
PIVA: Privacy-Preserving Identity Verification

Methods for Accountless Users via Private List

Intersection and Variants

Seoyeon Hwang, Stanislaw Jarecki, Zane Karl, Elina van Kempen, Gene Tsudik

University of California, Irvine
evankemp@uci.edu

Abstract. Several prominent privacy regulation (e.g., CCPA and GDPR)
require service providers to let consumers request access to, correct, or
delete, their personal data. Compliance necessitates verification of con-
sumer identity. This is not a problem for consumers who already have an
account with a service provider since they can authenticate themselves
via a successful account log-in. However, there are no such methods for
accountless consumers, even though service providers routinely collect
data about casual consumers, i.e., those without accounts. Currently, in
order to access their collected data, accountless consumers are asked to
provide Personally Identifiable Information (PII) to service providers,
which is privacy-invasive.
To address this problem, we propose PIVA: Privacy-Preserving Identity
Verification for Accountless Users, a technique based on Private List In-
tersection (PLI) and its variants. First, we introduce PLI, a close relative
of private set intersection (PSI), a well-known cryptographic primitive
that allows two or more mutually suspicious parties to compute the in-
tersection of their private input sets. PLI takes advantage of the (ordered
and fixed) list structure of each party’s private set. As a result, PLI is
more efficient than PSI. We also explore PLI variants: PLI-cardinality
(PLI-CA), threshold-PLI (t-PLI), and threshold-PLI-cardinality (t-PLI-
CA), all of which yield less information than PLI. These variants are
progressively better suited for addressing the accountless consumer au-
thentication problem.
We prototype PIVA and compare its performance against techniques
based on regular PSI and garbled circuits (GCs). Results show that pro-
posed PLI and PLI-CA constructions are more efficient than GC-based
techniques, in terms of both computation and communication overheads.
While GC-based t-PLI and t-PLI-CA execute faster, proposed constructs
greatly outperform the former in terms of bandwidth, e.g., our t-PLI pro-
tocol consumes 16× less bandwidth. We also show that proposed proto-
cols can be made secure against malicious adversaries, with only mod-
erate increases in overhead. These variants outperform their GC-based
counterparts by at least one order of magnitude.

Keywords: Identity Verification · Authentication · Accountless Users ·

Private List Intersection · Threshold Private List Intersection · Cardi-
nality

2 S. Hwang et al.

1 Introduction

Notable privacy regulations – including the European Union General Data
Protection Regulation (GDPR) [15], California Consumer Privacy Act (CCPA)
[8], and Brazilian Lei Geral de Proteção de Dados (LGPD) [5] – mandate that
service providers which collect any consumer-specific data must grant consumers
access to that data 1. To allow consumers to access, correct, or delete their per-
sonal data, a service provider must employ secure identity verification methods.

For instance, CCPA [8] introduces the notion of a Verifiable Consumer Re-
quest (VCR) which is defined as “a request that is made by a consumer [...], and
that the business can verify, using commercially reasonable methods, pursuant
to regulations adopted by the Attorney General pursuant to paragraph (7) of
subdivision (a) of Section 1798.185 to be the consumer about whom the business
has collected personal information." (1798.140 (ak)). CCPA also states that “the
business may require authentication of the consumer that is reasonable in light
of the nature of the personal information requested" (1798.130 (a)(2)(A)).

For a consumer who has an account with a service provider, authentication
translates into account log-in via, e.g., username and password, and two-factor
authentication, such as email or SMS verification. In fact, GDPR guidelines [14]
state that a user log-in, using a password, “should be sufficient to authenticate
a data subject". CCPA also mentions that, for consumers with accounts, “the
business may require the consumer to use that account to submit a verifiable
consumer request" [8].

On the other hand, for account-less users (i.e., those without accounts with
a service provider) authentication options are limited. Without an account, and
hence without any shared secrets (such as passwords), service providers tend to
ask consumers to reveal some amount of Personally Identifiable Information (PII)
in the form of: (1) simply entering it [12,24,31,4,6], (2) providing cookies from
prior interactions [35,36], (3) showing government-issued IDs [12,24,31,4,35,36,6],
or (4) producing notarized documents [31,35,36,6]. A recent user study [33] that
studies user experience with removing PII from the Internet shows that current
removal procedures are not thorough, transparent, or responsive. This naturally
prompts user concerns about service providers acquiring new PII in the nebulous
process of authenticating accountless users.

Motivated by the above, this paper proposes PIVA: Privacy-Preserving Identity
Verification for Accountless Users. PIVA involves two parties: an accountless user
C who possesses their PII as an ordered/labeled list and a service provider S that
holds a collection of such PII-s (ordered/labeled lists) for each accountless user.
It allows S to authenticate C if a sufficiently many list elements are matched
as the intersection of their respective PII lists. Meanwhile, S is prevented from
learning any new C PII and vice-versa.

1 While GDPR and LGPD apply to any entity processing residents’ data in their
respective regions, CCPA only applies to for-profit businesses that have a gross
revenue above $25 million, handle the data of more than 100,000 California residents,
or generate 50% or more of their revenue by selling California residents’ PII (in
1798.140 (d)) [8].

Privacy-Preserving Identity Verification Methods for Accountless Users 3

As a basic building block, we use Private List Intersection (PLI), a variant
of a well-known cryptographic primitive called private set intersection (PSI).
While PSI allows two parties to jointly compute the intersection of their private
sets, PLI computes the intersection of the private lists, i.e., it takes list order into
account. We also consider PLI variants that reveal strictly less information than
PLI: (1) PLI-Cardinality (PLI-CA), which outputs only the cardinality of the
intersection list; (2) threshold-PLI (t-PLI), which outputs the intersection only if
its cardinality exceeds a threshold t; and (3) threshold-PLI-Cardinality (t-PLI-
CA), which outputs the intersection cardinality only if it exceeds a threshold
t. We implement these protocols and evaluate their efficiency. All variants out-
perform the GC-based implementation in terms of bandwidth, and the PLI and
PLI-CA execute faster. The entire implementation is publicly available at [1].

Finally, we propose a modified version of each protocol that achieves security
against malicious (as opposed to HbC: Honest-but-Curious) adversaries. These
modifications result in relatively low additional communication and computation
costs. In particular, the asymptotic overhead of each modified protocol remains
the same. Notably, our work yields the first threshold-based PSI and PSI-CA
protocols secure in the malicious model, which might be of independent interest.

Organization: After reviewing related work in Section 2, Section 3 presents
the preliminary background, and Section 4 describes system and threat models.
Next, we present PIVA and PLI variants in Section 5; their security analyses
appear in Appendix A. We describe the implementation and evaluation in Sec-
tion 6. Finally, variants of proposed protocols secure in the malicious model are
presented in Section 7.

2 Related Work

Current Privacy-Invasive Authentication. Several surveys [12,24,31,4,35,36,6]
investigate current authentication methods that service providers use for data
requests submissions. These results show that the information requested is often
privacy-invasive [4].

For example, [12] and [24] analyzed information requested by 55 service
providers and used to identify and authenticate a user submitting a data re-
quest. Several require the user to take part in a live phone call and/or send
(by mail) copies of a government-issued ID. Also, [6] shows that, while most
companies receiving a data request require an account login, others request a
government-issued ID, answering user-specific questions, or providing a sworn
declaration. Furthermore, the study in [4] shows that some companies demand
additional PII from users.

Similar results are observed in Android applications. For instance, [31] ana-
lyzed responses of application developers of 109 Android apps upon receiving a
VCR. To verify the identity of the user, they require email- or account-based au-
thentication, or ask for some PII, e.g., the user’s name, address, phone number,
Android Advertising ID, date of birth, or a signed affidavit.

4 S. Hwang et al.

Identity Verification for Accountless Users. Verifying the identity of an
accountless user is challenging; sometimes, sharing additional PII does not solve
the problem. For example, [2] shows that while IP addresses are considered PII,
they may not be sufficient to authenticate a user since they can be spoofed or
attributed to more than one user.

[4] suggests implementing a cookie generated by the user (instead of the ser-
vice provider) to safely authenticate the accountless users. A cookie can include
an email address and the user’s public key, which the service provider could use
to send a challenge to the user for further authentication.

Another approach is outlined in [22], which proposes VICEROY, an authen-
tication method for accountless users using a public-private key pair generated
by a local trusted device. For each web session initiation, the user generates a
public key and supplies it to the server, so that the user can later digitally sign
its request using the corresponding private key for the session.

To the best of our (current) knowledge, however, there is no prior work inves-
tigating privacy-preserving authentication for users who have never interacted
with the service providers.

Private Set Intersection and Its Variants. Private Set Intersection (PSI)
protocols, e.g. [30,21,29,27], allow two parties to compute intersection X ∩ Y
of their private input sets X and Y , without revealing any other information.
Works on PSI include PSI-cardinality (PSI-CA), e.g. [11,13,34], which reveals
only cardinality |X ∩ Y | of the intersection, and hides the intersecting elements,
and threshold-PSI (t-PSI), e.g. [38,26,19], which reveals the intersection only if
|X ∩ Y | g t for some fixed threshold t.

Table 1: Comparison of the computational complexity of PLI and PSI variants
as a function of n, the size of input lists or sets.2

Comp. Active
Cost Security

PSI [30,21,29,27] O(n) 6

PLI (ours) O(n) 6

t-PSI [38] O(n) :

t-PSI [26] O(n2) :

t-PSI [19] O(t) :

t-PLI (ours) O(n3) 6

Comp. Active
Cost Security

PSI-CA [11,13] O(n) :

PSI-CA [34] O(n log n) :

PLI-CA (ours) O(n) 6

t-PLI-CA (ours) O(n3) 6

Literature on PSI is very rich, but instead of citing all work in PSI litera-
ture, we summarize state-of-the-art PSI results and compare them to our PLI
protocols in Table 1. Asymptotically, our PLI and PLI-CA protocols match the

2 To the best of our knowledge, there is no prior work on t-PSI-CA. [39] presents a
protocol they call "t-PSI-CA", but it reveals X ∩ Y if |X ∩ Y | ≥ t, and |X ∩ Y |
otherwise, whereas our t-PLI-CA reveals |X ∩ Y | if |X ∩ Y | ≥ t and ⊥ otherwise.

Privacy-Preserving Identity Verification Methods for Accountless Users 5

O(n) computation cost of prior PSI and PSI-CA protocols, while our t-PLI has
O(n3) costs which is higher than t-PSI of [38,26,19]. However, all our protocols
achieve active security, i.e. security against malicious participants, at the same
asymptotic costs (and a small increase to concrete costs), whereas O(n) actively
secure PSI is only known as the basic PSI variant, and not for PSI-CA or t-PSI.
Active secure (t-)PLI(-CA) can be implemented using generic constant-round
actively secure computation using "cut-and-choose" over garbled circuits (see
e.g. [23]), but the "cut-and-choose" technique increases protocol costs by two
orders of magnitude, rendering them impractical.

3 Preliminaries

We use the notation [n] to represent the set {1, 2, . . . , n}. Where applicable,
we denote by xi,1 and xi,2 the first and second elements of a tuple xi with two
elements, for ∀i ∈ [n], i.e., xi := (xi,1, xi,2), where i = 1, ..., n.

Additively Homomorphic ElGamal Encryption. Below, we define the ad-
ditively homomorphic variant of the ElGamal encryption scheme [10]. Compared
to the original ElGamal [18] which is multiplicatively homomorphic, this variant
uses gm in place of the plaintext m in encryption, where g is a generator of a
group G of prime order q.

Definition 1. Additively homomorphic ElGamal encryption [10] is a tuple of
algorithms (Setup,KeyGen,Enc,PreDec,Test), where:

- Setup(1λ)→ (G, q, g): for security parameter λ, it outputs parameters (G, q, g),
where g is a generator of group G with prime order q s.t. |q| g 2λ.

- KeyGen(G, q, g) → (sk, pk): outputs a pair of secret and public keys, where
sk ←$ Zq and pk = (G, q, g, h) for h = gsk.

- Encpk(m) → c: On message m ∈ Zq and public key pk = (G, q, g, h), it
outputs ciphertext c := (gw, hwgm), where w ←$ Zq.
(We write Encpk(m;w) to denote randomness w as an explicit input.)

- PreDecsk(c) → M : On secret key sk and ciphertext c = (c1, c2), output
M := c2(c1)

−sk. (Note that if (c1, c2) = Encpk(m) then M = gm.)
- Test(M,m): Decide if the pre-decryption value M corresponds to plaintext

target m by outputting 1 if M = gm and 0 otherwise.

Note that this version of ElGamal does not allow for efficient decryption, but
it allows for efficient testing if a ciphertext encrypts a given plaintext m. In our
PLI protocol and its (t-)PLI(-CA) variants, the decryptor will only test whether
the ciphertext encrypts m = 0, by checking if c2(c1)

−sk = 1.

Shamir Secret Sharing. Shamir secret sharing [32] is a t-out-of-n threshold
secret sharing scheme based on polynomial interpolation over finite fields, with
a threshold t. i.e., When a secret s is shared using Shamir secret sharing, s can
be reconstructed only with g t shares, while the possession of < t shares reveals
no information about s.

6 S. Hwang et al.

Definition 2. Shamir secret sharing scheme [32] over field F is defined by al-
gorithms Share,Reconstruct s.t.

- Share(t,n)(s) → (s1, ..., sn): generates n shares of a secret s ∈ F, assuming
n < |F |. It chooses (t−1) random coefficients ai ←$ F, for i ∈ [t−1], defines
(t− 1)-degree polynomial f(x) = s+ a1x+ a2x

2 + ...+ at−1x
t−1 over F, and

sets s1 := f(1), s2 := f(2), ..., sn := f(n).
- Reconstruct(si1 , ..., sim)→ s: reconstructs a secret from m g t shares si1 , ..., sim .

It interpolates any t out of these m shares into a (t − 1)-degree polynomial
f ′ and outputs s′ := f ′(0) as the reconstructed secret.

Note that Reconstruct guarantees to output s′ = s if the m shares it receives
as input were generated by Share(s).

Reed-Solomon Codes and Berlekamp-Welch Decoding. Shamir secret
sharing scheme can be seen as a special case of Reed-Solomon (RS) coding
scheme [28], where the number of errors is zero. (n, t)-RS codes are a group
of error correction codes, where its encoder adds some parity bits to encode t
messages into n messages (called symbols in coding theory) so that its decoder

can correct up to (n−t)
2 errors. Specifically, t messages are assigned as the coeffi-

cients of a polynomial p of degree t−1 over a finite field F, and the encoding of t
messages are the evaluation of p(x) over some n evaluation points, x1, ..., xn, i.e.,
Encode(m1, ...,mt) = (p(x1), ..., p(xn)), where p(x) := m1+m2x+...,mtx

t−1. For
decoding a codeword c := (c1, ..., cn) with n symbols, the original method inter-
polates polynomials over all possible t points over n points, (x1, c1), ..., (xn, cn),
and outputs the t coefficients of the majority polynomial p.

The Berlekamp-Welch (BW) algorithm [3] is an efficient decoding algorithm
that corrects up to +n−t2 , errors in RS codes. It not only recovers the polyno-
mial p over F which represents the original messages, but also outputs the error
locator polynomial err by solving n linear equations, where the x-intercepts of
err represent the location where the errors occurred among n symbols. We de-
note this by BW(k,n)(c1, c2, ..., cn) → (p, err), where k := +n+t

2 ,, the minimum
number of correct symbols in the input codeword. We use this algorithm to ef-
ficiently reconstruct the secret shared by the Shamir secret sharing, where the
input shares potentially include some invalid shares, i.e., errors.

4 System & Threat Models

The system model includes two mutually distrusting parties: a client (C) and
a server (S), where S initiates the protocol to verify C’s identity and grants
access to C once the verification succeeds. Each party has a list of PII of size
n, X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn), respectively. We assume that the
order of attributes in lists is public and agreed between parties in advance.

Considering that S may have a large database of clients, we assume that
S locates C in its database using a unique public string, e.g. in the context of
people search websites, using the URL of the webpage about C.

Privacy-Preserving Identity Verification Methods for Accountless Users 7

In Section 5, we consider a static Honest-but-Curious (HbC) adversary who
corrupts either C or S before the protocol starts, and aims to learn maximal
information about the other party’s private input, but otherwise follows the
protocol. In Section 7, we consider active, a.k.a. malicious adversaries, i.e. we
assume that an adversary who corrupts either party can run an arbitrary protocol
in place of the prescribed one, and we show that our protocols realize the intended
ideal functionality even in the presence of malicious adversaries.

5 PIVA Design

In this section, we present four protocol variants for PIVA, i.e. PLI, PLI-CA,
t-PLI, and t-PLI-CA. We describe each variant below, summarizing their security
properties with ideal functionalities described in Fig. 3 in Subsection 5.3. Due
to the space limits, all security proofs are deferred to Appendix A.

5.1 Private List Intersection (PLI) and PLI-Cardinality (PLI-CA)

PLI: Recall that (one-sided) PSI takes private sets as input and outputs their
intersection set to one of the parties. PLI takes private lists as input instead. i.e.
the inputs are two lists, X and Y , of size n, contributed by C and S, respectively.
Entries in list X and Y are arbitrary bitstrings or a special symbol § which
designates that the corresponding party does not have any value at this position.

The protocol computes and sends to S the list intersection X ∩ Y , defined
as the set of indexes where the two lists contain the same values, i.e.

X ∩ Y = { i | X[i] = Y [i] ' X[i] ̸= §}

(See also the Ideal Functionality for PLI in Fig. 3 in Section 5.3.) In the context
of our application, each position in list X or Y represents a specific type of PII,
e.g., home address, driver’s license number, mother’s maiden name, etc, and we
assume that the ordered list of these n attributes is fixed and public.

After obtaining the intersection, S decides whether the C-provided PII is
sufficient to verify their identity corresponding to the PII held by S. As part of
PLI, S learns no new PII about C. This follows GDPR guidelines [14] stating
that information requested by a service provider for verification purposes:

“must be proportionate to the type of data processed, the damage that
could occur, etc. in order to avoid excessive data collection”,

We construct a PLI protocol using the additively homomorphic ElGamal
variant of Section 3. We assume that values contained in input lists X and Y are
integers in Zq. Since q g 2λ where λ is the security parameter, longer values can
be hashed into Zq using a collision-resistant hash. If X[i], resp. Y [i], is an empty
symbol §, the corresponding party replaces it with a random value in Zq. (Using
a random value at some index prevents either accidental or malicious attempt
at creating a match at that index, except for negligible probability 1/q.)

8 S. Hwang et al.

Private List Intersection (PLI) and PLI-Cardinality (PLI-CA)

C (X = (x1, . . . , xn)) S (Y = (y1, . . . , yn))

(sk, pk)←$ KeyGen(1
λ
)

where pk = (G, q, g, h)

for i ∈ [n]

wi ←$ Zq

for i ∈ [n] pk, (b1, ..., bn) bi := Encpk(yi;wi)

ri ←$ Zq, ui ←$ Zq

ai := (bi · Encpk(−xi;ui))
ri

π ←$ Pn

(a′

1, ..., a
′

n) := π((a1, ..., an))
(a1, ..., an)← (a′

1, ..., a
′

n) (a1, ..., an) for i ∈ [n]

ci := PreDecsk(ai)

return |{i : ci = 1}i∈[n]|

return {i : ci = 1}i∈[n]

Fig. 1: PLI and PLI-CA protocols based on ElGamal in Def. 1, where · in ai
computation is the element-wise product, i.e., x · y = (x1y1, x2y2), for some
tuples x = (x1, x2) and y = (y1, y2), and Pn is the set of all pseudorandom
permutations of size n. PLI-CA protocol includes the steps in the dashed box,
while PLI protocol does not.

The PLI protocol is shown in Fig. 1, and it works as follows. S first generates
a private-public key pair (sk, pk) for ElGamal encryption, and encrypts its each
element yi under the public key. i.e., bi := Encpk(yi;wi) = (gwi , hwigyi), where
wi is chosen at random in Zq, for all i ∈ [n]. Then, S sends its public key,
pk = (G, q, g, h), and the ciphertexts of its input elements, (b1, ..., bn), to C.

Upon receipt, C encrypts the additive inverse of each element xi in its list,
using pk. i.e., Encpk(−xi;ui) = (gui , huig−xi), where ui is chosen at random in
[q − 1], for all i ∈ [n]. Then, C multiplies the resulting values by bi’s in the list
order and re-randomizes them with a random ri to hide its input values. i.e., For
a randomly chosen ri ∈ G, C computes ai := ((bi,1 · g

ui)ri , (bi,2 · h
uig−xi)ri) for

all i ∈ [n]. Lastly, C sends (a1, ..., an) to S in order.

Now, S partially decrypts the received ciphertexts to see if they are encryp-
tion of zero. i.e., S computes ci := PreDecsk(ai) =

ai,2

ask
i,1

, and checks if it is equal to

1 or not, for each ai. Finally, S outputs all i’s s.t. ci = 1, which is the intersection
X ∩ Y . This is because ai is the encryption of (yi − xi)ri as follows:

ai = ((bi,1 · g
ui)ri , (bi,2 · h

uig−xi)ri)

= ((gwi · gui)ri , (hwigyi · huig−xi)ri)

= (g(wi+ui)ri , h(wi+ui)rig(yi−xi)ri)

= Encpk((yi − xi)ri;Ri), where Ri := (wi + ui)ri.

Privacy-Preserving Identity Verification Methods for Accountless Users 9

Consequently, only if yi = xi, S gets ci = g(yi−xi)ri = g0 = 1. Otherwise, it gets
a random ci and learns nothing about xi’s. Due to the space limit, we provide
the proof of the following theorem in Appendix A. The PLI protocol is similar
to the first protocol in [25].

Theorem 1. The protocol presented in Fig. 1 securely computes the list inter-
section in the presence of HbC adversaries under the decisional Diffie-Hellman
(DDH) problem. It requires O(n) communication and computation costs for both
sides, where n is the input list size.

PLI-CA: PLI reveals to S which list elements match and, hence, which do not.
S might use this information to confirm whether the PII previously collected for
a given C is accurate. To prevent this, we suggest using PLI-cardinality (PLI-
CA), which outputs only the cardinality of the intersection. i.e., It reveals only
the number of intersecting elements, while keeping their locations private. Using
PLI-CA for PIVA is suitable because it suffices for the service provider (S) to
learn how many elements are in the intersection to decide whether this is enough
to verify the identity of a consumer (C).

We build a PLI-CA protocol (in Fig. 1 with the dashed box) atop the PLI
protocol. To hide the locations of matching elements, C randomly shuffles the
computation results using a pseudorandom permutation π and sends the per-
muted results. S now outputs the number of elements where ci = 1. Because
of the pseudorandom permutation, indices where ci = 1 do not reveal the real
location of intersecting elements to S. Similar to PLI, we derive the following
theorem, and present the proof in Appendix A.

Theorem 2. The protocol presented in Fig. 1 including the procedure of the
dashed box securely computes the cardinality of list intersection in the presence
of HbC adversaries under the DDH problem. It requires O(n) communication
and computation costs for both sides, where n is the input list size.

5.2 Threshold PLI (t-PLI) and t-PLI-Cardinality (t-PLI-CA)

While PLI and PLI-CA output their results to S no matter what, thresh-
old PLI (t-PLI) and t-PLI-Cardinality (t-PLI-CA) output the intersection to S
only if the number of common data exceeds some agreed-upon (fixed a priori)
threshold t, i.e., |X ∩Y | g t. Therefore, it does not reveal anything to S if either
party does not have sufficient PII.

Note that the threshold t can be determined by either agreement between
parties, or by some legal standard. For instance, CCPA considers this, mention-
ing the “degree of certainty" required for identity verification. It sets “reasonable
degree of certainty" as matching at least two pieces of information and “reason-
ably high degree of certainty" as matching at least three pieces of information
and obtaining a signed declaration, under penalty of perjury [7].

t-PLI: We add t-out-of-n Shamir Secret Sharing to the PLI protocol in Sec-
tion 5.1, i.e., after computing ai’s, C randomly chooses a secret value s and runs

10 S. Hwang et al.

Threshold PLI (t-PLI) and t-PLI Cardinality (t-PLI-CA)

C (X = (x1, . . . , xn)) S (Y = (y1, . . . , yn))

(sk, pk)←$ KeyGen(1
λ
)

where pk = (G, q, g, h)

for i ∈ [n]

wi ←$ Zq

for i ∈ [n] pk, (b1, ..., bn) bi := Encpk(yi;wi)

ri ←$ Zq, ui ←$ Zq

ai := (bi · Encpk(−xi;ui))
ri

π ←$ Pn

(a′

1, ..., a
′

n) := π((a1, ..., an))
(a1, ..., an)← (a′

1, ..., a
′

n)

s←$ F

(s1, . . . , sn)←$ Share(t,n)(s)

ei := Hi(ai,2)· (si||H
′

i(s)), ∀i
(a1,1, ..., an,1),

(e1, ..., en)
(s

′

i||hsi) := Hi(a
sk
i,1)· ei, ∀i

(p, err)← BW(k,n)(s
′

1, ..., s
′

n)

s
′
:= p(0)

Notation:

Hi(x) := H(i, x)
H′

i(x) := H′(i, x)
if H

′

i(s
′
) = hsi for all i :

return |{i : err(i) ̸=0}i∈[n]|

return {i : err(i) ̸=0}i∈[n]

Fig. 2: t-PLI and t-PLI-CA protocols using Shamir secret sharing (Def. 2) and
Berlekamp-Welch decoder BW (Section 3). Here · denotes XOR, || denotes
string concatenation, and Pn is the set of all permutations of size n. t-PLI-CA
protocol includes the steps in the dashed box, while t-PLI protocol does not.

the Share algorithm, see Definition 2, to generate sharing (s1, ..., sn) of s. Then,
C xor’s each i-th share with the hash of the second element of ai’s, such that
ei := H(i, ai,2)· (si||H

′(i, s)), for each i, where H,H ′ are Random Oracle hash
functions where H : {0, 1}∗ → {0, 1}|F|+2λ and H ′ : {0, 1}∗ → {0, 1}2λ, where |F|
is the size of bitstrings encoding elements of field F used in Shamir Secret Shar-
ing. We denote H(i, x) and H ′(i, x) by Hi(x) and H ′i(x), respectively. Lastly, C
sends the first component of ai’s, (ai,1)i, and ei’s to S.

Once receiving it, S computes Hi(a
sk
i,1) with its private key sk and XORs

to each ei for each i. Then, it gets the shares and hash values by dividing the
computed strings, i.e., (s′i||hsi) := Hi(a

sk
i,1) · ei. Then, S derives s′ using the

Reconstruct algorithm, or the Berlekamp-Welch algorithm BW for better per-
formance, with (s′1, ..., s

′
n) as input shares. Finally, if the hash of s′ with the

position i matches the received hash value for all i, S outputs its element with
the indices of correct shares. Fig. 2 shows the protocol above.

Note that s′i is the same as the original share si if xi = yi. Therefore, if at least
k := +n+t

2 , obtained s′i are correct, S can use BW algorithm to efficiently recover
the original polynomial p, and the error locating polynomial err. However, even
if between t and k − 1 shares are correct, S can still recover p and locate errors

Privacy-Preserving Identity Verification Methods for Accountless Users 11

by examining all the possible subsets of size t of the set {s′i}i of size n. As a
result, the following theorem can be derived, with a proof given in Appendix A.

Theorem 3. The protocol presented in Fig. 2 securely computes the list inter-
section only when its cardinality exceeds the threshold t in the presence of HbC
adversaries under the DDH problem. It requires O(n) communication bits, and
O(tn) C-side computation, where n is the input list size and t is the threshold
for outputting the result. S-side requires O(n3) computation if the cardinality
of intersection is greater than or equal to +n+t

2 ,, or O(C(n, t)) computation,
otherwise, where C(n, t) is the number of t-combinations over n elements.

t-PLI-CA: We combine t-PLI and PLI-CA to further enhance privacy. At the
end of t-PLI-CA, S learns only the cardinality of the intersection, and only if
it exceeds threshold t, i.e., S outputs |X ∩ Y | only if |X ∩ Y | g t.

Similarly to PLI-CA built atop the PLI construction, we construct t-PLI-CA
by adding a random shuffling to the t-PLI construction. i.e., To prevent S from
learning the indices of the matching elements, given by the error locating poly-
nomial, C randomly permutes (a1, ..., an). As a result, S outputs the subtraction
of the number of x-intercepts of the error locating polynomial err from the list
size n. Recall that S can find the correct s′ only when the number of matching
elements exceeds the threshold, and the x-intercepts of err represent the wrong
shares. Thus, the output means the cardinality of the intersection of the pri-
vate lists. The detailed protocol is given in Fig. 2 with the dashed box, and the
security proof of the following theorem is presented in Appendix A.

Theorem 4. The protocol presented in Fig. 2 including the procedure of the
dashed box securely computes the cardinality of list intersection only when it ex-
ceeds the threshold t in the presence of HbC adversaries under the DDH problem.
It requires O(n) communication bits, and O(tn) C-side computation, where n is
the input list size and t is the threshold for outputting the result. S-side requires
O(n3) computation if the cardinality of intersection is greater than or equal to
+n+t

2 ,, or O(C(n, t)) computation, otherwise, where C(n, t) is the number of
t-combinations over n elements.

5.3 Ideal Functionalities for PLI and its variants

Fig. 3 shows the ideal functionality of each PLI variant introduced above, i.e.,
private list intersection (PLI), PLI-Cardinality (PLI-CA), threshold PLI (t-PLI),
and t-PLI-Cardinality (t-PLI-CA). Each functonality takes as input lists X and
Y of size n from C and S respectively, and computes either the intersection (PLI
and t-PLI) or the cardinality of the intersection (PLI-CA and t-PLI-CA) of the
input lists, and this output is revealed to S party either unconditionally (PLI
and PLI-CA) or only if the intersection size is above t (t-PLI and t-PLI-CA).

12 S. Hwang et al.

Parameters: List size n
Ideal Functionality of (a) PLI, (b) PLI-CA, (c) t-PLI, (d) t-PLI-CA:
1. Wait for inputs Y = (y1, y2, ..., yn) from S and X = (x1, x2, ..., xn) from C
2. Compute (a),(c): the list intersection outS = X ∩ Y

(b),(d): the cardinality of list intersection outS = |X ∩ Y |
3. Send § to C and (a),(b): send outS to S

(c),(d): if |X ∩ Y | g t send outS to S else send § to S

Fig. 3: Ideal Functionality of PLI and its (t-)PLI(-CA) variants

6 Implementation & Evaluation

The performance of each protocol was tested on a MacBook Pro with a
2.3 GHz Dual-Core Intel i5 processor with 16 GB RAM. We implemented each
protocol in C, using the OpenSSL v3.1.2 library. The Fisher-Yates shuffle [16],
instantiated with a cryptographically secure pseudo-random number generator
provided by OpenSSL, served as a secure shuffle for the PLI-CA and t-PLI-CA
protocols. To evaluate the performance of our constructions, we implemented
each protocol using Yao’s garbled circuit (GC) [37] provided by MP-SPDZ [23].

For the homomorphic encryption schemes, we use the Elliptic Curve-based
ElGamal (EC-ElGamal) with a 224-bit key provided by OpenSSL, after com-
paring it to the standard and the additively homomorphic ElGamal with the
equivalent security level (i.e., with a 2048-bit key). From our comparisons, using
EC-ElGamal in our PLI implementation has around 2× better bandwidth and
20× better latency than using the other ElGamal schemes. The list elements of
the participants were 256-bit integers.

To evaluate, we measured the communication and computation costs for:

1. increasing size n of input lists, and compared it to the GC implementation.
2. increasing intersection cardinality |X ∩ Y |, to observe the effects of low or

high number of matching elements in the case of t-PLI and t-PLI-CA.
3. increasing reconstruction threshold t, and analyzed the effect of the threshold

choice on the execution time of t-PLI and t-PLI-CA.

For each instantiation of the protocol, we present the average of 10 code execu-
tions as a result. Our implementation codes are publicly available at [1].

6.1 Bandwidth Evaluation

For 224-bit list inputs, Fig. 4a showcases the bandwidth required to run each
protocol for increasing values of the list size, n. We observe that the bandwidth
used in the PLI and PLI-CA protocols is the same, which is consistent with the
protocol constructions in Section 5. This is because the messages sent in PLI-
CA and PLI are equivalent, only permuted. The same is observed for t-PLI and
t-PLI-CA. The threshold PLI protocols require less bandwidth, e.g. 11.5 kB for
n = 30, than the PLI and PLI-CA protocols, which need 14 kB for n = 30. This

Privacy-Preserving Identity Verification Methods for Accountless Users 13

(a) (b)

Fig. 4: Bandwidth consumed by all protocols using (a) EC-ElGamal and (b) GC
in MP-SPDZ [23]. In (b), due to errors occurring for higher n, projected values
are shown with dashed lines. t-PLI results coincide with t-PLI-CA.

(a) (b)

Fig. 5: Execution time of PLI and PLI-CA protocols (a) for increasing list size,
and (b) compared to the GC implementation in MP-SPDZ [23]

is due to C sending only the first element of each encrypted value ai,1 and a one-
time pad of the hash of the second element Hi(ai,2) in the threshold protocols,
instead of sending (ai,1, ai,2) in the non-threshold protocols.

Compared to MP-SPDZ garbled circuits with 32-bit integer inputs, the band-
width required by PLI constructions with EC-ElGamal encryptions is lower. For
example, for n = 30, the GC versions of PLI, PLI-CA, t-PLI, and t-PLI-CA
require 60.4 kB, 124.8 kB, 187.4 kB and 127.0 kB, respectively (shown in Fig.
4b). Since the evaluation through MP-SPDZ outputs errors for higher values of
n, we present the dashed lines for the projected values for n = 50 and n = 60.

6.2 Execution Time Evaluation

We first evaluated the running time of each protocol using EC-ElGamal as
the list size n increased from 10 to 100, with step size 5. Shown in Fig. 5a, the
execution time of PLI and PLI-CA increase linearly as n increases. Compared

14 S. Hwang et al.

(a) (b) (c)

Fig. 6: Execution time of the t-PLI and t-PLI-CA protocols for (a) increasing
list size, (b) increasing cardinality of intersection list, for n = 50 and t = 16, and
(c) increasing threshold, for n = 50, |X ∩ Y | = 44 (solid lines) and |X ∩ Y | = 39
(dashed lines)

to the GC implementations, our constructions are more efficient in terms of
execution time (Fig. 5b). For example, for n = 30, our PLI and PLI-CA protocols
took 0.039 and 0.034 seconds on average, while the ones using GC took 0.048
and 0.057 seconds to complete.

Now, fixing the cardinality |X ∩Y | to 80% of n and the threshold t to 1
3n, we

evaluate the execution time of t-PLI and t-PLI-CA, which results are displayed
in Fig. 6a. Because of the Berlekamp-Welch (BW) protocol, the execution time is
O(n3), which is also reflected in the figure. For n = 30, t-PLI and t-PLI-CA take
on average 0.32 and 0.31 seconds, while for n = 100, t-PLI and t-PLI-CA take
on average 11.4 and 11.1 seconds. For t-PLI and t-PLI-CA, the GC approach is
always faster than ours, e.g. at n = 30, it takes on average 0.055 seconds to run
GC-based tPLI implementation.

Lastly, we compare the execution time for t-PLI and t-PLI-CA as |X ∩ Y |
increases and as t increases, for a fixed n = 50. In Fig. 6b, with a t fixed to 1

3 ·50 ≈
16, the protocol is very fast when |X ∩Y | does not allow efficient reconstruction
of the secret, i.e. when the BW algorithm fails. On average, when the number
of matches is below k = +n+t

2 , (here k = 33), execution for both t-PLI and
t-PLI-CA takes 0.19 seconds. For |X∩Y | g 35, the BW algorithm succeeds, and
the t-PLI and t-PLI-CA protocols take a linearly increasing amount of time.
This is because the BW algorithm starts by assuming the maximum number
of errors +n−t2 ,, and tries to recover the secret. If it fails to recover the secret,
it decreases the assumed number of errors by one unit, tries again, and repeats
until successful recovery. Thus, for a higher intersection cardinality |X∩Y |, there
are fewer errors, and running the BW algorithm requires more trials.

We observe a similar effect in Fig. 6c, where the execution time first decreases
linearly as the threshold t increases, i.e. as +n−t2 , decreases. Then, when t gets
too high and efficient reconstruction is impossible, the BW algorithm fails and
the t-PLI and t-PLI-CA protocols take about 0.19 seconds to complete.

Privacy-Preserving Identity Verification Methods for Accountless Users 15

7 Security against malicious participants

Each of our protocol variants enables moderate-cost upgrades to security
against malicious participants, i.e., parties that arbitrarily diverge from the pro-
tocol. Recall that PLI should reveal nothing to C while S should learn (only)
X ∩ Y . This would be violated if a malicious C learns anything about S’s Y
and/or makes S output I s.t. i ∈ I even if X[i] ̸= Y [i], or if a malicious S
learns more about C’s X beyond X ∩Y . We argue that this will not happen, i.e.,
our protocols can become maliciously secure, at a moderate increase to protocol
costs. We present the modifications below and proof outlines in Appendix A.

Security against Malicious Server: All four protocol variants offer security
for the client in the face of a malicious server, if the protocol is amended in
two ways. First, each input xi and yi is replaced by resp. x̄i = Hq

i (xi) and
ȳi = Hq

i (yi) where Hq is a Random Oracle (RO) hash onto Zq and Hq
i (x) =

Hq(i, x). Second, S appends a zero-knowledge proof of knowledge (ZKPoK) of
the discrete logarithm sk = DLg(h) to its message (pk, (b1, ..., bn)), where pk =
(G, q, g, h).3 This modification adds 1 (multi)exponentiation for C and S and 4λ
bits to bandwidth, thus increasing protocol costs by only a small additive factor.

Security of PLI (in Fig. 1) against Malicious Client: can be achieved
by pre-processing inputs via RO hash as above, and adding ZKPoK of (δi, ri)
s.t. ai,1 = gδi(bi,1)

ri for all i ∈ [n] to C’s message (δi = uiri for honest C). In
the protocol, S outputs I s.t. i ∈ I iff ai,2 = aski,1, but if (h, ai,1, bi,1, bi,2) =

(gsk, gδibrii,1, g
wi , hwigȳi), this is equivalent to ai,2 = hδi(bi,2g

−ȳi)ri , i.e., gȳi =

bi,2(a
−1
i,2h

δi)1/ri . This modification adds n (multi-)exponentiations for both C and
S and 4λn bits to bandwidth, resulting in PLI protocol with two-sided security
against malicious parties, with bandwidth and computation costs that are larger
than the HbC-secure version of PLI, by resp. factors ×1.5 and ×1.4.

Security of t-PLI (in Fig. 2) against Malicious Client: is accomplished
by the same ZKPoK as for PLI above. In particular, C does not need to prove
anything regarding the ei values or the secret-sharing encoded by them. Since
this modification is the same as above, it incurs the same overhead compared to
the PLI protocol, i.e. it does not affect Berlekamp-Welch decoding costs.

Security of X-CA protocols against Malicious Client: The only difference
between our (t-)PLI-CA and (t-)PLI protocols is that C permutes ciphertexts ai
before processing them further. Since all our ZKPoK’s above involve only ai,1
values, we just add a ZK proof of shuffle, e.g. [20]. Taking the RO-based non-
interactive version of the 3-round proof-of-shuffle due to Furukawa [17] adds 15n
exponentiations to the total computation cost and 6nλ bits to bandwidth, which
together with the changes above increases the bandwidth and computation costs
of the HbC versions of these protocols by resp. factors ×2.25 and ×4.4.

3 All our ZKPoK proofs are variants of Schnorr’s proof of discrete logarithm, made
non-interactive given an RO hash. They add 2λ bits to bandwidth and 1 (multi-
)exponentiation to the computation of both parties per statement, see [9].

16 S. Hwang et al.

8 Conclusion

This paper proposes PIVA, privacy-preserving identity verification for ac-
countless users, that includes four protocols: PLI, PLI-CA, t-PLI, and t-PLI-CA.
We analyze each protocol’s security and performance via a prototype implemen-
tations. Proposed PLI and PLI-CA protocols are more efficient than their GC-
based counterparts in terms of communication and computation costs. Whereas,
proposed t-PLI and t-PLI-CA protocols incur much less bandwidth than GC-
based ones and are faster than current threshold PSI protocols. All proposed
protocols can be upgraded to be secure in the malicious model with a small
increase in costs.

Acknowledgements: We thank ESORICS’24 reviewers for constructive feed-
back. This work was supported in part by funding from the NSF Award SATC-
1956393.

References

1. Repository for piva (2023), https://github.com/zane-a-karl/PLI

2. Adhatarao, S., Lauradoux, C., Santos, C.: Why ip-based subject access requests
are denied? arXiv preprint arXiv:2103.01019 (2021)

3. Berlekamp, E.R., Welch, L.R.: Error correction for algebraic block codes (Dec 1986)

4. Boniface, C., Fouad, I., Bielova, N., Lauradoux, C., Santos, C.: Security analysis
of subject access request procedures: How to authenticate data subjects safely
when they request for their data. In: Privacy Technologies and Policy: 7th Annual
Privacy Forum, APF 2019. pp. 182–209 (2019)

5. Brazil: Lei nº 13.709, de 14 de agosto de 2018 (2018), http://www.planalto.gov.
br/ccivil_03/_Ato2015-2018/2018/Lei/L13709.htm

6. Bufalieri, L., La Morgia, M., Mei, A., Stefa, J.: Gdpr: when the right to access
personal data becomes a threat. In: ICWS (2020)

7. California Attorney General: California consumer privacy act regula-
tions (2020), https://oag.ca.gov/sites/all/files/agweb/pdfs/privacy/

oal-sub-final-text-of-regs.pdf?

8. California Legislature: Title 1.81.5. california consumer privacy act of
2018 (2018), https://leginfo.legislature.ca.gov/faces/codes_displayText.
xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5

9. Camenisch, J., Stadler, M.: Proof systems for general statements about discrete
logarithms. In: Technical Report/ETH Zurich, Dept. of Computer Science (1997)

10. Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-
authority election scheme. In: Advances in Cryptology — EUROCRYPT ’97 (1997)

11. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: CANS (2012)

12. Di Martino, M., Robyns, P., Weyts, W., Quax, P., Lamotte, W., Andries, K.:
Personal information leakage by abusing the {GDPR}’right of access’. In: Fifteenth
Symposium on Usable Privacy and Security (SOUPS 2019). pp. 371–385 (2019)

13. Duong, T., Phan, D.H., Trieu, N.: Catalic: Delegated psi cardinality with applica-
tions to contact tracing. In: Eurocrypt (2020)

Privacy-Preserving Identity Verification Methods for Accountless Users 17

14. European Data Protection Board: Guidelines 01/2022 on data subject rights - right
of access, version 2.0 (2023)

15. European Parliament and Council: Regulation (eu) 2016/679, general data protec-
tion regulation (2016), https://eur-lex.europa.eu/eli/reg/2016/679/

16. Fisher, R.A., Yates, F.: Statistical tables for biological, agricultural, and medical
research. Hafner Publishing Company (1953)

17. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans-
actions (2005). https://doi.org/10.1093/ietfec/E88-A.1.172

18. Gamal, T.E.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory (1985)

19. Ghosh, S., Simkin, M.: The communication complexity of threshold private set
intersection. In: CRYPTO (2019)

20. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. Cryptology
ePrint Archive, Paper 2005/246 (2005)

21. Heinrich, A., Hollick, M., Schneider, T., Stute, M., Weinert, C.: Privatedrop: Prac-
tical privacy-preserving authentication for apple airdrop. In: USENIX Security
(2021)

22. Jordan, S., Nakatsuka, Y., Ozturk, E., Paverd, A., Tsudik, G.: VICEROY: gdpr-
/ccpa-compliant enforcement of verifiable accountless consumer requests. In: NDSS
(2023)

23. Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. In:
ACM CCS (2020)

24. Martino, M.D., Meers, I., Quax, P., Andries, K., Lamotte, W.: Revisiting iden-
tification issues in GDPR ’right of access’ policies: A technical and longitudinal
analysis. Proc. Priv. Enhancing Technol. (2022)

25. Narayanan, A., Thiagarajan, N., Lakhani, M., Hamburg, M., Boneh, D., et al.:
Location privacy via private proximity testing. In: NDSS. vol. 11 (2011)

26. Pagnin, E., Gunnarsson, G., Talebi, P., Orlandi, C., Sabelfeld, A.: Toppool: Time-
aware optimized privacy-preserving ridesharing. Cryptology ePrint Archive (2021)

27. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Psi from paxos: fast, malicious private
set intersection. In: Eurocrypt (2020)

28. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. Journal of the
Society for Industrial and Applied Mathematics (1960)

29. Rindal, P., Schoppmann, P.: Vole-psi: fast oprf and circuit-psi from vector-ole. In:
Eurocrypt (2021)

30. Rosulek, M., Trieu, N.: Compact and malicious private set intersection for small
sets. In: ACM CCS (2021)

31. Samarin, N., Kothari, S., Siyed, Z., Bjorkman, O., Yuan, R., Wijesekera, P., Alo-
mar, N., Fischer, J., Hoofnagle, C.J., Egelman, S.: Lessons in VCR repair: Compli-
ance of android app developers with the california consumer privacy act (CCPA).
Proc. Priv. Enhancing Technol. (2023)

32. Shamir, A.: How to share a secret. Commun. ACM (1979)
33. Take, K., Gallagher, K., Forte, A., McCoy, D., Greenstadt, R.: "it feels like whack-

a-mole": User experiences of data removal from people search websites. Proc. Priv.
Enhancing Technol. (2022)

34. Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione: Lightweight con-
tact tracing with strong privacy. arXiv preprint arXiv:2004.13293 (2020)

35. Urban, T., Tatang, D., Degeling, M., Holz, T., Pohlmann, N.: The unwanted shar-
ing economy: An analysis of cookie syncing and user transparency under gdpr.
arXiv preprint arXiv:1811.08660 (2018)

18 S. Hwang et al.

36. Urban, T., Tatang, D., Degeling, M., Holz, T., Pohlmann, N.: A study on subject
data access in online advertising after the gdpr. In: ESORICS (2019)

37. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th
Annual Symposium on Foundations of Computer Science (1986)

38. Zhao, Y., Chow, S.S.M.: Can you find the one for me? In: WPES (2018)
39. Zhao, Y., Chow, S.S.: Are you the one to share? secret transfer with access struc-

ture. PETS (2017)

A Security Proofs for PIVA Protocols

Proof of Theorem 1 (PLI security):

Correctness: Assume an execution of the protocol Π with honest C and honest
S. S computes ci :=

ai,2

ask
i,1

, which is equivalent to (gyi−xi)ri as follows:

ci :=
ai,2
aski,1

=
(bi,2 · h

uig−xi)
ri

((bi,1 · gui)ri)sk
=

(hwigyihuig−xi)ri

((gwi)sk(gui)sk)ri

=
(hwihuigyi−xi)ri

(hwihui)ri
=

(hwihui)ri(gyi−xi)ri

(hwihui)ri
= (gyi−xi)ri

This becomes 1, if yi is equal to xi, or looks random in G, otherwise, as the
random ri is not known to S. Therefore, S outputs X ∩ Y , while C outputs §.
Server privacy: For corrupted C, simulator SIMC can be constructed as follows:
SIMC chooses n random values (z1, ...zn) in Zq and encrypts them under pk, i.e.
it sets bi = Encpk(zi) for all i, and it sends pk and (b1, ..., bn) to C. (Note that
SIMC could use C’s input X in the simulation, but the above algorithm does not
need this input.) Because of the IND-CPA security of ElGamal encryption under
the hardness assumption of the decisional Diffie-Hellman (DDH) problem, the
ciphertexts produced by SIMC are indistinguishable from the ones produced by
S in the real protocol execution.
Client privacy: For corrupted S, simulator SIMS can be constructed as follows:
Given Y and X ∩ Y ,

- SIMS receives the public key pk and (b1, ..., bn) from S, and it sets zi = 0 for
all i ∈ X ∩ Y and picks zi ←$ Zq for all i ̸∈ X ∩ Y .

- SIMS computes ai = Encpk(zi) for all i, and sends (a1, ..., an) to S.

It follows that S’s view in the interaction with SIMS matches the interaction
with the real-world C: In both cases each ai is either a random encryption of 1,
if i ∈ X ∩ Y , or an encryption of a random value in Zq, if i ̸∈ X ∩ Y .

Proof of Theorem 2 (PLI-CA security):

Correctness: Similar to Theorem 1, ci is 1 if yi = xi, or is a random, otherwise.
Thus, |{ci : ci = 1}| = |X ∩ Y |, which the server outputs.
Server privacy: Since the view of the (corrupted) C is the same as the one in
PLI, server privacy is also met in PLI-CA.

Privacy-Preserving Identity Verification Methods for Accountless Users 19

Client privacy: Considering the corrupted S, a simulator SIMS can be similarly
constructed. In addition to SIMS in Theorem 1, SIMS sends π(A1, ..., An) to S,
for a randomly chosen π in Pn. For some π, π′ ∈ Pn, S’s view in the interaction
with SIMS is indistinguishable from the output of the protocol execution with

real C, as π{{1}i∈X∩Y , {zi}i/∈X∩Y }
c
≡ π′{{1}i∈X∩Y , {(yi − xi)ri}i/∈X∩Y }.

Proof of Theorem 3 (t-PLI security):

Correctness: Assume an execution of the protocol Π with honest C and honest
S. For all i ∈ [n], S computes s′i as follows: (s′i||hsi) := Hi(a

sk
i,1)·ei = Hi(a

sk
i,1)·

Hi(ai,2) · si, ∀i. Since Hi(a
sk
i,1) = Hi(((bi,1 · g

ui)ri)sk) = Hi(((g
wi · gui)sk)ri) =

Hi((h
wi ·hui)ri) and Hi(ai,2) = Hi((bi,2·h

uig−xi)ri) = Hi((h
wigyi ·huig−xi))ri) =

Hi((h
wi · hui)ri(gyi−xi)ri), Hi(ai,2) = Hi(a

sk
i,1), if yi = xi. Otherwise, Hi(ai,2) is

a hash of a random element in G. Consequently, if yi = xi, s
′
i = si, or is random,

otherwise. Depending on the cardinality of intersection I := {i | s′i = si}i∈[n],
three possible cases exist:

1. |I| g k := +n+t
2 ,: S can apply BW algorithm to recover (p, err). S out-

puts {yi : err(i) ̸= 0}i∈[n], which is the set of input elements where their
corresponding shares are correct, i.e., indices of intersecting elements.

2. t f |I| < k: S can examine every subset of size t, and check which subset
reconstruct s′ such that Hi(s

′) = hsi.
3. |I| < t: S can neither reconstruct s′ nor learn anything about xi’s.

Server privacy: Since the view of the (corrupted) C is the same as the one in
PLI (and PLI-CA), server privacy is also met in t-PLI.
Client privacy: Considering corrupted S, a simulator SIMS can be constructed
as below. Given Y and |X ∩ Y |,

- SIMS receives the public key pk and (b1, ..., bn) from S. It sets zi = 0 if
yi ∈ X ∩ Y , and zi ←

$ G, otherwise.
- SIMS computes Ai = Encpk(zi) for all i.
- SIMS generates S ← $, and computes the shares (S1, ..., Sn)← Share(t,n)(S).
- SIMS computes Ei = Hi(Ai,2)·H ′i(Si) for all i.
- SIMS sends (A1,1, ..., An,1) and (E1, ..., En) to S.

Comparing S’s view in the interaction with SIMS and in the real execution of Π
with C, first, the tuples, (a1,1, ..., an,1) and (A1,1, ..., An,1), are indistinguishable
because of the IND-CPA security of ElGamal encryption, under the hardness of
DDH problem. Then, the tuples, (e1, ..., en) and (E1, ..., En) are also indistin-
guishable, as (a1,2, ..., an,2) and (A1,2, ..., An,2) are indistinguishable because of
the IND-CPA security of ElGamal encryption, and through the security of one-
time pad encryption with the randomly generated shares guaranteed by Shamir
secret sharing scheme.

Proof of Theorem 4 (t-PLI-CA security):

Correctness: Similar to Theorem 3, Hi(ai,2) = Hi(a
sk
i,1) if yi = xi, or is other-

wise random. Thus, if the number of intersecting elements |I| g t, S can apply
the Berlekamp-Welch algorithm or examine every subset to obtain the number

20 S. Hwang et al.

of errors and obtain |{s′i : err(i) ̸= 0}i| = |X ∩ Y |, which the server outputs. If
|I| < t, S outputs §.
Server privacy: Since the view of the (corrupted) C is the same as the one in
PLI (and PLI-CA and t-PLI), server privacy is also met in t-PLI-CA.
Client privacy: Due to the similarity of the protocols, the construction of the
simulator SIMS , considering the corrupted S, is similar to the one in Theorem 3.
In addition to SIMS in Theorem 3, the following step is modified: SIMS com-
putes Ai = π(Encpk(zi)) for all i. As in Theorem 3, S’s view (even without this
modification) in the interaction with SIMS and the output of the protocol execu-
tion with real C are indistinguishable, and adding pseudorandom permutations
randomly chosen in Pn does not change it.

Proof Outlines for Security against Malicious Participants:

For any malicious server S∗, simulator SIMS can (1) emulate Hq, capturing
S∗’s queries to Hq, (2) on S’s message, extracts sk = DLg(pk) from the ZKPoK
and sets Mi = PreDecsk(bi) for each i, and (3) forms S∗’s effective input Y into
either protocol, by setting Y [i], for each i, to y s.t. S∗ queried (i, y) to H and
Mi = gȳi for ȳi = Hq

i (y), and setting Y [i] = § if there is no such Hq query.
After sending Y to PLI functionality and getting output outS back, SIMS can
then simulate honest client’s message as in the proofs of Theorems 1-4 above.

For malicious client C∗, SIMC extracts δi, ri for i ∈ [n] from C∗’s message,
“pre-decrypt” each ai,2 as Mi = bi,2(a

−1
i,2h

δi)1/ri , and form C∗’s effective input X
into PLI, by setting X[i], for each i, to x s.t. C∗ received x̄i = Hq

i (x) from RO
Hq and Mi = gx̄i , and setting X[i] = § if C∗ made no such Hq query. An honest
S will output I = X ∩Y . In the simulation, SIMC verifies the same constraint as
in the protocol for x̄i = H(i, x), hence i ∈ I if yi = xi. SIMC misses any match
where the constraint is satisfied for ȳi = Hq

i (y) but C∗ does not query Hq
i on y.

Since this can happen only with probability n/q, the simulated and real views
are computationally indistinguishable.

For the modified t-PLI, SIMC will extract (δi, ri)’s as above, but it modi-
fies the pre-decryption and derivation of C∗’s effective input X: SIMC searches
through C∗’s queries to Hq

i , H
′
i, and Hi, to determine if there exists s s.t., for

some subset of at least t indexes i, x̄i = Hq
i (xi), hsi = H ′i(s), and hai = Hi(ai,2)

satisfy that (1) (hai·ei)[R] = hsi, where z[L] and z[R] stand for resp. the F and
{0, 1}2λ components of z; (2) gx̄i = bi,2(a

−1
i,2h

δi)1/ri ; and (3) si = (hai·ei)[L] lie
on t-degree polynomial which interpolates to s. If SIMC identifies such a subset,
it forms X from all (i, xi) pairs found above and sets all other values in X to
§. If no such subset of at least t indexes is found, then SIMC sets X to (§)n.
SIMC efficiently and correctly simulates the real protocol because if H ′, H are
RO’s then constraint (hai · ei)[R] = hsi can be satisfied at most by a single
(hai, hsi) pair, except for negligible probability. On the other hand, if fewer than
t+ 1 matches exist in the real protocol, the hsi components recovered by S are
indistinguishable from random, and thus the real protocol execution on X s.t.
|X ∩ Y | < t is indistinguishable from the simulation where SIMC sets X to an
all-empty sequence (§)n.

	PIVA: Privacy-Preserving Identity Verification Methods for Accountless Users via Private List Intersection and Variants

