London, Ontario, Canada
40 24. Western Institute for Neuroscience, Western University, London, Ontario, Canada
41 25. Western Academy for Advanced Research, Western University, London, Ontario, Canada
42 26. Fields Lab for Network Science, Fields Institute, Toronto, Ontario, Canada.
43 27. Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
44 28. Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
45 29. Center for Neural Science, New York University, New York, USA.
46 30. Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
47 31. Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
48 32. Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
49 33. Department of Physiology, University of Toronto, Toronto, Ontario, Canada
50 34. Institute for Nonlinear Dynamics, Georg-August-University Göttingen, Göttingen, Germany
51 35. Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
52

53 **Abstract**

54 Humans and other primates have specialized visual pathways composed of interconnected
55 cortical areas. The input area V1 contains neurons that encode basic visual features, whereas
56 downstream in the lateral prefrontal cortex (LPFC) neurons acquire tuning for novel complex
57 feature associations. It has been assumed that each cortical area is composed of repeatable
58 neuronal subtypes, and variations in synaptic strength and connectivity patterns underlie
59 functional specialization. Here we test the hypothesis that diversity in the intrinsic make-up of
60 single neurons contributes to area specialization along the visual pathways. We measured
61 morphological and electrophysiological properties of single neurons in areas V1 and LPFC of
62 marmosets. Excitatory neurons in LPFC were larger, less excitable, and fired broader spikes than
63 V1 neurons. Some inhibitory fast spiking interneurons in the LPFC had longer axons and fired
64 spikes with longer latencies and a more depolarized action potential trough than in V1. Intrinsic
65 bursting was found in subpopulations of both excitatory and inhibitory LPFC but not V1 neurons.
66 The latter may favour temporal summation of spikes and therefore enhanced synaptic plasticity
67 in LPFC relative to V1. Our results show that specialization within the primate visual system
68 permeates the most basic processing level, the single neuron.

69

70 Introduction

71 Human and other primates have hierarchically organized cortical visual processing streams
72 composed of serially connected areas, starting in the primary visual area V1 and extending
73 downstream to the lateral prefrontal cortex (LPFC, Felleman and Essen, 1991). The diversity of
74 neuronal response patterns, selectivity to different visual stimuli, and involvement in diverse
75 perceptual and cognitive functions across areas has been extensively documented in the
76 macaque monkey (Merigan and Maunsell, 1993; Nassi and Callaway, 2009; Martinez-Trujillo,
77 2022). This inter-area functional diversity has been implicitly assumed to be due to variations in
78 expression levels of receptors subtypes, synaptic strength, inputs, and connectivity within an
79 area's microcircuit (Carandini and Heeger, 2011; Godlove et al., 2014; Ardid et al., 2015; Jiang
80 et al., 2015). It has been further proposed that neurons across cortical areas of mammals follow
81 the principle of serial homology, i.e., single neuron classes are small quantitative variations of a
82 common theme (Harris and Shepherd, 2015). Here we test the alternative hypothesis that single
83 neurons in different visual areas of primates show qualitative and quantitative variations in their
84 intrinsic morphological and functional properties that contribute to inter-area specialization.

85 Previous studies have shown that neurons in macaque area V1 show little changes in their
86 tuning for basic visual features during training, even when subjects' show a strong improvement
87 of behavioral discrimination thresholds for the same features (Ghose et al., 2002). On the other
88 hand, neurons in the lateral intraparietal area (LIP) downstream from V1 acquire selectivity for
89 categories during training (Freedman and Assad, 2006). In the LPFC, downstream from LIP,
90 neurons flexibly become selective for new associations of visual features during intervals of
91 minutes or hours (Rouzitalab et al., 2023; Abbass et al., 2024). At the molecular level, a recent
92 study in macaques reported that the ratio of NMDA to AMPA receptors in synapses is larger in
93 the LPFC than in area V1 suggesting that LPFC circuits support learning via synaptic plasticity
94 to a larger degree than V1 circuits (Yang et al., 2018). Thus, the primate visual pathways extend
95 along a cortical *stability – plasticity* axis: Neurons in early areas are *stably* tuned to basic visual
96 features and neurons in far downstream areas *flexibly* 'learn' novel feature combinations
97 encountered in new situations or environments. One issue that remains poorly investigated is
98 whether variations in cells' intrinsic properties and morphology could shape single neuron
99 computations and synaptic plasticity, ultimately contributing to inter-area specialization along
100 this axis.

101 Reports of intrinsic electrophysiological properties and morphology of neurons in primates are
102 scarce relative to other species such as the mouse. Previous studies showed that excitatory
103 pyramidal neurons in area V1 and the LPFC of macaques diverge in their morphology
104 (Amatrudo et al., 2012; Medalla and Luebke, 2015; Gilman et al., 2017), whereas pyramidal
105 cells in mouse areas V1 and dorsal PFC do not have such prominent differences (Gilman et al.,
106 2017). Moreover, a study in macaques has revealed differences in the response patterns of
107 pyramidal cells between the lateral intraparietal (LIP) area and the LPFC (González-Burgos et
108 al., 2019). It is possible that not only excitatory but also inhibitory neurons have diversified their
109 intrinsic properties to contribute to the functional specialization of cortical areas in the primate
110 visual pathways. However, we have not found any study systematically comparing intrinsic
111 properties of inhibitory interneurons between different areas of the primate visual processing
112 hierarchy.

113 We investigate this issue in the common marmoset (*Callithrix jacchus*), a non-human primate
114 (NHP) model that has become popular amongst neuroscientists due to their faster reproductive
115 cycle, amenability to transgenic manipulations and similarity of visual processing with humans
116 (Mitchell and Leopold, 2015; Okano et al., 2016). We compare intrinsic electrophysiological
117 properties and morphology of single neurons between areas V1 and the LPFC of marmosets.
118 We use methods, protocols and tools similar to those the Allen Institute of Brain Science (AIBS)
119 used in the mouse and human cell type database (Gouwens et al., 2019), i.e. whole-cell patch
120 clamp recordings in acute slices and morphological reconstructions of single neurons. We built
121 a “Primate Cell Type Database” resource (<https://primatedatabase.com>). It contains 374
122 biophysical characterizations of intrinsic membrane properties as well as morphological
123 reconstructions of neurons from several areas (predominantly V1 and LPFC). We found that
124 intrinsic properties and morphology of excitatory and inhibitory neurons quantitatively and
125 qualitatively varied between V1 and the LPFC. Thus, area functional specialization along the
126 primate visual cortical pathways occurs at the most basic level of processing, the single neuron.

127 **Materials & Methods**

128 **Statement on animal research**

129 Research on NHPs is an ethically sensitive but irreplaceable part of neuroscience research. The
130 authors of this study are committed to pursue the best scientific result with the least possible
131 harm to the animals. Data was collected from 42 (male: 31, female: 11) common marmosets
132 (*Callithrix jacchus*, 26 at Western University + 16 at University of Göttingen) with a median age
133 of 4.43 years (IQR: 4.81, min: 1.52, max 18.06). Animal research from the Canadian group was
134 conducted in accordance with the Canadian Council of Animal Care policy on the care and use
135 of laboratory animals. The experiments were approved by the Animal Care Committee of the
136 University of Western Ontario. Animals from the German research group were fostered and kept
137 at the German Primate Center, Göttingen, Germany. Husbandry and experiments were
138 conducted in compliance with the Directive 2021/63/EU of the European Union and the German
139 Animal Welfare Act and therefore meet the regulations of the European Animal Research
140 Association. The animals were sacrificed as part of a broad study at the German Primate Center
141 approved by the Lower Saxony State Office for Consumer Protection and Food Safety (LAVES;
142 reference number 33.19-42502-04-20/3458). Experimental procedures were in accordance with
143 regulations of the German Animal Welfare Act. All animals were under constant veterinary
144 supervision.

145 **Acute marmoset ex vivo brain slice preparation**

146 Marmosets were anaesthetized with Ketamine (20 mg/kg, intramuscular) and isoflurane (2–5
147 %) and then euthanized by trans-cardial perfusion (Canada) or pentobarbital (Germany). In the
148 latter case, ice-cold solution was poured over the head before opening the skull to slow down
149 cellular processes and decrease brain deterioration during organ removal. Afterwards, the brain
150 was immediately rinsed with pre-chilled (2–4 °C) N-methyl-D-glucamine (NMDG) substituted
151 artificial cerebrospinal fluid (aCSF) containing 92 mM NMDG, 2.5 mM KCl, 1.2 mM
152 $\text{NaH}_2\text{PO}_4 \cdot \text{H}_2\text{O}$, 30 mM NaHCO_3 , 20 mM 4-(2-hydroxyethyl)-1-piperazineethansulfonic acid
153 (HEPES), 25 mM glucose, 5 mM Na-ascorbate, 2 mM thiourea, 3 mM Na-pyruvate, 10 mM
154 $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ and 0.5 mM $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$. The pH was adjusted to 7.3–7.4 with concentrated
155 hydrochloric acid (37 %) and the osmolality was set to 300–305 mOsm/kg. The solution was

156 oxygenized with 95 % O₂ and 5 % CO₂ (carbogen) for 15 minutes prior to animal surgery. The
157 brain was transferred into a container containing the same NMDG aCSF and quickly transported
158 from the animal facility to the laboratory room (10–20 min) (Ting et al., 2018; Gouwens et al.,
159 2019).

160 The hemispheres were separated and trimmed to blocks of prefrontal and visual cortex. Slices
161 of 300 μ m were cut with a vibratome VT1200 S (Leica) using the same ice-cold NMDG aCSF as
162 above. Subsequently, the slices were transferred to a recovery chamber filled with NMDG aCSF
163 at 32 °C and incubated for 12 minutes before stored in a holding chamber at room temperature.
164 This chamber was filled with HEPES aCSF containing 92 mM NaCl, 2.5 mM KCl, 1.2 mM
165 NaH₂PO₄·H₂O, 30 mM NaHCO₃, 20 mM HEPES, 25 mM glucose, 5 mM Na-ascorbate, 2 mM
166 thiourea, 3 mM Na-pyruvate, 2 mM MgSO₄·7H₂O and 2 mM CaCl₂·2H₂O. The slices were stored
167 for up to 10 hours with minimal submersion and transferred to fresh HEPES aCSF after 6 hours.
168 HEPES provided additional support to pH buffering and reduced slice deterioration over
169 extended time periods. All solutions were continuous oxygenized with carbogen gas and set to
170 300–310 mOsm/kg.

171 All solutions for ex vivo brain slice preparation and electrophysiological recordings were adopted
172 from the technical white paper from the AIBS Cell Type Data base. The latter facilitates the
173 comparison between our marmoset dataset with mouse and human datasets from AIBS Cell
174 Type Data base (Gouwens et al., 2019; Berg et al., 2021).

175 **Patch clamp electrophysiology**

176 Individual brain slices were transferred into the recording chamber and continuously perfused
177 with ~32 °C carbogen-saturated aCSF containing 126 mM NaCl, 2.5 mM KCl, 1.25 mM
178 NaH₂PO₄·H₂O, 26 mM NaHCO₃, 20 mM HEPES, 12.5 mM glucose, 1 mM MgSO₄·7H₂O, 2 mM
179 CaCl₂·2H₂O and a mix of synaptic blockers (2 mM kynurenic acid and picrotoxin 0.1 mM). Thick-
180 walled borosilicate glass pipettes were manufactured on the day of recording and filled with
181 intracellular solution containing 126 mM K-gluconate, 4 mM KCl, 0.3 mM EGTA, 10 mM
182 HEPES, 4 mM K₂-ATP, 0.3 mM Na-GTP, 10 mM Na₂-Phosphocreatinine. The pH was adjusted
183 to 7.3–7.4 with 1 M KOH and the osmolality was set to 290 mOsm/kg with sucrose when
184 necessary. The internal solution was supplemented with 0.5% biocytin to fill the recorded
185 neurons for histology. Pipette resistance in the bath was 3–7 M Ω . Recording equipment varied
186 across experimenters: data were acquired with either a Multiclamp 700B and a Digidata (Axon
187 instruments/ molecular devices), a SEC-10LX or SEC-05X (npi electronics) digitized with a
188 1401-3A (CED) or an EPC 10 USB (HEKA). After formation of a stable seal above 1 G Ω and
189 break-in, access resistance was determined in voltage clamp (VC) mode. Then, the recording
190 mode was switched to current clamp (CC) and bridge balance and pipette neutralization were
191 applied. When necessary, a holding current was applied and continuously readjusted
192 throughout to maintain a membrane potential close to the initial value after break-in. Cells that
193 required more than 20 pA holding current to keep the membrane potential at -60 mV in the initial
194 whole-cell configuration were generally not recorded from. Recording protocols and procedures
195 were standardized across laboratories and acquisition equipment. Neurons were subjected to
196 hyper- and depolarizing 1 s square pulse current injections. Furthermore, 275 (73.5%) cells
197 were recorded with an additional 3 ms short square pulse protocol.

198 **Histology**

199 After recording, slices were fixed with 4% m/v PFA + 15% v/v picric acid (1.3% saturated in
200 water) at 4 °C for a period of 24–36 hours and then washed in PBS. Then, slices were
201 permeabilized by incubation in PBS + 2% Triton-X for 2 x 15 min. Biocytin filling of patched cells
202 was made visible by a 4-hour incubation of streptavidin conjugated with Alexa Flour 647. After a
203 subsequent washing step, slices were incubated in PBS with DAPI (1:4000), before mounted on
204 specimen slides with aqua-polymount.

205 Imaging was done using a SP8 confocal microscope (Leica, Germany) or a LSM 880 with
206 Airyscan (Zeiss, Germany) to assess the cell location, quality of the filling and dendritic type.
207 Dendritic type was determined based on spininess and somatodendritic configuration of the cell
208 similar to Gouwens et al. 2018. Cells with sufficiently retained dendritic and axonal arborization
209 were used for another acquisition with 40x or 63x magnification (z-step size 0.5–0.8 µm). These
210 image stacks were then used to reconstruct the neuronal morphology using Neurolucida (MBF
211 Bioscience). Automated quantifications of neurites were obtained with Neurolucida explorer
212 (MBF Bioscience, USA).

213 **Analysis of electrophysiological features**

214 Raw recordings were converted into the neurodata without borders (nwb) format (version 2.4.0;
215 (Rübel et al., 2022)) using the MATNWB repository
216 (<https://neurodatawithoutborders.github.io/matnwb/>). Additional information such as subject data
217 (age, sex, etc.), acquisition parameters (access resistance, temperature, etc.) or histological
218 specifications (layer, putative superclass, etc.) were added if available. A custom MATLAB
219 analysis pipeline was used for quality control and extraction of electrophysiological features.
220 The code is publicly available on GitHub ([GitHub - mfeyerab/MATFX](https://github.com/mfeyerab/MATFX)). Recordings from cells were
221 not considered for further analysis if one of the following criteria was met: (1) an initial
222 membrane potential above -55 mV or (2) input resistance or action potential (AP) waveform
223 features could not be determined. In addition, recording quality was assessed in a sweep-wise
224 fashion. For this purpose, a time window of 250 ms for each pre and post stimulus period was
225 selected. A sweep was discarded if: (1) the membrane potential in either segment exceeded a
226 root mean square error of 0.65, (2) the membrane potential difference between pre and post
227 stimulus exceeds 2.5 mV, (3) the membrane potential in the pre-stimulus segment is not more
228 depolarized than -52.5 mV, (4) the membrane potential of the pre-stimulus deviates more than 6
229 mV from the median pre-stimulus membrane potential of all passing sweeps, (5) flagged by
230 manual curation based on evaluation of the pre-stimulus test pulse (see **Table 1** and **STab 1** for
231 a list of key features, and **STab 2** for description of all electrophysiological features).

232 **UMAP and cross-species classification**

233 Uniform Manifold Approximation Projection, UMAP (McInnes et al., 2018) space was created by
234 combining three data sets each obtained from a different species. Mouse and human data were
235 available at the AIBS Cell Type Database. For the classification analyses separate training and
236 test data sets for each species were chosen. Cells with a missing value in more than 15% of
237 features were excluded from the subsequent analysis yielding a total number of 2421 cells
238 (1757 mouse, 356 human, and 308 marmoset). Initially, 29 electrophysiological features (see
239 supplement for more detail) were reduced to 16 components by probabilistic PCA explaining
240 more than 95% of the total variance. Then data was transformed into UMAP space (McInnes et
241 al., 2018) using custom MATLAB scripts in two instances: (1) in a space with two components

242 for visualization of electrophysiological diversity in the different data sets (number of nearest
243 neighbours = 60, minimum distance = 0.2) and (2) in a space with three components for
244 supervised classification across species (number of nearest neighbours = 30, minimum distance
245 = 0.3).

246 For classification, three labels were chosen: Class 1 (C1), which contains fast-spiking
247 interneurons (FSI); Class 2 (C2), which contains the non-fast spiking population of interneurons
248 and Class 3 (C3), which contains excitatory cells (EXC). Ground truth data (**SFig. 1B**) was
249 obtained by Cre reporter lines and electrophysiological types (e-types, determined by
250 unsupervised clustering by Gouwens et al. 2019), to exclude contamination by off-target
251 expression (Hu et al., 2013). Cells which expressed Cre with the parvalbumin (PV) promoter
252 and an e-type ranging from Inh_8 to Inh_13 were considered fast spiking interneurons (FSI).
253 Cells which had a spiny dendritic type were considered EXC. Cells that expressed Cre with a
254 somatostatin (SST) promoter and an e-type ranging from Inh_4 to Inh_7 were considered SST
255 cells, whereas cells that expressed Cre with a serotonin receptor 3a (5-HT3A) or vasoactive
256 (poly)peptide (VIP) promoter and had either e-type 2 or 3 were considered VIP cells. Lastly,
257 cells that had the e-type “Inh_1”, which was marked by low spike-frequency adaptation and
258 commonly high latency of the rheobase spikes and expressed Cre with either a 5-Htr3a or a
259 neuron-derived-neurotrophic-factor (Ndnf) promoter were considered neurogliaform (NGF) cells.
260 C2 consisted of the SST, VIP and NGF subtype, which do not show the distinctive fast spiking
261 phenotype of PV cells. Cell type composition of training data was informed by histological data
262 of the primate neocortex, consequently the ratio of SST, VIP and NGF cells within the training
263 data was fixed to 2:2:1. A random forest classifier for cross species cell labeling was trained
264 (Seiffert et al., 2010) with uniform priors with a subset of the 3 component UMAP data
265 consisting of 1174 mouse cells with marker labels. Cell composition of test data was matched
266 across species and it was biased towards excitatory cells (~65 %). Marmoset and human test
267 data set for cross-species validation was determined by unambiguous morpho-
268 electrophysiological identity (see examples in **Fig 2** and **SFig 1**).

269 **Statistical analysis**

270 All hypothesis testing regarding differences between areas was done with 2-sided rank sum
271 tests in MATLAB and effect sizes were reported by rank bi-serial correlation (r_{rb}). All r_{rb} values
272 and their 95% confidence intervals were calculated with the measures-of-effect-size-toolbox
273 (Hentschke and Stützgen, 2011). Reported p-values were corrected for false discoveries rates
274 via the Benjamini-Hochberg procedure. Correlations reported were either tested by Spearman
275 (correlation coefficient: p) or Pearson (correlation coefficient: r).

276 The residual values of rheobase were obtained from a linear regression model with rheobase as
277 dependent variable and the ratio between the difference in the action potential threshold and the
278 resting membrane potential (Dvoltage), and the input resistance (R) as predictor variable. This
279 model (rheobase = $B_0 + B_1 \cdot (Dvoltage/R) + \text{residuals}$) captures the passive/ohmic aspect of the
280 rheobase.

281 **Effect of different acquisition systems on AP waveform**

282 Our data were recorded at two different sites with different acquisition systems. Therefore, we
283 checked whether this had an effect on electrophysiological measurements. Data recorded with
284 the HEKA amplifier show significantly higher AP amplitudes than those recorded with npi (**SFig**
285 **2A**), likely because differences in pipette capacitance compensation between amplifiers.

286 Uncompensated pipette capacitance, together with the access resistance, create a passive low-
287 pass filter which artificially shorten and widen the AP. This effect was stronger in neurons with
288 narrow spike waveforms. Selection of AP waveform features for the UMAP procedure was
289 informed by these observations. AP width was the only wave form parameter chosen as input,
290 since it showed no significant effect between the amplifier systems (**SFig 2B**). Ultimately,
291 neurons in the UMAP projection did not suggest clustering by acquisition equipment (**SFig 2C**)
292 and we conclude that our intrinsic property profiles are mainly shaped by biological factors such
293 as cell identity.

294 **Results**

295 We recorded from a total of 463 neurons in slices obtained from 42 marmosets. 374 neurons
296 (80.8%) passed our quality control (QC pipeline) to enter the primate cell type database (see
297 **Fig 1**). This database contains 107 V1 cells, 256 LPFC cells (focused on Brodmann area (BA) 8
298 and medial part of BA 46) and 11 cells from cingulate cortex (not included in this study). We
299 targeted both pyramidal and non-pyramidal cells focusing on supragranular layers. A total of
300 144 neurons were examined histologically, and spine density was evaluated to classify the cells
301 into aspiny, sparsely spiny or spiny. The latter could further inform whether a neuron was
302 inhibitory or excitatory (Gouwens et al., 2019). 29% of the cells evaluated were either aspiny or
303 sparsely spiny (for clarity purposes we will refer to the latter two categories as aspiny), and 71%
304 were considered spiny. The marmoset dataset contains a wide spectrum of morphologically
305 different cell types (**Fig. 2A, B**). Of the 144 neurons evaluated morphologically, a total of 32
306 cells were reconstructed. We also used two other data sets from mouse and human,
307 respectively, which are publicly available from the Allen Institute for Brain Science's (AIBS) Cell
308 Type Database (Gouwens et al., 2019). After applying the same QC pipeline as in the marmoset
309 data, we included 1907 of 1920 AIBS mouse cells (99.32%) and 403 of 413 human cells
310 (97.58%) in our analyses (**SFig 1A**).

311 **Comparing profiles of intrinsic properties across species**

312 We combined our marmoset data with the two AIBS datasets in a multivariate map of
313 electrophysiological features to determine whether the cell type profiles of intrinsic membrane
314 properties of marmoset, mouse and human cortex neurons overlap under varying factors such
315 as species or cortical area (**Fig 2C**). Importantly, our data were acquired with protocols and
316 solutions identical to those used in the AIBS studies, thus minimizing the influence of
317 methodological factors on potential inter-species differences (see Methods). Intrinsic properties
318 of all cells were quantified in the same analysis pipeline by 29 electrophysiological features
319 covering the subthreshold domain, action potential (AP) shape, and AP (spike) train pattern
320 diversity (see **STab 1** for a list and respective quantification of features). Subsequently, we used
321 the dimensionality reduction procedure “Uniform Manifold Approximation and Projection”
322 (UMAP) for visualizing intrinsic properties profiles (**Fig 2C**). While the data showed a general
323 overlap across species, marmoset and human cells were concentrated in hot zones marked by
324 large sag: a delayed deflection in the membrane potential response to hyperpolarizing current
325 injections (**Fig. 2C** upper right panel, mouse data indicated by gray filled circles in **Fig. 2C** upper
326 left panel).

327
328 To better understand the distribution of different cell types on the UMAP projection, we utilized
329 available cell type labels from 1460 mouse cells (76.6 % of analyzed mouse cells). Neurons
330 showing the “spiny” dendritic type were considered to be excitatory and 4 major interneuron

331 subtypes (PV/SST/VIP/NGF) were identified by a combination of e-type (Gouwens et al., 2019)
332 and labeling by one of five Cre-lines (PV-Cre/SST-Cre/VIP-Cre/5HT3A-Cre/NDNF-Cre; for more
333 detail see **SFig 1**). High density regions of the corresponding cell identity are indicated by color
334 shading in **Fig 2D** (see also **SFig 1**). One of the most prominent differences between
335 GABAergic and EXC cells is the speed of repolarization after the peak of an AP, with inhibitory
336 cells having a narrower AP. Indeed, the first UMAP component is strongly influenced by AP
337 width ($r = 0.745$, $p < 0.001$, see gradient in **Fig. 2C** lower panel) with FSI cells clustering to the
338 left of the map. This electrophysiological profile is strongly associated with PV fast spiking
339 interneurons, which was in line with the corresponding cell type cluster (see orange background
340 colors of **Fig. 2D**). Although different cell types tend to localize to a certain region in the UMAP
341 projection, they rarely separated into well-defined clusters but rather occupied a certain
342 segment on a continuous spectrum of intrinsic properties. VIP and SST cells, indicated by
343 purple and gold, showed a high degree of overlap.
344

345 The dendritic type of marmoset neurons (spiny vs. aspiny) showed a good correspondence with
346 mouse cell types, with occasional intermixing between aspiny and spiny cells (see **Fig 2D** and
347 **SFig 3B** for dendritic type of marmoset cells). The only notable shift of intrinsic property profiles
348 could be observed for neurogliaform (NGF) cells, which in mouse were associated with low
349 spike frequency adaptation and commonly high spike latencies (**Fig. 2D** cyan marker and
350 background). Interestingly, all 6 morphologically identified NGF cells in marmoset showed
351 strong spike frequency adaptation and short spike latencies (see **SFig 4**). Except for NGF cells,
352 these results suggest that overall feature profiles of distinct cell types overlap across the
353 different species.

354 **Classification of marmoset cell types based on intrinsic properties**

355 We merged the four interneuron subpopulations of AIBS mouse data (i.e., PV, SST, VIP, NGF)
356 into two group labels, labelling the PV cells were labeled as class 1 (C1), while the SST, VIP,
357 and NGF were grouped as class 2 (C2). The label EXC was preserved, making class 3 (C3).
358 We projected the intrinsic electrophysiological properties onto a 3D UMAP (**Fig 3**). We trained a
359 random forest classifier (Seiffert et al., 2010) to predict the class label (C1, C2, C3) from the
360 UMAP components using a sample of 1174 mouse neurons. The procedure was repeated 500
361 times with random training sets of fixed numbers of cells (**Fig. 3A**). We finally used a sample of
362 150 cells (not included in the training set) to assess the classifier performance in the mouse
363 data. Median test performance in the mouse across the different classes was 91.3% (**Fig. 3B**).

364 We used the mouse classifier to predict the different cell classes (C1, C2, C3) in the marmoset.
365 We assessed the classifiers' performance using a test set of 48 marmoset cells not included in
366 any of the previous analyses but with available morphological information which was used to
367 provide "ground truth" labels, as follows: fast spiking neurons (FSI) with congruent (i.e., basket
368 cell) morphology were determined to be C1 cells, whereas other aspiny neurons that could be
369 identified as different morphological types (such as bi-tufted cells, NGFs, etc.) were determined
370 to be C2 cells (see **Fig 2A,B**). C3 cells were drawn from the pool of all spiny cells. Marmoset
371 cells were classified with a median accuracy of 83.3% (**Fig 3B**). Confusion matrices provided
372 insight into classification accuracy by class (**Fig 3C**). Compared to mouse, erroneous
373 classification of C1 and C3 as C2 cells was more common (positive predictive values: mouse =
374 78.7% vs marmoset = 55.7%). Marmoset C1 and C3 cells were identified with high specificity
375 (positive predictive value: C1 = 94.3% and C3 = 95.8%).

376 We next examined the correspondence between the categories identified by the classifier and
377 dendritic type, as an additional evaluation independent of intrinsic membrane properties (**Fig**

378 **3E-F**). Final class labels were determined by the most frequent prediction throughout different
379 rounds of classification (repetitions) with different training subsamples (**Fig 3E**). Composition of
380 dendritic type by putative class (**Fig 3F**) is in line with positive predictive values of the test data
381 sets. In marmoset, 99% of putative C3 cells were spiny. The fraction of aspiny cells in the
382 putative C2 cells (68.1%) matches very well with the share of ground truth interneurons (i.e., C1
383 and C2) in the totals of the test data (68.8%). In summary, these findings indicate that the cross-
384 species classification leads to reliable labels for both C1 and C3, but less reliable labels for C2.
385 We repeated the same procedure in a sample of human neurons obtained from the AIBS
386 database and the results were qualitatively similar for the different classes. However, there was
387 a slight decrease in performance relative to the marmoset (**SFig 3D**).

388 **Comparison of intrinsic properties between V1 and LPFC neurons**

389 We used the classifier to identify C1 and C3 cells and then compared the intrinsic properties of
390 these classes between V1 and LPFC. First, we focused on C3, which includes EXC cells. A
391 summary of comparisons in key features is depicted in **Table 1**. We focus on supragranular
392 (layers II-III) neurons because these neurons process visual information from upstream areas
393 (Roussy et al., 2022a, 2022b), and encode visual long term memories (Corrigan et al., 2022;
394 Rouzitalab et al., 2023; Abbass et al., 2024), so they were intentionally targeted in our
395 recordings (**Fig. 1D**).

396 We found that C3 cells from LPFC had a lower input resistance ($p < 1e-4$, effect size $r_{rb} = 0.62$),
397 higher rheobase ($p < 1e-4$, $r_{rb} = -0.63$), and less rectification ($p < 1e-4$, $r_{rb} = -0.64$) than V1 cells
398 (**Fig 4A, B, Tab1**). These results suggest that LPFC EXC cells are less excitable than V1 cells.
399 To investigate the factors that may underlie the differences between areas, we examine how the
400 size of C3 dendritic trees (quantified by total length) relates to the cell's input resistance (**Fig**
401 **4C**). Indeed, both parameters showed a correlation of $\rho = -0.929$ (p -value < 0.001), meaning
402 that cells with shorter dendritic trees have a higher input resistance. V1 C3 cells had
403 systematically smaller dendritic trees than LPFC C3 cells. V1 cells also fired significantly
404 narrower action potentials with a robust effect size ($p < 1e-4$, $r_{rb} = -0.42$; **SFig 5**). Interestingly,
405 firing rate adaptation, the increase in inter-spike interval duration after stimulation onset, was
406 larger in LPFC than in V1 ($p = 0.0032$, $r_{rb} = -3.14$). A list of comparisons for several intrinsic
407 features appears in **Tab1**. A total of 14 out of 19 features showed significant differences
408 between areas.

409 We further compared intrinsic properties of C1 fast spiking inhibitory interneurons between the
410 two areas (see **STab 1**). Out of 19 analyzed features, 4 showed significant differences indicating
411 that intrinsic features in interneurons were more similar between areas. We found that AP width
412 was smaller in V1 than LPFC ($p = 0.0369$; $r_{rb} = -0.51$). The latency at the herosweep (see
413 **methods** and **STab 2**) was longer in LPFC than in V1 ($p = 0.0369$, $r_{rb} = -0.58$). The difference in
414 trough was also significant with a more negative value in V1 than in LPFC ($p = 0.0369$, $r_{rb} = -$
415 0.54). The rheobase showed a large difference and effect size between areas (see **STab1**), but
416 it did not reach statistical significance.

417 **Burst firing in C1 and C3 cells**

418 Bursts are short, high frequency trains of action potentials or spikes that could elicit a response
419 in the postsynaptic cell with higher probability than isolated spikes (Zeldenrust et al. 2018). We
420 computed burst indices in all the recorded neurons (see methods). Both C1 and C3 neurons

421 showed an increased burst index in LPFC relative to V1 (**Fig 4D**; C1: $p = 0.0369$, $r_{rb} = -0.51$; C3:
422 $p < 1e-04$, $r_{rb} = -0.39$). Some C3 neurons in both areas fired duplets of action potentials at the
423 beginning of stimulation at medium to high intensities (**Fig 4E**). Violin plots show a distribution
424 that was best fitted by the sum of 2 Gaussians rather than by a single Gaussian function (LPFC
425 data, Akaike Information Criteria, AIC 1 Gaussian = -140; AIC 2 Gaussians = -181), indicating
426 bimodality. Consequently, we divided all C3 cells into two subpopulations according to the
427 presence of duplets, or two-spikes bursts (see example traces in **Fig. 4E**). After isolating C3
428 bursting cells we found that: 1) bursting cells were more frequent in LPFC than in V1 (54% vs
429 34%, **Fig 4E**), and 2) bursting cells in LPFC have a higher burst index than bursting cells in V1
430 ($p < 1e-4$, $r_{rb} = -0.50$, **Fig 4F**). In summary, C3 LPFC neurons show an increase in bursting
431 relative to V1.

432 Interestingly, some of the C1 neurons in LPFC also showed a significant increase in burst index
433 (**Fig 4D**), which was associated with a bursting fast-spiking phenotype (purple traces in **Fig 5A**).
434 Unlike C3 neurons, C1 cells responded with bursts of multiple action potentials at rheobase
435 stimulation, which was often accompanied by other features of intrinsic bursting at higher
436 stimulation intensities such as sustained depolarization and varying AP wave forms. These
437 bursting C1 neurons were exclusive to LPFC (5 out of 19, i.e., 26.3 %, **Fig 5B**) and appeared to
438 be basket cells (BCs, see **Fig 5C**). With increasing stimulation, the gap in inter-spike intervals
439 between the initial burst and post-burst narrowed, making it harder to distinguish bursting vs
440 non-bursting fast spiking cells. At medium stimulus intensity, such as at the hero sweep,
441 bursting C1 cells (purple color) had a higher burst index relative to other C1 LPFC cells (pink
442 color, **Fig 5D**). LPFC cells we considered as not intrinsically bursting (pink color), show a higher
443 burst index than their V1 counterparts (blue color).

444 Intrinsic bursting cells typically have a prolonged active depolarization mechanism that
445 facilitates the generation of action potentials. To explore this issue, we next examine the
446 relationship between burst index and variables potentially linked to neuronal excitability. We first
447 developed a linear regression model with rheobase as dependent variable and the ratio
448 between the difference in the action potential threshold and the resting membrane potential
449 (Dvoltage), and the input resistance (R) as predictor variable. This model (rheobase = $B_0 +$
450 $B_1 \cdot (Dvoltage/R) + \text{residuals}$) captures the passive/ohmic aspect of the rheobase and provides a
451 reasonable goodness of fit (adj. $R^2 = 0.73$, p -value = 2.75e-09; model parameters [$B_0 = -3.654$,
452 $p = 0.82597$], [$B_1 = -826.86$, $p = 3.0106e-9^*$]). The model equation was used to obtain predicted
453 values and residuals.

454 Negative residuals of this model reflect active depolarization mechanisms. We found a
455 significant negative correlation between these residuals and burst index ($r = -0.642$, $p < 0.0001$,
456 see **Fig 5E**). These results suggest that an active depolarization mechanism underlies bursting
457 in C1 cells. Burst index also correlated significantly with other variables, i.e., latency of the first
458 action potential and amplitude of the afterhyperpolarization (latency $p = 0.017$, $\rho = 0.441$; AHP
459 amp, $p = 0.009$, $\rho = 0.474$; see **Fig 5F**). Cells with higher burst index showed longer latencies
460 to first spike at rheobase and weaker afterhyperpolarization, consistent with a depolarizing
461 mechanism that activates slowly and persist beyond the first action potential within a burst.

462 **Differences in morphology between V1 and LPFC neurons**

463 We investigated morphological features of C1 and C3 cells in LPFC and V1. We reconstructed 4
464 V1 and 11 LPFC pyramidal cells (PC). Two representative examples of PCs from V1 and LPFC
465 are shown in **Fig 6A**. We focused on dendrites from PCs because their long axons are more

466 likely to be truncated following slice preparation (Bruno et al., 2009; Oberlaender et al., 2011;
467 Mohan et al., 2015; Goriounova et al., 2018). The total dendritic length of V1 PCs was half of
468 their LPFC counterparts (median_{LPFC} = 5760 μ m, median_{V1} = 3119 μ m, p = 0.0352, r_{rb} = -0.63).
469 Quantitative analysis showed that both apical dendrite length and complexity was significantly
470 higher for PCs in LPFC than in V1 (apical length: p = 0.0352, r_{rb} = -0.63, apical complexity: p =
471 0.0352, r_{rb} = -0.63, **Fig 6C**). The result followed the same trend for basal dendrites with effect
472 sizes of 0.42 and 0.52, although it did not reach statistical significance at 0.05.
473 We also reconstructed 9 C1 (3 V1, 6 LPFC) fast-spiking basket cells (BC), all in layer III. Two
474 example cells from V1 and LPFC are shown in **Fig. 6B**. In contrast to PCs, interneurons have a
475 more localized axonal arborization, less likely to be affected by the thickness of the slice
476 preparation. The axonal length of LPFC fast spiking BCs doubled the one of V1 neurons
477 (median_{LPFC} = 19.743 mm, median_{V1} = 9.172 mm). There was over 5-fold increase in axon
478 complexity in LPFC relative to V1 (median_{LPFC} = 52,0e6, median_{V1} = 9,2e6, **Fig 6D**). A larger
479 sample of reconstructed cells would be needed to more systematically assess differences
480 between areas.
481 In summary, we found that PCs in LPFC have larger dendritic complexity and length than in V1.
482 On the other hand, a small sample of reconstructed fast-spiking BCs in LPFC show a more
483 extensive and complex axon than in V1. These findings suggest that morphological changes
484 have accompanied changes in intrinsic electrophysiological properties observed between V1
485 and LPFC neurons.
486

487 Discussion

488 We compared electrophysiological and morphological features of single neurons in two different
489 areas of the common marmoset visual cortical processing streams: V1, the input and earliest
490 sensory area, and the LPFC, located far downstream at the end of the visual processing stream
491 (Felleman and Essen, 1991). We conducted intracellular recordings using whole-cell patch-
492 clamp in brain slices and anatomical reconstructions of neurons in both areas. To identify cell
493 types, we built a random forest classifier using anatomical and transgenic labels, with
494 electrophysiological features as predictors. We used the classifier to identify three classes of
495 cells: C1 (aspiny fast-spiking interneurons), C2 (aspiny non-fast spiking interneurons), and C3
496 (spiny excitatory cells). We focused on C1 and C3 groups and compared neuronal intrinsic
497 features between areas V1 and LPFC. C3 cells in V1 were more excitable, smaller, and fired
498 narrower spikes than in LPFC. C1 neurons in the LPFC had longer latencies and a more
499 depolarized action potential trough than V1 cells. In both C3 and C1 groups, intrinsic bursting
500 was more commonly found in LPFC relative to V1 neurons.

501 A tool for classifying neuron types using intrinsic properties and morphology

502 Neuronal diversity has been a puzzle for neuroscientists since the times of Santiago Ramon y
503 Cajal, who described different cell morphologies across brain regions and species and
504 suggested a relationship between the structure/morphology and function of a neuron
505 (Szentágothai, 1990). Indeed, morphology and intracellular electrophysiological tools have been
506 used to classify neurons (Ascoli et al., 2008). Progress in transcriptomics has advanced this
507 field considerably (Saunders et al., 2018; Krienen et al., 2020; Yuste et al., 2020). However,
508 studies of cell types have been mainly conducted in mice, where transgenic tools for single
509 neuron classification are available and one can use large number of animals. In primates such

510 as the macaque monkey some studies have examined electrophysiological and morphological
511 features of pyramidal and non-pyramidal neurons (Gonzalez-Burgos et al., 2000; Zaitsev et al.,
512 2005, 2012; Povysheva et al., 2007, 2008; Amatrudo et al., 2012; Luebke et al., 2015; Medalla
513 and Luebke, 2015; Gilman et al., 2017; Medalla et al., 2017). However, in general they had low
514 sample sizes and/or were limited to one cell type and/or brain area. More recent studies in
515 resected tissue from human patients with epilepsy or brain tumors have also documented
516 intrinsic features of neurons and their divergence from those of in the mouse brain (Kalmbach et
517 al., 2018; Berg et al., 2021). However, they have also been restricted to one brain region, the
518 temporal lobe, and changes due to the underlying pathology may have influenced their results.

519 Over the last decade, the common marmoset has emerged as a model in neuroscience
520 research (Cyranoski, 2014; Mitchell et al., 2014; Mitchell and Leopold, 2015; Miller et al., 2016;
521 Servick, 2018) opening a door to explore cell types in primate brains. In the current study we
522 took advantage of the marmoset model to explore cell type diversity in areas V1 and LPFC of
523 the primate cortical visual pathways. We used the same protocols as the AIBS to minimize
524 technical and methodological confounds that could hinder comparisons of neuronal intrinsic
525 properties and morphology between datasets (e.g., our marmoset data vs. AIBS mouse data).
526 Our classification using transgenic mouse labels, as well as anatomical features (e.g., spiny and
527 aspiny) resulted in three main classes of neurons (C1, C2, and C3) that include known cell
528 types (Group et al., 2008; Tremblay et al., 2016; Zhou et al., 2020). C3 were mainly excitatory
529 pyramidal cells, C1 fast spiking interneurons, and C2, more variable in their electrophysiological
530 features, was mainly comprised of VIP and SST positive neurons in the mouse (Group et al.,
531 2008; Defelipe et al., 2013; Tremblay et al., 2016; Merino et al., 2019; Zhou et al., 2020). This
532 latter group likely included CB and CR positive interneurons in primates, thought to be
533 homologues of SST and VIP positive cells in the mouse (Condé et al., 2004; Zaitsev et al.,
534 2009, 2012; Torres-Gomez et al., 2020).

535 Our classification tool could be used by studies in humans and non-human primates that
536 investigate the properties of different neocortical cell types when transgenic labels are not
537 available. One important contribution of our study is highlighting homologies and differences
538 between broad categories of cell types across species, which is critical to the use of animal
539 models in research (**Fig. 2C, D**). The differences between areas observed here agrees with the
540 finding of transcriptomics studies in marmosets (Krienen et al., 2020). One general limitation of
541 the existing maps is that the samples are biased to few brain areas (e.g., V1 in mice and
542 Temporal cortex in humans (Gouwens et al., 2019), V1 and LPFC in marmosets (this study),
543 which makes it difficult to perform wide inter-area comparisons across species. Future work is
544 needed to fill this gap and provide a comprehensive map of functional and anatomical properties
545 of neurons across different cortical areas of primates.

546 **Differences in intrinsic properties and morphology between cell types in V1 and LPFC**

547 A main goal of this study was to identify distinctive features of cell types in areas V1 and the
548 LPFC of the common marmoset. V1 and LPFC are in 'opposite' extremes (beginning and end)
549 of the visual processing cortical hierarchy. In the initial stages of visual processing V1 neurons
550 must fast and reliably process incoming information from the thalamus. We found that C3
551 excitatory cells in V1 showed high excitability and narrow action potentials, which may
552 contribute to the elevated firing rates and short spike latencies relative to downstream areas
553 reported by extracellular studies in macaques (Schmolesky et al., 1998; Reynolds et al., 1999).
554 V1 also has the highest neuronal densities along the visual cortical pathways. The small C3

555 neuronal sizes may allow ‘packing’ more cells within the area. Indeed, excitatory V1 neurons
556 receive highly spatially-specific LGN inputs corresponding to a small region of the retina,
557 resulting in a high-resolution map of the visual field (Sincich and Horton, 2005). We also found
558 that fast spiking interneurons (C1) in V1 show sustained high firing rates with low adaption in
559 response to square current pulses. Additionally, V1 excitatory cells (C3) had high excitability,
560 small dendritic trees and less intrinsic bursting. These features make V1 neurons suitable for
561 linearly or quasi-linearly encoding important spatiotemporal details of visual inputs.

562 LPFC pyramidal neurons have large dendritic arborizations and many spines that can
563 integrate inputs from a variety of sources (Young et al., 2014; Preuss and Wise, 2022).
564 Pyramidal cells in the LPFC are known to fire with lower rates than in early sensory areas
565 (Lennert and Martinez-Trujillo, 2013). Moreover, neurons output (i.e., firing rates) in LPFC has a
566 higher correlation with performance than in upstream areas such as MT (Mendoza-Halliday et
567 al., 2014) and presumably V1. Thus, LPFC signals seem to be more directly linked to our
568 perceptions and actions than V1 signals. We found that excitatory cells (C3) in LPFC fired fewer
569 spikes with the same current stimulation levels as V1. The lower excitability of LPFC pyramidal
570 neurons is suited for selecting strong inputs corresponding to stimuli that are salient and/or
571 behaviorally relevant and for producing sparse codes that may underlie our perceptual
572 capabilities and sense of awareness (Panagiotaropoulos, 2024). However, the same structural
573 and functional complexity may make LPFC pyramidal cells vulnerable to new categories of
574 disease that would affect the highly developed cognitive skills of primates such as
575 Schizophrenia (Glantz and Lewis, 2000; Lewis and González-Burgos, 2008; Arnsten, 2011) and
576 Alzheimer disease (Arnsten et al., 2012).

577 Most interneurons receive their main inputs from local pyramidal cells. Pyramidal
578 neurons and fast spiking interneurons intrinsic properties in V1 and LPFC may have diversified
579 to perform computations according to the area’s input-output landscape. Indeed, certain types of
580 interneurons are more abundant in LPFC than in early sensory areas (Condé et al., 2004;
581 Torres-Gomez et al., 2020). One issue that remains unclear is when and how such
582 diversification occurs. For the case of LPFC it is possible that the protracted development of
583 primate species provides a prolonged window to adjust mRNA and protein expression (Bakken
584 et al., 2016) based on local feedback (i.e., levels of firing rate) and therefore produce variations
585 of what has been considered canonical cell types of the neocortex. In species with shorter
586 protracted periods such as mice, neuronal types may appear more serially homologous (Harris
587 and Shepherd, 2015; Gilman et al., 2017) perhaps due to a more limited time window for
588 epigenetics factors to transform the neuronal diversity landscape. This issue may be highly
589 relevant for the study of mental disease (Lewis and Sweet, 2009) and deserves further
590 investigation.

591 **Intrinsic bursting as a distinctive feature of LPFC neurons**

592 A burst is a short, high frequency trains of spikes with a higher probability than single spikes to
593 elicit a postsynaptic spike via temporal summation of excitatory postsynaptic potentials
594 (Zeldenrust et al., 2018). Bursts could arise by intrinsic mechanisms or by network dynamics
595 (Zeldenrust et al., 2018). Intrinsic bursters usually need a slow depolarization mechanism on top
596 of which action potentials are generated. Intrinsic currents such as T-type Calcium have been
597 isolated in bursters (Jahnsen and Llinás, 1984; Williams et al., 1997). The intrinsic bursting
598 found in our LPFC cells may be linked to differential expression of T-type currents. In some
599 LPFC fast-spiking C1 interneurons, depolarizing current injections elicited depolarizing events

600 with slow kinetics that led to long latencies of action potentials evoked at low rheobase
601 suggesting that at least a group of fast spiking interneurons in LPFC, likely basket cells, may
602 express these channels (**Fig. 4A**).

603 Bursting has been associated to a variety of functions such as increase in the efficiency of
604 synaptic transmission (Lisman, 1997; Csicsvari et al., 1998), and modulation of synaptic
605 plasticity by increasing temporal summation of EPSPs and Long-Term Potentiation (LTP) in
606 postsynaptic terminals (Thomas et al., 1998). The increase in bursting in LPFC relative to V1
607 may be linked to the ability of LPFC neurons to flexibly become tuned to novel objects
608 (Freedman et al., 2002; Fitzgerald et al., 2012; Martinez-Trujillo, 2022). One interpretation of our
609 results is that neurons in early areas such as V1 consistently process basic visual features (high
610 stability - low plasticity), which is necessary for encoding the same sensory information (e.g.,
611 color, orientation) in a stable manner, regardless of whether it belongs to familiar or novel
612 objects. On the other hand, neurons in the LPFC rapidly learn new associations of these basic
613 features (low stability - high plasticity), which is necessary when encountering novel complex
614 objects. Previous studies have reported a gradient in the ratio of NMDA- to AMPA-receptors
615 (Yang et al., 2018; Froudast-Walsh et al., 2023) along the hierarchy of visual processing with
616 LPFC having a high amount of NMDA glutamate receptors compared to V1. Combined with
617 intrinsic bursting, NMDA gradients can lead to the enhanced ability of LPFC to build selectivity
618 for new categories or rules (Freedman et al., 2001; Rouzitalab et al., 2023; Abbass et al., 2024).
619 Our results can be interpreted within the framework of the feature integration theory of
620 perception and attention (Treisman and Gelade, 1980; Treisman, 1982; Humphreys, 2015), in
621 which essential features pre-attentively processed in early visual areas such as V1 and are
622 latter assembled by the mechanisms of attention in the LPFC (Martinez-Trujillo, 2022).

623 **Serial homology and neuronal diversity in the primate visual system**

624 It has been proposed that in the mammalian neocortex, cell types follow the principle of *serial*
625 *homology*: cell types across brain areas are variations on a common theme organized in the
626 same basic pattern. Differences between serially homologous structures are typically
627 quantitative rather than qualitative (Harris and Shepherd, 2015). However, much of the data
628 supporting this hypothesis have been collected in a single species, the mouse, and in sensory
629 areas (e.g., barrel cortex or V1, Magrou et al., 2024). Mice do not show the stark differences in
630 the morphology of pyramidal cells between V1 and PFC (Gilman et al., 2016) and perhaps the
631 principle of serial homology applies to a larger degree than in primates. Previous studies
632 observed a strong difference in structural complexity, from branching patterns (Gilman et al.,
633 2016) to increases in the number of dendritic spines (Arnsten et al., 2012; Yang et al., 2013)
634 between V1 and LPFC neurons. Moreover, we see qualitative differences in firing patterns such
635 as the emergence of intrinsic bursting in LPFC. Thus, primate brains with expanded neocortices
636 seem to have diversified single neuron structure and function to cope with the demands of their
637 ecological niches achieving more brain computational power and behavioral complexity and
638 making them some of the most adaptable species in the planet.

639
640 Inhibitory interneurons, have been classically considered less diverse across areas and species
641 (Tremblay et al., 2016). However, most of what we know about interneuron diversity is from
642 studies in mice. Interestingly, a recent study has shown substantial variation in the expression of
643 different types of mRNAs across various species (mice, ferrets, marmosets and human,
644 (Krienen et al., 2020)). In agreement with our results, several transcripts were differentially
645 expressed in primate interneurons depending on the area (Krienen et al., 2020), supporting the
646 notion of existing qualitative differences in interneurons subtypes across areas in primates.
647 Thus, if there is serial homology across different areas of the primate visual system, it may be

648 restricted to some cell types. Neuronal diversity across brain areas may be a hallmark of
649 primate evolution and may arise during long-protracted periods of brain development (Otani et
650 al., 2016). How this diversification of cell types has impacted normal brain function and
651 vulnerability to new categories of brain diseases affecting humans is an open question.
652

653 Conclusion

654 Our study revealed several differences in intrinsic properties of pyramidal cells and fast spiking
655 inhibitory interneurons between areas V1 and the LPFC. An important contribution of our study
656 is to show that area specialization in the primate visual system permeates the most basic level
657 of signal processing, the single neuron. The data corresponding to the manuscript are available
658 as a resource (www.primatedatabase.com).

659

660 Acknowledgements

661 We would like to thank all veterinarians, veterinary technicians and experimenters taking care of
662 the animals used in the study. At Western University: Kristy Gibbs, Rhonda Kersten, Cheryl
663 Vander Tuin, Jarrod Dowell, Diego Buitrago Piza, Tsz Wai Bentley Lo. In Goettingen: Corinna
664 Boike, Diana Kaltenborn, Verena Arndt, Diana Kues, Martina Bleyer, Daniel Aschoff.

665 In addition, we would like to thank Irma Meteluch, Patricia Sprysch, Pavel Truschow for
666 excellent technical assistance around tissue processing and imaging as well as numerous
667 student assistants for manual reconstruction of neuronal morphology, in particular Rakshit
668 Sharma, Abdirahman Mohamed Salat, Katharina Bodes, Ima Mansori, Nicolas Zdun, Marvin
669 Luca Schmidt, Sabrina Schild, Sophia Heidenreich, Leander Isaak Matthes, Serena Lam, Luca
670 Auge, Josi Dittmann, Omar Aljameh, Amirhossein Haddadbakhodaei.

671 Furthermore, we would like to thank other members of the NeuroNex grant for giving their time
672 and feedback on discussion of the project, namely John Meng, Xiao Xing Wang, Takeaki
673 Miyamae, Benjamin Corrigan.

674 Last, but not least, we want to show our gratitude to Eric Kuebler, Kartik Pradeepan and William
675 Assis, who have created the website featured in this publication together with coauthor Sam
676 Mestern.

677 This work was primarily supported by the internation research grant NeuroNex funded by the
678 Canadian Institutes of Health Research (CIHR reference: FL6GV84CKN57, MF, MSJS, SM, SV,
679 SE, SJT, WI, JMT), the Deutsche Forschungsgemeinschaft (DFG, Projektnummer 436260547,
680 SP, JR, FP, ST, AN, JFS) and the National Science Foundation (NSF, grant number: 2015276,
681 AFTA, DAL, GGB). JMT and WI were also supported by the Natural Sciences and Engineering
682 Research Council of Canada (NSERC) and BrainsCAN grants.

683

684

685

686

687

688 **Author Contribution Statement**

689 M Feyerabend: data curation (lead), formal analysis (lead), investigation (lead in Canada),
690 visualization (equal), writing – original draft (equal) , writing – review & editing (support)

691 S Pommer: data curation (support), formal analysis (support), investigation (lead in Germany),
692 visualization (equal), writing – original draft (equal) , writing – review & editing (support)

693 M Jimenez-Sosa: data curation (support), investigation (equal)

694 J Rachel: investigation (equal)

695 J Sunstrum: investigation (equal)

696 F Preuss: investigation (equal)

697 S Mestern: investigation (equal)

698 R Hinkel: resources (lead)

699 M Mietsch: resources (support)

700 S Viyajraghavan: resources (support)

701 S Everling: resources (support), funding acquisition (support)

702 S Treue: resources (support), funding acquisition (lead),

703 AFT Arnsten: funding acquisition (lead), project administration (lead), conceptualization
704 (support)

705 DA Lewis: funding acquisition (support), writing – review & editing (support)

706 F Wolf, , S McCarroll: funding acquisition (support)

707 L Muller: funding acquisition (support), project administration (support)

708 F Krienen, J Murray: funding acquisition (support), conceptualization (support)

709 SJ Tripathy, G Gonzalez-Burgos: funding acquisition (support), conceptualization (support),
710 writing – review & editing (support)

711 W Inoue, JF Staiger, A Neef : funding acquisition (support), resources (support), supervision
712 (equal), writing – review & editing (support)

713 J Martinez-Trujillo: funding acquisition (lead), writing – original draft (equal) , writing – review &
714 editing (lead), supervision (equal)

715

716

717 **References**

718

- 719 1. Abbass M, Corrigan B, Johnston R, Gulli R, Sachs A, Lau JC, Martinez-Trujillo J (2024)
720 Neural Ensembles in the Lateral Prefrontal Cortex Temporally Multiplex Task Features
721 During Virtual Navigation. *bioRxiv*:2024.01.10.574378.
- 722 2. Amatrudo JM, Weaver CM, Crimins JL, Hof PR, Rosene DL, Luebke JI (2012) Influence
723 of highly distinctive structural properties on the excitability of pyramidal neurons in
724 monkey visual and prefrontal cortices. *J Neurosci* 32:13644–13660 Available at:
725 <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.2581-12.2012>.
- 726 3. Ardid S, Vinck M, Kaping D, Marquez S, Everling S, Womelsdorf T (2015) Mapping of
727 Functionally Characterized Cell Classes onto Canonical Circuit Operations in Primate
728 Prefrontal Cortex. *J Neurosci* 35:2975–2991.
- 729 4. Arnsten AFT (2011) Prefrontal cortical network connections: key site of vulnerability in
730 stress and schizophrenia. *Int J Dev Neurosci* 29:215–223.
- 731 5. Arnsten AFT, Wang MJ, Paspalas CD (2012) Neuromodulation of thought: flexibilities
732 and vulnerabilities in prefrontal cortical network synapses. *Neuron* 76:223–239 Available
733 at: <https://linkinghub.elsevier.com/retrieve/pii/S0896627312008045>.
- 734 6. Ascoli et al. (2008) Petilla terminology: nomenclature of features of GABAergic
735 interneurons of the cerebral cortex. *Nat Rev Neurosci* 9:557–568 Available at:
736 <http://www.nature.com/articles/nrn2402>.
- 737 7. Bakken TE et al. (2016) Comprehensive transcriptional map of primate brain
738 development. *Nature* 535:367–375.
- 739 8. Berg J et al. (2021) Human neocortical expansion involves glutamatergic neuron
740 diversification. *Nature* 598:151–158.
- 741 9. Bruno RM, Hahn TTG, Wallace DJ, Kock CPJ de, Sakmann B (2009) Sensory
742 Experience Alters Specific Branches of Individual Corticocortical Axons during
743 Development. *J Neurosci* 29:3172–3181.
- 744 10. Carandini M, Heeger DJ (2011) Normalization as a canonical neural computation. *Nat
745 Rev Neurosci* 13:51–62 Available at: <http://www.nature.com/articles/nrn3136>.
- 746 11. Condé F coise, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA (2004) Local circuit
747 neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey
748 prefrontal cortex: Distribution and morphology. *J Comp Neurol* 341:95–116 Available
749 at: <http://doi.wiley.com/10.1002/cne.903410109>.
- 750 12. Corrigan BW, Gulli RA, Doucet G, Roussy M, Luna R, Pradeepan KS, Sachs AJ,
751 Martinez-Trujillo JC (2022) Distinct neural codes in primate hippocampus and lateral
752 prefrontal cortex during associative learning in virtual environments. *Neuron* 110:2155–
753 2169.e4.
- 754 13. Csicsvari J, Hirase H, Czurko A, Buzsáki G (1998) Reliability and State Dependence of
755 Pyramidal Cell–Interneuron Synapses in the Hippocampus an Ensemble Approach in
756 the Behaving Rat. *Neuron* 21:179–189.
- 757 14. Cyranoski D (2014) Marmosets are stars of Japan’s ambitious brain project. *Nature*
758 514:151–152 Available at: <http://www.nature.com/doifinder/10.1038/514151a>.
- 759 15. Defelipe J et al. (2013) New insights into the classification and nomenclature of cortical
760 GABAergic interneurons. *Nat Rev Neurosci* 14:202–216 Available at:
761 <http://www.nature.com/doifinder/10.1038/nrn3444>.
- 762 16. Felleman DJ, Essen DCV (1991) Distributed hierarchical processing in the primate
763 cerebral cortex. *Cereb Cortex* 1:1–47 Available at:

764 <http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=1822724&retmode=ref&cmd=prlinks>.

765 17. Fitzgerald JK, Swaminathan SK, Freedman DJ (2012) Visual categorization and the parietal cortex. *Front Integr Neurosci* 6:18.

766 18. Freedman DJ, Assad JA (2006) Experience-dependent representation of visual categories in parietal cortex. *Nature* 443:85–88 Available at: <http://www.nature.com/doifinder/10.1038/nature05078>.

767 19. Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2001) Categorical Representation of Visual Stimuli in the Primate Prefrontal Cortex. *Science* 291:312–316 Available at: <http://www.sciencemag.org/cgi/doi/10.1126/science.291.5502.312>.

768 20. Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2002) Visual Categorization and the Primate Prefrontal Cortex: Neurophysiology and Behavior. *J Neurophysiol* 88:929–941.

769 21. Ghose GM, Yang T, Maunsell JHR (2002) Physiological Correlates of Perceptual Learning in Monkey V1 and V2. *J Neurophysiol* 87:1867–1888.

770 22. Gilman JP, Medalla M, Luebke JI (2017) Area-Specific Features of Pyramidal Neurons—a Comparative Study in Mouse and Rhesus Monkey. *Cereb Cortex* 27:2078–2094 Available at: <http://cercor.oxfordjournals.org/cgi/doi/10.1093/cercor/bhw062>.

771 23. Glantz LA, Lewis DA (2000) Decreased Dendritic Spine Density on Prefrontal Cortical Pyramidal Neurons in Schizophrenia. *Arch Gen Psychiat* 57:65–73 Available at: <http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archpsyc.57.1.65>.

772 24. Godlove DC, Maier A, Woodman GF, Schall JD (2014) Microcircuitry of agranular frontal cortex: testing the generality of the canonical cortical microcircuit. *J Neurosci* 34:5355–5369 Available at: <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5127-13.2014>.

773 25. Gonzalez-Burgos G, Barrionuevo G, Lewis DA (2000) Horizontal synaptic connections in monkey prefrontal cortex: an in vitro electrophysiological study. *Cereb Cortex* 10:82–92 Available at: <http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=10639398&retmode=ref&cmd=prlinks>.

774 26. González-Burgos G, Miyamae T, Krimer Y, Gulchina Y, Pafundo DE, Krimer O, Bazmi H, Arion D, Enwright JF, Fish KN, Lewis DA (2019) Distinct Properties of Layer 3 Pyramidal Neurons from Prefrontal and Parietal Areas of the Monkey Neocortex. *J Neurosci* 39:7277–7290 Available at: <http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1210-19.2019>.

775 27. Goriounova NA, Heyer DB, Wilbers R, Verhoog MB, Giugliano M, Verbist C, Obermayer J, Kerkhofs A, Smeding H, Verberne M, Idema S, Baayen JC, Pieneman AW, Kock CP de, Klein M, Mansvelder HD (2018) Large and fast human pyramidal neurons associate with intelligence. *eLife* 7:e41714.

776 28. Gouwens NW et al. (2019) Classification of electrophysiological and morphological neuron types in the mouse visual cortex. *Nat Neurosci* 22:1182–1195 Available at: <http://www.nature.com/articles/s41593-019-0417-0>.

777 29. Harris KD, Shepherd GMG (2015) The neocortical circuit: themes and variations. *Nat Neurosci* 18:170–181.

778 30. Hentschke H, Stüttgen MC (2011) Computation of measures of effect size for neuroscience data sets. *Eur J Neurosci* 34:1887–1894.

779 31. Hu H, Cavendish JZ, Agmon A (2013) Not all that glitters is gold: off-target recombination in the somatostatin–IRES-Cre mouse line labels a subset of fast-spiking interneurons. *Front Neural Circuits* 7:195.

780 32. Humphreys GW (2015) Feature confirmation in object perception: Feature integration theory 26 years on from the Treisman Bartlett lecture. *Q J Exp Psychol* (2006) 69:1910–1940.

814 33. Jahnsen H, Llinás R (1984) Ionic basis for the electro - responsiveness and oscillatory
815 properties of guinea - pig thalamic neurones in vitro. *J Physiol* 349:227–247.

816 34. Jiang X, Shen S, Cadwell CR, Berens P, Sinz F, Ecker AS, Patel S, Tolias AS (2015)
817 Principles of connectivity among morphologically defined cell types in adult neocortex.
818 *Science* 350:aac9462–aac9462 Available at:
819 <http://www.sciencemag.org/cgi/doi/10.1126/science.aac9462>.

820 35. Kalmbach BE et al. (2018) h-Channels Contribute to Divergent Intrinsic Membrane
821 Properties of Supragranular Pyramidal Neurons in Human versus Mouse Cerebral
822 Cortex. *Neuron* 100:1194–1208.e5 Available at:
823 <https://linkinghub.elsevier.com/retrieve/pii/S0896627318309000>.

824 36. Krienen FM et al. (2020) Innovations present in the primate interneuron repertoire.
825 *Nature* 586:262–269 Available at: <http://www.nature.com/articles/s41586-020-2781-z>.

826 37. Lennert T, Martinez-Trujillo JC (2013) Prefrontal neurons of opposite spatial preference
827 display distinct target selection dynamics. *J Neurosci* 33:9520–9529 Available at:
828 <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.5156-12.2013>.

829 38. Lewis DA, González-Burgos G (2008) Neuroplasticity of neocortical circuits in
830 schizophrenia. *Neuropsychopharmacol* 33:141–165 Available at:
831 <http://www.nature.com/articles/1301563>.

832 39. Lewis DA, Sweet RA (2009) Schizophrenia from a neural circuitry perspective:
833 advancing toward rational pharmacological therapies. *J Clin Investig* 119:706–716.

834 40. Lisman JE (1997) Bursts as a unit of neural information: making unreliable synapses
835 reliable. *Trends Neurosci* 20:38–43.

836 41. Luebke JI, Medalla M, Amatrudo JM, Weaver CM, Crimins JL, Hunt B, Hof PR, Peters A
837 (2015) Age-related changes to layer 3 pyramidal cells in the rhesus monkey visual
838 cortex. *Cereb Cortex* 25:1454–1468 Available at:
839 <https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bht336>.

840 42. Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang X-J, Martinez-Trujillo J,
841 Arnsten AFT (2024) The meso-connectomes of mouse, marmoset, and macaque:
842 network organization and the emergence of higher cognition. *Cereb Cortex* 34:bhae174.

843 43. Martinez-Trujillo J (2022) Visual Attention in the Prefrontal Cortex. *Annu Rev Vis Sci*
844 8:407–425.

845 44. McInnes L, Healy J, Saul N, Großberger L (2018) UMAP: Uniform Manifold
846 Approximation and Projection. *J Open Source Softw* 3:861.

847 45. Medalla M, Gilman JP, Wang J-Y, Luebke JI (2017) Strength and Diversity of Inhibitory
848 Signaling Differentiates Primate Anterior Cingulate from Lateral Prefrontal Cortex. *J*
849 *Neurosci* 37:4717–4734 Available at:
850 <http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.3757-16.2017>.

851 46. Medalla M, Luebke JI (2015) Diversity of glutamatergic synaptic strength in lateral
852 prefrontal versus primary visual cortices in the rhesus monkey. *J Neurosci* 35:112–127
853 Available at: <http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3426-14.2015>.

854 47. Mendoza-Halliday D, Torres S, Martinez-Trujillo JC (2014) Sharp emergence of feature-
855 selective sustained activity along the dorsal visual pathway. *Nat Neurosci* 17:1255–1262
856 Available at: <http://www.nature.com/doifinder/10.1038/nn.3785>.

857 48. Merigan WH, Maunsell JHR (1993) How Parallel are the Primate Visual Pathways?
858 *Annu Rev Neurosci* 16:369–402.

859 49. Merino RM, Leon-Pinzon C, Stühmer W, Möck M, Staiger JF, Wolf F, Neef A (2019)
860 Background correlations selectively boost the gamma-sensitivity of cortical GABAergic
861 neurons. *Biorxiv* 12:2019.12.19.882639 Available at:
862 <http://biorxiv.org/lookup/doi/10.1101/2019.12.19.882639>.

863 50. Miller CT, Freiwald WA, Leopold DA, Mitchell JF, Silva AC, Wang X (2016) Marmosets:
864 A Neuroscientific Model of Human Social Behavior. *Neuron* 90:219–233 Available at:
865 <http://linkinghub.elsevier.com/retrieve/pii/S0896627316300071>.

866 51. Mitchell JF, Leopold DA (2015) The marmoset monkey as a model for visual
867 neuroscience. *Neurosci Res* 93:20–46 Available at:
868 <http://linkinghub.elsevier.com/retrieve/pii/S0168010215000267>.

869 52. Mitchell JF, Reynolds JH, Miller CT (2014) Active Vision in Marmosets: A Model System
870 for Visual Neuroscience. *J Neurosci* 34:1183–1194.

871 53. Mohan H, Verhoog MB, Doreswamy KK, Eyal G, Aardse R, Lodder BN, Goriounova NA,
872 Asamoah B, Brakspear ABCB, Groot C, Sluis S van der, Testa-Silva G, Obermayer J,
873 Boudewijns ZSRM, Narayanan RT, Baayen JC, Segev I, Mansvelder HD, Kock CPJ de
874 (2015) Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers
875 of Adult Human Neocortex. *Cereb Cortex (N York, NY)* 25:4839–4853.

876 54. Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual
877 system. *Nat Rev Neurosci* 10:360–372.

878 55. Oberlaender M, Boudewijns ZSRM, Kleele T, Mansvelder HD, Sakmann B, Kock CPJ de
879 (2011) Three-dimensional axon morphologies of individual layer 5 neurons indicate cell
880 type-specific intracortical pathways for whisker motion and touch. *Proc Natl Acad Sci*
881 108:4188–4193.

882 56. Okano H, Sasaki E, Yamamori T, Iriki A, Shimogori T, Yamaguchi Y, Kasai K, Miyawaki
883 A (2016) Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience.
884 *Neuron* 92:582–590.

885 57. Otani T, Marchetto MC, Gage FH, Simons BD, Livesey FJ (2016) 2D and 3D Stem Cell
886 Models of Primate Cortical Development Identify Species-Specific Differences in
887 Progenitor Behavior Contributing to Brain Size. *Cell Stem Cell* 18:467–480.

888 58. Panagiotaropoulos TI (2024) An integrative view of the role of prefrontal cortex in
889 consciousness. *Neuron* 112:1626–1641.

890 59. Povysheva NV, Zaitsev AV, Kröner S, Krimer OA, Rotaru DC, Gonzalez-Burgos G,
891 Lewis DA, Krimer LS (2007) Electrophysiological differences between neurogliaform
892 cells from monkey and rat prefrontal cortex. *J Neurophysiol* 97:1030–1039 Available at:
893 <http://www.physiology.org/doi/10.1152/jn.00794.2006>.

894 60. Povysheva NV, Zaitsev AV, Rotaru DC, Gonzalez-Burgos G, Lewis DA, Krimer LS
895 (2008) Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. *J*
896 *Neurophysiol* 100:2348–2360 Available at:
897 <https://www.physiology.org/doi/10.1152/jn.90396.2008>.

898 61. Preuss TM, Wise SP (2022) Evolution of prefrontal cortex. *Neuropsychopharmacology*
899 47:3–19.

900 62. Reynolds JH, Chelazzi L, Desimone R (1999) Competitive Mechanisms Subserve
901 Attention in Macaque Areas V2 and V4. *J Neurosci* 19:1736–1753 Available at:
902 <http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.19-05-01736.1999>.

903 63. Roussy M, Busch A, Luna R, Leavitt ML, Mofrad MH, Gulli RA, Corrigan B, Mináč J,
904 Sachs AJ, Palaniyappan L, Muller L, Martinez-Trujillo JC (2022a) Neural sequences in
905 primate prefrontal cortex encode working memory in naturalistic environments.
906 *Biorxiv*:2022.08.18.504406.

907 64. Roussy M, Corrigan B, Luna R, Gulli RA, Sachs AJ, Palaniyappan L, Martinez-Trujillo JC
908 (2022b) Stable working memory and perceptual representations in macaque lateral
909 prefrontal cortex during naturalistic vision. *J Neurosci* 42:JN-RM-0597-22.

910 65. Rouzitalab A, Boulay CB, Park J, Martinez-Trujillo JC, Sachs AJ (2023) Ensembles code
911 for associative learning in the primate lateral prefrontal cortex. *Cell Rep* 42:112449.

912 66. Rübel O, Tritt A, Ly R, Dichter BK, Ghosh S, Niu L, Baker P, Soltesz I, Ng L, Svoboda K,
913 Frank L, Bouchard KE (2022) The Neurodata Without Borders ecosystem for
914 neurophysiological data science. *eLife* 11:e78362.

915 67. Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, Rivera H de, Bien E,
916 Baum M, Bortolin L, Wang S, Goeva A, Nemesh J, Kamitaki N, Brumbaugh S, Kulp D,
917 McCarroll SA (2018) Molecular Diversity and Specializations among the Cells of the
918 Adult Mouse Brain. *Cell* 174:1015-1030.e16 Available at:
919 <https://linkinghub.elsevier.com/retrieve/pii/S0092867418309553>.

920 68. Schmolesky MT, Wang Y, Hanes DP, Thompson KG, Leutgeb S, Schall JD, Leventhal
921 AG (1998) Signal Timing Across the Macaque Visual System. *J Neurophysiol* 79:3272–
922 3278.

923 69. Seiffert C, Khoshgoftaar TM, Hulse JV, Napolitano A (2010) RUSBoost: A Hybrid
924 Approach to Alleviating Class Imbalance. *IEEE Trans Syst, Man, CybernPart A: Syst*
925 *Hum* 40:185–197.

926 70. Servick K (2018) Why are U.S. neuroscientists clamoring for marmosets? *Science*
927 Available at: <https://www.sciencemag.org/news/2018/10/why-are-us-neuroscientists-are-clamoring-marmosets>.

928 71. Sincich LC, Horton JC (2005) THE CIRCUITRY OF V1 AND V2: Integration of Color,
929 Form, and Motion. *Annu Rev Neurosci* 28:303–326.

930 72. Szentágothai J (1990) Cajal on the cerebral cortex (An annotated translation of the
931 complete writings). By J. de Felipe and E. G. Jones. Oxford University Press, Oxford.
932 654 pp. \$65.00. *Neuroscience* 36:569–570.

933 73. Thomas MJ, Watabe AM, Moody TD, Makhinson M, O'Dell TJ (1998) Postsynaptic
934 complex spike bursting enables the induction of LTP by theta frequency synaptic
935 stimulation. *J Neurosci* 18:7118–7126 Available at: [/pmc/articles/PMC6793261/](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6793261/).

936 74. Ting JT, Kalmbach B, Chong P, Frates R de, Keene CD, Gwinn RP, Cobbs C, Ko AL,
937 Ojemann JG, Ellenbogen RG, Koch C, Lein E (2018) A robust ex vivo experimental
938 platform for molecular-genetic dissection of adult human neocortical cell types and
939 circuits. *Sci Rep-uk* 8:8407–8413 Available at: [http://www.nature.com/articles/s41598-018-26803-9](https://www.nature.com/articles/s41598-018-26803-9).

940 75. Torres-Gomez S, Blonde JD, Mendoza-Halliday D, Kuebler E, Everest M, Wang X-J,
941 Inoue W, Poulter MO, Martinez-Trujillo J (2020) Changes in the Proportion of Inhibitory
942 Interneuron Types from Sensory to Executive Areas of the Primate Neocortex:
943 Implications for the Origins of Working Memory Representations. *Cereb Cortex* 9:557
944 Available at: <https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhaa056/5811846>.

945 76. Treisman A (1982) Perceptual grouping and attention in visual search for features and
946 for objects. *J Exp Psychology Hum Percept Perform* 8:194–214.

947 77. Treisman AM, Gelade G (1980) A feature-integration theory of attention. *Cogn Psychol*
948 12:97–136.

949 78. Tremblay R, Lee S, Rudy B (2016) GABAergic Interneurons in the Neocortex: From
950 Cellular Properties to Circuits. *Neuron* 91:260–292.

951 79. Williams SR, Tóth TI, Turner JP, Hughes SW, Crunelli V (1997) The 'window'
952 component of the low threshold Ca^{2+} current produces input signal amplification and
953 bistability in cat and rat thalamocortical neurones. *J Physiol* 505:689–705.

954 80. Yang S-T, Wang M, Paspalas CD, Crimins JL, Altman MT, Mazer JA, Arnsten AFT
955 (2018) Core Differences in Synaptic Signaling Between Primary Visual and Dorsolateral
956 Prefrontal Cortex. *Cereb Cortex* 28:1458–1471 Available at:
957 <https://academic.oup.com/cercor/article/28/4/1458/4812491>.

958 81. Yang Y, Paspalas CD, Jin LE, Picciotto MR, Arnsten AFT, Wang M (2013) Nicotinic
959 \$\\alpha\$7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex.
960

963 Proc National Acad Sci 110:12078–12083 Available at:
964 <http://www.pnas.org/cgi/doi/10.1073/pnas.1307849110>.

965 82. Young ME, Ohm DT, Dumitriu D, Rapp PR, Morrison JH (2014) Differential effects of
966 aging on dendritic spines in visual cortex and prefrontal cortex of the rhesus monkey.
967 Neuroscience 274:33–43.

968 83. Yuste R et al. (2020) A community-based transcriptomics classification and
969 nomenclature of neocortical cell types. Nat Neurosci 23:1456–1468 Available at:
970 <http://www.nature.com/articles/s41593-020-0685-8>.

971 84. Zaitsev AV, Gonzalez-Burgos G, Povysheva NV, Kröner S, Lewis DA, Krimer LS (2005)
972 Localization of calcium-binding proteins in physiologically and morphologically
973 characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex
974 15:1178–1186 Available at:
975 <http://academic.oup.com/cercor/article/15/8/1178/304661/Localization-of-Calcium-binding-Proteins-in>.

976 85. Zaitsev AV, Povysheva NV, Gonzalez-Burgos G, Lewis DA (2012) Electrophysiological
977 classes of layer 2/3 pyramidal cells in monkey prefrontal cortex. J Neurophysiol
978 108:595–609 Available at: <https://www.physiology.org/doi/10.1152/jn.00859.2011>.

979 86. Zaitsev AV, Povysheva NV, González-Burgos G, Rotaru D, Fish KN, Krimer LS, Lewis
980 DA (2009) Interneuron diversity in layers 2–3 of monkey prefrontal cortex. Cereb Cortex
981 19:1597–1615 Available at: <https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhn198>.

982 87. Zeldenrust F, Wadman WJ, Englitz B (2018) Neural Coding With Bursts–Current State
983 and Future Perspectives. Front Comput Neurosci 12:48 Available at:
984 <http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=30034330&retmode=ref&cmd=prlinks>.

985 88. Zhou X, Mansori I, Fischer T, Witte M, Staiger JF (2020) Characterizing the morphology
986 of somatostatin-expressing interneurons and their synaptic innervation pattern in the
987 barrel cortex of the GFP-expressing inhibitory neurons mouse. J Comp Neurol 528:244–
988 260 Available at: <https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24756>.

989 990 991

992 **Tables**

993 **Table 1: Electrophysiological characteristics of class 3 neurons in LPFC and V1.**

Feature	LPFC n = 104	V1 n = 56	adj. p- value	z-val.	Effect size [CI]
Vrest, mV	-71.61	-71.68	0.6721	0.47	-0.04 [-0.19; 0.11]
R _{inHD} , MΩ	212.6	461.4	<1e-4*	-7.80	0.62 [0.53; 0.70]
rheobase, pA	90	30	<1e-4*	7.95	-0.63 [-0.71;-0.54]
tau, ms	26.74	30.28	0.2640	-1.18	0.09 [-0.06; 0.25]
sag ratio	1.13	1.21	0.0012*	-3.45	0.27 [0.11;0.43]
inst. rectification	0.92	0.75	<1e-4*	8.08	-0.64 [-0.73; -0.54]
AP width	0.35	0.27	<1e-4*	5.28	-0.42 [-0.54; -0.29]
amp slow trough	-19.65	-21.65	0.0127*	2.60	-0.21 [-0.36; -0.05]
rate of rheo, Hz	1.00	1.00	0.1274	-1.64	0.13 [-0.03; 0.30]
med. inst. rate, Hz	22.2	19.3	0.0116*	-2.65	0.22 [0.07; 0.37]
IQR inst. rate, Hz	7.30	8.10	0.2234	1.32	-0.11 [-0.27; 0.05]
adaRat Blast/B1	0.225	0.048	0.0032*	-3.14	0.25 [0.11; 0.39]
flslope, Hz/pA	0.048	0.123	<1e-4*	-5.07	0.41 [0.26; 0.53]
cvISI	0.354	0.249	2.25e-4*	3.90	-0.34 [-0.49; -0.17]
rate of hero, Hz	8	13	0.0116*	-2.68	0.21 [0.06; 0.36]
latency at hero, ms	14.35	16.41	0.9544	0.06	0.00 [-0.17; 0.16]
adaptation index	0.091	0.048	<1e-4*	4.51	-0.40 [-0.55; -0.25]
difference in trough	4.608	6.760	0.0053*	-2.96	0.24 [0.09; 0.39]
burst index	0.888	0.782	<1e-4*	4.48	-0.39 [-0.52; -0.24]

994

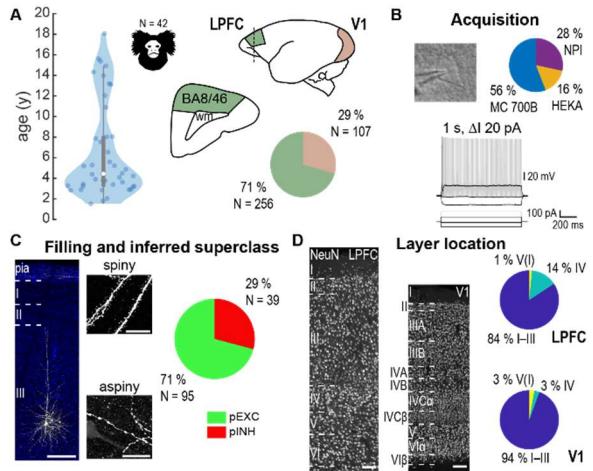
995 **Table 1: Comparison between V1 and LPFC in key electrophysiological features of C3 Cells**
996 The measure of central tendency of the distribution median. Negative effect size measures show
997 smaller values for V1 compared to PFC. p Values are corrected with Benjamini-Hochberg
998 procedure.

999

1000

1001

1002 *Table 2: Comparison between V1 and LPFC in key morphological features of class 1 and 3 neurons.*

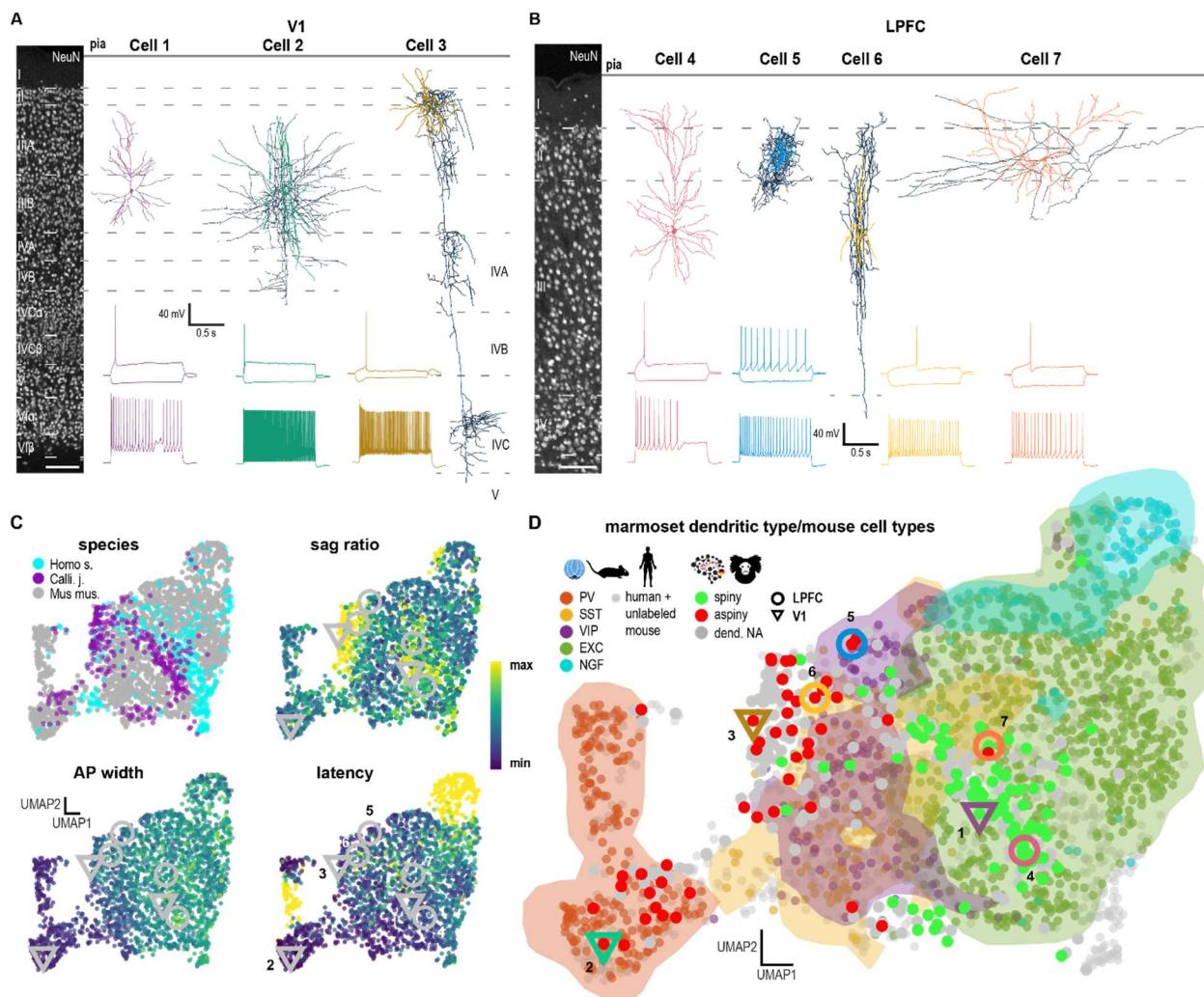

Feature	LPFC n = 11/5	V1 n = 4/3	adj. p- value	z-val.	Effect size [CI]
# primary dendrites (C3)	6	6	0.7341	-0.71	-0.11 [-0.66; 0.53]
apical length (C3)	2.8321e+03	972.1027	0.0352*	-2.07	-0.63 [-0.78; -0.28]
apical complexity (C3)	5.4943e+05	7.3401e+04	0.0352*	-2.23	-0.63 [-0.71;-0.54]
basal length (C3)	2.6794e+03	1.8978e+03	0.0835	-1.83	-0.52 [-0.77; -0.14]
basal complexity (C3)	4.5996e+04	3.0933e+04	0.1653	-2.07	-0.63 [-0.78; -0.35]
# primary dendrites (C1)	5	8	0.2976	-	0.57 [0; 0.91]
tot. dendritic length (C1)	3.9230e+03	1.00	0.7857	-	0.17[-0.54; 0.88]
dendritic complexity (C1)	5.8131e+04	7.4153e+04	0.7143	-	0.28 [-0.52; 0.88]
total axonal length (C1)	1.9743e+04	9.1722e+03	0.2976	-	-0.73 [-0.89; -0.40]
axonal complexity (C1)	52045624	9163046	0.2976	-	-0.62 [-0.89; 0.06]

1003

1004 **Table 2.** Values are median of electrophysiological characteristics in class 1 cells of LPFC and V1.
1005 Effect sizes were calculated as rank-biserial correlation. Negative values indicate larger LPFC
1006 values.

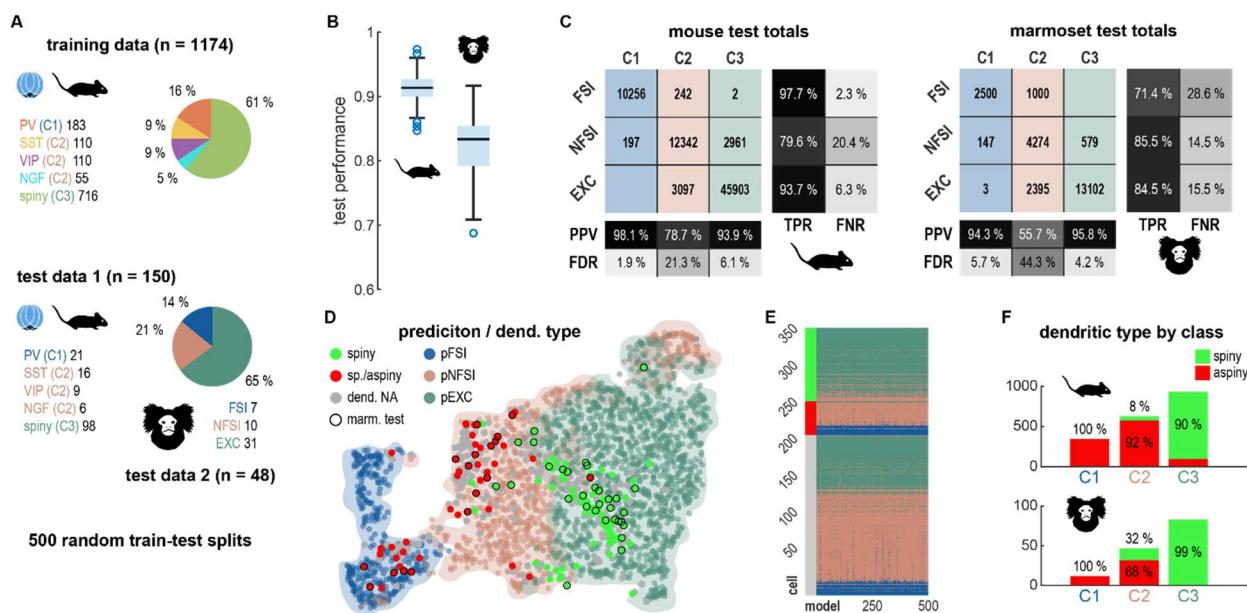
1007

1008 Figures


1009

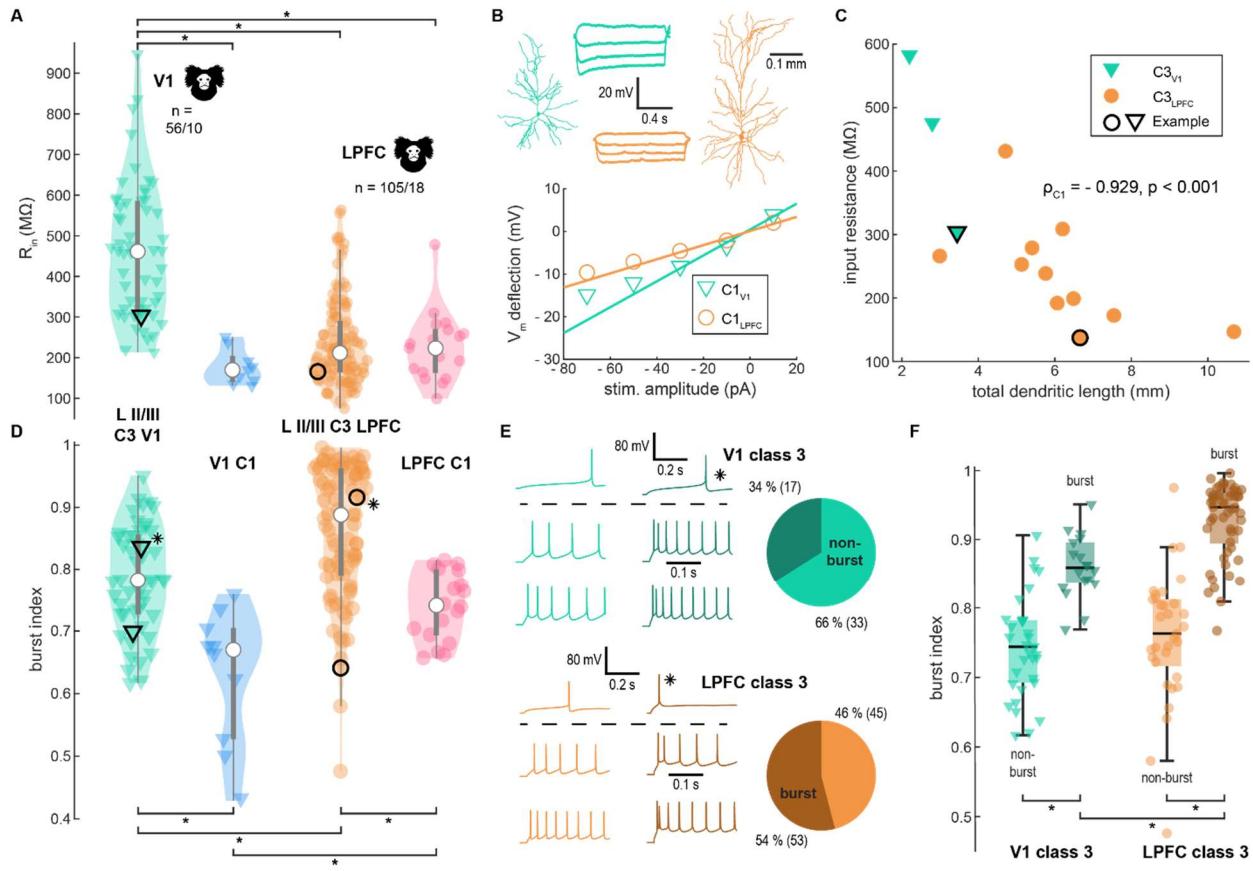
1010

1011 **Figure 1: Tissue acquisition and characterization of neuronal morphology and electrophysiology in multiple**
1012 **areas of the marmoset neocortex.**


1013 **A:** Acute slices of LPFC and V1 were obtained from 42 marmosets with a median age of 4.4 years. Neurons were
1014 characterized by electrophysiology (B) and morphology (C). **B:** Cells (grayscale picture) were subjected to 1 sec long
1015 square pulse current injection with a 20 pA increment from -110 pA till suprathreshold saturation. Example traces
1016 show hyperpolarizing, subthreshold, rheobase and suprathreshold injections. Data was acquired across different
1017 laboratories and recording systems (right pie chart). **C, D:** Anatomical evaluation of all filled neurons consisted of
1018 determination of broad class (spiny, putative Excitatory, pEXC versus aspiny, putative Inhibitory, pINH) via
1019 somatodendritic configuration, spininess (C) and cortical home layer of the soma (D). Left image in C shows a
1020 biocytin filled pyramidal neuron in layer III of LPFC; nuclei are stained with DAPI (blue); scale bar equals 150 μ m.
1021 Small images show example spiny (top) and aspiny (bottom) somatodendritic morphology; scale bars equal 20 μ m.
1022 Pie-chart shows the distribution of morphologically identified cells. In D the image shows NeuN staining with layer
1023 delineation in LPFC and V1; scale bars equal 100 μ m. Right pie-charts represent the distribution of cells by layers for
1024 LPFC and V1. Cells recorded in both areas were predominantly located in supragranular (I-III) layers.

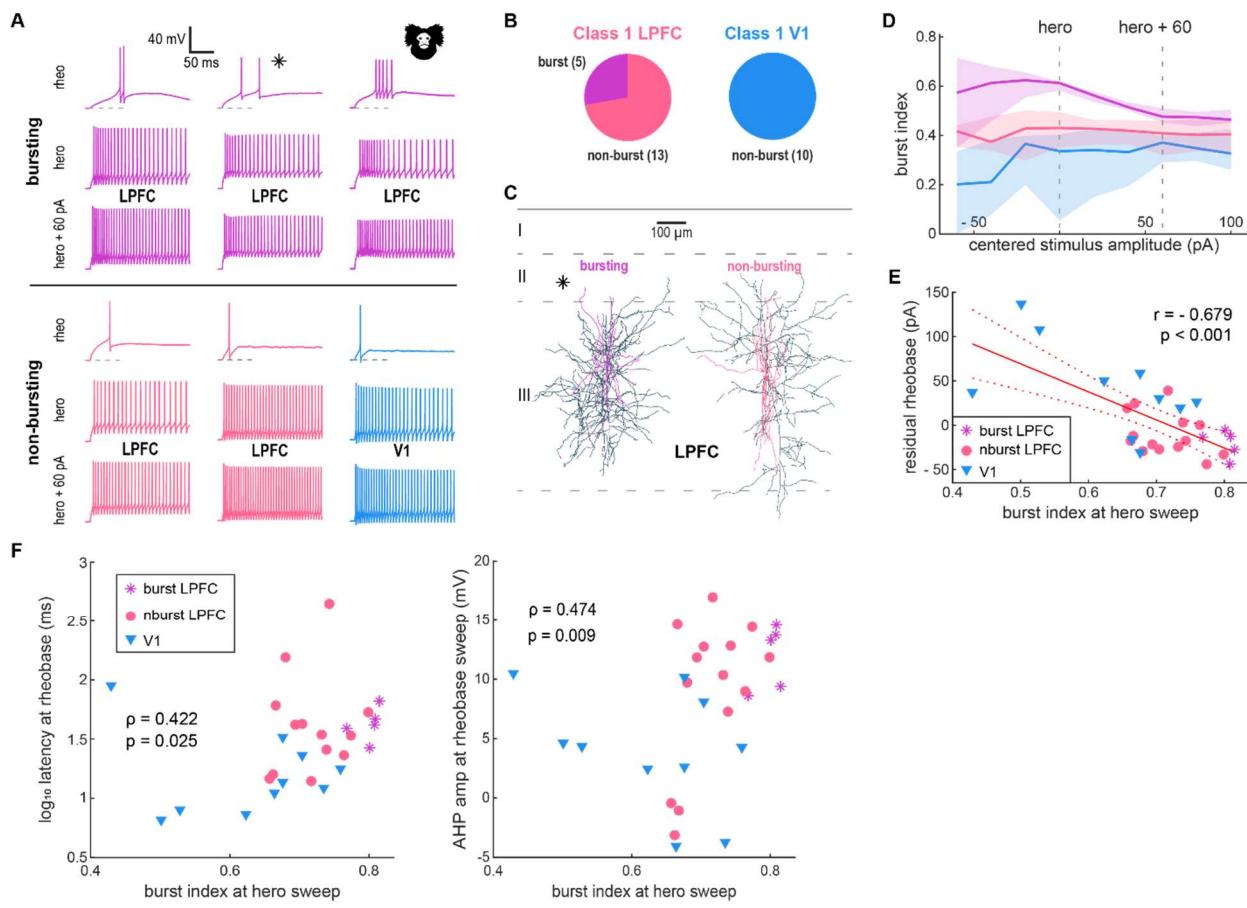
1025

1026


1027 **Figure 2: Neuronal diversity within marmoset data and co-projection with known cell types.**
1028 **A, B:** Examples of different marmoset cells separated by cortical area (A: V1, B: LPFC). Cells 1 and 4 are regular-
1029 spiking pyramidal cells. Cell 2 is a fast-spiking basket cell. Cell 3 is a vertically oriented basket cell. The cell was
1030 recorded in the dorsal medial V1 with expanded layers IV–VI. Cell 5 is a neurogliaform cell. Cell 6 is a double
1031 bouquet cell and cell 7 is a regular spiking spiny non-pyramidal cell (Below each cell is the corresponding
1032 subthreshold, rheobase and hero sweep. Scale bars equal 100 μ m. **C:** Panel of 2D UMAP projections visualizing
1033 distribution of cells by species and key electrophysiological features. **D:** 2D UMAP projection visualizing distribution of
1034 marmoset cells color-coded by dendritic type, referenced with known cell type in mouse. Colored background
1035 delineates areas with high density for the respective cell type. Location of examples from subfigures A and B are
1036 indicated by their respective color (downward facing triangle: V1, circle: PFC). The Logos indicate the origin of the
1037 data. Allen Institute in blue/black. Our NEURONEX consortium in black + country flags.

1038

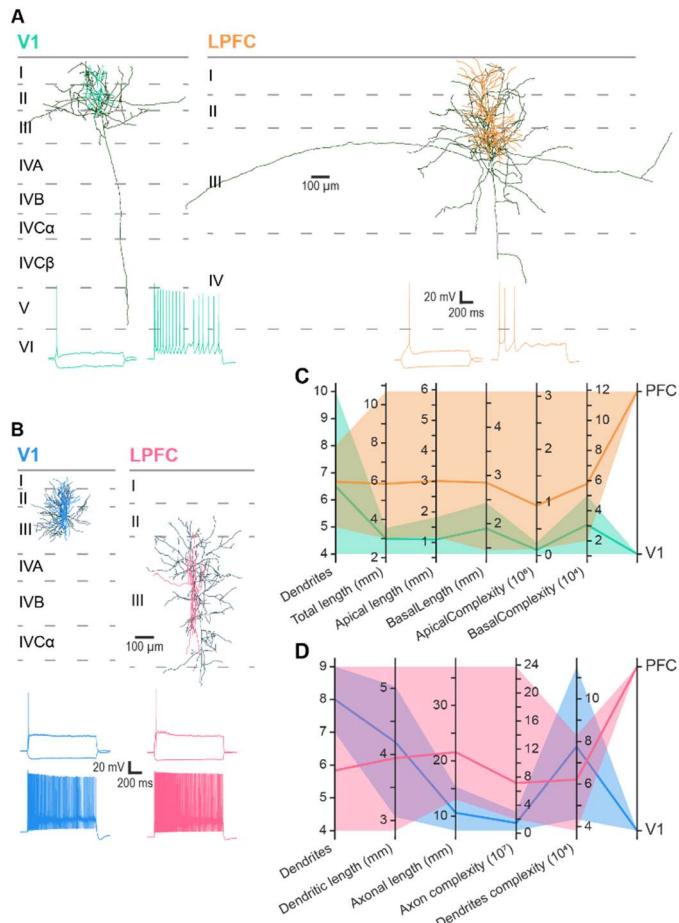
1039 **Figure 3: Objective classification of primate cells.**


1040 **A:** Panel of pie charts showing cell type composition of training and test data. Three different classes were used:
1041 Class 1 (dark blue; C1), Class 2 (ocher, C2), merged from SST (yellow), VIP (purple) and NGF (turquoise) cells and
1042 Class 3 (dark green, C3). Mouse and marmoset test data had identical proportion of classes. For marmoset test data
1043 we chose electrophysiology with congruent morphology for C1 and C2, respectively. Marmoset C3 cells were drawn
1044 from spiny cells. The procedure was repeated 500 times with randomly drawn training and test sets. **B:** Performance
1045 of classifier across repetitions. Horizontal boxplots show distribution of performances. Median test performances by
1046 species were 91.3% for mouse and 83.3 % for marmoset. **C:** Confusion matrices for mouse and marmoset test data
1047 showing all classification totals. The positive predictive value (PPV) for C1 and C3 cells is over 90% in the marmoset.
1048 FDR = False Discovery Rate, TPR = True Positive Rate, FNR = False Negative Rate. **D:** Example UMAP visualization
1049 of one model prediction referenced with dendritic type of marmoset cells. Shaded areas indicate high density of the
1050 respective class. **E:** Colormap visualization of prediction outcome of marmoset cells for all 500 repetitions. Cells are
1051 grouped by dendritic type and then sorted by the first UMAP component. Color scale indicates class prediction same
1052 as in D. **F:** Bar charts showing proportion of dendritic type per majority classifier prediction.

1053

1054

Figure 4: Input resistance and bursting across areas
 1055 **A, D:** Violin plots of class 3 (V1, turquoise; PFC, orange) and class 1 (V1: blue, LPFC: pink) for input resistance (A)
 1056 and burst index (D). Black contours signify example cells (triangle: V1, circle: LPFC) shown in B (for A) and E (for D).
 1057 Asterisk in D labels bursting class 3 neuron. **B:** Above: Dendritic morphology of two example of class 3 cells (LPFC:
 1058 orange, circle in A; V1: turquoise, triangle in A) together with 4 subthreshold traces. Below: UI curve showing how input
 1059 resistance of cells above was determined as the slope of linear fit of three lowest subthreshold stimulation. **C:** Total
 1060 dendritic length and input resistance strongly correlate in class 3 cells. **E:** Example of bursting (V1, dark green; LPFC,
 1061 brown) and non-bursting (V1, turquoise; LPFC, orange) class 3 cells: Sweeps above the dashed line are from
 1062 rheobase and show the first 0.5 s, instead of the first 0.25 s. Bursting is marked by doublets at medium to high
 1063 stimulation, but not on rheobase level. **F:** Comparison of burst index of class 3 cells split by burst/non-burst
 1064 distinction.



1065

1066

Figure 5: A bursting phenotype in C1 fast spiking basket cells

1067 **A:** Example of various firing patterns of class 1 cells: neurons were divided into groups depending on bursting or lack thereof and cortical area: Bursting is marked by multiple spikes at rheobase level. **B:** Number of burst-type fast spiking basket cells among class 1 neurons in LPFC and V1. Bursting was observed in 28 % of LPFC class 1 cells (purple vs pink) and not found in V1 (blue). **C:** Example morphology of bursting and non-bursting class 1 cells in LPFC. The dendritic tree is shown in purple (bursting) pink (non-bursting) while the axon is shown in dark blue. The asterisk corresponds to the example traces in A. Both groups are associated with basket cells. **D:** Burst index across stimulus intensity by subpopulation (burst-LPFC/non-burst-LPFC/V1). Line indicates median, shaded area indicates the IQR. **E:** Burst index negatively correlates with residual rheobase after regression with input resistance and difference between AP threshold and resting membrane potential. Markers are blue triangles for V1 cells, pink circles for non-bursting LPFC and purple stars for bursting LPFC cells. **F:** Burst index correlates with logarithm of latency and depolarized trough of the rheobase AP. **G:** Box charts comparing both logarithm of latency (left y-axis) and AP trough (right y-axis) by cortical area.

1079

1080 **Figure 6: Comparison of morphology of pyramidal cells and fast spiking basket cells across areas.**
1081 **A, B:** Examples of reconstructed marmoset neurons for area (left: V1, right: LPFC) and cell type of interest (A: pyramidal cells, B: fast spiking interneurons). Dendrites of pyramidal cells are colored in a lighter shade of orange for LPFC and in turquoise for V1, while the axons are in dark green. Dendrites of fast spiking basket cells were colored in pink for LPFC and light blue for V1, while axons are in dark blue. Below each neuron is the corresponding rheobase and subthreshold response to the square-pulse stimulus. **C, D:** Parallel plots of key morphological quantifications for pyramidal neurons (C) and fast spiking basket cells (D). Transparent areas represent the range of the morphological feature for PFC and V1 respectively, while lines show the average for each brain region.