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SUMMARY

Neuronal populations expand their information-encoding capacity using mixed selective neurons. This is
particularly prominent in association areas such as the lateral prefrontal cortex (LPFC), which integrate infor-
mation from multiple sensory systems. However, during conditions that approximate natural behaviors, it is
unclear how LPFC neuronal ensembles process space- and time-varying information about task features.
Here, we show that, during a virtual reality task with naturalistic elements that requires associative memory,
individual neurons and neuronal ensembles in the primate LPFC dynamically mix unconstrained features of
the task, such as eye movements, with task-related visual features. Neurons in dorsal regions show more
selectivity for space and eye movements, while ventral regions showmore selectivity for visual features, rep-
resenting them in a separate subspace. In summary, LPFC neurons exhibit dynamic andmixed selectivity for
unconstrained and constrained task elements, and neural ensembles can separate task features in different
subspaces.

INTRODUCTION

The primate lateral prefrontal cortex (LPFC) sits on top of the
sensorimotor processing hierarchy and has been implicated in
cognitive functions, including selective attention, working mem-
ory, and rule encoding.1–3 Single neurons in the LPFC have been
reported to be tuned to multiple task features in visuomotor
tasks.4–6 This property has been termed ‘‘mixed selectivity,’’
where neural responses to a combination of variables can be
combined either linearly or nonlinearly.7 Non-linear mixed selec-
tivity has been suggested to be behaviorally and computationally
relevant, as it can increase the dimensionality of representations
and facilitate readouts of task-relevant features.7,8 However,
most tasks exploring selectivity in LPFC neurons have been
conducted using simple visual displays and constraining eye
movements. It remains unclear how individual neurons and
neuronal ensembles in the LPFC mix information in scenarios
with complex dynamic scenery, unconstrained eye movements,
and sensorimotor events occurring in a continuous and dynamic
manner.

The LPFC is heavily interconnected with numerous cortical
areas and has been cytoarchitecturally divided into areas 8, 9,
10, 12, 45, and 46v/d, with tracing studies describing distinct
anatomical connectivity patterns across these areas.1,9,10 A
recent study revealed distinct functional connectivity patterns
in the dorsal (e.g., areas 9/46) and ventral (areas 45/47) LPFC,
corresponding to dorsal and ventral high-level sensory areas,
respectively.11 However, a functional organization of the LPFC
has not been delineated as clearly. Single neurons in the dorsal
and ventral LPFC have been reported to preferentially represent
spatial and visual/object information, respectively.12–14 Howev-
er, representations of numerous modalities and levels of sensory
integration have been reported in both the dorsal and ventral
LPFC.15–17 These findingsmay be linked to the integrative nature
of the LPFC, with its ability to merge task-relevant information.2,3

Previous studies have shown that neurons in the LPFC can
become selective for combinations of relevant features during
associative learning tasks.4,5,18 However, these studies have
used behavioral tasks involving controlled stimulus presenta-
tion of few task-relevant features in simple displays while
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constraining eye movements. The LPFC must be able to
perform its function under real-world conditions, while subjects
perform complex tasks and explore visual scenes via gaze
shifts. Tremblay et al.19 demonstrated that single neurons in
the LPFC maintain their representation of task features during
unrestrained gaze movements. Moreover, Roussy et al.20

showed that representations of spatial locations by many
LPFC neurons during virtual reality navigation in complex visual
environments remain robust to changes in gaze position. These
studies suggest that many LPFC neurons contain spatiotopic
representations of the environment. More recently, Corrigan
et al.21 have shown that LPFC neurons encode views of visual
scenes, suggesting that LPFC neurons may mix spatial and
non-spatial information. However, it is unclear whether these
components of mixed selectivity multiplex over time or are
mixed together in a single multidimensional representation.

Here, we investigate howmixed selective neurons in the LPFC
(areas 9/46) encode spatial and non-spatial features of the envi-
ronment during an associative memory task that requires virtual
navigation through a complex visual environment. To this end,
we recorded the responses of hundreds of neurons in two mon-
keys (Macaca mulatta) as they completed the task and freely
explored the different elements of the visual scene via gaze
shifts. Importantly, the task had different periods in which
different features appeared serially. We found that individual
neurons and neuronal ensembles in the LPFC mixed their repre-
sentations of task-relevant features and space. The dorsal and
ventral LPFC had different tuning profiles and temporal dy-
namics. The ventral LPFC preferentially represented non-spatial
task features, whereas the dorsal LPFC predominantly encoded
space.

RESULTS

We trained two male monkeys (M. mulatta) to perform a context-
color association task in a virtual environment (Figure 1). The an-
imals used a joystick to navigate in an X-shapedmaze, with each
trial beginning in one arm of themaze (Figure 1C). Once themon-
keys entered the corridor, the walls changed texture to steel or
wood (the context). When the monkeys reached the end of the
corridor, two colored discs appeared, one at the end of each
arm of the maze. The location of the colors (left or right arm)
was determined randomly for each trial (color pair order
[CPO]). The context determined the color disc to which the mon-
keys needed to navigate for a reward, termed ‘‘target side’’ (Fig-
ure 1D). Monkeys performed a fixed association trial block and
then learned new associations each day. Performance varied
from session to session but was significantly above the 50%
chance level for most sessions (Figures 1E and S1C). Across
all sessions, monkey B had a mean (±SE) of 80.9% ± 2.76% cor-
rect trials, and monkey T had a mean of 73.9% ± 5.43% correct
trials. The naturalistic features of this task (e.g., gaze was uncon-
strained, and the animal initiated and conducted navigation at
will using a joystick) allowed the monkeys to freely complete
the task and navigate toward their goal with no additional behav-
ioral constraints. Therefore, we measured the eye position and
reaction time of joystick rotation, demonstrating that the mon-
keys fixated on their chosen side (Figures 1E and S1A).

LPFC neurons are modulated by eye position and task
features
While the monkeys completed the virtual reality navigation task,
we recorded from a total of 753 neurons (467 in monkey B and
286 in monkey T) during six sessions. Single neurons were iso-
lated manually using spike sorting (STAR Methods). We
computed firing rates and spike density functions for each iso-
lated neuron and condition and found that many neurons gave
distinctive responses between conditions (see the example in
Figure 1F). Single-neuron tuning to task-related variables was
determined using multivariable linear regression models (STAR
Methods). Neurons exhibited minimal tuning to context after its
appearance until shortly before goal onset (Figure S2A). There-
fore, we focused on the goal onset epoch, where the monkeys
must associate the context with the appropriate color and navi-
gate toward it. This provided us with the opportunity to explore
neural dynamics in the LPFC during real-world context-target
associations. To this end, we investigated neural activity in the
dorsal and ventral LPFC. The dorsal array covers regions of
areas 8Ad and 46d. The ventral array covers the ventral subdivi-
sions of these areas, 8Av and 46v, and may extend to area 45
(estimation according to Petrides1).
We first quantified the variance of single-neuron activity ex-

plained by the task features (Equation 3) and eye position (Equa-
tion 2). Overall, neural activity was dynamic andmixed,withmany
neurons being modulated by both eye position and task features
(Figure 2A). Neurons in the LPFCwere modulated by eye position
more than by task features in both arrays andmonkeys (p< 0.001,
Wilcoxon rank-sum test; Figure 2B). Furthermore, neurons in the
ventral LPFCweremodulated by task featuresmore than neurons
in the dorsal LPFC in both monkeys, with a mean (±SE) R2 of
0.114 ± 0.008 compared to 0.083 ± 0.004 in monkey B
(p < 0.01, Wilcoxon rank-sum test) and a mean R2 of 0.118 ±
0.066 compared to 0.096± 0.053 inmonkey T (p < 0.05,Wilcoxon
rank-sum test). Finally, many neurons showed mixed selectivity
to eyeposition and task features (Figure 2C), demonstrating linear
mixing (18% ventral, 17.2% dorsal in monkey B; 6.2% ventral in
monkey T) and non-linear mixing (11.3% ventral, 12.1% dorsal
in monkey B; 8.4% ventral, 8.9% dorsal in monkey T), and were
tuned to those features at different times (11.3% ventral, 13.9%
dorsal in monkey B; 16.3% ventral, 7.1% dorsal in monkey T).
See Figure S2D for more details regarding each neuron’s
response to eye position and task features.

LPFC neurons mix task features
Using the same analysis as above, we further characterized
neuron tuning to specific task features.
Because the target side was confounded by gaze, we report

the proportion of neurons tuned to the side fixated on without
removing eye position information (Equation 1). As expected,
neuron tuning to task features changed over the course of the
trial as information became available (Figure 3A; see Figure S2B
for each session individually). Considering neurons tuned at any
time around goal onset (!200 to 1,000 ms), monkey T had signif-
icantly different proportions of neurons tuned to task features
between the ventral and dorsal LPFC. Specifically, more neurons
in the ventral LPFC were tuned to context (39, 22.5%) compared
to the dorsal LPFC (7, 6.2%; Fisher’s exact test, p < 0.001). More
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neurons were tuned to CPO in the ventral array (17, 9.8%)
compared to the dorsal array (4, 3.5%), but this was not statisti-
cally significant using Fisher’s exact test (p = 0.06). Finally, a
similar proportion was tuned to the target side between the dor-
sal (18, 15.9%) and ventral LPFC (24, 13.9%; Fisher’s exact test,
p = 0.73). Monkey B, on the other hand, had a similar proportion
of neurons tuned to context in the ventral (68, 35.1%) and dorsal
LPFC (76, 27.8%; Fisher’s exact test, p = 0.13) and CPO in the
ventral (54, 27.8%) and dorsal LPFC (78, 28.6%; Fisher’s exact
test, p = 0.84). The target side was represented by more neurons
in the dorsal (156, 57.1%) compared to ventral LPFC (91, 46.9%;
Fisher’s exact test, p < 0.05). Despite this, a different proportion
of neurons was tuned to task features between the dorsal and
ventral LPFC at 200 ms (c = 11.37, p < 0.01), 600 ms
(c = 15.75, p < 0.01), but not 1,000ms (c = 8.67, p = 0.07). Ventral
LPFC neurons were preferentially tuned to context and CPO
earlier in the trial (explored in more detail below).
The latency with which individual neurons represented task

features is summarized in Figure 3B. Neurons in the ventral

A B

C D

E F

Figure 1. Recordings from non-human pri-
mate LPFC during a virtual navigation asso-
ciative memory task
(A) Monkeys were seated in front of a monitor and

used a joystick to navigate through the virtual re-

ality maze to complete the associative memory

task.

(B) Location of implanted Utah microelectrode

arrays, placed in the dorsal (areas 9/46d) and

ventral (area 9/46v) LPFC.

(C) Overview of the X maze, with an example path

taken during one trial, with the onset of the context

(walls changing to steel or wood) and goal (two

possible colors per session appearing in a random

order) indicated.

(D) All possible task conditions with context, color

pair order (CPO), and target side.

(E) Estimated learning state in both monkeys with

95% confidence interval in example sessions with

a novel context association. Shown is mean eye

position on the x axis over 400-ms windows,

demonstrating separation across conditions with

fixation on the target side. Reaction time (RT),

defined by rotating the joystick, is shown above for

each condition (median circle, 25th–75th percentile

thick line, 5th–95th percentile thin line).

(F) Mean firing rate over 400 ms in example neu-

rons tuned to task features during goal onset,

tuned to steel (above), eye position to the right

(center), and mixed selectivity (bottom).

LPFC acquired tuning to task features in
the same temporal pattern: first context,
then CPO, and finally the target side. In
the ventral LPFC, neurons were tuned to
the context with a mean latency (±SE) of
346.2 ± 47.4 ms in monkey B and
282.1 ± 66.1 ms in monkey T. Individual
neurons then demonstrated CPO tuning
significantly later relative to context
(577.4 ± 42.4 ms, p < 0.001 in monkey

B; 516.5 ± 75.8 ms, p < 0.01 in monkey T; Wilcoxon rank-sum
test). Neurons finally acquired tuning to the target side (827.5 ±
18.1ms,p < 0.001 inmonkey B, 933.3± 31.8ms,p < 0.05 inmon-
key T, Wilcoxon rank-sum test). Neurons in the dorsal LPFC had
different tuning profiles in the two monkeys. The main difference
for monkey B was that neurons in the dorsal LPFC were tuned to
CPO closer in time (663.6 ± 33.4 ms) as tuning to the target side
(738.6 ± 16.2 ms; p = 0.50). This suggests that, unlike in the
ventral LPFC, neurons inmonkeyB’s dorsal LPFC did not encode
CPO prior to the target side or the allocation of attention/gaze to
that side. Finally,monkey T had a limited number of neurons in the
dorsal LPFC tuned to context and CPO, and therefore statistical
testing comparing latency was not performed.
As mentioned previously, many neurons changed their tuning

over the course of a trial. To further explore this, we considered
all neurons that were first tuned to context prior to 400 ms and
quantified the task features they represented at 600 and
1,000 ms (Figure 3C). The same analysis was performed for
CPO, but tuning prior to 600 ms was considered. Neurons
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demonstrated temporal mixed selectivity in monkey B, with only
5 of the 61 neurons (8.2%) maintaining context selectivity and 4
of the 39 neurons (10.2%) maintaining CPO selectivity at
1,000 ms across both arrays. Furthermore, most of the context
neurons prior to 400 ms demonstrated selectivity to other fea-
tures (35, 57.4%) at 1,000 ms in both arrays, and similarly,
most of the CPO neurons prior to 600 ms were tuned to other
task features (18, 51.4%). Only the ventral LPFC was assessed
in monkey T, which also demonstrated dynamic tuning but
limited mixed selectivity with other features over times (Fig-
ure 3C, bottom). Specifically, 21 of the 24 neurons (87.5%)
initially tuned to context were untuned at 1,000 ms. This differ-
ence between the two animals may be related to monkey T’s
more limited use of eye position later in the trial (Figure S1A)
and may be influenced by limited trial numbers (Figure S1C).

Decoding task features of ventral and dorsal LFPC
neuronal ensembles across individual sessions
We found that individual neurons are dynamically tuned to task
features. However, single-neuron analysis may not adequately

capture the informational capacity of a population of simulta-
neously recorded units.22We therefore used a linear support vec-
tor machine (SVM) to classify task features from neuronal
ensemble activity. We performed this analysis separately on
each session, using sessions with at least 15 correct trials for
each of the four conditions. We used firing rates integrated over
the same 400-ms windows in steps of 20 ms around goal onset.
We trained and tested a linear SVM on normalized thresholded

multiunit activity on each channel of the dorsal and ventral LPFC
arrays (STAR Methods). The mean (±2SE) decoding perfor-
mance across 12 sessions in monkey B and 8 sessions in mon-
key T is presented in Figure 4A. Each point is marked when the
lower bound (mean – 2SE) exceeds chance performance. Task
features could be decoded reliably following the same temporal
pattern as observed with single-neuron tuning. This suggests
that ensembles in the ventral LPFC represented context informa-
tion throughout the task in both monkeys (orange traces in Fig-
ure 4A). Additionally, CPO could be decoded from the ventral
LPFC after goal onset, followed by the target side. Only the
target side could be decoded from the dorsal LPFC in monkey

A B

C

Figure 2. Activity of LPFC neurons is modulated by eye position and task features
(A) Manually isolated neurons were analyzed during goal onset over 400-ms windows overlapped by 20 ms, performed separately across the ventral and dorsal

LPFC for each monkey. Heatmaps represent the variance of each neuron’s activity, explained (R2) by eye position and task features. Untuned neurons are at the

top, with neurons only tuned to eye position below, and neurons tuned to task features at the bottom. For the neurons tuned to task features, the latency of their

tuning is shown by a gray circle.

(B) Maximum R2 during the trial epoch plotted for all neurons tuned to task features and eye position. R2 for eye position and task features was compared within

each array and compared separately across the two arrays (Wilcoxon rank-sum test; n for each group is indicated in the figure; non-significant (ns), p > 0.05;

*p < 0.05; **p < 0.01; ***p < 0.001).

(C) To quantify the mixed tuning observed between eye position and task features in (A), neurons were categorized as linearly mixed selective (LMS), non-linearly

mixed selective (NLMS), and tuned to task features and eye position at different times (task + eye). Otherwise, neurons were only tuned to task features (task only)

or eye position (eye only) or were untuned.
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T (top right). However, context, CPO, and target side information
could be decoded from the dorsal LPFC in monkey B (top left).
These results were observed across individual sessions in mon-
keys B and T (Figure S3). Permutation testing with shuffled labels
was used to obtain a 95% confidence interval for individual ses-
sions (STAR Methods). We repeated the same ensemble ana-
lyses only including well-isolated single neurons. There was no
significant difference (Wilcoxon rank-sum test) in decoding per-
formance when training the classifier on multiunit activity and
manually sorted spikes for both monkeys (Figure S4).
We then compared decoding accuracies of task features from

the dorsal LPFC, ventral LPFC, and eye position using a Wil-
coxon signed-rank test at three 400-ms intervals centered at
200, 600, and 1,000 ms after goal onset (Figures 4B and S5).
Context information could be decoded more accurately from
the ventral LPFC compared to eye position (p < 0.001 in monkey
B, and p < 0.01 in monkey T, Wilcoxon signed-rank test) and the
dorsal LPFC (p < 0.001 in monkey B and p < 0.01 in monkey T,
Wilcoxon signed-rank test). CPO could also be decoded more
accurately from the ventral LPFC compared to eye position at

600ms (p< 0.05 inmonkey B and p < 0.05 inmonkey T,Wilcoxon
signed-rank test) and the dorsal LPFC (p = 0.05 in monkey B and
p < 0.01 in monkey T, Wilcoxon signed-rank test). Given monkey
B’s bias to fixate on one color in some sessions (Figure S2), we
performed a Spearman’s rank correlation between decoding ac-
curacy from eye position compared to neural activity (Figure 4C).
CPO information was independent of eye position only in the
ventral LPFC at 600 ms, consistent with our single-neuron find-
ings (Figure S1B).

Task features are represented dynamically in the
ventral LPFC
Our population-level analysis shows that neural ensembles
represent task features following the flow of information during
task trials or the cognitive operations the animal needs to
perform the task. Individual neurons also dynamically repre-
sented task features, with different neurons acquiring or modu-
lating their tuning throughout a trial (Figure 3). These temporal
multiplexing of features would predict that the neural codes
across the different trial periods are dynamic and likely do not

A B

C

Figure 3. LPFC neurons temporally mix task features during virtual navigation
(A) Neuron tuning to specific task features is further characterized using the analysis performed in Figure 2. Top plots demonstrate the total number of neurons

tuned to task features. Bottom plots represent each unit’s tuning over time, sorted from bottom to top by onset of tuning to any feature.

(B) Latencies of all neurons tuned to task features in the ventral and dorsal PFC across both monkeys, with latencies compared using a Wilcoxon rank test; n for

each group is indicated in the figure. ns, p > 0.05; *p < 0.05; ***p < 0.001.

(C) Dynamic neuron tuning was quantified for neurons that were first tuned to context prior to 400 ms and CPO prior to 600 ms. The proportion of these neurons

tuned to different task features at 600 ms (for context) and 1,000 ms (for context and CPO) is illustrated using a Sankey diagram.
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generalize from one period to another. To investigate this issue,
we trained a linear SVM to classify task features at each 400-ms
window and tested this at the other different time windows (Fig-
ures 5, S6, and S7).

Context information was represented with a dynamic neural
code (Figures 5A, top, and 5B). Context could be decoded
more accurately at 200 ms from goal onset when the classifier
was trained at that time compared to later in the epoch at
600 ms and 1,000 ms in both monkeys (p < 0.001 in monkey
B, p < 0.05 in monkey T, Wilcoxon signed-rank test) (Figure 5C).
Conversely, context was decoded more accurately at 1 000 ms
from a classifier trained at that time compared to one trained at
200 ms (p < 0.001 in monkey B, p < 0.05 in monkey T, Wilcoxon
signed-rank test) (Figure 5C). Target side information was repre-
sented by amore persistent code (Figure 5A, center), with no dif-
ference in decoding accuracy at 600 ms when trained at that
time or at 1,000 ms in both monkeys (Figures S6 and S7). Finally,
CPO demonstrated a partially dynamic neural code (Figure 5C,
center column). Training a linear decoder to classify this feature

at 600 ms demonstrated increased decoding accuracy at that
time compared to a classifier trained at 1,000 ms (p < 0.01 in
monkey B, p < 0.05 in monkey T, Wilcoxon signed-rank test);
however, testing at 1,000 ms demonstrated the same accuracy
as when trained at 600 ms and 1,000 ms (p > 0.05 in both mon-
keys, Wilcoxon signed-rank test). This suggests that there was a
greater representation of CPO at 600 ms, but there was no addi-
tional CPO information present at 1,000 ms. To rule out a bias in
eye position influencing this feature in monkey B, we only used
sessions (n = 8) where he had no significant bias to fixate on
one color. Although this limits the bias of eye position, it likely
does not completely remove it and may explain some of the
cross-temporal decoding differences observed in both the dor-
sal and ventral LPFC (Figure S6).

The LPFC represents task conditions and eye position in
different subspaces
Our previous results indicate that individual neurons are modu-
lated by both eye position and task features, mixing these

A

C

B

Figure 4. Decoding task features of ventral and dorsal LFPC neuronal ensembles across individual sessions
(A) Mean decoding accuracies of task features across 12 sessions (monkey B) and 8 sessions (monkey T) over 400-ms windows overlapped by 20 ms. This was

performed separately for neural activity in the dorsal and ventral LPFC (mean and normalized multiunit activity) and mean eye position (mean x and y positions)

over the same time epochs. Plots show mean (±2SE) decoding accuracy across sessions, with a circle above when the lower bound (mean ! 2SE) exceeds

chance performance.

(B) Comparing decoding accuracy across the ventral LPFC, dorsal LPFC, and eye position using a Wilcoxon signed-rank test (n = 12 for monkey B, n = 8 for

monkey T). ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.

(C) Correlating decoding accuracy of CPO from eye position and neural data 600 ms (200–600 ms) after goal onset using Spearman’s rank correlation. Decoding

accuracy of CPO from eye position was highly correlated with accuracy from the dorsal LPFC (r(12) = 0.918, p < 0.001) but not from the ventral LPFC

(r(12) = !0.329, p = 0.30).
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elements over time (Figures 2 and 3). Despite this, neural popu-
lations must be able to represent and separate relevant features
under naturalistic conditions. We explored this further by exam-
ining the dimensionality of neural activity in six novel sessions
from monkey B. Neural data projected on the top 30 principal
components (PCs; STARMethods) were used in subsequent an-
alyses. The same analysis was performed using neural activity at
individual times and by concatenating times and trials (Fig-
ure S8). We first identified an axis that explained eye position
on the x axis (Eyex) using a multivariable linear regression. Pro-
jecting averaged neural activity from left-out trials on this axis
demonstrates a significant correlation with Eyex (Figure 6A).
Furthermore, the Euclidean distance on this axis was signifi-
cantly greater in the dorsal LPFC compared to the ventral
LPFC (p < 0.05 at 600 ms, p < 0.01 at 1,000 ms, Wilcoxon
rank-sum test) across all conditions (n = 24).
To find axes that separated task conditions, we used linear

discriminant analysis on the null space of the Eyex dimension
(i.e., the 29 orthogonal axes). This was done to limit the bias of
eye position and can demonstrate that task features are repre-
sented in a different subspace. The mean neural activity across

separate conditions projected on the context and CPO axes
can be visualized over time in Figure 6B. This activity separated
along the context and CPO axes, as characterized previously,
but this analysis allowed us to quantify the variance of population
activity explained by task features (Figure S8). We noticed that
the right conditions separated more along context and CPO
axes compared to left conditions at 1,000 ms (Euclidean dis-
tance compared, p < 0.01, Wilcoxon rank-sum test). Exploring
this further, it was noted that some sessions had a significant
bias to choose the left side, resulting in more of those trials being
correct by chance. This is demonstrated in two sessions with
strong (session 5) and weak (session 2) biases by plotting the
proportion of correct responses separately per condition (Fig-
ure 6C). Plotting Euclidean distance of neural activity projected
on the context and CPO axes demonstrated significantly less
separation in the left compared to right conditions (p < 0.001 at
600, 800, and 1,000 ms; Wilcoxon rank-sum test) across trials
(Figure 6C). Finally, this was not the case at 600 and 800 ms in
session 2, but there was a significant difference at 1,000 ms
(p < 0.05, Wilcoxon rank-sum test). This is likely driven by the
steel condition, where a slight left bias was present.

B

C

A

Figure 5. Task features are dynamically represented by neural ensembles in the ventral LPFC
(A) Cross-temporal decoding in the ventral LPFC, training a linear SVM on task features across 400-ms windows overlapped by 20 ms and testing each model on

400-ms windows overlapped by 20 ms across the whole epoch. Heatmaps show mean decoding accuracies across 12 sessions in monkey B and 8 sessions in

monkey T.

(B) Mean (±2SE) decoding accuracy of the task’s context across time when trained at 200, 600, and 1,000 ms.

(C) Comparing decoding accuracies of models trained at 200, 600, and 1,000 ms when testing on different time windows. Decoding accuracies were compared

using a Wilcoxon signed-rank test (n = 12 for monkey B, n = 8 for monkey T). ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.
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DISCUSSION

We recorded single-neuron responses in the dorsal and ventral
LPFC of macaques while the animals navigated a virtual environ-
ment and performed an associative memory task with variable
spatiotemporal structure. Our main results were that (1) single
neurons in the LPFC showmixed selectivity for task relevant fea-
tures and eye position, (2) single neurons and ensembles were
dynamically selective for the different elements of the task de-
pending on the time relevance of that element to solve the
task, and (3) while neurons in the ventral LPFC encoded spatial
and non-spatial features, neurons in the dorsal LPFC mainly en-
coded spatial information.

Neural dynamics in a naturalistic setting
Few studies have examined single-neuron tuning in the primate
LPFC in naturalistic settings. During most experiments, eye po-
sition is strictly controlled, and stimuli are presented on a station-
ary background. In these studies, animals do not have the ability
to change their view or position in the environment and therefore
cannot control the spatiotemporal dynamic of task elements.
These restrictions have served as important controls limiting
experimental confounds but also limit the ability to generalize
findings to many real-world scenarios. We reasoned that the
LPFC must perform its function in complex environments in the
presence of gaze movements and changing scenery. One
study19 trained monkeys to perform a simple associative

A

B

C

Figure 6. Neural activity separates task conditions along task-related dimensions
(A) Eye position along the x axis across six sessions (top) along with neural activity projected on the eye position axis for the dorsal and ventral LPFC.

(B) Separation along task feature axes over time, where task feature axes were computed in the null space of the eye position axis. Projection on these axes is

shown at 200, 600, and 1,000 ms. Greater separation along task features can be observed in the ventral LPFC, and this separation was maximized at 600 ms.

Furthermore, the ventral LPFC separated the right conditions significantly more than the left conditions at 1,000 ms (p < 0.01, Wilcoxon rank-sum test, n = 12

conditions in each group).

(C) Two example sessions with a large bias to choose the left side (session 5, left) and aminimal bias in choosing the left side under the steel conditions (session 2,

right). Mean Euclidean distance (±SE) across all correct trials in each session is plotted over time. Right conditions separately significantly more than left

conditions in session 5 (Wilcoxon rank-sum test, n = 89 right trials, n = 141 left trials) at 600, 800, and 1,000 ms and only in the steel conditions in session 2

(Wilcoxon rank-sum test, n = 121 right trials, n = 114 left trials). Ns, p > 0.05; *p < 0.05; ***p < 0.001.
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memory task without limiting the animals’ head and eye move-
ments. They showed that coding of relevant features in the
LPFC was robust and not degraded by unstructured move-
ments. Although this work is an important step toward under-
standing neural representations in naturalistic settings, it did
not explore neuron tuning in a complex environment such as
the one in our task, where features changed as the animal volun-
tarily moved through the environment. This capacity to execute
actions that cause a change in the virtual world is referred to
as a feeling of agency.23 Other studies have used virtual environ-
ments as a surrogate for real-world naturalistic settings and re-
ported tuning for spatial working memory in the LPFC and for
stimulus features in the hippocampus.20,21,24–26 This factor
should not be underestimated, since here, animals do not act
as passive observers but as actors, triggering task events at var-
iable times during the trial.
Unconstrained naturalistic tasks in which subjects have

agency may provide insights into the neural dynamics of the
LPFC during real-world conditions. We showed that single neu-
rons in the ventral LFPC were serially tuned to relevant task fea-
tures as they ‘‘appear’’ in a naturalistic associative memory task:
first representing context, followed by the CPO, and finally target
location. Interestingly, neurons largely acquired tuning to the
context shortly before the goal was triggered (Figure 3), despite
this information being previously available, suggesting that
context was only represented in the LPFC when becoming
immediately relevant. Furthermore, these neural representations
were dynamic over time, both at the single-neuron (Figure 3) and
ensemble level (Figures 5 and 6). Single neurons in the LPFC
have been observed to non-linearly mix task-relevant features,
allowing for flexible high-dimensional representations that can
be read out from downstream cortical areas.6,7,27,28 Our results
support these findings and show that task features are repre-
sented in separate subspace than unconstrained features such
as eye position. This could explain how neural populations can
represent and manipulate information without being affected
by variable elements in a naturalistic setting. Furthermore, we
show that neuron tuning is dynamic over time (Figure 3B).
Such dynamics coding has been observed in the rodent hippo-
campus during virtual navigation,29 allowing for the tuning of
episodic sequences by the same population of neurons. In the
LPFC, possible advantages of dynamic coding include utilizing
the same neurons to represent individual features, the combina-
tion of those features united by rules,5,30–32 and a dynamic rep-
resentation of a spatiotemporal episode.33

Anatomical and functional subdivision of LPFC
The neural dynamics discussed previously were mostly found in
the ventral LPFC in both monkeys tested, suggesting a func-
tional division within this region. The ventral and dorsal LPFC
had different tuning profiles while the monkeys completed the
task, with more neurons in the ventral LPFC being tuned to visual
and visuospatial features. The ordered tuning of context, target
location, and target side was observed only in the ventral
LPFC (Figure 3B). These results suggest that the ventral LPFC
is more likely to represent visual features when compared to
the dorsal LPFC. These results are consistent with connectivity
studies showing that there is dorsal and ventral mapping of the

LPFC to corresponding dorsal and ventral high-level visual
areas.1,9–11 Here, we should clarify that our mapping of the
ventral LPFC was not anatomically precise, and it may include
area 46 and some portions of area 45, which include main pro-
jections from the ventral visual processing stream.1,9,10

Other single-neuron studies have demonstrated more mixed
results regarding a functional organization of the LPFC.5,6,12–17

In contrast, we observe a relatively robust difference between
single-neuron tuning and ensemble dynamics between the
ventral and dorsal LFPC. The increased cognitive demands of in-
terpreting a complex scene and freely navigating through it may
exacerbate underlying regional specializations in function. This
study examines anatomical differences in LPFC function at the
single-neuron and population levels during a virtual associative
memory and navigation task. Importantly, our study demon-
strates that it is possible to use a virtual task to explore informa-
tion processing in monkey LPFC neurons and offers insights into
the dynamic nature of their mixed selectivity.
Our results have implications for models of LPFC function and

interactions with the rest of the brain. Interestingly, one recent
study has shown that stimulation of the LPFC evokes selective
activation of specific regions in associative areas of the
neocortex.11 The connectivity of the LPFC with early sensory
areas was practically non-existent, suggesting that the LPFC
mainly receives integrated information from association areas.
Because the mixing of features is not solely a feature of the
LPFC but may start in association cortices, the information that
LPFC neurons integrate could be highly filtered, and features
may be already mixed. The latter may facilitate the multiplexing
time dynamics of relevant features observed in our study as
well as how feedback signals from the LPFC may reach associ-
ation areas. Thus, the reported role of the LPFC on several com-
ponents of cognitive control, such as attention,34–37 working
memory,20 perception,38 rule coding,21,31,39 and planning40

(see Miller41 for a review), could be understood in neurophysio-
logical terms as containing populations of neurons that can serve
as spatiotemporal integrators of information held in the focus of
perceptual awareness. Interestingly a recent study has reported
that neurons in the LPFC encode paths toward a remembered
location via neural activation sequences.42 Thus, the LPFC
may integrate information that has variable spatiotemporal
structure. This may enable the high level of mental abstraction
during planning observed in anthropoid primates43 with large
prefrontal cortices.

Limitations of the study
Having a naturalistic task necessitated unrestricted eye move-
ments, which provided some confounds to our task. We miti-
gated this by removing eye position information in our single-
neuron analysis and comparing the decoding accuracy of neural
activity to that of eye position. Despite this, we were unable to
dissociate eye position, mostly driven by the side fixated on,
from the decision variable. It is unclear when the decision would
have occurred in this naturalistic setting and possibly occurred
between fixation and reaction time indicated by moving the
joystick (Figure S1). However, even with a conservative estimate
that this occurs during fixation, we show that CPO is represented
prior to this in the ventral LPFC and not dorsal LPFC. This
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suggests that the ventral LPFC may be involved in the computa-
tion required prior to the decision. Additionally, the interaction of
our task elements (context and CPO) in correct trials was the
same as the target side (Figure 1), limiting our ability to investi-
gate non-linear mixed selectivity between context and CPO.
This could be mitigated by using incorrect trials, which were
limited in our case, or by changing the rule. However, the
complexity of navigating freely while performing a cognitive
task potentially resulted in variable learning behaviors without
introducing a rule change (Figure S1). Finally, eye movements
and overt attention are highly correlated. In tasks such as ours,
it is difficult to dissociate eye position and attention, which is
usually done in covert attention tasks. Our task may better
approximate natural behavior, but this dissociation becomes
more problematic than in other reductionist tasks. However, in
spite of the aforementioned limitations, our results provide in-
sights into how LPFC neural activity encodes task variables dur-
ing naturalistic tasks.
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STAR+METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Two male rhesus macaques (Macaca mulatta; 7 and 14 years old, 7kg and 12kg respectively) were used in these experiments. The
monkeys were trained to perform a virtual reality associative memory task and received a juice reward as a form of positive reinforce-
ment for each session. All animal procedures were compliant with the Canadian Council on Animal Care guidelines and approved by
the Western University Animal Care Committee.

METHOD DETAILS

Electrophysiological recordings
Lateral prefrontal cortical (LPFC) recordings were acquired using two 96-channel Utah arrays for each animal (Blackrock Microsys-
tems). Each animal received a 3-Tesla T1-weighted MRI which was used for surgical navigation using Brainsight (Rogue Research
Inc.). The Utah arrays were positioned just anterior to the arcuate sulcus, with one placed dorsal to the principal sulcus (areas 46d/9d)
and one placed ventral to the principal sulcus (areas 46v/9v). Each shank was 1.5mm and was therefore likely in layers II/III. Intra-
operative images of the arrays’ positions for each animal are presented in Figure 1A, with the corresponding regions highlighted
in the MRI scans. Signals were obtained at 30kHz using a Cerebus Neural Signal Processor (Blackrock Microsystems) and saved
for offline sorting. Extracted spikes were semi-automatically sorted using Plexon Offline Sorter (Plexon Inc.), and then manually
sorted by two raters (BWC and MA).

Experimental setup
The animals completed the taskwhile seated in front of a computer monitor (2700 ASUS VG278Hmonitor, 1024x768 pixel resolution at
a 75 Hz refresh rate) and used a two-axis joystick to freely navigate through the virtual environment. They were placed in a radiofre-
quency shielded dark room, with cables entering the room through a small aperture. Themonkeys’ head position was fixed during the
task, and eye position was recorded using video-oculography at a sampling rate of 500Hz (EyeLink 1000, SR Research). Custom
software was used to simultaneously control and record the stimulus presentation, behavioral response, eye position and reward
dispense (Figure 1A).

Behavioral tasks
The learning task was completed in an X-shaped maze as previously described.21,25,44 In each trial, animals start at one end of the
X-maze and navigate toward the corridor using a joystick. Once they enter the corridor, the walls change their texture to either a wood
or steel texture. As they continue navigating toward the end of the corridor, two different colored discs appear at each end of the
X-maze. One wall texture (the context) is associated with one color (e.g., steel means the target is green, and wood means the target
is red) indicating the monkeys to navigate to the corresponding disc to obtain a juice reward. The monkey then turns around to navi-
gate back toward the other end of the maze initiating another trial. Figure 1C demonstrates the trajectory of an example trial.

Each day, monkeys completed a set of trials with a fixed context-color combination, which associated the steel context
with the orange target, and the wood context with the purple target. Following this fixed combination, two different colors are

REAGENT or RESOURCE SOURCE IDENTIFIER
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Raw and analyzed data This paper https://doi.org/10.5281/zenodo.10520991
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Rhesus Macaques Unspecified Western University
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MATLAB 2020a MathWorks http://www.mathworks.com/products/matlab/
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Offline Sorter Plexon https://plexon.com/products/offlinesorter/

RRID:SCR_000012

Other

Utah Microelectrode Arrays Blackrock Microsystems https://blackrockneurotech.com/research/utah-array/
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pseudo-randomly chosen to be associated with each context. Therefore, the monkeys must learn a new association for each session.
For a given trial, the colors can appear in one of two possible configurations, referred to as color pair order (CPO). Figure 1D demon-
strates the different possible task elements for each session: context, CPO and target side. For a given trial, the context and CPO are
chosen randomly. We only used novel sessions for our single neuron analyses, highlighted in Figure S1C. All novel sessions shown in
Figure S1C were used for our population analyses, in addition to 5 fixed sessions for Monkey B and 3 fixed sessions for Monkey T.

QUANTIFICATION AND STATISTICAL ANALYSIS

All quantification and statistical analyses were completed using MATLAB 2020a. Proportions were compared using Fisher’s exact
tests or Chi-squared tests. Continuous variables were analyzed using Wilcoxon sign rank tests in cases of paired comparisons,
and Wilcoxon rank sum tests in cases of unpaired comparisons. Mean values along with standard errors (SE) were presented
for continuous variables. Specific details for each statistical test, including the number of observations and what each
observation represents, are included in the manuscript text, figure legends, and figures. P-values >0.05 denote non-significance
(ns); * p-values <0.05, ** p-values <0.01, and *** p-values <0.001.

Behavioral analysis
For each session, learning was estimated using a state-space analysis based on all completed trials as previously described.45

A learning state with a 95% confidence interval is estimated across all completed trials, as illustrated in Figures 1E and S1C. Learning
of the association is defined as the 2.5th percentile of the learning state’s confidence interval exceeding 50%.

Single neuron tuning
Single neuron tuning over task epochs was computed by calculating the mean firing rate (FR) over 400ms windows with 20ms step
sizes. Each unit’s mean FR was z-scored across all trials. Given a limited number of incorrect trials, only correct trials were used. We
fit each neuron’s normalized FR to each feature using a multivariable linear regression (Equation 1), with significance to each feature
determined by setting an alpha of 0.01.

FR = b0 + b1½Context#+ b2½CPO#+ b3½target side#+ e (Equation 1)

A given unit was defined as being tuned to a feature if it remained tuned for at least five consecutive 20ms sliding windows (i.e.,
across 100ms). In the model context is the wall color (2 values: wood or steel), CPO is color pair order, the color combination order
(2 values: color1 left and color2 right and vice versa), and target side is the location of the target in egocentric space (left or right). The
total number of tuned units for each time-window were summed for each feature, and proportions of tuned neurons were compared
across the dorsal and ventral LPFC using Fisher’s exact test. The proportions of neurons tuned at individual time points were
compared using Chi-squared tests. The latency for a given unit’s tuning was determined as the first time-window it was significantly
tuned to a given feature., and a significant proportion of neurons was determined if the total proportion exceeded the alpha threshold
set. Individual neuron tuning latencies were compared for different task features using a Wilcoxon rank-sum test.
Given that eye position was unrestrained, we sought to account for the variance of neural activity explained by this feature and

control for it. We limited our analysis to !200ms (!600ms to !200ms window) to 1200ms (800ms–1200ms window) around goal
onset because eye position was reliably measured during this time. We first performed a two-step multivariable linear regression
(Equations 2 and 3), using mean x and y eye positions in the same 400ms windows we used to analyze the neural data. We fit
each unit’s normalized FR to the mean x and y eye position, and their interaction to account for neural activity specific to a particular
position on the screen (Equation 2). We then utilize the residual FR data, representing the neural activity not accounted for by eye
position, to fit a second multivariable linear regression with task-dependent features (Equation 3). Finally, we used Equation 4 to
investigate for non-linear mixed selectivity between task features and eye position (Eyey not shown, but included in the model).

FR = b0 + b1½Eyex# + b2

!
Eyey

"
+ b3½Eyex#

!
Eyey

"
+FRe (Equation 2)

FRe = b0 + b1½Context#+ b2½CPO#+ b3½target side#+FRe2 (Equation 3)

FRe2 = b0 + b1½Context#½Eyex# + b2½CPO# ½Eyex#+ e (Equation 4)

One session had at least 15 incorrect trials for each condition, allowing us to examine non-linear mixed selectivity (Figure S2C)
using the following equation.

FR = b0 + b1½Context#+ b2½CPO#+ b3½target side#+ b1½Context#½CPO#+ e (Equation 5)

Decoding from population neural activity
Weused a linear support vector machine (SVM) to decode task-dependent features from neuronal population activity in single trials in
400ms windows. We initially used only correct trials, with four possible conditions. We utilized the fitcsvm function (MATLAB 2020a)
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using a 5-fold cross validation on normalized FRs. Sessions were analyzed separately, and only sessions with at least 15 trials per
condition were used. For each session, 15 trials for each condition were randomly chosen and stratified into 5-folds with 1-fold used
for testing. This procedure was repeated 100 times, with 500 trained classifiers. In individual sessions, significance was determined
by permutation testing, with the previous procedure performed on shuffled trials. Trials were shuffled after the k-fold stratification,
and this procedure was repeated 100 times, with 500 classifiers. In individual sessions, significance was determined by a mean ac-
curacy exceeding the 97.5th percentile chance accuracy. We performed the above analysis on normalized FRs from sorted neurons
and normalized multiunit activity across each channel.

To control for possible biases in eye position that may affect neural activity we sought to quantify the classification accuracy of
task-features from eye position. We calculated the mean x and y eye position across the same 400ms windows as previously
described. A linear SVM was used to classify task-features from x and y eye position on the same randomly selected and stratified
trials used for the neural data. This was repeated 100 times, generating 500 classifiers. Permutation testing as described above was
used for significance testing in individual sessions. Themean decoding accuracies (with standard errors) of task features were calcu-
lated across sessions. Decoding accuracies were compared across sessions using the dorsal and ventral LPFC’s neural data and
eye position at three 400ms windows (centered at 0ms 400ms and 800ms) using Wilcoxon sign rank tests.

Cross-temporal decoding analysis
Cross-temporal decoding was performed to investigate whether the neural code underlying task features was persistent or dynamic
across the goal onset epoch. We calculated the mean FR across 400ms windows overlapped by 20ms, and randomly selected trials
which were stratified in five k-folds. This was performed from !400ms to 1000ms around the goal onset, with 70 separate time-win-
dows. A linear SVMwas used to generate a model on 4 k-folds at each time-window and tested on the same remaining k-fold across
all 400ms time-windows (70 time windows). This procedure was then repeated 100 times, resulting in 35 000 separate models (703
5 3 100). The mean decoding accuracy across sessions (with the standard error) was calculated, and significance was determined
when the bottom 2.5th percentile decoding accuracy exceeded chance performance. Cross-temporal decoding analysis was statis-
tically compared across models trained at three time windows (centered at 0ms, 400ms and 800ms) around goal onset using a Wil-
coxon sign rank test.

Dimensionality reduction and state-space analysis
We investigated the dimensionality and variance of neural activity explained in six novel sessions from Monkey B, using the same
400ms windows used in previous analyses. We initially performed principal components analysis (PCA) on normalized neural activity
at 200ms, 600ms, and 1000ms. The variance explained by the top 30 PCs at each time is shown in Figure S8A. To find an axis in this
space that explains eye position, we used a multivariable linear regression with the neural activity projected on the top 30 PCs as
independent variables. The coefficients were normalized to provide a unit vector representing the Eyex axis. We then used neural
data projected on the null space of eye position axis as predictors in linear discriminant analysis (LDA) to find axes that represent
context and CPO. Neural data was projected on those axes, and the variance of that projected neural activity explained by task fea-
tures was quantified with a linear regression (Figure S8A).

To visualize neural trajectories over time, we concatenated neural activity across all time points, providing amatrix with rows equal
to the number of neurons, and columns equal to the number of trials by the number of time points. Otherwise, we performed the same
analysis as above, also using the top 30 PCs. The variance of neural activity explained by task features at each time point using this
analysis is shown in Figure S8B. This was compared to the variance explained by performing the analysis described above at each
individual time point. Using the temporally concatenated neural activity explained less variance, especially at 200ms and 1000ms
(Figure S8B). However, this still captured the overall neural dynamics, particularly at 600ms. Finally, this analysis was cross-validated
with one left out trial which was projected on the dimensions identified using the other trials. The Euclidean distance of individual trials
and trials averaged across task conditions was compared using Wilcoxon rank-sum test.
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