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Data mining the functional architecture of the brain’s circuitry

Adam S. Charles*

Abstract

The brain is a highly complex organ consisting of a myr-
iad of subsystems that flexibly interact and adapt over time
and context to enable perception, cognition, and behavior.
Understanding the multi-scale nature of the brain, i.e., how
circuit- and moleclular-level interactions build up the funda-
mental components of brain function, holds incredible poten-
tial for developing interventions for neurodegenerative and
psychiatric diseases, as well as open new understanding into
our very nature. Historically technological limitations have
forced systems neuroscience to be local in anatomy (local-
ized, small neural populations in single brain areas), in be-
havior (studying single tasks), in time (focusing on specific
stages of learning or development), and in modality (focusing
on imaging single biological quantities). New developments
in neural recording technology and behavioral monitoring
now provide the data needed to break free of local neuro-
science to global neuroscience: i.e., understanding how the
brain’s many subsystem interact, adapt, and change across
the multitude of behaviors animals and humans must per-
form to thrive. Specifically, while we have much knowledge
of the anatomical architecture of the brain (i.e., the hard-
ware), we finally are approaching the data needed to find the
functional architecture and discover the fundamental prop-
erties of the software that runs on the hardware. We must
take this opportunity to bridge between the vast amounts
of data to discover this functional architecture which will
face numerous challenges from low-level data alignment up
to high level questions of interpretable mathematical models
of behavior that can synthesize the myriad of datasets.

1 Introduction

With the constant advancement of new neural record-
ing technologies [12, 8, 24], systems neuroscience has
officially joined the era of big data [5, 3]. Simultaneous
recordings of tens of neurons has given way to hundreds
and thousands [30], with millions of neurons no longer a
pipe dream. Moreover, behavioral methods have signifi-
cantly improved in parallel [27, 20], offering new avenues
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to train and monitor more complex behaviors, including
freely moving animals during neural imaging [29, 10],
across organisms. With this explosion in data collection
comes both opportunities to create a new data-driven
view of neural function, but also challenges at every level
from alignment to interpretability.

This opportunity will allow us to treat the brain
as the interconnected system it is. For much of neuro-
science history, studies at cellular resolution focused on
local areas of the brain. Visual neuroscientists looked
at the visual cortex, auditory processing was tested in
auditory cortex, navigation in hippocampus, emotion
and state in amygdala, etc. The brain, however, pro-
cesses in parallel and distributed ways [23]. Inactivating
LIP—an area implicated in decision making—does not
necessarily stop an animal from being able to make a
decision [13]. Studies in brain loss, and sensory loss re-
double this observation, showing that the flexible brain
substrate can move computations across the neural cir-
cuits to compensate for loss of tissue or to leverage un-
used resources [2]. Brain-wide recordings can now pro-
vide unbiased cellular-level scans that let us map out
the functional architecture: where and how information
spreads and transforms throughout the brain.

A functional architecture would provide a roadmap
to the general principles underlying the flexibility, ro-
bustness, and efficiency of neural computation. It will
give us baselines for core functions that are necessary
in healthy brains, which in turn will improve under-
standing of how observed activity changes in, e.g., neu-
rodegenerative and psychiatric disorders. The current
state-of-the-art is to identify brain regions (anatomical
areas) that have been linked to aspects of behavior and
cognition. However, new global-brain observations see
that “everything is everywhere” [6, 14] making it un-
clear if activity changes in a specific anatomical area
must relate to a narrow set of functional deficits.

Quantitatively mapping the functional architecture
requires combining a plethora of data taken across brain
areas, tasks, and modalities capturing different biophys-
ical signals with external observations, e.g., behavior.
Bringing all these data to produce a holistic view of a
single computational system that adapts and learns is
the primary challenge. Here I discuss a number of these
challenges, specifically focusing on challenges in mathe-
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Figure 1: Challenges in discovering the brain’s functional architecture. Left: many brain-wide recordings have
found that functional relationships in the brain do not always follow the strict anatomical boundaries. Right:
areas of advancing our ability to quantitatively find the functional architecture of the brain include synergizing
across brain areas, across behavioral contexts, and across recording modalities.

matical modeling that will provide the language we need
for a common framework.

2 Rethinking systems-level models

Defining the brain’s functional architecture must ac-
count for the multiple, distributed systems that com-
prise brain-wide computations. Most fundamental mod-
els in neuroscience do not explicitly seek these sub-
systems and rather consider every recorded unit as an
equal part of a shared state space. Mathematically,
if the time-series of unit i is x;(t), then the vector
x(t) = [21(t), -,z @®)]7 evolves as @ = g(x:_1;0),
a Markovian model where the transition function g(-; 8)
are fit to data. Prominent examples of g(-;0) include
linear dynamical systems (LDS) [7], switched LDS [16],
and recurrent neural networks [28]. Non-Markovian
models also exist, including generalized linear mod-
els (GLMs) [21] and RNNs with memory, e.g., Long-
Short Term Memory (LSTM) and General Recurrent
Units (GRUs). In all these models, the full system is
treated as co-evolving at the same time-scale. Implicitly,
the learned network connectivity can recommend dis-
joint systems, e.g., when the transition matrix is block-
diagonal [31]. However, RNNs have a plethora of local
minima, making it difficult to over-interpreting dynam-
ics that are fit to finite, noisy data.

Explicitly models of modular dynamics is key to
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identifying the functional architecture’s components.
Recent efforts learn modular dynamics, for example the
decomposed LDS (dLDS) [17]. dLDS treats dynamics
as paths on a manifold z(t) € M C RY, and finds
a set of linear operators {Gy}r—1,  x that, when ap-
plied to each point describes the trajectories along the
manifold. Each operator describes a distinct set of in-
teractions, and to ensure interpretability, dL.DS further
assumes that the use of the operators is sparse, i.e., the
cardinal directions of the flow along the manifold aligns
with learned dynamics. Similar manifold partitioning
approach also take the approach [25] indicate that com-
positional descriptions of manifold trajectories appears
to be a powerful tool to identify modular brain struc-
ture.

3 Challenges in multi-dataset analysis

Synthesizing data across the many recording condi-
tions/context is another key challenge in finding the
brain’s functional architecture. Data-driven discovery
is driven by correlations in the data, and if a task al-
ways recruits two systems simultaneously, no analysis
can differentiate those systems.

The existence of distinct systems is likely driven
by the need to flexibly perform multiple tasks. Recent
studies on machine learning systems trained to perform
multiple tasks have found that in fact multi-task RNNs
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Figure 2: Example neural modeling approaches. A: defining the local geometry of the neural data can provide
insight into the key features of the dynamics that define the flows across the manifold. B: dynamical latent
states are a key model for combining brain and behavior into a single meaningful system-level model. C: relating
disparate datasets requires finding shared and private sources of variance in an interpretable framework.

develop internal modules to support the flexible process-
ing [9].

In neuroscience, finding such modules thus relies
on the synthesis of datasets taken across experimental
sessions, individuals, and even labs. Neuron-to-neuron
alignment is impossible in this case, requiring systems-
level alignment instead. Recent efforts have leveraging
graph-based multi-matrix (or multi-tensor) decomposi-
tions where shared factors can be constrained to repre-
sent similar functions, linking between datasets [18, 19].
This link can be, e.g., in neurons if overlapping popula-
tion are observed across contexts/tasks. Alternatively,
the link can be in the trial structure for similar be-
haviors. While promising, this approach requires some
shared trial or neural structure, which will likely need
to be modified in each analysis.

4 Challenges in interpretability

Thus far I have avoided mention of the modern artifi-
cial neural networks (ANNs) that now form the center-
pieces of large-scale data mining in other applications.
This is due to the black box nature of ANNs that pre-
vent the types of interpretability necessary for scien-
tific discovery. Scientists need to find relationships be-
tween variables that extrapolate our understanding to
broader relationships. Thus models such as manifolds,
causal analysis, and simple linear systems tend to still
be used extensively despite the increased ease of training
and deploying ANNs. Specifically, ANNs sacrifice inter-
pretability for expressivity, and so they can interpolate
on the training data, they cannot eztrapolate beyond.
This is not to say that no ANN tools can aid neu-
roscientists. For example, in variational autoencoders,
sparsity and independence in the latent layers can pro-
mote interpretable disentangling of the data representa-
tion [11]. Moreover, emerging approaches in explainable
AT [26, 4], can identify key features in the dataset that
drive the ANNs. These latter approaches do not pro-

437

vide the extrapolation necessary for scientific discovery,
rather they are self-contained explanations of the origi-
nal data.

Dynamical systems have similar trade-offs in ex-
pressivity and interpretability. Large RNNs with LSTM
and GRU nodes can predict future data with high ac-
curacy, however the learned RNN parameters are not
unique, limiting the insights they can provide about
the system interactions. Moreover, nonlinear systems
are now being modeled in latent spaces, i.e., low-
dimensional representations of the neural data x(t) =
®(z(t)). When ®(-) is nonlinear, also including non-
linear dynamics results in an unidentifiability up to
any arbitrary invertible function. Thus, theoretical ad-
vances are also needed to understand when such combi-
nations of extremely expressive models creates statisti-
cally unidentifiable models.

5 Challenges in multi-modal data

Finally, the brain has more than pyramidal neurons.
There is a rich biophysical infrastructure of neurons, as-
trocytes, vasculature, etc. that modulate neural func-
tion beyond direct connections [22] and are therefore
a part of the brain’s functional architecture. These
signals can be measured, e.g., using fMRI, functional
ultrasound, optical imaging of neurotransmitter indi-
cators, etc. Moreover, behavioral monitoring provides
captures the environment and eventual motor output of
the brain.

Sythesizing across data modalities require a single
model that describes multiple modalities. Such data
fusion is often seeks a latent state z where each mode
@1 and @2 can be “read out” from the latent state, e.g.,
x1 = f1(2) and @y = fo(xs) [1]. While data fusion can
identify one such joint representation, the relationship
of multiple datasets is often more nuanced with some
information in one mode that is not in the other. A
more complete approach separates the latent space into
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shared (z,) and private (z; and z3) information, i.e.,
z — {2z, 21,22}

ANN architectures, e.g., cross-encoders with pri-
vate paths, can learn private latents. However, their
high expressiveness causes leakage of private informa-
tion into the shared variables and vice versa. This
leakage, while not necessarily damaging in engineering
applications, can cause erroneous scientific conclusions
about shared brain function. More recent “butterfly”
architectures pair multiple cross-encoders with adver-
sarial predictions to minimize such leakage [15].

6 Conclusion

I aim here to lay out a key opportunity in mining the
depths of now-available neural data: discovering the
brain’s functional architecture. In this endeavor, the
field will have to so solve at a minimum the mentioned
challenges, specifically 1) the synthesis of data collected
across brain areas, behaviors, and modalities, 2) the
synthesis of brain and behavior data, and 3) the de-
velopment of interpretable Al that goes beyond the ex-
plainable AI currently used in engineering applications.

In the emerging solutions, one emerging theme is
the importance of data geometry, specifically going be-
yond topology and into how the curvature and tangent
spaces relate to dynamics. Another theme is the impor-
tance of statistically independent representations, which
is related to the sparsity that is enjoying a rebound
in use from its ability to induce interpretability into
regression-type problems. These advances and more will
hopefully soon provide new insights into brain function.
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