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Abstract

The brain is a highly complex organ consisting of a myr-

iad of subsystems that flexibly interact and adapt over time

and context to enable perception, cognition, and behavior.

Understanding the multi-scale nature of the brain, i.e., how

circuit- and moleclular-level interactions build up the funda-

mental components of brain function, holds incredible poten-

tial for developing interventions for neurodegenerative and

psychiatric diseases, as well as open new understanding into

our very nature. Historically technological limitations have

forced systems neuroscience to be local in anatomy (local-

ized, small neural populations in single brain areas), in be-

havior (studying single tasks), in time (focusing on specific

stages of learning or development), and inmodality (focusing

on imaging single biological quantities). New developments

in neural recording technology and behavioral monitoring

now provide the data needed to break free of local neuro-

science to global neuroscience: i.e., understanding how the

brain’s many subsystem interact, adapt, and change across

the multitude of behaviors animals and humans must per-

form to thrive. Specifically, while we have much knowledge

of the anatomical architecture of the brain (i.e., the hard-

ware), we finally are approaching the data needed to find the

functional architecture and discover the fundamental prop-

erties of the software that runs on the hardware. We must

take this opportunity to bridge between the vast amounts

of data to discover this functional architecture which will

face numerous challenges from low-level data alignment up

to high level questions of interpretable mathematical models

of behavior that can synthesize the myriad of datasets.

1 Introduction

With the constant advancement of new neural record-
ing technologies [12, 8, 24], systems neuroscience has
officially joined the era of big data [5, 3]. Simultaneous
recordings of tens of neurons has given way to hundreds
and thousands [30], with millions of neurons no longer a
pipe dream. Moreover, behavioral methods have signifi-
cantly improved in parallel [27, 20], offering new avenues
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to train and monitor more complex behaviors, including
freely moving animals during neural imaging [29, 10],
across organisms. With this explosion in data collection
comes both opportunities to create a new data-driven
view of neural function, but also challenges at every level
from alignment to interpretability.

This opportunity will allow us to treat the brain
as the interconnected system it is. For much of neuro-
science history, studies at cellular resolution focused on
local areas of the brain. Visual neuroscientists looked
at the visual cortex, auditory processing was tested in
auditory cortex, navigation in hippocampus, emotion
and state in amygdala, etc. The brain, however, pro-
cesses in parallel and distributed ways [23]. Inactivating
LIP—an area implicated in decision making—does not
necessarily stop an animal from being able to make a
decision [13]. Studies in brain loss, and sensory loss re-
double this observation, showing that the flexible brain
substrate can move computations across the neural cir-
cuits to compensate for loss of tissue or to leverage un-
used resources [2]. Brain-wide recordings can now pro-
vide unbiased cellular-level scans that let us map out
the functional architecture: where and how information
spreads and transforms throughout the brain.

A functional architecture would provide a roadmap
to the general principles underlying the flexibility, ro-
bustness, and efficiency of neural computation. It will
give us baselines for core functions that are necessary
in healthy brains, which in turn will improve under-
standing of how observed activity changes in, e.g., neu-
rodegenerative and psychiatric disorders. The current
state-of-the-art is to identify brain regions (anatomical
areas) that have been linked to aspects of behavior and
cognition. However, new global-brain observations see
that “everything is everywhere” [6, 14] making it un-
clear if activity changes in a specific anatomical area
must relate to a narrow set of functional deficits.

Quantitatively mapping the functional architecture
requires combining a plethora of data taken across brain
areas, tasks, and modalities capturing different biophys-
ical signals with external observations, e.g., behavior.
Bringing all these data to produce a holistic view of a
single computational system that adapts and learns is
the primary challenge. Here I discuss a number of these
challenges, specifically focusing on challenges in mathe-
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shared (zs) and private (z1 and z2) information, i.e.,
z → {zs, z1, z2}

ANN architectures, e.g., cross-encoders with pri-
vate paths, can learn private latents. However, their
high expressiveness causes leakage of private informa-
tion into the shared variables and vice versa. This
leakage, while not necessarily damaging in engineering
applications, can cause erroneous scientific conclusions
about shared brain function. More recent “butterfly”
architectures pair multiple cross-encoders with adver-
sarial predictions to minimize such leakage [15].

6 Conclusion

I aim here to lay out a key opportunity in mining the
depths of now-available neural data: discovering the
brain’s functional architecture. In this endeavor, the
field will have to so solve at a minimum the mentioned
challenges, specifically 1) the synthesis of data collected
across brain areas, behaviors, and modalities, 2) the
synthesis of brain and behavior data, and 3) the de-
velopment of interpretable AI that goes beyond the ex-
plainable AI currently used in engineering applications.

In the emerging solutions, one emerging theme is
the importance of data geometry, specifically going be-
yond topology and into how the curvature and tangent
spaces relate to dynamics. Another theme is the impor-
tance of statistically independent representations, which
is related to the sparsity that is enjoying a rebound
in use from its ability to induce interpretability into
regression-type problems. These advances and more will
hopefully soon provide new insights into brain function.
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