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Networks throughout physics and biology leverage spatiotemporal dynamics for computation.
However, the connection between structure and computation remains unclear. Here, we study a
complex-valued neural network (cv-NN) with linear interactions and phase-delays. We report the
cv-NN displays sophisticated spatiotemporal dynamics, which we then use, in combination with a
nonlinear readout, for computation. The cv-NN can instantiate dynamics-based logic gates, encode
short-term memories, and mediate secure message passing through a combination of interactions
and phase-delays. The computations in this system can be fully described in an exact, closed-form
mathematical expression. Finally, using direct intracellular recordings of neurons in slices from
neocortex, we demonstrate that computations in the cv-NN are decodable by living biological neurons
as the nonlinear readout. These results demonstrate that complex-valued linear systems can perform
sophisticated computations, while also being exactly solvable. Taken together, these results open
future avenues for design of highly adaptable, bio-hybrid computing systems that can interface

seamlessly with other neural networks.

Spatially extended dynamics represent a powerful substrate for computa-
tion. Neural systems perform sensory computations with organized spa-
tiotemporal dynamics traveling over maps of sensory space'”. For example,
waves traveling over retinotopic maps can facilitate short-term predictions
of dynamic visual inputs’. Beyond neural systems, spatiotemporal patterns
of optical or electromagnetic waves can perform sophisticated computa-
tions, such as predicting input sequences’ or performing transformations’.

Achieving a specific computation with spatiotemporal dynamics
requires mapping a single input to a single output through a pattern of
activity across a network of nodes. However, it is difficult to design the
spatiotemporal dynamics required to implement a specific computation,
because systems that have sufficiently rich dynamics are, in general, non-
linear. Designing computations with spatiotemporal dynamics in nonlinear

systems is challenging, because control of nonlinear dynamics can be dif-
ficult to implement in practice’.

It thus remains unclear how these systems could perform general
computations through their spatiotemporal dynamics. Computational and
experimental work has demonstrated that spatiotemporal dynamics can be
leveraged to perform computations ranging from logic operations to speech
recognition”®. A precise mathematical understanding of these computa-
tions, however, remains lacking. At the heart of this problem is the difficulty
in understanding how one input is mapped to a specific output through
an individual dynamical trajectory in order to perform a single
computational task.

In this work, we introduce a system with linear dynamics and nonlinear
readout, where we can mathematically design specific computations
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through the network dynamics. This is possible because the full computa-
tion in this system can be solved exactly. This solution, in turn, provides
fundamental insight into computation with spatiotemporal dynamics.
Specifically, this system allows us to describe, with a complete set of equa-
tions, a way to precisely design computations with transient spatiotemporal
dynamics.

We design computations with spatiotemporal patterns of activity
across a network of N nodes. The computations are implemented by pat-
terns of phase offsets between these nodes. Writing the activity at each node
in the network as a complex number x,(t) € C allows a convenient
representation of phase. The dynamics of this complex-valued neural net-
work (cv-NN) is governed by the differential equation:

() = (il + K)x(?), 1)

where x(f) € CN is a vector that specifies the state of the network at each
point in time. Here, we focus on using the network dynamics for compu-
tation; we note, however, that recent work has shown complex-valued
models can also approximate the dynamics of biological spiking
networks™"”. The matrix K contains information about the connectivity
pattern, the coupling strength, and the phase-delay in the interaction term.
Specifically, K = ce A, where ¢ is the coupling strength and ¢ is a phase-
delay. While we focus here on phase-delays in the cv-NN, we note that
translating between phase-delays and time-delays is possible in networks
with oscillatory dynamics'>"”. The matrix A represents connection weights
a;;between nodes i and j in the network. We consider the nodes in the cv-NN
to be coupled in a one-dimensional ring with periodic boundary conditions
where the connection weight decays as a power-law with distance between
the two nodes. In this way, while all nodes in the network are connected
(excluding self-connections), the strongest interactions in the network are
between neighboring nodes (see Methods, Network structure and cv-NN
dynamics). Further, I is the identity matrix, i is the imaginary unit (note the
distinction between the imaginary unit i and the index variable i.), and w
specifies the frequency at which the nodes’ dynamics evolve. Throughout
this work, we set w =27f to have a natural frequency of f=10 Hz. This
frequency sets a timescale relevant to information processing in the brain;
however, other values of f can be chosen without loss of generality. We have
previously shown that this complex-valued system displays the hallmarks of
canonical synchronization behavior found in oscillator networks"™"*, and
while we consider the case of homogeneous natural frequencies here, the
approach also generalizes to heterogeneous natural frequencies'™'°.

Phase-delays in the network interactions extend the window of time for
which amplitudes in this linear network remain bounded. During this
window, the network displays rich spatiotemporal dynamics, which we find
can be used for computation. To implement dynamics-based computation,
we set up a system with an input layer, the cv-NN, and a decoder that
interprets the phase dynamics of the network (Fig. la). We utilize polar
notation for complex numbers throughout the text, which provides a
direct way to analyze the phase dynamics that is used for computation.
Specifically, the cv-NN performs computations with spatiotemporal
dynamics in the recurrent network, in combination with a nonlinearity in
the readout.

With this formulation, we can now write the entire computation in the
system with the following closed-form expression:

o, (t) = ©,R,D,x(0), 2)

where o(f) represents the output of decoder node k, the operator D, =
e“'eK! represents an exact solution for the linear dynamics in Eq. (1),
starting from initial conditions x(0) (see Methods, Mathematical descrip-
tion of the input), the operator R, : CN — R quantifies the level of syn-
chronization in a local patch of the network projecting to decoder unit k (see
Methods, Decoding spatiotemporal dynamics, Eq. (8)), and ©, is the
standard Heaviside function shifted by a threshold ¢. This equation captures
the computation in the cv-NN in a closed-form analytical expression, in
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Fig. 1 | A cv-NN with linear dynamics exhibits sophisticated spatiotemporal
patterns. a Our framework is composed of an input layer connected to a recurrent
layer (the cv-NN) that generates dynamics which are then interpreted by a decoder.
The number of nodes, weights, and decoders in the system is flexible and can be
adjusted for specific applications. b, c We use the inverse of operator D to determine
the input required to drive the network to a specific target pattern at a precise time,
several seconds into the future (see Methods, Mathematical description of the input).
The dynamics of the cv-NN starts in an asynchronous state due to random initial
conditions. After input 1, the network evolves to a chimera state pattern. A second
input leads the cv-NN back to an asynchronous state. The cv-NN exhibits both (b)
phase and (c) amplitude dynamics. Throughout this work, we use the phase
dynamics to perform computations. d The success of this process — whether or not
the cv-NN achieves the target pattern at the desired time — is quantified by the
similarity metric Eq. (3). There is a specific range of the delay parameter, ¢, and 7 for
which the target pattern is achieved by the cv-NN dynamics.

terms of linear dynamics and nonlinear readout working on the network’s
initial state x(0).

Results

Constructing computations in the cv-NN

To describe the system in more detail, we consider computation in the cv-
NN in an input-decoder framework (Fig. 1a), where the N nodes in the
network receive connections from M input nodes, and project to a set of L
output nodes that constitute a decoder. The set of weighted connections
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Fig. 2 | The cv-NN can perform simple computations. a Here, we consider two

binary inputs X and Y applied to the cv-NN, and we use its dynamics to compute the
output Z that is interpreted by the decoder. When one (or both) of the inputs turns
on, the input specified by the weighted connections between the input node and the
network is added to the state vector of the cv-NN. b Here, we implement an XOR
gate. Rows in this table represent the input node state vector, [X, Y], and the resulting
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output, Z.¢c,d When X=1and Y=0, or X=0and Y =1 (i.e. precisely one input is
applied), we observe a coherent cluster in the spatiotemporal dynamics. This phase
synchronized cluster is recognized by the decoder, which returns Z = 1. However,

whenX=0and Y =0,0r X=1and Y =1 (i.e. neither input is applied or both inputs
are applied), no phase synchronized cluster appears, and the decoder returns Z = 0.

from the input nodes to the network are collected into an M x N weight
matrix W, which we use in different configurations. In one setup, each input
node could project to a single network node. In this case, W is the Nx N
identity matrix In, and all input nodes drive the network with specific
complex numbers. In another setup, each input node may project to the full
network with varying weights. In this case, W is in the set of M x N matrices
with complex coefficients (W € M, y(C)), and input nodes are either
“on” or “off”. In either case, the input to the network takes the form of a
complex valued vector, which is applied through multiplication with the
state vector of the cv-NN (see Methods, Mathematical description of the
input). This process can be thought of as nudging the state of the network
onto the trajectory in state space that will allow it to evolve with the desired
dynamics. Since the dynamics of the cv-NN is governed by the operator D,
the input weights required for the system to evolve to a specific target pattern
can be computed precisely using the inverse operator D! (see Methods,
Mathematical description of the input, and Supplementary Fig. 1). Starting
from random and asynchronous initial conditions, we can calculate the
input needed for the system to evolve to an arbitrary state several seconds
into the future (input 1, Fig. 1b, ¢). Applying this input to the state vector of
the cv-NN brings the network to the correct state required for evolution to
the target. We can then use these inputs to design specific dynamics in the
cv-NN, in both amplitude and phase, and we use the phase dynamics for
computation throughout this paper. It is worth noting that, while we con-
sider only simple, instantaneous inputs to the cv-NN in this work, applying
linear control theory to the complex-valued state dynamics is a straight-
forward extension that would allow specific nodes to receive continuous
inputs over time'’, rather than a single instantaneous pulse across the whole
network.

Figure 1 illustrates an example of this input-output framework in the
cv-NN, depicting both the phase (Fig. 1b) and amplitude (Fig. 1c) at each
node in the network. In this example, input 1 drives the network to a
partially phase synchronized state 4 s into the future (Fig. 1b, Supplementary
Movie 1). This partially synchronized state, where a specific group of nodes
has the same phase while other nodes remain in an asynchronous state, has
the key features of a chimera state'’. Chimera states have been studied in
many nonlinear systems - e.g. reaction-diffusion systems'*”’, recurrent
neural networks™, and networks of Kuramoto oscillators'****’. We report
that the linear cv-NN displays a range of chimera states, from the short-lived
states that we use here for computation (Fig. 1b) to chimeras that exist for
long timescales (Supplementary Fig. 2). The chimera states we observe in the
cv-NN are transient, and phases in cv-NN eventually collapse to synchrony
after some time. Both of these features match the dynamics reported in
standard nonlinear Kuramoto oscillator networks™*. Our mathematical
approach allows us to understand how connections and phase-delays within
the cv-NN work together with driving inputs to create chimera states that
range from short transients to long, temporally extended states

(Supplementary Fig. 2). Because we now have a system that exhibits
sophisticated dynamics such as these transient chimeras, and has a closed-
form expression, we can study the input-output mappings in the cv-NN and
design dynamics to perform computation.

Not all desired target states are easily achievable in the cv-NN, however.
This is due to the fact that, while the operator D! is always defined in C",
when implemented in standard double precision numerical calculations,
this operator may not have full rank in practice (see Methods, Mathematical
description of the input). This theoretical point, in fact, has a meaningful
physical interpretation: for example, if the target state is a chimera, but the
network is in a fast-synchronizing regime, the network dynamics will not, in
general, match the target state. With this in mind, we introduce a similarity
measurement:

N
Z eiArg[Xj] e*iArg[x](T)] (3)

1
S=—
N | &=
j=1

to numerically quantify the match between the target phase pattern Arg[y],
designed to appear at time 7, and the phase pattern displayed by the system
at that time, Arg[x(7)]. As noted above, the cv-NN can in general collapse to
a phase synchronized state (Supplementary Fig. 3), or amplitudes in the
network can grow to become unbounded (or decay to zero) in finite time.
We find, however, that for values of ¢ within an interval near 7/2, this
procedure can generate arbitrary spatiotemporal patterns up to 10 s into the
future (Fig. 1d, and Supplementary Fig. 1). This is because the delay
parameter ¢ affects the eigenvalues of K and thus influences the dynamics of
the cv-NN (Methods, Spectral properties of the network). We also find that
target patterns are easier to be obtained in networks with intermediate
coupling strength €, which is consistent with recent results that have shown
that being near a phase transition can enhance the power of computational
systems based on phase synchronized clusters™”’. It is worth noting that,
while here we consider computations based on phase synchronized clusters
in the network, this framework naturally generalizes to different phase
patterns. Further, we note that, while we use a small number of decoders in
this work for simplicity and ease of visualization, increasing both the
number of decoders and the overlap in their connectivity could further
improve the network’s computational performance in future work.

Constructing logic gates and malleable short-term memoryinthe
cv-NN

The previous result demonstrates the cv-NN can achieve a target state at a
specific time window in the future. To demonstrate that these states can be
used for computation, we implement the cv-NN with two possible inputs, X
and Y, and one output, Z, which is decoded from the network phase
dynamics (Fig. 2a, Supplementary Movie 2). This setup allows for the

Communications Physics| (2024)7:239



https://doi.org/10.1038/s42005-024-01728-0

Article

8 different items decoder
([00000000| [00000000]

-7 phase (rad) 7T

a )
input 1 input 2
50
100
3
3 150
]
< 200
250
300
time (s)
b decoder decoder
(0@000000||00000000]
input 1 input 2 input 3

100

3

8 150

]

€ 200
250
300

0 1 2 3 4 5 6 7 8
time (s)

Fig. 3 | The cv-NN can perform short-term memory tasks and online updating.
a We use our computational framework to perform a short-term memory task in
which 1 of 8 possible items is to be held in working memory for 3 s. In this example,
input 1 cues item 2, and the cv-NN dynamics evolves to the corresponding chimera
state. Once the decoder successfully interprets the phase dynamics, a second input
(input 2) then drives the network back to asynchronous behavior. b Online updating.
In this example, due to the first cue, the network initially stores item 2 in memory.
The application of input 2 (second cue) updates this memory to item 6. After the item
is decoded, input 3 drives the cv-NN dynamics back to an asynchronous state.

realization of an XOR logic gate (Fig. 2b). When X and Y are both 0, the cv-
NN remains asynchronous, and no chimera occurs (Z =0) (Fig. 2c, top).
When either input X or Y is 1, a synchronized cluster occurs in the center of
the network (Z = 1) (Fig. 2c, middle two rows). Lastly, when X and Y are
both 1, these competing inputs interfere in such a way that no synchronized
cluster is observed in the network (Fig. 2¢, bottom). In contrast to the way
computations are often implemented in neural networks, where non-
linearities at single neurons alternate with pooling across trained network
connections, the interference underlying the mapping (X=1, Y=1) —
Z = 0 occurs in the linear dynamics of the cv-NN, with the nonlinearity © Ry
only applied once at the readout. This specific combination of linear
dynamics and simple nonlinear readout allows specifying the XOR opera-
tion precisely in a closed-form expression - Eq. (2). This XOR gate is robust
to noise (Supplementary Figs. 4 and 5). Having a closed-form expression
opens the opportunity to generalize easily to other standard logic gates
(Supplementary Fig. 6) and, potentially, more complex logic operations, in a
natural way.

The cv-NN can thus perform simple spatiotemporal computations by
holding target states several seconds into the future. These target states
could, conceivably, enable a form of in-memory computation, which has
proven to be a promising departure from traditional models of von Neu-
mann computing architectures™. To explore the possibility of performing
in-memory computations with target states in the cv-NN, we considered an
example task in which 1 of 8 items is to be held in short-term memory for 3 s.
Aninput to the cv-NN cues the item to be remembered, which is encoded by
a specific pattern in the cv-NN dynamics, and can then be read out by
decoder units with connections to nearby nodes in the network (Fig. 3a).

As before, we store the item in a coherent phase cluster at a specific position
in the cv-NN. This cluster then triggers the decoding unit corresponding to
the item held in memory (see Methods, Decoding spatiotemporal dynam-
ics). The network is initially asynchronous, due to random initial conditions
(t<1s, Fig. 3a). Following a specific input that cues item 2 at t=1s, the
network evolves to a state with a coherent phase cluster centered at decoder
2, representing the item held in memory. After the item is correctly decoded,
another input is applied, and the cv-NN returns to an asynchronous state
(t >4 s, Fig. 3a). As with the implementation of logic gates, this framework
for short-term memory is robust to noise and perturbation (Supplemen-
tary Fig. 7).

A key feature of in-memory computation is the ability to update online,
a feature shared with biological working memory”. For instance, if someone
is asked to keep a phone number in memory, it is also possible for them to
update the last digit from a 1 to a 9. Online updates provide biological
working memory with the flexibility to adapt to inputs and solve problems
over extended time scales”. To demonstrate online updating, we consider a
longer task where the cv-NN must switch between items 2 and 6 after 4 s
(Fig. 3b, Supplementary Movie 3). The input cue needed for the switch is
given by a single vector that can be computed locally in time, without
requiring future information about the cv-NN’s state. These results
demonstrate that the cv-NN can store short-term memories with a process
that can be both updated online and described with a mathematically exact
solution.

Symmetric-key encryption system

Short-term states in the cv-NN can also be used to encode and
transmit information between two or more sources, in a simple
symmetric-key encryption format’'. To demonstrate this, we define a
chimera alphabet, which is a mapping of different coherent phase
clusters to the 26 letters of the English alphabet (and one to a blank
space, see Supplementary Note 8). We then consider the traditional
scenario in which Bob sends a message to Alice, which Eve tries to
intercept (Fig. 4a). Bob and Alice agree on a secret key, {w,x(0)},
where w denotes the intrinsic frequency and x(0) the initial condi-
tions. The chimera alphabet and the network structure (K) form the
public structure through which the message is transmitted. Eve
therefore knows the full transmission framework, including K, the
chimera alphabet, and the format of the ciphertext, but must attempt
to guess the secret key shared between Alice and Bob. To encrypt a
message, Bob first chooses a set of target times at which the encoded
letters should appear in Alice’s cv-NN. He then uses D! to compute
the set of inputs (Z;) to apply at specific input times (#) so that the
chimera letters appear as desired (see Methods, Mathematical
description of the input). Bob sends Alice the ciphertext {Z;, ¢;}. Alice
initializes her cv-NN using the shared secret {w, x(0)}, then applies
the ciphertext, letting the network dynamics evolve according to the
operator D. Because Alice has the secret key, synchronized phase
clusters will appear. When this happens, Alice decodes each letter of
the message using the public chimera alphabet (Fig. 4b, Supple-
mentary Movie 4). We note that the synchronized clusters appear at
the target times chosen by Bob, but that these times do not need to be
known by Alice and are discovered in the spatiotemporal dynamics
of the cv-NN. At the same time, an eavesdropper, Eve, intercepts the
ciphertext and applies the inputs to the public network to decode the
encrypted message; however, because Eve does not have the secret
key {w, x(0)}, Eve’s network does not reach the chimera states and
will, in practice, evolve to synchronized states.

This example of dynamics-based encryption is robust to random
attacks. Randomly guessing w and x, does not produce phase clusters from
the alphabet (Supplementary Fig. 8). Further, the inputs Z; must be applied
in the correct sequence and at the correct times #; otherwise, the target
patterns are not obtained. Finally, one may question whether the syn-
chronization of Eve’s network (Fig. 4c) could offer her some insight into the
private information. This is not the case, however, because in practice Bob
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Fig. 4 | The cv-NN enables message transmission based on spatiotemporal
dynamics. a Encryption scheme. Public structure: the network structure, the method
for encoding and decoding messages, and the mapping between letters in the
alphabet and chimera states in the cv-NN, constitute public information. Specifi-
cally, the parameters ¢, a, ¢ and the matrix A are shared by everyone using this
framework. Secret key: Bob and Alice agree in advance on the parameter w and the
initial state of the cv-NN x(0), which configures the secret key. Message: a string of
letters and spaces Bob will encrypt, so that each letter appears as a chimera state in
Alice’s cv-NN at some time known only by Bob. To encode his message, he chooses a
set of input times ¢, and uses the inverse operator D! to obtain the required inputs
Z;. Ciphertext: the set of inputs to the cv-NN and the times at which to apply them,
which Bob computes and sends to Alice. Here, inputs to be applied at times t; and ¢,
are depicted by sets of colored input nodes. Alice: Depiction of Alice’s cv-NN when
she decodes Bob’s message. Alice implements the cv-NN using the secret key {w,
%(0)} and applies the inputs Z; at the times #;. The resulting spatiotemporal dynamics
of the cv-NN can then be interpreted by the decoder using the public alphabet. In this
schematic, squiggly lines represent asynchronous dynamics, and the small curved
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clusters determine the decoded letter. Eve: Depitcion of Eve’s cv-NN when she
intercepts the ciphertext and tries to decode Bob’s message. She applies the correct
inputs at the correct times, but since she had to guess the secret key, the chimera
letters do not appear in her cv-NN and she cannot decode the message. b An example
message. Alice implements her cv-NN using the secret key {w, 2(0)} and applies the
ciphertext inputs Z; at the times #;, denoted above the phase plot of Alice’s cv-NN.
These inputs cause phase-synchronized clusters to appear in Alice’s cv-NN at the
times marked by dashed vertical lines. The state of Alice’s cv-NN at each of these
times are depicted at the top of the figure, with the phase synchronized clusters
highlighted in blue. The positions of these clusters are then decoded, resulting in the
message HELLO. ¢ Dynamics of a cv-NN built using the public information by an
eavesdropper, Eve, who tries to intercept the message. Even though Eve is able to
obtain the ciphertext, she is not able to decode the message: when she applies the
same inputs Z; at the correct times ¢;, she does not obtain the phase clusters in the
dynamics of her cv-NN because she does not have access to the secret key {w, x(0)}.
Here, her cv-NN synchronizes, which can be seen in the vertical lines in the phase
plot of her cv-NN.

and Alice can always extend the private information to a series of keys
{w, %(0)} and jump between these keys in a sequence’™”.

Biological neurons can decode dynamics in this artificial network
The previous results demonstrate the cv-NN can perform computations,
store short-term memories, and can enable secure message passing, but
is it possible to utilize these computations in practice? To address this
question, we next test whether biological neurons can decode the spa-
tiotemporal dynamics underlying computation in the cv-NN. To do this,
we injected the cv-NN dynamics directly as a current into a biological
cell via an intracellular recording electrode (Fig. 5a, and Methods, cv-NN
dynamics as inputs to biological neurons), and then used the resulting
spikes generated by the cell as the decoder (see Methods, Experimental
details). We then implemented the short-term memory task where 1 of 8
items is to be held in memory (Fig. 3). As before, the cv-NN holds an item
in short-term memory through the position of the phase coherent
cluster. We then systematically injected dynamics from subsets of the cv-
NN as a current into the biological neuron in separate trials, effectively
using the biological cell in place of the 8 decoding units used previously
(Fig. 5b). Inputs from the subset of the network corresponding to the
remembered item sum constructively and cause the biological neuron to

fire (black trace, Fig. 5¢), while inputs from outside the coherent phase
cluster sum destructively and do not cause the neuron to fire (gray trace,
Fig. 5c). Over several trials, the biological neuron repeatedly spiked
successfully for the remembered item and not for other inputs (Fig. 5d).
These results are robust for different short-term memory items, different
scaling factors to translate the cv-NN dynamics into a biological current
(Supplementary Fig. 9), and are consistent with a standard mathematical
model of the neuron (Supplementary Fig. 10). It is worth noting that, in
contrast to standard mathematical models of single neurons, which
always fire a spike at a fixed threshold potential and instantaneously
reset, biological neurons have variable thresholds that change dynami-
cally in time and with different input™. Even under these conditions,
however, computations in the cv-NN can be successfully implemented
by real biological cells.

The possibility of designing an interface between a biological cell and
this recurrent neural network can be understood as a key outcome of our
mathematical approach. In general, it could be difficult to design an interface
that would allow a biological neuron to decode the output of an artificial
recurrent neural network that had been trained to perform a certain task.
We believe the fact that designing such an interface is both straightforward
and efficient highlights the utility of our approach. This simplicity can, in
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Fig. 5 | Biological neurons can successfully decode
the dynamics of the cv-NN. a We implement the cv-
NN using real, biological neurons as the decoders.
To do so, we inject the dynamics of the cv-NN as a
current into a biological neuron, whose resulting
physiological signal is used for decoding. In detail,
the dynamics in a local patch of the cv-NN are
summed into an aggregate activity pattern (Meth-
ods, cv-NN dynamics as inputs to biological neu-
rons). This aggregate pattern is then injected via an
electrode into the neuron acting as one of the
decoders. An example of this procedure is shown in
the microscope image, where circular shapes
represent cell bodies, and the darker, triangular
region shows the electrode patched onto the decoder
neuron. b As an example, we consider the short-

a Tnput

ev-NN Biological neuron  Recorded output
outpaY wexghts send spikes—

cv-NN srake o
/ s by Y
. 25/4m o

decoder
¢

neuron recieves
summed outputrs as
current injeckion

\\2o payoyod

biological neuron

in Fi 50 O
term memory task represented in Fig. 3. The loca- — @ o
tion of the phase synchronized cluster indicates 100 0 g
which item is being remembered (item 2 in this T (%) o
case). ¢ The current input created from the segment 5 8 150 O|2
of the network corresponding to the phase syn- g e 200 o E
chronized cluster causes the biological neuron @ Ols
decoder to fire repeatedly (black trace). However, 8 250 O >
when the current input corresponds to an asyn- < 300 9)
chronous segment of the network, the neuron does - : hd
not fire (gray trace). d This procedure is repeated for 0 1 time(s) 3 4
several different trials, which shows successful decoder neuron 2
decoding. c
decoder neuron 6
> 0 /\
e \ |
= VY \//“ \/\'\I W
1 second
»d
Q
X
S 10f
n
©
@
a 5
S
=]
C T
0 ) )
/ \ 2 4 6 8

decoder neuron

turn, open possibilities to design interfaces between artificial and biological
neural networks in future work.

Discussion

In this work, we have introduced a network that can perform computations
while also being exactly solvable. The advantage of this approach is that the
entire computation can be written in an exact, closed-form mathematical
expression. This expression allows us to design specific computations in the
cv-NN, as well as understand the complete dynamical trajectory that
transforms specific inputs into specific outputs during an individual com-
putation. To the best of our knowledge, these results represent the first
complete mathematical description of how a network utilizes a specific
spatiotemporal pattern for an individual computation.

The cv-NN introduced here is a modification to the standard archi-
tecture of recurrent neural networks. Specifically, the cv-NN has nodes with
complex-valued state, linear interactions within the network, and a non-
linear readout stage. Recurrent neural networks are known to have powerful
computational capacity’>™’. However, they are also known to be difficult to
train®”, and to interpret once trained”. One adaptation of standard
recurrent neural networks is the reservoir computing framework, where

computations are performed by a recurrent network with fixed connections
and a trained linear readout*' ™. The insight of this approach is that training
only the readout can provide a dramatic simplification of RNN training”,
and the reservoir computing framework has led to substantial advances in
predicting chaotic time series***".

Our cv-NN bears similarity both to standard recurrent neural networks
and to reservoir computing, but introduces two main adaptations. First,
switching the order of nonlinear and linear steps in the network makes
possible an exact solution for the entire mapping from input to output.
Specifically, instead of feeding input into a recurrent neural network with
nonlinear interactions and linear readout, here inputs project into a network
with linear interactions and nonlinear readout. Because the nonlinearity
only happens at the last stage of the computation, inputs can create
sophisticated spatiotemporal dynamics in the recurrent network, while the
dynamics at that stage remain exactly solvable. Thus, while some non-
linearity is known to be an essential component for computation***,
changing the standard architecture of nonlinear and linear stages in
recurrent neural networks may allow for new insights. Recent numerical
simulations and experimental work have also found that linear dynamics in
the recurrent network and nonlinear readout can be useful for computation
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and time-series prediction*”™". In this work, we utilize a similar archi-
tecture, with linear dynamics and nonlinear readout, to obtain an exact
mathematical solution for the computation performed in this system. This
solution, in turn, makes possible the second main adaptation from the
recurrent neural network and reservoir paradigms: instead of training either
the recurrent or readout weights to minimize error, here we use the exact
solution to directly construct computations in the system. The direct con-
struction offers clear and precise mathematical insight into how a net-
worked system can transform a single input into a specific spatiotemporal
pattern in its internal state, and then to generate a specific output through
nonlinear readout. Relating these direct constructions to training paradigms
for recurrent neural networks, including backpropagation through time and
reservoir computing, will be a subject of interest for future work.

Constructing computations through linear network dynamics may at
first seem counter-intuitive, because linear dynamics are often thought to be
too simple to produce sophisticated spatiotemporal behavior®”. For this
reason, research in both neural networks and dynamics-based computation
has largely focused on nonlinear systems*******, Nonlinear dynamics are
used throughout machine learning for training RNNs*** because saturating
nonlinearities can keep the network activity within bounded intervals™*".
Nonlinear dynamics are also used extensively in physics for training
reservoir computers to predict chaotic dynamics™****. Further, it is
increasingly appreciated that nonlinear oscillator networks can be trained to
perform sophisticated computations® . In these systems, nonlinear
dynamics are thought to be essential for computation because they provide a
rich diversity of dynamical behavior that can be leveraged for spatio-
temporal computation® . However, a complete mathematical description
of spatiotemporal computation in these systems remains challenging.

Several different analytical techniques have provided insights into these
systems. Computing with spatiotemporal dynamics has been studied in
reaction-diffusion systems™. Mathematical approaches have been worked
out for excitable lattices with nearest-neighbor interactions, where each
possible spatiotemporal pattern can be computed by hand®. Mean-field
approaches, including dynamical mean-field theory (DMFT), have pro-
vided fundamental insights into the macroscopic statistics of nonlinear
dynamics in RNNs"*"', by providing analytical expressions for the structure
of autocorrelations and the transitions to chaos in these systems™”"”*. In
order to fully understand how neural networks perform computations with
spatiotemporal dynamics, however, it is necessary to understand how an
individual dynamical trajectory, driven by an input, can lead to an output in
asingle instance of computation. The key missing piece has always been how
to formulate, in a mathematical manner, precisely how computation
emerges from the interaction between nonlinearity and the pattern of
connections in an individual network.

By leveraging recent analytical work from our group that introduced an
operator-based description of nonlinear oscillator networks*™°, we have
developed a cv-NN whose complex-linear dynamics can be exactly solved,
but also produces rich spatiotemporal patterns that can be used for com-
putation. The asymptotic behavior of the linear dynamics is, obviously, quite
simple, in that the amplitudes of all nodes either diverge to infinity or
collapse to zero. A key technical insight, however, is to utilize phase-delays in
the network interactions to change the spectrum of the operator governing
the complex-linear network dynamics. We find that, by tuning these delays
in a manner guided by our analytical approach, we can create long-lived
amplitude transients in the complex-linear cv-NN. Notably, during these
amplitude transients, the network displays sophisticated dynamics in its
phase. Using these patterns of phase as a dynamical reservoir, we can, in
turn, design computations from a specific matrix equation. Both the origins
of the phase dynamics in the cv-NN and how to extend the computations
that can be constructed in this way will be the subject of future work. The key
advance in the present work is to show that constructions such as this are
possible. By fundamentally re-ordering the components of the standard
neural network framework, guided by our analytical approach, this work
provides a missing piece required to understand computation in these
systems.

Methods

Network structure and cv-NN dynamics

Equation (2) expresses the whole computation performed by our cv-NNina
closed-form solution, in terms of operators acting on the initial state of the
network. To simplify these operators, we express the evolution of the cv-NN
in matrix from in Eq. (1). We can also express the dynamics of each node in
the cv-NN explicitly:

N
x,(t) = iw + Zeefi‘baijxj(t). (4)

=1

This expression makes clear that each node i interacts with each other node j
in a way that is modulated by the coupling strength ¢, phase-delay ¢, and
connectivity a; In our work, the cv-NN structure is given by a one-
dimensional ring with periodic boundary conditions and connection
weights a;; that follow a power rule:

1

a4 =——7. 5

1= {@)dy)” ©)
Here, dj; is the distance between nodes i and j (defined as d; = min(|i —
jl,N — |i — jl) for i #), « is the power-law exponent (which controls the
decay), and ¢(«) is a normalization term given by:

N oo
(= > @r (6)

Jj=1lj=#i

The resulting weighted adjacency matrix A is symmetric and circulant. In
this case, each node in the network is connected to all other nodes (without
self-connections, so that a;; = 0), but the connection weight decays with the
edge distance between nodes i and j. This connection scheme means that the
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Fig. 6 | Example of the network connectivity and the dynamics of one node in the
cv-NN. a Distance-dependent weighted adjacency matrix that we consider for the
cv-NN. b The connection weight decays as the edge distance increases. ¢ The
dynamics of one element in the cv-NN is shown in the complex-plane with time
represented in color-code. Moreover, we can observe (d) the argument and (e) the
amplitude of the dynamics as a function of time.
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matrix K = eeA is also circulant. Recall that K provides information about
the interactions between nodes, since € is the coupling strength and ¢ is the
phase-lag in the system. In this work, we consider distance-dependent
networks with « =1.0. The weighted adjacency matrix for this case is
represented in Fig. 6a, where the connection weight decays as the edge
distance increases (Fig. 6b).

The cv-NN dynamics evolve according to Eq. (1). An example of the
dynamics of one element in the cv-NN is depicted in Fig. 6. Here, we show
the dynamics of this example node plotted in the complex-plane (Fig. 6¢),
with time represented in color-code. We also depict the phase (Fig. 6d) and
the amplitude (Fig. 6e) of the node’s dynamics, respectively, as a function
of time.

Mathematical description of the input

The dynamics of the cv-NN is given by Eq. (1), whose solution is given by
x(1) = e“'¢“x(0). The evolution of the cv-NN dynamics is specified by the
operator D applied on x(0). Because the operator D defines an exact solution
for the dynamics of the cv-NN, we can find, analytically, the initial state x(0)
that will evolve to an arbitrary target pattern y at time ¢ = 7. To do so, we can
use inverse operator D~ applied to the target state y to find the initial state
x(0):

X

elwt oK1’

x(0)=D; 'y = @)

where the matrix K has a defined inverse. The operator D! is always
defined in CV (except in the case the matrix K is singular - see Supple-
mentary Note 1 for mathematical details). However, due to the numerical
implementation, some of these states are, in practice, hard to obtain. To
exemplify this point, we consider an implementation of our method with
standard double numerical precision. Figure 7a shows the range of para-
meters ¢ and the time into the future where a chimera state can be obtained
in this condition (we note that this panel is identical to Fig. 1d). We then
numerically evaluate the rank of the operator D! under the same condi-
tions, where we observe that, this operator is (numerically) full rank for the
same range of parameter where the chimera states are successfully obtained
(Fig. 7b). This range of parameters thus highlights the conditions where
arbitrary spatiotemporal patterns can be easily and robustly obtained in our
cv-NN.

With this approach, we are now able to compute the input necessary to
drive the network to a given pattern at a specific time in the future. Suppose
the network starts in a random initial state and evolves according to Eq. (1).
If, at some point in its evolution, we decide that we want the cv-NN to
display a target state, x, some 7 seconds into the future, we can use Eq. (7) to
determine which state would lead to that pattern at that time. We then
compute the difference between the current state of the cv-NN and the state
necessary for evolution to the target. This difference can then be applied as
an input to quickly bump the network towards the correct starting point, so
that the desired trajectory then unfolds in time. An example is shown in
Supplementary Fig. 1.

This framework is flexible to different implementations of the cv-NN.
Depending on the task or computation, the cv-NN architecture may take a
variety of forms: input nodes can connect to all or only part of the network,
with weights that can be complex, real, or binary; and these nodes can either
have a binary state, on or off, or can take different complex values. In all
cases, the input to the network ultimately takes the form of a vector in CN,
which is multiplied componentwise by the cv-NN state vector. In Fig. 8, we
demonstrate two specific examples. In the first set up, M < N nodes are each
connected to all N nodes in the cv-NN with varying weights (Fig. 8a). These
connections are specified by a weighted adjacency matrix with complex
coefficients. When an input node turns on, the vector corresponding to its
connection weights is applied as input to the network. This set up is useful
for computations like logic gates, where the number of inputs to be applied is
much smaller than the number of nodes in the network. In a second
example, N input nodes are each connected to a single node in the cv-NN,
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Fig. 7 | Numerical implementation of the operator D~'. a We are able to analy-
tically define the necessary input to drive a chimera state 7 seconds into the future.
This approach is found to be successful for a given range of 7 and ¢ (note that this
panel is identical to Fig. 1d). b While the operator D" is always defined (except

when the matrix K is singular), a numerical investigation of the rank of this operator
reveals that, with standard double precision, the operator is only (numerically) full
rank for the same range of parameters where the chimeras are successfully obtained.

with connection weight 1 (Fig. 8b). At each point in time, the state of each
input node (in C) denotes the input to be applied by that node. This set up
works well for flexibly applying inputs, as in the memory updating task. In
both cases, we can use our mathematical approach represented by Eq. (7) to
precisely obtain the inputs that lead the cv-NN dynamics to a desired state in
the future.

Decoding spatiotemporal dynamics

The computations performed by our framework are based on the spatio-
temporal dynamics of the cv-NN. The example computations demonstrated
in this text involve clusters of phase synchronized nodes. To interpret these
dynamics, we use a simple decoder that identifies the position of the cluster.
Each of the L decoding units is connected to a group of nearby nodes in the
network. As the cv-NN dynamics evolve, each decoding unit evaluates the
level of synchronization in the group of nodes to which it is connected using
the Kuramoto order parameter:

kN,

RixOl=~| > exp(iArglx(]) ®)

L |j=14+(k—1)N,

where k represents the group index, and Ny is the number of elements in
each group. This quantifier is close to 1 when the dynamics within the
group is coherent (synchronized), and it is close to zero otherwise. Fol-
lowing Eq. (2), we then apply ©, to R;[x(t)], which is a standard Heaviside
function shifted by a threshold o. This produces a a binary output, either 0
if Ri[x()] is below the threshold or 1 if R, [x(t)] is above the threshold. An
example is represented in Fig. 9, where we observe a chimera state in the
dynamics of the cv-NN (left). In this case, we divide the network into four
groups (L = 4) and evaluate the phase synchronization level of each group,
given by Eq. (8) and plotted as a function of time (right, blue line). We then
use the level of synchronization at a specified time to identify the
synchronized cluster and decode the spatiotemporal patterns in the cv-
NN. With these results we can perform computations by applying a
Heaviside function shifted by a threshold o - Eq. (2)- which leads to a
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Fig. 8 | Schematic representation of input application to the cv-NN. The specific
configuration of input nodes and weights depends on the context of the task and can
be adapted to individual applications. a In this example set up, M = 2 input nodes are
each connected to all N nodes in the cv-NN with varying complex-valued weights
that are described in an M x N weight matrix. Here, input nodes have binary states
that specify whether each input is on or off. When an input node is on, the weights
projecting from that input node to the cv-NN determine the input that is applied.

More precisely, at the time of an input, the binary vector describing the states of the
input nodes is multiplied by the complex-valued input weight matrix to obtain an
input vector in CN. This input vector is applied to the cv-NN by componentwise

multiplication with the state of the network at the time of the input. This is the case
considered in the set up of Fig. 2. b In another possible set up, M = N input nodes are
each connected to one node in the cv-NN, as described by a binary weight matrix.
Here, each input node has a state in C, and acts only on the one cv-NN node to which
itis connected. Again, the input to the network takes the form of a vector in C, with
each component given by input applied by one input node. This is the set up
considered in Fig. 3. In both cases, we can use our exact mathematical expression to
obtain the precise input necessary to drive the cv-NN to evolve to a desired pattern in
the future.

a

-7 phase (rad) 7 .
) cv-NN dynamics

Fig. 9 | We use synchronization level of each part of the cv-NN to decode the
spatiotemporal dynamics. a An example of a chimera state can be observed in the
dynamics of the cv-NN. b We divide the network into four groups L = 4 and evaluate

o1(t)

time (s)

the synchronization of each one using the operator R;[x(¢)] (blue line). We then use a
Heaviside function shifted by a threshold o applied to this signal to obtain a binary
output (gray line), which is then used for computation.

binary output, either 0 if Ry is below the threshold or 1 if Ry is above the
threshold (right, gray line).

Spectral properties of the network

We can express the dynamics of the cv-NN in terms of the eigenvalues and

eigenvectors of the matrix K (provided K is diagonalizable):
x(t) = € (c v + ey, + - 4 eyeiyy), 9)

where ¢; can be determined by the initial state, A; is the jth eigenvalue, and v;

is the jth eigenvector, with j € [1, N]. Further, in our context the matrix Kis

circulant, thus the eigenvalues and eigenvectors and their ordering can be
obtained by the Circulant Diagonalization Theorem (CDT). In this case, the

analytical expression to obtain the eigenvalues is given by:

N .
W =Y hep|-T6-06-0]. (0
=

where h is the generating vector, and k, s € [1, N]. The expression to obtain
the eigenvectors is given by:

2mi

il = esp |~ = 16 ). ()

Communications Physics| (2024)7:239



https://doi.org/10.1038/s42005-024-01728-0

-
o
1

Fig. 10 | Eigenvalues of K in the complex plane.

The eigenvalues are obtained through Eq. (10) for 3
different values of ¢, which are represented in color- otk o
code. We observe that the term e leads to a rota- : 25
tion of the eigenvalues in the complex plane. ~-10} .
& N "2
= .
£ N 1.5 °%
8) e...........‘,o‘ '.
E-30F . 1
-40 ‘e *., .o o ® ‘ 05
-50 1 1 1 0
-50 0 50

real(\)

cv-NN dynamics

time (s)

Fig. 11 | Dynamics of the cv-NN transformed into current inputs to biological
neurons. The cv-NN dynamics shows a chimera state. We then use Eq. (12) to obtain
the inputs to be applied as currents to the biological neurons. We observe that
current input 2 has a higher amplitude compare to input 1, for example. This due to
the phase synchronized cluster in the cv-NN in the position of the input 2. The inputs

3
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coming from the other parts of the network that are also in an asynchronous
state have similar amplitude as input 1. In the plots of the inputs, the vertical bar
indicates 1 x 107" (amplitude measured in Ampere) and the horizontal one
represents 1s.

Note that the CDT provides a natural ordering of the eigenvalues and
eigenvectors of a circulant matrix.

In particular, Eq. (9) shows that the configuration of the eigenvalues
and eigenvectors defines the long-term behavior of x. Further, K= ee A,
which shows that ¢ scales the eigenvalues and ¢ leads to a rotation in the
complex plane. Figure 10 depicts the eigenvalues of the matrix K in the
complex plane for different values of ¢ € [0, 7], which are represented in
color-code. For ¢ < 71/2, the eigenvalue A; has the largest real part. This
eigenvalue is associated to v; = [1, 1, --- , 1], which has argument given by
Arg[v;]1=10,0,--- ,0], corresponding to phase synchrony. Thus, when
¢ < 71/2, the network transitions to synchrony. However, as ¢ approaches 7/
2, the real part of the eigenvalues decreases and the transient time increases,
allowing the system to depict a richer diversity of dynamical patterns. For
¢ = /2 all eigenvalues are purely imaginary, and the coupling is neutral. For
71/2 < ¢ <, the real part of A, is negative, and therefore, the system cannot
reach phase synchronization. This result highlights the fact that there is a
finite range of ¢ in which the cv-NN can achieve sophisticated spatio-
temporal patterns.

cv-NN dynamics as inputs to biological neurons

As an application of our framework, we implement the 8 item short-term
memory task using real, biological neurons as the decoders. We set up the
network as in Fig. 3, with each of L = 8 decoder units connected to a separate

segment of the network (or group of nodes). Together, they decode the
stored memories by reading out the location of the phase synchronized
cluster. To translate the network dynamics into a biologically relevant signal,
we evaluate the effective signal of each group of nodes. Specifically, we sum
the inputs from the network that each decoder unit would receive. We then
apply these signals as current inputs to a biological neuron. The current
input to the cell can be expressed as:

iN,

Lt =p Z cos (Arg[xj(t)]),

j=14+(—1)N

(12)

where i € [1, L], Ny is the number of elements in each group, and the sum
over j is performed within each group, i.e. from j=1+ (i — 1)Ny to j = iN.
Moreover, p is a scaling factor (measured in Ampere), which controls the
amplitude of the current to a biologically relevant scale, and is commonly
used in patch clamp procedures.

Here, we show an example of cv-NN dynamics and the inputs that are
applied to neurons as currents in our experiments (Fig. 11). In all plots of the
inputs, the vertical bar indicates 1 x 107" (amplitude measured in Ampere)
and the horizontal one represents 1s. We can observe that input 2 has a
higher amplitude, due to the coherent dynamics in the cv-NN.
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Experimental details

The patch clamp recordings were performed on pyramidal neurons of the
medial prefrontal cortex of a 5 months old C57BL/6 mouse. All experi-
mental procedures were performed in accordance with the Canadian
Council on Animal Care guidelines and approved by the University of
Western Ontario Animal Use Subcommittee (AUP: 2022-071). Acute brain
slice preparation: Animals were intraperitoneally injected with pentobarbital
(100 mg/kg) and intracardially perfused with an ice cold oxygenated N-
methyl-D-glucamine (NMDG) solution containing 92mM NMDG,
93 mM HCL, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM NaHCO3, 20 mM
HEPES, 25 mM D-Glucose, 5 mM sodium ascorbate, 2 mM thiourea, 3 mM
sodium pyruvate, 10 mM MgCI2, 0.5 mM CaCl2. The brain was quickly
removed, submerged into NMDG solution and coronally sectioned
(thickness 250 uM) using a vibratome (VT1200S, Leica Microsystems).
After placement into oxygenated NMDG solution at 32 °C, slices recovered
for 15 min. Subsequently, the slices were placed for 45 min into HEPES
holding solution (92 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4, 30 mM
NaHCO3, 20 mM HEPES, 25 mM D-Glucose, 5 mM sodium ascorbate,
2mM thiourea, 3 mM sodium pyruvate, 2mM MgCI2, 2mM CaCl2).
Electrophysiological recordings: Sections were visualized using an upright
microscope (SliceScope, Scientifica) equipped with infrared Dodt gradient
contrast and continuously perfused with oxygenated aCSF solution (1 ml/
min, 32 °C) containing 126 mM NaCl, 2.5 mM KCl, 1.2 mM NaH2PO4,
26 mM NaHCO3, 12.5 mM D-Glucose, 1 mM MgCI2, 2 mM CaCl2. Bor-
osilicate glass pipettes (Sutter Instruments) were pulled in a P1000 Micro-
pipette Puller (Sutter Instruments) and filled with a intracellular solution
containing 108 mM potassium gluconate, 2 mM MgCI2, 8 mM sodium
gluconate, 8 mM KCl, 1 mM K2-EGTA, 4 mM K2-ATP, 0.3 mM Na3-GTP
and 10 mM HEPES. The resistance of the pipettes was between 3 and 6 MQ),
and the access resistance was less than 20 MQ. Synaptic transmission was
blocked using picrotoxin (0.1 mM) and kynurenic acid (1 mM). Recordings
were performed in whole cell patch-clamp configuration using a Multi-
clamp 700B amplifier (Molecular Devices) and digitized using Digidata
1550B (Molecular Devices).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Experimental data from the neuronal recordings presented in Fig. 5 are
available at https://doi.org/10.5281/zenodo.12511142.

Code availability

An open-source code repository for this work is available on GitHub:
https://github.com/mullerlab/budzinskiEAexact.
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