bioRxiv preprint doi: https://doi.org/10.1101/2024.12.05.627057; this version posted December 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

In Search of Transcriptomic Correlates of Neuronal
Firing-Rate Adaptation across Subtypes, Regions and
Species: A Patch-seq Analysis

John Hongyu Meng!T, Yijie Kang'®t, Alan Lai', Michael Feyerabend®#,
Wataru Inoue?3, Julio Martinez-Trujillo>**, Bernardo Rudy®%7,
Xiao-Jing Wang'*

LCenter for Neural Science, New York University, New York, 10003, NY, United States.
2Department of Physiology and Pharmacology, Western University, London, ON N6A
3K7, Ontario, Canada.
3Robarts Research Institute, Western University, London, ON N6A 3K?7, Ontario,
Canada.
4Schulich School of Medicine and Dentistry, Western University, London, ON N6A
3K7, Ontario, Canada.
®Neuroscience Institute, New York University Grossman School of Medicine, New
York, 10016, NY, United States.

SDepartment of Neuroscience and Physiology, New York University Grossman School
of Medicine, New York, 10016, NY, United States.

"Department of Anesthesiology, Perioperative Care and Pain Medicine, New York
University Grossman School of Medicine, New York, 10016, NY, United States.
8Department of Anesthesiology, Perioperative Care and Pain Medicine, New York
University Grossman School of Medicine, New York, 10016, NY, United States.
9Current address: Graduate School, Stony Brook University, Stony Brook, 11794, NY,
United States.

*Corresponding author(s). E-mail(s): xjwang@nyu.edu
TThese authors contributed equally to this work.


https://doi.org/10.1101/2024.12.05.627057
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.12.05.627057; this version posted December 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Abstract: Can the transcriptomic profile of a neuron predict its physiological properties? Using
a Patch-seq dataset of the primary visual cortex, we addressed this question by focusing on spike
rate adaptation (SRA), a well-known phenomenon that depends on small conductance calcium
(Ca)-dependent potassium (SK) channels. We first show that in parvalbumin-expressing (PV) and
somatostatin-expressing (SST) interneurons (INs), expression levels of genes encoding the ion channels
underlying action potential generation are correlated with the half-width (HW) of spikes. Surprisingly,
the SK encoding gene is not correlated with the degree of SRA (dAdap). Instead, genes that encode
proteins upstream from the SK current are correlated with dAdap, a finding validated by a different
dataset from the mouse’s primary motor cortex that includes pyramidal cells and interneurons, as well
as physiological datasets from multiple regions of macaque monkeys. Finally, we construct a minimal
model to reproduce observed heterogeneity across cells, with testable predictions.
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1 Introduction

With the advances in the brain connectome and the simultaneous recording from multiple brain
areas in behaving animals, studies of the large-scale multiregional brain has come to the fore [54]. To
understand the brain-wide dynamics, it is necessary to consider differences in the electrophysiological
features of single neurons in disparate areas. However, single-cell physiological studies such as patch-
clamp measurements are costly; at the present time there is a dearth of systematical comparison
of single cell physiological characteristics across many brain regions. On the other hand, single-cell
transcriptomic analysis bas become common and offers a novel approach to quantification of the brain
[27, 12, 48]. So far, this tool has been mostly deployed for cell type classification. Can transcriptomic
profile predicts physiological properties of single cells? The answer is not obvious, as there are multiple
intermediate steps from mRNAs to proteins to physiological functions of receptors and ion channels.
In this work, we tackled this challenging question by focusing on single-neuron spike rate adaptation,
a salient characteristic of firing patterns in distinct subtypes of neurons.

The development of Patch-seq marks a significant advancement in correlating transcriptomic data
with single-cell electrophysiological features [33]. Unlike quantitative real-time PCR (RT-PCR), which
is limited to studying specific genes with high accuracy [45], and single-cell RNA sequencing (scRNA-
seq), which provides a genome-wide expression profile across diverse neuron types and species [48],
Patch-seq combines scRNA-seq with patch-clamp recordings. This method simultaneously captures
RNA sequencing, electrophysiological, and morphological data from the same neuron, providing data
at an unprecedented resolution. This offers a novel approach to understanding neural computation
at the molecular level. Previous work has performed unsupervised analysis of Patch-seq datasets
to generate a list of genes that correlate with electrophysiological or morphological properties [6].
However, this approach typically limits the analysis to correlations between individual genes and
features of interest, making it less likely to capture the complex interactions between genes and provide
a causal explanation of the underlying mechanisms.

To accurately predict electrophysiological features from transcriptomic data without overfitting
to region-specific genes, we adapt a comprehensive approach that considers the broader network of
gene interactions in addition to gene-feature correlations. We started with one important feature of
single neurons: firing rate adaptation [56]. This feature was first discovered in [37], describing how
neurons modulate their output to the same input. It is important in various cognitive functions that
have been validated by experimental and theoretical works alike: sensory processing from vision [8],
audition [57], and olfaction [58]; working memory in language processing [17]; perceptual bistability
[46] and multistable perceptions [24]; theta sweep in place cells [13]; precision in spike-timing [28];
and processing of temporally dispersed information [43]. Interestingly, different cell types show large
differences in the firing rate adaptation [50]. Parvalbumin (PV) interneurons (IN), recognized by their
signature narrow action potential (AP) waveform, show no or little firing rate adaptation. Somatostatin
(SST) INs, which shared the same origins from medial ganglionic eminence as PV INs [60], in general
have a broader AP waveform and a stronger adaptation compared to PV. PV and SST are widely
distributed in the layers and regions of the cortex and account for about 70% of the total INs of the
whole cortex [50], although some variability between cortical areas have been reported [49]. These
features make them ideal first targets for studying the mechanisms behind firing-rate adaptation.

In previous work, though, the mechanisms underlying firing-rate adaptation were mostly studied
in pyramidal cells [1]. In general, when a cell fires an AP, it activates high-voltage activated calcium
(Cav) channels. It introduces Ca®* influx, which in turn activates small conductance calcium-activated
potassium (SK) channels that generate outward afterhyperpolarization potential (AHP), slowing down
the regeneration of incoming APs. However, little is known about whether the mechanism generalizes
to INs. In addition to the SK pathway, other mechanisms may also contribute, including M-type K
channels, calcium buffer system, and cation (H) current [21].

Here, we utilize the open Patch-seq dataset [20] recorded from primary visual cortex (V1), where
both electrophysiological and transcriptomic data are available for PV and SST cells, to search for
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transcriptomic correlates of firing-rate adaptation. We first show that firing rate adaptation, measured
by the degree of adaptation (dAdap), is a key feature in distinguishing PV and SST cells. We further
find that the AP half-width (HW) and dAdap are highly correlated at the single-cell level. Next,
we seek the transcriptomic correlation of adaptation using the known transcriptomic correlation of
HW as a control. We develop a method to systematically de-noise the original Patch-seq data at
the transcriptomic-defined subtype (T-type) level and further validate that HW differences correlate
with the corresponding de-noised transcriptomic data. We hypothesize that the SK channel encoding
gene should correlate with dAdap, but we surprisingly find that the data does not support this.
Instead, the upstream Ca influx-related mechanisms, namely HW and Cav channel encoding genes,
can explain the observed dAdap differences. We further predict other genes that are likely involved
in modulating firing-rate adaptation. We extend our analysis to a M1 mouse Patch-seq dataset that
includes pyramidal cells [44], and an electrophysiological dataset along with a transcriptomic dataset
[12] that both cover the same three brain areas from macaque monkeys, confirming the generality of
our conclusion. Finally, we built a Hodgkin-Huxley-type model that includes Ca?t dynamics. The
model successfully reproduces the observed experimental data and generates testable pharmacological
predictions.

2 Results

2.1 Firing Rate Adaptation and Spike Width are correlated in PV and
SST Interneurons

PV and SST INs together account for about 70% of the total INs of the whole cortex [50]. Here, we
analyze the electrophysiological features of PV and SST cells from the open Patch-seq dataset from
the mouse V1 [20]. PV cells show little adaptation over a 1s-long square-pulse injection current, while
SST cells show strong adaptation. Furthermore, PV cells show the signature narrow AP waveform,
while SST cells show a wider AP waveform (Figure 1A).

We quantitatively measured the firing-rate adaptation by degree of adaptation (dAdap). To do
so, we first fit the curve of the instantaneous firing rate to an exponential decay function f(t) =
a + bexp(—ct). After fitting, we compare the firing rate at the end of the 1s simulation to the initial
firing rate dAdap = 1 — f(1)/f(0), which varies little at high injection current (above 1.5x rheobase,
Figure 1A, 3rd column). In the following, we use the closest sweep to twice the rheobase to measure
the dAdap for each cell. We quantify the AP waveform by HW, the average time above half of the
peak, and the firing threshold for each AP (see Methods).

Next, we investigate how effectively HW and dAdap can distinguish PV and SST cells, compared
to other classification methodology. In [20], PV and SST cell types are defined through a muli-gene
classification algorithm. Using this as the ground truth, both HW and dAdap demonstrate high
accuracy in distinguishing PV and SST cells (Extended Data Table 1). When combined, a trained
classifier achieves an accuracy of 95.3% (Figure 1B). Conventionally, classification is performed using
marker genes, such as Pvalb and Sst, like through immunohistochemistry labeling. To compare the
effectiveness of multi-gene classification and single marker gene classification, we analyzed the marker
gene distribution in the V1 dataset (Extended Data Figure 9A). Assuming a threshold at the 20th
percentile of Pvalb and Sst counts per million (CPM) distribution to determine whether a cell is
Pualb+ or Sst+, respectively, we identified a significant population of Pvalb+/Sst+ cells, resulting
in an 89.6% agreement with the multi-gene classification (Extended Data Figure 9A). This suggests
that a classifier based on HW and dAdap is better aligned with the multi-gene classification than
one based on the conventional marker genes. In addition, we did not find a significant difference in
classification accuracy when considering laminar differences (Extended Data Figure 9B). Moreover,
our trained classifier from V1 achieves a 86.4% accuracy on a PV /SST dataset collected from L2/3 of
the somatosensory area in mice (Extended Data Figure 9C).
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Fig. 1 The degree of adaptation and the width of the action potential are highly correlated. (A) Different electrophys-
iological features from PV and SST INs. From left to right: one recording over a 1ls-long square-pulse current injection.
Instantaneous firing rate as one over interspike intervals. The curve is fitted to an exponential decay function. dAdap
over injection currents. The red dashed line indicates 1.5Xx rheobase current. AP shapes are overlaid, while each line
represents an AP from the PV cells. Top, results from an example PV cell; Bottom, an SST cell. (B) PV and SST cells
can be classified based on HW and dAdap. The dashed line is the classification boundary trained by a Support Vector
Machine, which is indicated by y = — (281 + b)/B2. See supplementary table 1 for details. Accy, classification accuracy,
tested accuracy < Accy;.s; > is calculated by the average performance if trained on a randomly split 80% training
dataset and tested on the remaining 20% testing set. The sample sizes of PV cells, SST cells, and both Pvalb+/Sst+
cells (see the main text) are indicated by npy, ngsT, and nn.
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2.2 HW differences are reflected in the transcriptomic data.

Since HW and dAdap are significantly different between PV and SST populations, we next ask what
mechanisms might explain these differences and whether these mechanisms can be reflected in tran-
scriptomic data. We start our investigation by performing quality control (Figure 2A, B). We only
include cells with high total raw counts (count number) and unique sequenced genes (feature number).
In addition, contamination from nearby microglia cells may remain in the data collected by Patch-seq
[51]. Following the methodology from [51], we calculated the contamination score for each cell and
excluded the cells with high contamination scores (Figure 2B, see Methods). Similar threshold values
within a reasonable range would yield qualitatively similar results (Extended Data Figure 10). About
35% of cells remain after all quality controls. We further exclude genes with low expression levels (see
Methods). In the following figures, if more genes are in a gene family of interest but not shown in the
analysis, it is because those genes failed quality control.

Previous work has shown that HW is controlled by the voltage-gated K™ Kv3 channel and the
Na™ channel (Nav) in the INs [42, 22]. Specifically, a larger Kv3 conductance leads to faster repolar-
ization after each spike, resulting in a narrower AP waveform and a smaller HW. Similarly, the Nav
conductance also contributes through the speed of depolarization. Thus, we expect higher expression
of Kv3 and Nav encoding genes to be associated with a smaller HW.

At the single-cell level, increased expression of Kcncl, which encodes Kv3.1, is associated with
a smaller HW (Figure 2C) with considerable variability. Particularly, some cells may have a low
expression of Kcncl but appear as zero due to the dropout issue, where no RNA copy is detected.
To enhance the signal and mitigate dropout issues, we aggregate cells into the transcriptomic-defined
type (T-type) level to improve the signal. These T-types are defined by unsupervised clustering on all
the genes, exhibiting consistent electrophysiological and morphological properties ([20]). The weighted
linear regression (WLR) at the T-type level shows strong significance (Figure 2D, p = 1.9 x 10~10)
between Kcncl and HW. Similarly, Scnla, which encodes Navl.1, also significantly correlates with
HW (Figure 2E). These results agree with previous literature [42, 22] and validate our methodology
in detecting correlates between electrophysiology features and transcriptomic data.

2.3 Upstream Ca?T influx-related mechanisms may explain the dAdap
differences, not downstream SK channels.

After validating our methodology in the HW-related genes, we examine the dAdap-related genes.
Firing rate adaptation is commonly attributed to the medium timescale afterhyperpolarization current
(mAHP) that is mediated by the Ca-activated K channel, also known as the small-conductance-K (SK)
channel [1]. These SK channels, activated by the accumulated Ca through APs, slow down the firing,
leading to firing rate adaptation. Thus, we hypothesize that, similarly to the HW case, Kcnn family
expression should significantly correlate with dAdap. Surprisingly, we do not observe a significant
correlation between dAdap and the Kcnn2, which encodes a SK channel (Figure 3A).

To understand this discrepancy, we re-examine our data. HW and dAdap are significantly cor-
related across T-types of SST and PV cells (Extended Data Figure 11A). In addition, [16, 29]
(re-analyzed in Extended Data Figure 11B) showed that modulating HW by Kv3.2 knockout or
tetraethylammonium (TEA), which inhibits Kv3 gene family, also modulates firing rate adapta-
tion. These observations suggest an alternative hypothesis to explain the observed dAdap differences
through transcriptomic data.

Namely, even though downstream SK conductances are the same across PV and SST, their acti-
vation may be influenced by the amount of Ca influx through each AP (Figure 3B). This calcium
influx is determined by the conductance of Cav channels and the time window during which these Cav
channels are activated. The former can be quantitatively measured by HW, while the latter should be
reflected by the corresponding gene expressions.


https://doi.org/10.1101/2024.12.05.627057
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.12.05.627057; this version posted December 10, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Count Num Feature Num
- - C  kv3.1(Kkenc1)

1.5e+06 Single-cell
1.0e+06{ & 15 cell type
5.0e+05 i e PV
SST
0.0e+00
& 0.8
B Contamination CDF £
1.0 I — = s
| Dissociation T o4 St e .
0.8 dataset : it 2°
0.6 1.0 “ 'i;“:’ ’
0.4 [ 00
0.2 I o 0 3 6 9
00 l "70.00 0.08 logz(CPM + 1)
0.00 0.25 0.50 0.75 1.00
Contamination Score
E Nav1.1(Scnla) D k3.1(Kenc1)
T-type average T-type average
1.2 .
0.8 | subtype size
m m . 30
)
E E 08 ® %
< 04| ) =
T T .
e 0.41 p=109e-10
R2=0.75 R2= 0.76
k = -0.18 K= -012
0.0 | '
0.01— . . .
7 8 9 10 0 3 6 9
log,(CPM + 1) log,(CPM + 1)

Fig. 2 Normalization of the transcriptomic data and validation in HW-related mechanism. (A) Quality control of
Patch-seq V1 scRNA-seq data. The dashed lines indicate the cutoff of total gene count and unique sequenced genes per
cell, which are 6 x 10% (left) and 6600 (right). (B) Cumulative distribution function (CDF) of the microglia contamination
score. We excluded highly contaminated cells with a score greater than 0.2 (dashed line). The inset shows the CS curve
calculated from a dissociated-based dataset [62]. Note that for all cells, CS < 0.08. (C) Scatter plot of HW and Kecncl,
which encodes Kv3.1 channel, expression among V1 PV and SST cells at single-cell level. (D) Bubble plot for the T-type
Average of the data in (C). See Methods. The size of the dots represents the sample size of the corresponding T-type.
The solid line show the result of weighted linear regression (WLR). p: p-value; R?: variance explained by the fitting. k:
the slope of the fitted line. (E) Bubble plot for weighted correlation between HW and Scnia.

To test this, we look at all the relevant genes in the hypothesized pathway and extract the corre-
sponding p-value from the weighted linear regression (WLR), as we did in Figure 2D, E. Each arrow
represents a gene in Figure 3C, D. The x-axis of the arrow represents the significance level of this gene
correlated with HW (Figure 3C) or dAdap (Figure 3D) in the WLR. The dashed line indicates the
significance at p = 0.01. Each arrow starts at the expression level of the PV subtype and ends at the
SST subtype. A thicker arrow represents a greater differential expression between PV and SST. The
significantly differentially expressed genes are represented by solid arrows (also see Extended Data
Figure 12A). The lg(p" %) strongly correlates with the explained variance R? at the T-type level
(Extended Data Figure 12B).
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In Figure 3C, within all genes interested, we confirm that Scnla, Kcnel and Kened (boxed genes)
are the most significantly negatively correlated with HW differences between T-types and are the
most differentially expressed genes (DEG) between PV and SST INs, confirming existing experimental
findings [42, 22]. Interestingly, not all the highly expressed Kv3 and Nav channel encoding genes
(Kenc2, Scn8a, Scnib, Scn2al) are DEGs between PV and SST. This highlights that a gene can be
functionally important in controlling the HW but does not contribute to HW differences across cell

types.
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Fig. 3 Downstream SK genes are not significantly correlated with dAdap, but upstream Ca?* influx-related genes do.
(A) Bubble plot for weighted correlation between dAdap and Kcnn2. The correlation is not significant. (B) Scheme of
mechanism for spike frequency adaptation. During each AP, the Cav channels are activated, where the time window is
quantified by HW. The activation of Cav channels triggers a Ca?t influx, which increases intercellular Ca2t concentra-
tion that activates the SK channel and generates the downstream outward AHP current that leads to the adaptation.
(C) Each arrow represents one gene. The x-axis shows the significance of correlation to the HW or dAdap, quantified
by WLR. The y-axis shows the normalized gene expression level. The arrows start from the averaged CPM of all PV
INs and point to that of SST INs. Up arrows indicate a positive correlation between the gene expression and the HW,
and wvice versa. Arrow width corresponds to the —lg(p(DE) of the genes differential expression analysis result between
PV and SST. Solid arrows represent the genes differentially expressed between PV and SST (DE analysis g < 0.05 and
loga(Fold Change) > 1 ). The vertical black dashed line represented the significance level p(WLR) = 0.01. The colors of
the arrows label the type of ion channel encoded by the gene. (D) Same as (A) but for dAdap. The dashed blue line
shows the significance of the correlation between dAdap and HW (p(WLHE) = 4e — 4). (E) Correlation between dAdap
and Cacnalg.

Previous work has suggested that firing rate adaptation is mainly controlled by SK channels [1].
However, all SK channel-encoding genes are not significantly correlated with dAdap differences (genes
in the left box in Figure 3D). In contrast, the HW (Extended Data Figure 11A, the blue line in Figure
3D) and HW-related genes (Extended Data Figure 12C, D) and some Cav encoding genes (Figure
3E and Extended Data Figure 12E, boxed in Figure 3D) are significantly correlated with the dAdap
difference. Noticing that the Kv3 and Nav genes are more significantly correlated with HW than with
dAdap, while the Cav genes are more correlated with dAdap (Figure 3C, D), these genes may not
be merely marker genes without functional roles. These results suggest that downstream SK channels
may exist in the PV INs as in the SST INs but may not be equally activated because of low Ca influx
through each AP.

In addition, the expressions of some genes are more correlated with each other across IN T-types
(Extended Data Figure 12F), suggesting they may form a functional group together [19]. Since some
genes are highly correlated, we should be able to predict HW or dAdap with fewer genes without
losing prediction accuracy. This is confirmed in a statistical model (Extended Data Figure 12G), where
we can predict HW using five out of eight significantly correlated genes (DEGs with p(" L% < 0.01,
genes located to the right of the dashed line in Figure 3C). Similarly, we can predict dAdap using
Cacnalg out of seven significantly correlated genes. Importantly, we can predict dAdap based on only
HW and the gene Cacnalg, without any gene encoding SK channels, suggesting the upstream Ca?*
mechanisms control the dAdap differences, but not downstream SK channel conductance.

2.4 Unsupervised filter implies genes that may contribute to the dAdap
differences

Beyond the specific genes related to our hypothesized mechanisms, other genes may also modulate
dAdap. To explore the identity of these genes, we checked what are DEGs between PV and SST IN and
whether they are significantly correlated with dAdap or HW (Figure 4A, see Method). In total, 452
DEGs are significantly correlated with dAdap. Among them, 360 genes are also significantly correlated
with HW, while 92 are not. We further checked the fold change and the false discovery rate for these
452 genes (Figure 4B). The positive fold change means gene expression is higher in SST than in PV
INs. Based on our hypothesis, these 360 genes (blue points in Figure 4B) may impact dAdap through
modulating the upstream Ca®" flux time window, reflected in the HW differences. The remaining
92 genes likely contribute to dAdap through modulating the Ca?* flow rate or the efficacy for Ca®"
that activates SK channels. However, we can not fully rule out the possibility that these genes are
merely marker genes that distinguish PV and SST cells, such as Pvalb and Sst. We further perform a
gene ontology enrichment study on these 452 DEGs (Extended Data Figure 13), which shows those
genes aggregated on the ion transmembrane transporter activity, especially on K+, Ca?t and Nat
ion channels, agreeing with our hypothesis.
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Fig. 4 Lists of genes generated by the unsupervised filter algorithm. (A) Venn plot of Adap highly-correlated genes
(pink), HW highly-correlated genes (blue) and differential expression genes (DEGs, in orange). (B) Performance in
differential expression analysis and WLR with dAdap for genes in the intersection part of the Venn plot. DEGs that are
highly correlated with both Adap and HW are labeled in blue, and DEGs that are only highly correlated with Adap
but not with HW are labeled in pink (C) Correlation between Adap and Ryr3 expression at T-type level. (D)dAdap
and Kcnh7 or Kcngb.

Within the resulting gene list (Figure 4B), we found our hypothesized genes Kencl, Kene3, Scnla,
Cacnale, Cacnalg, validating the reliability of our unsupervised filter. Furthermore, type 3 ryanodine
receptor encoding gene Ryr3 expression is significantly higher in SST cells (Figure 4C), positively
correlated with dAdap but not HW. It was suggested a higher Ryr3 expression can enhance the Ca*"
releasing from intracellular storage [7], which may activate downstream SK channels. Furthermore,
we find several K channels encoding genes, Kcnh7, Kengd, and Kenip2 (Figure 4D, Extended Data
Figure 14B) are significantly highly expressed in PV cells, negatively correlated with HW and dAdap.
They may contribute to modulating the excitability of INs [14]. Among them, Kcng5 encodes the
M-type K* channel and was suggested to contribute to firing rate adaptation in CA1 pyramidal cells
[21]. However, if the M-type K™ channel were the primary contributor to dAdap, a higher Kcng5
expression would be expected to correlate with a greater dAdap. This is contradicted by the data,
which shows that PV neurons have higher Kcngs expression but smaller dAdap (Figure 4D). Last, SK
channels are impacted by accessory subunits calmodulin, protein kinase CK2, and protein phosphatase
2A [1]. Since the corresponding genes (Calmi1 to 3, Csnk2al, Csnk2a2, Csnk2b, Ppp2rla, Ppr2rib,
Ppp2ca, Ppp2ch) are uniformly expressed across PV and SST INs (i.e., they are not DEGs, see the
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supplementary table 4), these factors may not contribute in explaining dAdap differences across cell
types.

Other potential genes of interest include Grm1, which encodes a group I metabotropic glutamate
receptor, known to facilitate intracellular calcium release, and Syt17, which may enable Ca®T ion
binding activity (Extended Data Figure 14A). The H-current-encoding gene Henl is significantly
differentially expressed between PV and SST, but the fold change is close to one. Since the H-current is
activated through hyperpolarization, it may not regulate HW or dAdap when the neurons are mostly
depolarized. In addition, BK channels can contribute to the regulation of HW and dAdap (Extended
Data Figure 14C, D), which agrees with [5], [47].

2.5 Validation in an M1 Patch-seq dataset

We next asked how general our hypotheses can be validated in other brain areas. We analyze another
Patch-seq dataset from mouse primary moter cortex (M1), of which electrophysiology features are
recorded at room temperature [44]. A significant correlation between HW and dAdap is observed
(Figure 5A).

Next, after a similar quality control (Figure 5B) and differential expression (DE) analysis
(Extended Data Figure 15A), we showed qualitatively similar results to the V1 dataset by analyzing
which genes are significantly correlated with HW or dAdap, and are DEGs simultaneously (Figure 5C,
D). The HW is correlated with confirmed Kecncl, Kenc2, Senla, while dAdap was correlated with the
same HW-related genes and Cav genes, Cacnalg and Cacnale, but not with the SK genes, Kennl to
Kcenn8. In addition, we observe that Cacnale (Cav2.3, R-type) is significantly correlated with both
HW and dAdap. Example correlations between genes and HW or dAdap are shown in Figure 5E to G,
and Extended Data Figures 15B, C. These results supported the upstream Ca?T related mechanisms
control the dAdap differences across cell types in M1 as well.

However, when considering HW and dAdap differences within interneurons and pyramidal cells,
different mechanisms may exist, known as the class-driven effect [6]. For example, Kcncl explains
HW differences across excitatory (E) and inhibitory (I) cells as a whole population (Figure 5E), but
it can only explain the HW differences of IN but not pyramidal cells (Extended Data figure 15E,
pr < 0.05,pg > 0.05). We quantified the class-driven effect by the significance of an interaction term
in a statistical model, following [6] (See methods). Indeed, the class-driven effect is significant for
Kenel in explaining HW differences (Extended Data figure 15E, peass < le — 3). This effect is also
observed in some Nav and Kv3 encoding genes (Extended Data figure 15D. The full list is in the
supplementary table 6). This effect is less common in Cav and SK encoding genes. Only Cacnalg
shows a marginal significance p.jqss = 0.049 of class-driven effect in explaining dAdap. These suggest
that the mechanisms that control the HW of pyramidal cells may differ from those of INs, but the
mechanisms in controlling C'a?* influx rate and SK channels may be similar in both cell classes.

We further explore what mechanism can control the HW differences of pyramidal cells. None of the
Kv3 genes can explain the observed differences in HW within pyramidal cells (Extended Data Figure
16A). Alternatively, HW may be controlled by BK channels in pyramidal cells [47], [5]. However, our
data do not show a negative correlation between BK genes (Extended Data Figure 168, C). Combined
with a more serious dropout issue when the expression level is low (Extended Data Figure 16A, C),
we suspect that the signal is covered by the large noise for those genes, making it hard to detect.

2.6 Regional transcriptomic and electrophysiological differences across
macaque monkey brain regions

To determine if our hypothesis extends beyond specific cell types and brain areas and generalizes across

species, we analyze one electrophysiological dataset and one transcriptomic dataset from macaque

monkeys, covering the same three brain areas: V1, lateral intraparietal area (LIP), and prefrontal
cortex (PFC). The HW and dAdap are measured as before (Figure 6A, B). We first show a significant
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Fig. 5 Validation in a mouse M1 dataset. (A) Correlation between HW and dAdap at the T-type level from the mouse
M1 dataset. The dashed line indicates the fitting for only PV and SST INs. (B) Quality control for feature number,
total gene count, and quality control for contamination. (C, D) Arrow plots of HW and dAdap as in Figure 3. Each
arrow represents one gene, starting from the averaged expression of PV and pointing to that of pyramidal cells. The
black dots indicate the expression of SST. (E) Correlation between Kcncl at the T-type. The dashed line indicates
the fitting only for PV and SST INs. (E) Correlation between Kcnn2 and dAdap. The fitted slope is not significantly
positive. (G) Correlation between Cacnalg and dAdap.

correlation between HW and dAdap across individual cells collected from different brain areas (Figure
6C). Within each region, HW and dAdap are consistently smaller in INs compared to excitatory cells.
Across brain regions, HW shows an increasing trend for pyramidal cells, while HW and dAdap are
significantly higher in PFC than in V1 for INs.

We next asked whether these differences may be explained by the transcriptomic data from [12]
through similar mechanisms, where the data is collected from the whole brain using unique molecular
identifier (UMI) sequencing and further clustered into cell types. We further calculate a trimmed mean
for each subtype at each brain region. Similar gene differences are observed in macaque PFC, LIP,
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Fig. 6 Cell type and regional differences in macaque monkey datasets. (A) Different electrophysiological features from
a PFC spiny cell, presuming a pyramidal cell. From left to right: recording over 1s-long square-pulse current injection;
AP waveform; instantaneous firing rate as one over interspike intervals. (B) Same as (A) but from a V1 aspiny cell,
presuming an interneuron. (C) Correlation between HW and dAdap in a single cell from the multiregional monkey
dataset. Cell types are determined by cell morphology. A: aspiny, supposing INs; S: spiny, supposing excitatory pyramidal
cells; NA: not applicable. Different symbols indicate where the recorded cells are located. N = 77. (D) Regional HW
(top) and dAdap (bottom) differences in the macaque monkey dataset. *: PFC have significantly wider AP and stronger
firing rate adaptation than V1 for INs, p < 0.05. pgw = 0.0312, pgadep = 0.0377. NJ1 =9, NY1 =7, NHP =2,
NEIP =9 NPFC =10, NEFC = 14.

and V1, compared to mouse V1 data (Figure 3, Extended Data Figure 17). For example, the HW
differences can be reflected by the KCNC1 and SCN1B in general, while the class-driven effect is also
observed (Figure 7A). The dAdap differences again are not reflected by the downstream KCNN2 gene
but by the upstream CACNAIE gene (Figure 7B). This suggests that the mechanisms to explain HW
and dAdap differences may be conserved between mice and macaque monkeys.

When comparing across regions (Figure 7C), for pyramidal cells, Kcnel and Senla, Scenib all
showed a significant decrease, agreeing electrophysiology which showed a wider HW in the PFC.
Noticing the fold change of Scnla, Scnib is much larger than that of Kcncl, we hypothesize the
regional differences of HW from pyramidal cells mainly result from the change of Na™ channels but
not K* channels. Interestingly, M-type encoding genes, SK encoding genes, and Cav encoding genes
all show an increasing trend. Combined with a wider HW, our hypothesis suggests that there should
be a stronger firing rate adaptation, a result that is not reflected in the electrophysiology data. The
reason for that will require further study, ideally on a Patch-seq dataset collected from macaque
monkey PFC.
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Fig. 7 Cell type and regional differences in macaque monkey datasets. (A) the relationship between HW and expression
KCNC1 and SCN1B across cell types and regions. A: aspiny, supposing INs; S: spiny, supposing excitatory pyramidal
cells. Different symbols indicate where the recorded cells are located. (B) same as (A) but for the relationship between
dAdap and KCNN2, CACNA1E. (C) Transcriptomic data differences from pyramidal cells (top), SST (middle), and PV
interneurons across different brain regions. Each arrow represents one gene, starting from the trimmed mean in V1 and
pointing to that in LFP. The black dot on the arrow indicates the trimmed mean in LIP. The significance is indicated

by solid arrows with DE analysis ¢ < 0.01 and |log2(Fold Change)| > 0.4. N},f;r = 2.1e3, N},f‘l, = 1.3e3, NgSIT = 1.1e3,

NELE =6.0e3, NE{F =571, NEIT = 509,NFEC = 1.3e5, NETC = 1.1led, NELE = 8.5¢3.

The INs show a significant increase in HW and dAdap in PFC compared to those in V1. This may
come from a cell density change (less PV cells and more SST cells) or cell property changes across
regions. The former is less likely, as the density of PV cells consistently represents between 40% to
50% of the total PV and SST population across regions [12] (though, see [49] for different findings).
Still, the single-cell property may change unevenly across cell types. In our analysis, the Kencl and
Senla, Senlb all showed a significant decrease in PV and SST INs, agreeing with a wider HW in
the PFC. Also, the Cav encoding genes significantly increased in PFC, but not the SK gene family,
supporting the upstream Ca?t influx and contributing to the dAdap increases. Noticing the M-type
encoding gene Kcngd increases in PFC, implying it may contribute to the dAdap differences across
regions. Interestingly, genes exhibit greater fold changes across regions in PV INs than SST INs,
suggesting that the adaptation change in the PV cell population is more pronounced than in the SST
cell population. Detailed differential expression analysis across cell types and brain areas is provided
in the supplementary data 1.
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2.7 A Hodgkin-Huxley model reproduces the upstream effects on the
firing rate adaptation

To support that upstream Ca?" influx can impact firing rate adaptation, we built a Hodgkin-Huxley
model that reproduced the behavior and generated testable pharmacological predictions. Our model
included Nav, Kv, Cav and SK channels that generate AHP (Figure 8A). In addition to the cell
voltage, we include the dynamic of Calcium concentration [Ca?*], where the increase of [Ca?*] is
proportional to the Calcium current I, (see Methods). Our model can successfully reproduce the
observed firing rate adaptation (Figure 8B, black line in C).

To illustrate the impact of the upstream mechanism of firing rate adaptation, we modify the
conductance of the K channel gk and the SK channel g4gp in the model (Figure 8C). Reducing gx
decreases the repolarization current, which broadens the AP waveform and increases the HW. A wider
AP waveform allows for more Ca?t influx during each AP, leading to a larger dAdap (Figure 8C,
blue). This agrees with the experimental observation when modulating the gx by Kv3.2 gene knock-
out or applying Kv3-sensitive TEA (Extended Data Figure 11). In addition to a reduced g, reducing
gamp only impacts the SK current, but not the AP waveform. As a result, dAdap decreases, but HW
remains the same (Figure 8C, red). This can be tested pharmacologically using SK channel antagonism
apamin. In addition, we systematically varied the conductance of the K channel and the Ca channel
9K, goa (Figure 8D). The HW is dominantly determined by gx, but not gc,, while dAdap increases
when gy reduces or gc, increases. This supports that the AP waveform is an upstream mechanism to
downstream firing rate adaptation, while Ca?* inflow rate has a litter impact on the AP waveform.

Lastly, to reproduce the heterogeneity observed in the V1 INs, we randomly draw gy, 9K, 9Ca
from a correlated normal distribution (i.e., covariant between two random variables is not zero, see
Method), implied by the data. We qualitatively reproduce the wide-range heterogeneity of HW and
dAdap observed in the V1 IN dataset.

3 Discussion

Our analysis explores the potential of linking transcriptomic expression differences to AP shape and
firing rate adaptation differences across subtypes, regions, and species. Starting with the mouse V1
Patch-seq dataset, we show that HW differences significantly correlate with the trimmed mean of Kv3
and Nav encoding genes, agreeing with the literature. Importantly, the dAdap differences can not be
explained by downstream SK channels but by upstream Ca?* influx-related mechanisms. Namely, the
AP shape, quantified by HW, controls the time window of Ca?* inflow during depolarization, and the
conductance of Cav channels controls the Ca?*t inflow rate. We investigate other potential contributing
genes through an unsupervised filtering workflow. Next, we observe a similar correlation in a mouse
M1 Patch-seq dataset, including pyramidal cells. We further extend our analysis to macaque monkeys
through one electrophysiology dataset and one transcriptomic dataset, where both datasets include V1
and PFC. We showed that INs in PFC have a wider HW and a stronger dAdap, and these differences
can be explained by the transcriptomic differences through the same mechanisms. Finally, we build
a minimal Hodgkin-Huxley model with Ca dynamics to reproduce the differences in HW and dAdap
observed across neurons.

Our work pioneers the use of new transcriptomic datasets to understand important electrophys-
iological features of neurons across regions and species. Our methodology becomes available only
because of improvements in sequencing technologies. So far, the rich transcriptomic datasets are mostly
used in distinguishing different cell types and developing downstream gene-editing tools [62, 20, 12,
36]. However, in many scenarios, this line of study is difficult to unravel the intricate functions of
individual genes in explaining neural electrophysiological activities. Early work from [52] identifies
potential genes by combining transcriptomic datasets with electrophysiological datasets. Patch-seq
provides electrophysiological and transcriptomic data from the same cell, providing a unique link at
an unprecedented level [33]. Only by utilizing this data in the Patch-seq can we infer the causal links
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Fig. 8 A Hodgkin-Huxley model reproduces the upstream control of dAdap.(A) Scheme of the model. Our model
includes four ion channels. The change of [Ca®T] is proportional to the Ic,. (B) An example trace of the model.
(C) AP waveform and firing-rate adaptation in the control case ([9x,9ca,ganp] = [12,0.7,5]mS/cm?), reduced g
([6,0.7,5]mS/cm?), and reduced both gx and gagp ([6,0.7,2.5]mS/ecm?). The insets show the HW and dAdap in
these three cases. The HW of three conditions are [0.451,0.593,0.597], respectively; the dAdap are [0.280, 0.428, 0.242].
(D) Changing of HW and dAdap over gk and gcq. Reducing go, only changes dAdap but not HW. The white arrow
indicates the black to blue in (C). (E) Varying g, gna, gca reproduced the observed distribution of HW and dAdap.
The correlation between HW and dAdap is R? = 0.83.

between gene expression differences and HW and dAdap differences, which can be further tested in
other datasets across brain areas and species. We study the firing rate adaptation because of its impor-
tant role in many functions, such as [8, 57, 17, 46, 13, 28, 43]. Based on our analysis, we can test
whether the adaptation differences of INs across brain areas lead to functional differences between
sensory areas and prefrontal areas in a model. Further, we can infer the strength of IN adaptation
across the brain areas based on the multi-regional transcriptomic database and test their functional
role in a large-scale model, similar to [11, 18]. Naturally, our methodology is not limited to the firing
rate adaptation but can be applied to understand other important features across brain areas, such
as bursting, sub-threshold oscillation, etc.

In analyzing the firing rate adaptation, the most natural hypothesis to explain the differences in
dAdap will be differences in SK channel conductance across PV and SST INs since the SK channels
mediate the mAHP that leads to the firing rate adaptation [1]. However, we do not find a positive
correlation between SK channel encoding genes and dAdap (Figure 3A). Rather, we suggest that
upstream mechanisms in the activation of SK channels explain the observed differences (Figure 8). If
we only analyzed SK channels, we might suggest that SK channels did not contribute to the firing
rate adaptation of INs, which is not the case. Our example shows the importance of considering the
gene function comprehensively but not rushing to an inaccurate conclusion.

The upstream mechanisms of SK channel activation depend on the time window and the flow rate
of Ca®* through Cav channels. Since the time window, qualified by HW, is larger in SST cells than
in PV cells, the Ca?t influx per AP is greater in SST cells, even if the Cav channel conductance
is identical. Moreover, we found that Cacnalg, which encodes T-type Ca channels, and Cacnale,
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which encodes R-type Ca channels, are significantly correlated with dAdap. However, the precise
role of these Ca channels remains unclear. T-type Ca channels are activated at low voltage (-60mV)
[9], making them unlikely to be involved in AP-triggered dynamics during the depolarization phase.
Nevertheless, recent studies show they are at least functionally coupled with SK channels in midbrain
dopaminergic neurons [59] and thalamic dendrites [15]. Additionally, a study on rat pyramidal cells
[26] demonstrated that nearly all voltage-dependent Ca channels, including T-type, are coupled with
downstream mAHP. Another possibility is that T-type Ca channels generate a transient inward Ca
current at the onset of the current step, directly contributing to firing rate adaptation in a manner
independent of the SK pathway. Conversely, R-type Ca channels are high-voltage-gated [9] and may
play a more significant role in regulating dAdap. Our analysis across cell types and regions further
emphasizes the potential role of Cacnale in explaining dAdap differences (Figure 5D, Figure 7B, C,
Figure 17). However, [26] found that blocking R-type Ca channels had no effect on mAHP recorded
at the soma, despite SK channels in the dendrites being tightly coupled with R-type Ca channels in
regulating Ca influx. It’s important to note that their experimental protocol was limited to inducing
mAHP with a single action potential within a 50 ms time window, which may not fully capture the
dynamics observed during firing rate adaptation over a 1-second-long stimulation. Additionally, the
spatial distribution of these channels may differ between pyramidal cells and interneurons. Further
research is needed to clarify the exact dynamics of different Ca channel types.

During our unsupervised analysis of all genes, we found more genes related to intracellular Ca
modulation. Among them, Ryanodine Receptor 3 (Ryr3) is significantly correlated with dAdap but
not HW (Figure 4C), agreeing with the role in regulating Ca?T releasing from intracellular stores [1]. In
addition, another modeling study [35] suggested a similar mechanism to explain the adaptation changes
in neuropathic pain, supporting that Ryr8 may contribute to dAdap differences. Other mechanisms
that modulate dAdap may be related to the M-type K current [21], which can also be fast activated by
depolarization during AP but slowly deactivate below the firing threshold. However, in our analysis,
the expression of the M-type K genes (Kcng5) is negatively (Figure 4 D) or not correlated (Extended
Data Figure 16H) with dAdap, suggesting that they may not play an important role in explaining
differences within a region. However, we cannot rule out their potential role in explaining regional
dAdap difference for pyramidal cells since LIP has a larger dAdap and a higher expression of Kcngd
(Figure 7C). H-type K current is also suggested to impact mAHP [21] when the cell is depolarized.
These H-currents may not impact the firing rate adaptation since the cell was polarized around the
threshold during the 1s recording. Interestingly, Henl, which encodes the H-current, is highly expressed
in PV cells (Figure 4B), contradicting reports that the sag current, primarily driven by the H-current,
is smaller in PV cells compared to SST cells in both mouse visual areas [32] and the human neocortex
[31].

Last, we stress the importance of handling Patch-seq data with extra care. On the side of electro-
physiology, the dataset often adopted a uniform recording strategy such that it can be scaled up across
different areas of the brain. However, the huge heterogeneous response from different cells can make
the relevant features ambiguous. For example, in measuring the degree of adaptation, we observed
that only a recording with 1.5x rheobase could be robust (Figure 1B). Since the rheobase of PV INs
is much higher than that of SST INs, a uniform protocol that typically goes up to 800pA may be suffi-
cient for the measurement of SST INs but not for PV INs. This inevitably leads to biased sampling in
our e-feature statistics. Regarding transcriptomic data, we found that careful noise control is crucial
in providing interpretation. Since we focus on a few genes, we cannot rely on the large number of gene
features the data provided while they are used in the classification studies. To balance that, we use a
high threshold for the total number of genes and the number of features, excluding potentially con-
taminated cells, and analyze at the transcriptomic subtype level. Furthermore, the differences between
and across cell classes may come from different mechanisms [6]. One example is Kencl, of which the
class-dependent effect is significant, suggesting different mechanisms from excitatory cells or interneu-
rons. Another limitation in interpreting the regional differences of macaque monkeys is that we use
the same hypothesis built from mouse datasets while species differences are not considered. To show
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whether the dAdap mechanism is similar across mice and macaque monkeys, a similar analysis of a
Patch-seq dataset from macaque monkeys, best at PFC, is needed.

In summary, we find that the transcriptomic data can explain differences in AP shape and firing
rate adaptation across cell types and regions. Based on the analysis, we suggest differences in upstream
Ca®t influx determine the adaptation differences, but not downstream SK channels. This highlights
the need to be cautious in delivering conclusions on single genes. Our methodology can be generalized
to render electrophysiological predictions across brain regions by analyzing existing transcriptomic
data, opening new directions for both experimental and theoretical studies.

Methods and Materials
3.1 Datasets

The transcriptomic data and electrophysiological data were accessed via Allen Institute for Brain
Science’s Cell Types Database - Mouse Patch-seq dataset on January 06, 2020 [20]. Electrophysiological
recordings were made at physiological temperature (34 °C). This dataset contains 4,284 mouse cells
from the primary visual cortex(VISp) layerl, layer2/3, layer4, layer5, layer6a and layer6b. Cells tagged
with PV and SST are included in our analysis.

The Patch-seq dataset of adult mouse primary motor cortex (MOp) was accessed from [44]. This
dataset collected transcriptomic and electrophysiological data from 1,329 cells at room temperature
(25 °C) from mouse MOp layer 1, layer 2/3, layer 5, and layer 6. Cells tagged as PV, SST, and
pyramidal (ET, IT, CT, and NP) cell types are included in our analysis.

The electrophysiological dataset from mouse S1 Layer 2/3 was collected from PV-Cre-Ai9 or SST-
Cre-Ai9 line as in [23]. Tissue acquisition, processing, and used solutions are described in detail by
[39]. The dataset consisted of 16 PV cells and 21 SST cells from 20 individuals of either sex within an
age range of 18 days to 35 days.

The macaque monkey transcriptomic dataset, collected through unique molecular identifier (UMI)
sequencing, is accessed from [12]. Only the data from monkey No. 2 is used for better area annotation.
We exclude the data with ambiguous area annotation, i.e., data from slices across two or more areas.
Data from all layers are used.

The intracellular recordings of macaque monkey neurons were obtained in the Inoue and Martinez
lab. Tissue acquisition, processing, and used solutions are described in detail by [25]. The dataset
consisted of 247 recorded neurons from 11 individuals of both sexes with an age range of 4.39 to 14.6
years.

3.2 Electrophysiological measurements

We use the same measurement as in [38]. We automatically set up a detection threshold to detect an
action potential (AP) in any given voltage trace V' (t) by the following: We first set up an upper bound
as Vy,p = min{max(V'(t)), 0}, then a lower bond as Vo, =median(V (t)). Further, we set the detection
threshold as Vi, = max{0.8V,,, 4+ 0.2V}, —20}. Next, the ith AP is detected at ¢; if V/(¢;) < Vip, and
V(t; + At) > Vip,, with the resolution in our recordings At = 0.05ms. Furthermore, we exclude any
APs within 0.5ms following another AP. The rheobase current is the minimum current that triggers
an AP in the experiments.

The AP-related properties are calculated from aggregated APs from all the sweeps with less than
40 APs while excluding the first AP in each sweep. The maximum voltage of each AP is calculated
from the 2ms time window following the trace past the AP detection threshold. The AP threshold is
calculated as the voltage when the voltage deviation is 20mV/ms. The AP half-width is calculated
as the time of the AP above the midpoint between the peak and the threshold. To improve precision,
linear interpolation is used to calculate the threshold and AP half-width.
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The degree of adaptation (dAdap) is extracted from the instantaneous firing (IF) curve. IF curves
are calculated as r(t;) = 1/(t;41 — t;). Next, we fit the IF curve to an exponential function f(x) =
a + bexp(—cx), using curve fit function of scipy package in Python. The dAdap is the proportion of
the change in firing rate between Os and 1s. dAdap = 1 — f(1s)/f(0). Due to the large variance of
dAdap around the rheobase, we choose the dAdap from the sweep closest to twice the rheobase. If a
cell does not have a sweep larger than 1.5x rheobase, we exclude the cell from further analysis.

3.3 Quality control of the transcriptomic data

From the raw counts in the Patch-seq database, we exclude cells whose number of unique sequenced
genes is less than 6600 and cells whose total counts are less than 6 x 10° (Figure 2 B, Supplement
Figure 15A). Genes sequenced in less than 100 cells were filtered out. Raw counts were normalized by
count per million () and then transformed to loga(41). We refer to a dissociated single-cell dataset[62]
as the uncontaminated database. Following [51], the contamination score CS describes how much
microglial marker genes[30] are presented in the sequenced cells.

Single-cell RNA samples collected by Patch-seq could be contaminated by neighboring microglial
cells, but not those collected by dissociated cells

P, - D
CSn as — N_M N_M

Dy — Dy_m

Here, X 4_n represents the median of 50 marker genes from the Patch-seq (P) or dissociated (D)
dataset of type A in microglial cells. The marker genes differ across cell types (PV or SST IN, pyramidal
cell, microglial cell). We adopt the marker gene list for each cell type from [62]. The contamination
score C'S ranges from 0 to 1, reflecting the excess of off-target marker expression. We limited our
analysis to cells with C'S < 0.2 (Figure 2 C, Figure 5 B)

3.4 Classifier

An exhausted search is applied to train a single-parameter classifier. The value 0 classifies PV and
SST with the best accuracy is reported. In some scenarios, some cells are excluded from downstream
analysis if the classification is ambiguous. To do that, we develop an algorithm that finds the best
improvement by losing the minimum number of samples. To do that, a score is calculated based on
both the accuracy and remained sample size. Without losing generality, assuming the average value
for feature x of PV < 2%, > is lesser than the value of SST cells < x% >

Nright(el; 07”) = H(.’Ep < 91) + H(.’ES > 07”) (1)

Nwrong(ela 07) = H(J?P > 07) + H(.’ES < el) (2)
Nrig t_SNu/'rong

50n0:) = THEmree” ®)

where II(z) summarize the number of data point satisfies the condition z. The optimal value pair of
0;,0, is reported for each feature x with the highest score.

For training a classifier based on HW and dAdap, we find the best linear manifold that splits
the cells by using the Support Vector Machine algorithm in Matlab. The resulting line is indicated
by pfixz 4+ Boy + b = 0. To test the robustness of this method, we randomly split the data points
into 80% training set and 20% testing set. We calculate the average performance of 100 repetitions
< Accyies; >. To identify cells with low classification accuracy, we employed a Gaussian Mixture
Model (GMM). This model assumes that the data from a cell type are generated from a mixture
of two Gaussian distributions, calculated by Matlab’s fitgmdist function. The classification of each
data point was based on the highest posterior probability derived from the posterior function, which
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computes the likelihood that each data point belongs to each Gaussian component. The curves with
95% posterior probability for each cluster are reported as confidence boundaries.
The fitted parameters are included in the supplementary table 1.

3.5 Multiple linear regression model

To avoid the dropout issue in the scRNA-seq data in weighted linear regression, a gene is excluded if
the number of cells it expresses is at least 10% among all the genes.

Each cell in the dataset is associated with a T-type tag. The mean trimmed expression for each
T-type is calculated by averaging the expression of individual cells after removing the top and bottom
25% expression.

We used a weighted linear regression to study the correlation between HW or dAdap with different
genes. The significance of observing a non-zero slope p, variance explained R?, and fitted slope k
are reported for each pair. When comparing multiple models, correction for the multiple testing
problem is necessary. To do so, we adjusted p-values with the false discovery rate (FDR) using the
Benjamini-Hochberg method [4]) (Extended Data Figure 12B).

We train the multiple linear regression model to predict HW or dAdap based on genes. We first
test the performance of the prediction by including all the significant correlated genes identified in
Figure 3.

HW or dAdap = Z a;g; + 8

where g; is the log, of a gene, and 3 is the intercept. The weights «; are fitted through a multiple
variable linear regression. Noticing that we only have 31 T-type (10 PV and 21 SST), the more genes
we include, the more likely we observe an overfitting problem. We next adapt the Akaike Information
Criterion (AIC) to select the model that could explain the greatest variances with the fewest number
of genes [10, 41]. Furthermore, since we hypothesized that dAdap depends on HW, the performance
of predicting dAdap using HW and Cacnalg is tested.

dAdap = (1gCacnalg + ooHW + ﬂ
The genes and corresponding fitted weights are listed in the supplementary table 3 file.

3.5.1 Regression with respect to Cell Class

To test which genes have a class-driven effect in explaining HW or dAdap, we fit a class-driven linear
model as in [6]:

dAdap or HW = a1 9; + asc; + azgic; + 5 (4)
where g; is the logo(CPM + 1) of a T-type, ¢; is a categorical variable that indicates the class for
the ith T-type. The significance of the class-driven effect is indicated by the adjusted p-value for as,
calculated by the ANOVA test. Considering this class-driven effect, we further reported p-values and
slopes for pyramidal cells and interneurons separately by fitting a linear model to only the pyramidal
cell data and only the interneuron data, respectively. The details of the analysis are listed in the
supplementary table 6 file.

3.6 Differential expression analysis

Differential expression analysis was performed with R 4.2.3 and the DESeq2 package in R (1.36.0) [34].
In analyzing Patch-seq mouse data, genes with g-value < 0.05 and logs (foldchange) > 1 are considered
differentially expressed genes (DEG). In analyzing UMI macaque monkey data, genes with g-value
< 0.01 and logz(foldchange) > 0.4 are considered differentially expressed genes (DEG). In estimating
the size factor of the macaque monkey, We used the ”poscount” option offered by the DESeq2 package
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to process the data with lots of zero readouts. Otherwise, we use the default parameters offered by
the DESeq2 package.

3.7 Gene Ontology Enrichment

For selected genes, Gene Ontology [3, 2] enrichment analysis is performed using R package
clusterProfiler (4.4.4) with the over-representation analysis (ORA) approach[61, 63].

3.8 Hodgkin-Huxley model with Calcium dynamics

We build a Hodgkin-Huxley neuron model with Ca?* dynamics and Ca?T activated KT ion channels
to reproduce the observed heterogeneity spike-width and degree of adaptation in interneurons. The
equations are the following:

dv
d[Ca*] [Ca®"]
T e
Ing = _gNamgoh(V — Va)
Ix = —ggn*(V — Vi)
Ica = _gC’amCa(V - VCa)
[Ca?"]
AHP gAHP([Oa2+] +Kd)( K)

I =g, (V—-Vy)

Within the equations, gna,9K,9Ca, gagp and gy are corresponding conductance; Vg,V ,Voa, and
V1, are corresponding reversal potentials.

The Iy, and Ik are adopted from [55]. The gating variables m, h and n satisfy the first-order
kinetics given by:

— =@l (V)1 —2) = Bo(V)z] = ———F——
T = alan(V)(1 =) = B,(V)a] = 2
Here(, o). is a temperature fa?tor. f‘or INg, Moo = am‘ﬁ’bm where o, = Cxp(_%'_ll((“//f;?é)))(l, 577; =
—(V+58 —(V450 —0.01(V+34
dexp(—3 ). ap = 0.07Texp(——5—) and fj, = exp(70.1(1V+20))+1' For I, an = ooroaivosay)=1

and 3, = 0.125 exp( =44,
We adopt the Ca?t dynamics and adaptation current I4zp through the Ca?t activated SK

channel from [53], where mq (V) = m
=xp(=(V+20))

We use the following parameter values unless otherwise specified: C,, = 1uF/cm?, g =
0.1mS/cm?, gn, = 35mS/cm?, g = 9ImS/cm?, go, = 1mS/cm?, gagp = 5mS/cm?, V;, = —75mV,
Vg = 55mV, Vi = —90mV, Vg, = 120mV, Ky = 30mM, 7¢, = 80ms, ac, = 0.001uM/msuA.

Simulations designed to reproduce the observed heterogeneity of spike-width and degree of adap-
tation are done by drawing the conductance of ion channels, [gnq, 9K, goo] from a multivariate normal
distribution M (u, 2). The mean vector for the distribution is p = [40, 12, 1], and the covariance matrix,
¥ is computed from a vector of variances o2 = [30, 15,0.15] and a correlation matrix given by

1 0.25 —0.15
R=1| 025 1 -0.15
—-0.15 -0.15 1

This relationship is formalized as: ¥ = diag(c)(R)diag(o)
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E Feature 0 ACCY; 0, 0 ACCYs %Lost | Npy  Nggr
dAdap 0.349 92.3% 0.293 0.383 95.9% 9.5% 278 1105

HW (ms) 0.360 89.6% 0.327  0.399 92.4% 16.0% 840 1813
Table 1 Extended Data Table 1. Performance of single-parameter classifiers. 6
indicates the optimal value for classifying PV and SST cells with performance ACCY7.
6; and 0, indicate an optimal way of classification with performance ACCY> by
excluding %Lost of borderline cells in the total population. The sample sizes are
indicated by Npy, Nggst. See the method for details.
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Fig. 9 Extended Data Figure 1. Performance of trained classifier compared to that of the marker gene classification.
(A) distribution of the Pvalb and Sst markers. Left: Histogram of Pvalb and Sst in all cells. Right: Histogram of cells
that are both Pvalb+ and Sst+. A cell with PV larger than the 20 percentile of the total distribution (6py = 4.49)
counts as Puvalb+. The same applies for Sst+ (0ssr = 8.97). In the dataset, a total of 1025 Pvalb+ cells and 1604
SST+ cells are identified. Within those, 189 cells are identified as Pvalb+/Sst+. The CPM distributions of these 189
cells are shown on the right. If considering multiple-gene classification as the ground truth, then the accuracy of the
gene-marker (PV and SST marker) classification is 89.62%. (B) Classification of PV and SST based on HW and dAdap
across layers. The solid line represents the classification boundary, indicated by y = —(x81 + b)/B2. The red circle
represents Pvalb+/Sst+ cells. Notice that these cells are not only distributed close to the boundary. Dashed line, the
95% confidence boundary based on the Gaussian mixture model. See supplementary table 1 for details. (C) Test the
trained classifier from V1 on a dataset from the somatosensory cortex. The filtered accuracy represents the classifier
accuracy after excluding low-confidence cells. I.e., excluding the cells within the two dashed pink lines.
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Fig. 10 Extended Data Figure 2. Quality control of transcriptomic data with different thresholds. (A) Violin plot for
V1 raw count data: number of total raw counts per cell (nCount_RNA, left) and number of unique sequenced genes per
cell (nFeature_RNA, right). Dashed lines represent different thresholds. (B) Cumulative distribution function for the
contamination score. (C) Histogram of the number of cells (sample size) that passed the corresponding quality control
parameters before (left) and after (right) merging with cells that also passed the electrophysiological quality control.
The parameter sets are colored. (D, E) Scatter plot at the single cell level (D) and at the T-type level (E) of the HW
and Kcnel with different quality control parameters. Strict quality control reduces dropout issues (zero readouts along
the y-axis) at the single-cell level, while T-type level perfoz%ances are comparable.
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Fig. 11 Extended Data Figure 3. Correlation between HW and dAdap. (A) data from the mouse V1 Patch-seq dataset.
Different dots represent different transcriptomic-defined subtypes. The T-type annotation is the same as in [20]. Different
T-types show different morphological features. For example, Pvalb Vipr2 corresponds to chandelier cells, showing a
larger dAdap, consistent with [40]. The details can be found in the supplementary table 2. (B) data from a mouse M1
dataset. This figure is generated from data of [29], collected at room temperature from L5/6 unless specified otherwise.
The HW and dAdap increase with Kv3.2 gene knockout or with inhibiting the Kv3 family by applying TEA. The
standard deviation is indicated by error bars.
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Fig. 12 Extended Data Figure 4. Further analyses of directly related genes. (A) Differential expression analysis. The
expression of genes loga(+1) is shown in different colors. Asterisks are used to annotate differences in gene expression
between V1 PV and SST cells. All annotated genes have a ¢ value smaller than 0.05. The asterisks represent the fold
change between cell types (*: fold change between 0.5 and 1, **: 1 to 2, ***: > 2). In our analysis, genes with ¢ < 0.05
and fold change larger than one were counted as DEGs. (B) R? and -lg(FDR) of all genes’ WLR results are linearly
correlated. FDR: False discovery rate with correction for multi-hypothesis, using the Benjamini-Hochberg method. (C)
Correlation between Adap and Kcncl at T-type level. (D) dAdap and Scnla. (E) dAdap and Cacnale. (F) Person
correlation of selected ion channel coding genes normalized T-type average expression level. (G) Bar plot for R? and

adjusted R2 for different WLR models. See Methods.
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Fig. 13 Extended Data Figure 5. Gene Ontology enrichment analysis. The top 15 terms of molecular function from
the genes are DEGs and are highly correlated with dAdap. The X-axis and size of the bubble represent the number of
selected genes enriched in the corresponding GO term. Color is used to show the significance of each enriched GO term.
The full list is in the supplementary table 5.
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Fig. 14 Extended Data Figure 6. More WLR on example genes. (A) Grm1 and Syt17 are highly correlated with
dAdap. (B) Kcnip?2 is significantly correlated with HW. (C) Kcnmal, encoding alpha-unit of big-conductance K+ (BK)
channel, are weakly correlated with HW and dAdap. (D) Kcnmb2 to Kenmb/, encoding beta-units of the BK channel,
do not consistently correlate with HW
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Fig. 15 Extended Data Figure 7. Further analyses on the mouse M1 dataset. (A) Differential expression analysis as
in Extended Data Figure 12F. The asterisks and crosses represent the fold change between PV and SST, or INs and
pyramidal cells, respectively (*/+: fold change between 0.5 and 1, **/44: 1 to 2, ***/4+4+4: > 2). (B) Correlation
between Scnia and HW. (C) Cacnale and dAdap. (D to H) Class-dependent effect of different genes. p.jqss shows the
significance of the class-dependent effect; pr and p; show the significance of a non-zero slope in the I and E subsets,
respectively. (D) Correlation between Scnla and HW. (E) Kencl and HW. (F) Cacnalg and dAdap. (G) Kenn2 and
dAdap. (H) Kcngb and dAdap
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Fig. 16 Extended Data Figure 8. HW differences in M1 pyramidal cells can not be explained by other K channels. (A)
correlation between Kv3 encoding genes (Kcncl to Kene) and HW at the single cell level for pyramidal cells. All non-
zero slopes are non-significant. (B) Correlation between BK alpha unit Kcnmal and HW or dAdap. (C) Correlation
between BK beta unit Kcnmb2 to Kenmbs and HW. Based on (B, C), BK encoding genes cannot explain the observed

HW difference within pyramidal cells.
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Fig. 17 Extended Data Figure 9. Transcriptomic differences across cell types from the macaque monkey dataset in
PFC (top), LIP (middle), and V1 (bottom) across Pyramidal cells, PV and SST INs. Each arrow represents one gene,
starting from the trimmed mean of PV INs and pointing to that of pyramidal cells. The black dot on the arrow
indicates the trimmed mean of SST INs. The significance is indicated by solid arrows with DE analysis ¢ < 0.01 and
|log2 (Fold Change)| > 0.4. More genes are significantly different across cell types than across brain regions (Figure 7C).
Noticing the M-type cannot explain IN dAdap differences since the SST expression (black dot) is lower than the PV

expression (start of the arrow).
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