
Electronic Journal of Statistics
Vol. 19 (2025) 1889–1941
ISSN: 1935-7524
https://doi.org/10.1214/25-EJS2378

On minimum contrast method for
multivariate spatial point processes
Lin Zhu∗1, Junho Yang∗2, Mikyoung Jun3 and Scott Cook4

1China Fortune International Trust Co., Ltd., e-mail: zhulin@cfitc.com
2Institute of Statistical Science, Academia Sinica, e-mail: junhoyang@stat.sinica.edu.tw

3Department of Mathematics, Univeristy of Houston, e-mail: mjun@central.uh.edu
4Department of Political Science, Texas A&M University, e-mail: sjcook@tamu.edu

Abstract: Compared to widely used likelihood-based approaches, the min-
imum contrast (MC) method offers a computationally efficient approach
for estimation and inference of spatial point processes. These relative gains
in computing time become more pronounced when analyzing complicated
multivariate point process models. Despite this, there has been little explo-
ration of the MC method for multivariate spatial point processes. There-
fore, this article introduces a new MC method for parametric multivariate
spatial point processes. In our approach, a contrast function is computed
based on the trace of the power of the difference between the conjectured
K-function matrix and its nonparametric unbiased edge-corrected estima-
tor. Under standard assumptions, we derive the asymptotic normality of
our MC estimator. The performance of the proposed method is demon-
strated through simulation studies of bivariate log-Gaussian Cox processes
and five-variate product-shot-noise Cox processes.
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1. Introduction

Presence-only (or event) data have become increasingly widely used in a number
of fields of study. Applications can be found in epidemiology [31], neuroscience
[1], ecology [46], meteorology [29], and political science [28]. These studies often
include more than one “type” of event or outcome of interest, for example,
multiple types of crime or species of plants. When these multi-type event data
are located in space (i.e., geo-located), they can be considered as a realization
of a multivariate spatial point process. As such, the development of tools to
effectively analyze multivariate spatial point processes needs to keep pace with
advancements in the collection of these data.

Maximum likelihood estimation (MLE) is widely used to estimate and infer
the parameters of spatial point processes. This is because the resulting MLE
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estimator has desirable large sample properties [37, 24]. However, one of the
biggest challenges with MLE is that the likelihood function is, in general, ana-
lytically intractable. As such, MLE requires an appropriate approximation for
the likelihood function. For example, in log-Gaussian Cox processes [LGCP;
34], the intractable likelihood function involves the expectation with respect to
the logarithm of the latent intensity field. To approximate this expected value
and, in turn, approximate the likelihood function, one can use Monte Carlo
simulation as in [29]. Alternatively, Bayesian inferential methods [e.g., 42] can
be implemented to obtain the approximation of the likelihood function of an
LGCP model.

However, these likelihood approximation methods present challenges in ap-
plication. First, for each alternative model considered, researchers need to re-
specify the point process model and corresponding algorithms, which itself takes
considerable time and effort. Second, as the model becomes increasingly complex
or the number of computational grids increases, the aforementioned likelihood
approximation methods are increasingly computationally intensive. Specifically,
drawing each sample of model parameters and latent random fields on grids (in
Monte Carlo simulations) or running long iterations to reach the convergence
of the Markov chain (in Bayesian methods) is computationally demanding. To
handle these computational issues, quasi-likelihood or composite likelihood ap-
proximation methods for point processes are proposed, such as [26] for Cox
processes and [39] for Gibbs point processes.

As an alternative to these likelihood-based methods, Minimum Contrast
(MC) estimation is a computationally efficient inference method for spatial
point processes. MC estimation selects the model parameters that minimize
the discrepancy between the conjectured “descriptor” of point processes and its
nonparametric estimator. For univariate point processes, a typical descriptor
functions are Ripley’s K-function [40] or pair correlation function (PCF). This
is because analytic forms of the K-function and PCF are available for many
point process models, such as the shot noise Cox process [32].

To elaborate, let Q(·; θ), θ ∈ Θ, be a family of parametric descriptors of a
stationary point process and let Q̂(·) be its estimator. Then, MC estimation
aims to minimize the integrated distance between Q(·; θ) and Q̂(·) over the pre-
specified domain. For instance, if a univariate point process has the parametric
K-function as its descriptor function, that is, Q(h; θ) = K(h; θ) for h ∈ [0, ∞),
then the MC estimator is defined as θ̂ = arg minθ∈Θ U(θ), where

U(θ) =
∫ R

0
w(h)
{

|K(h; θ)|c − |K̂(h)|c
}2

dh. (1.1)

Here, R is a positive range, w(·) is a non-negative weight function, K(·; θ)
and K̂(·) are parametric K-functions and their nonparametric estimator (see
Section 3.1 for precise definitions), and c ∈ [0, ∞) is a non-negative power.
Provided that K(h; θ) has a known form and K̂(h) can be easily evaluated
for all h ∈ [0, ∞), the MC estimator can be easily calculated using standard
numerical optimization methods. As such, the MC method has been extensively
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used to analyze univariate point processes in applications [e.g., 34, 35, 33, 11, 9].
There have also been developments in our theoretical understanding of these
univariate point processes. [22] studied the asymptotic properties of the MC
estimator for univariate homogeneous Poisson processes with c = 0.5, and [20]
extended the distribution theory of the MC estimator to a fairly large class of
univariate point process models. When c = 1, the MC procedure can be viewed
as a special case of the second-order quasi-likelihood estimator in the sense of
[12, 13].

Despite the increasing use of the univariate MC method in applications, there
is very little work on MC methods for multivariate point processes in both the-
ory and application. This is because, unlike the univariate model, for multiple
potentially related point patterns, one also needs to examine the cross-group in-
teractions between the different point processes. Therefore, the descriptor func-
tion Q(·; θ) takes the form of a matrix-valued function. This requires the devel-
opment of a new way to measure the discrepancy between these matrix-valued
functions. Several approaches have been suggested in the literature, for example,
[46] proposed the least squares estimation of the parametric multivariate LGCP
model. Another general method to fit multivariate point processes is weighted
composite likelihood as proposed by [26]. Even for these suggested approaches,
however, there has been little theoretical justification given for these estimators,
for example, their large sample properties are largely unexplored.

In this article, we extend existing research on MC estimation for multivariate
point processes in at least three ways. First, we offer a new MC method to
analyze a fairly large class of multivariate stationary point processes, which
does not assume a specific structure of the point processes. Second, under the
increasing-domain asymptotic framework, we derive the asymptotic normality
of the MC estimator. Lastly, we propose a method to select the optimal control
parameters of the MC method, which improves over the ad hoc approaches
currently used in the literature.

The rest of this article is organized as follows. In Section 2, we provide back-
ground on the spatial point process and define the higher-order joint intensity
function of a multivariate spatial point process. In Section 3.1, we introduce
the marginal and cross K-functions and their nonparametric estimators. Us-
ing these K-function estimators, in Section 3.2, we define a new discrepancy
measure between the two matrix-valued functions. In Section 4, we investigate
the large sample properties of the MC estimator. In Section 5, we consider
the practical application of the MC estimator, including the estimation of the
asymptotic covariance matrix (Section 5.1), selection of the optimal control pa-
rameters (Section 5.2), and constructing a confidence region (Section 5.3). In
Section 6, we consider the bivariate LGCP and five-variate product-short-noise
Cox Process [PSNCP; 26] models and investigate their finite sample properties.

Finally, auxiliary results, proofs, and additional simulations can be found in
the Supplementary Materials (which we refer to as the Appendix hereafter). In
particular, in Appendix F, we apply our method to terrorism attacks in Nigeria.
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2. Joint intensity functions of multivariate point processes

In this section, we introduce the joint intensity function of m-tuple point pro-
cesses. To do so, we briefly review some background concepts that are used
throughout the article. For greater detail on the mathematical presentations of
point processes, we refer readers to [10].

Let X be a simple spatial point process defined on R
d, where we observe the

sample of X in D ⊂ R
d. For a bounded Borel set E ⊂ D, NX(E) denotes the

random variable that counts the number of events of X within E. For n ∈ N,
let λn : Dn �→ R be the nth-order intensity function (also known as the product
density function) of X. Thus,

λn(x1, · · · , xn) = lim
|dx1|,··· ,|dxn|→0

E [NX(dx1) · · · NX(dxn)]
|dx1| · · · |dxn| (2.1)

for (x1, · · · , xn) ∈ Dn,�= and zero otherwise. Here, Dn,�= denotes the set of all n
pairwise distinct points in D, and for i ∈ {1, . . . , n}, dxi denotes the infinitesimal
region in D that contains xi ∈ D, and |dxi| denotes the volume of dxi. Under
stationarity, we write λ1(x1) = λ1 for all x1 ∈ D and

λn(x1, · · · , xn) = λn,red(x2 − x1, · · · , xn − x1), n ∈ {2, 3, · · · }. (2.2)

We refer to λn,red as the n-th order reduced intensity function of X.
For a multivariate point process defined on the same probability space and

sampling window, we can naturally extend the concept of nth-order intensity
function and define the joint intensity function.

Definition 2.1 (Joint intensity functions of multivariate point processes). Let
X = (X1, · · · , Xm) be an m-variate spatial point process defined on the same
probability space. Let D ⊂ R

d be the common sampling window of X. Denote
n = (n1, . . . , nm) as a vector of non-negative integers and xi = (xi,1, · · · , xi,ni) ∈
Dni for i ∈ {1, . . . , m}. Then, the joint intensity function of X of order n, de-
noted by λn : DN �→ R (where N =

∑m
i=1 ni), is defined as

λn(x1, . . . , xm) = lim
|dx1,1|,··· ,|dxm,nm |→0

E

[∏n1
j=1 NX1(dx1,j) × · · · ×

∏nm

j=1 NXm(dxm,j)
]

∏n1
j=1 |dx1,j | × · · · ×

∏nm

j=1 |dxm,j |

(2.3)

for (xi,1, · · · xi,ni) ∈ Dni,�=, i ∈ {1, . . . , m}, and zero otherwise. Following
convention, we let

∏0
1 = 1. Sometimes, it will be necessary to consider the

joint intensity of a subset of X. In this case, for non-overlapping indices I =
(i(1), . . . , i(k)) ⊂ {1, . . . , m}, we denote

λI
n(xi(1), . . . , xi(k)) = lim

|dxi(1),1|,··· ,|dxi(k),ni(k) |→0

E
[∏ni(1)

j=1 NXi(1)(dxi(1),j) × · · · ×
∏ni(k)

j=1 NXi(k)(dxi(k),j)
]∏ni(1)

j=1 |dxi(1),j | × · · · ×
∏ni(k)

j=1 |dxi(k),j |

(2.4)
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as the joint intensity function of (Xi(1), . . . , Xi(k)) of order nI = (ni(1), . . . , ni(k)).

If X is stationary, then analogous to (2.2), we have

λn(x1, . . . , xm)
= λn,red(x1,2 − x1,1, · · · , x1,n1 − x1,1, x2,1 − x1,1, · · · , xm,nm − x1,1).

(2.5)

We refer to λn,red as the reduced joint intensity function of X of order n. For an
index vector I = (i(1), . . . , i(k)) ⊂ {1, . . . , m}, the reduced joint intensity func-
tion of the subset process (Xi(1), . . . , Xi(k)), denoted by λI

n,red, can be defined
similarly.

Finally, we introduce the joint cumulant intensity function, as we use this
concept in the proof of the asymptotic normality of the target random variables
(see Assumption 4.1). By replacing the expectation with the cumulant in (2.3),
we define the joint cumulant intensity function of X of order n = (n1, . . . , nm),
denoted by γn(x1, . . . , xm). Analogous to (2.5), if X is stationary, then

γn(x1, . . . , xm)
= γn,red(x1,2 − x1,1, . . . , x1,n1 − x1,1, x2,1 − x1,1, . . . ., xm,nm − x1,1).

(2.6)

We refer to γn,red as the reduced joint cumulant intensity function. For a subset
process XI = (Xi(1), . . . , Xi(k)), we can define the joint cumulant intensity
function of XI , denoted by γI

n , and the reduced joint cumulant intensity function
of XI , denoted by γI

n,red, in the same manner.

3. Minimum contrast for multivariate point processes

In this section, we use the marginal and cross K-functions to formulate the
minimum contrast method for multivariate point processes.

3.1. The marginal and cross K-function

The K-function is an important measure to quantify the second-order interac-
tion between two points. Following the heuristic definition in [8, page 615], the
K-function of a univariate stationary point process X is defined as

K(r) := λ−1
1 E

{
Number of distinct points within distance r of a given point

}
,

(3.1)
where λ1 is the homogeneous first-order intensity of X. A formal formulation of
K-function based on the second-order reduced Palm measure can be found in
[40].

Given a realization of X sampled within Dn ⊂ Rd for n ∈ N, a naive estimator
of K(r) is

K̂0,n(r) =
(

|Dn|λ̂2
1,n

)−1 ∑
x,y∈X

1{0<‖x−y‖≤r}, (3.2)
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where λ̂1,n = NX(Dn)/|Dn| is an unbiased estimator of the first-order inten-
sity of X, 1{} is the indicator function, and ‖ · ‖ is the Euclidean norm. It is
well-known that K̂0,n(r) is negatively biased since it neglects the undetected
observations near the boundary of Dn. To ameliorate the boundary issue, we
consider the edge-corrected estimator of K(r), which can be written in the fol-
lowing general form:

K̂n(r) =
(

|Dn|λ̂2
1,n

)−1 ∑
x,y∈X

b(x, y)1{0<‖x−y‖≤r}, r ∈ [0, ∞). (3.3)

Here, b(·, ·) is an edge-correction factor which depends on the observation do-
main Dn and radius r. In particular, we assume that b(·, ·) belongs to one of the
two commonly used edge-correction factors:

(i) Translation correction: we let b1(x, y) = |Dn|/|Dn∩(D+x−y)|, where for
a set A ⊂ R

d and a point x ∈ R
d, A+x is defined as {y : y = a+x, a ∈ A}.

(ii) Minus sampling correction: we let b2(x, y) = {|Dn|/|D0n|}1{x∈D0n}, where

D0n = {x ∈ Dn : inf
y /∈Dn

‖x − y‖ > r}. (3.4)

For example, if Dn = Bd(x, s), a ball in R
d with the center x ∈ R

d and
radius s > r, then D0n = Bd(x, s − r).

If we further assume that the underlying point process X is isotropic, then we
consider the above two edge-correction factors plus the following edge-correction
factor:

(iii) Ripley’s edge-correction [40]: we let b3(x, y) = λd−1{Bd(x, ‖x−y‖)}/λd−1{
Bd(x, ‖x − y‖) ∩ Dn}, where λd−1{·} is the (d − 1)-dimensional surface
measure.

We note that b ∈ {b1, b2} (or b ∈ {b1, b2, b3}, assuming X is isotropic) yields
λ̂2

1,nK̂n(r) is an unbiased estimator of λ2
1K(r) for all n ∈ N.

For a bivariate stationary point process, [21] extended the definition of (3.1)
and defined the cross K-function of (Xi, Xj) as

Kij(r) = (λ(j)
1 )−1

E

{
Number of (distinct) points of Xj

within distance r of a given point of Xi

}
, (3.5)

where λ
(j)
1 is the (homogeneous) first-order intensity of Xj . The nonparametric

edge-corrected estimator of Kij(r) within the sampling window Dn ⊂ R
d is

K̂ij,n(r) =
(

|Dn|λ̂(i)
1,nλ̂

(j)
1,n

)−1 ∑
x∈Xi

∑
y∈Xj

b(x, y)1{‖x−y‖≤r}, (3.6)

where λ̂
(i)
1,n = NXi(Dn)/|Dn| is the estimator of the marginal first-order intensity

function of Xi, and λ̂
(j)
1,n is defined similarly for Xj .
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3.2. The discrepancy measure and minimum contrast estimator

Now, our aim is to fit a parametric multivariate stationary spatial point process
model using the marginal and cross K-functions. To establish the increasing do-
main asymptotic framework, we define a sequence of sampling windows {Dn}n∈N

in R
d such that D1 ⊂ D2 ⊂ . . . and limn→∞ |Dn| = ∞.

Before introducing our discrepancy measure, we fix the following terms: Let

K(r; θ) = [Kij(r; θ)]mi,j=1, θ ∈ Θ, (3.7)

be the family of m × m matrix-valued parametric K-functions, where for i, j ∈
{1, . . . , m}, Kij(·, θ) is the conjectured marginal (if i = j) or the cross (if i 	= j)
K-function defined as in (3.1) and (3.5), respectively. An estimator of K(r; θ)
based on the data sampled within Dn is

K̂n(r) = [K̂ij,n(r)]mi,j=1, (3.8)

where for i, j ∈ {1, . . . , m}, K̂ij,n(r) is the nonparametric edge-corrected esti-
mator of the true marginal (if i = j) and cross (if i 	= j) K-function, defined
as in (3.3) and (3.6), respectively. We note that K̂n(r) is slightly biased for the
“true” K-function matrix due to the additional randomness in the estimation of
the first-order intensities. Therefore, we define the scaled parametric K-function
matrix (which we refer to as the Q-function matrix hereafter) by

Q(r; θ) = Diag(λ(1)
1 , . . . , λ

(m)
1 )K(r; θ)Diag(λ(1)

1 , . . . , λ
(m)
1 ), (3.9)

where for i ∈ {1, . . . , m}, λ
(i)
1 = λ

(i)
1 (θ) denotes the first-order intensity of

Xi, and Diag denotes a diagonal matrix. Therefore, a nonparametric unbiased
estimator of the true Q-function is

Q̂n(r) = Diag(λ̂(1)
1,n, . . . , λ̂

(m)
1,n )K̂n(r)Diag(λ̂(1)

1,n, . . . , λ̂
(m)
1,n ). (3.10)

With this notation, we propose our discrepancy measure between Q and Q̂n as

Un(θ) =
∫ R

0
w(h) Tr

[(
Q(h; θ)◦C − Q̂n(h)◦C

)(
Q(h; θ)◦C − Q̂n(h)◦C

)
]
dh.

(3.11)
Here, R is a positive range, w(·) is a non-negative weight function with

suph w(h) < ∞, Tr denotes the trace operator, C = [ci,j ]mi,j=1 is a symmetric
matrix with positive entries, and A◦C = [aci,j

i,j ]mi,j=1 for A = [ai,j ]mi,j=1 is the
Hadamard power of the matrix A to the power C. For computational purposes,
using the standard matrix norm identity, Un(θ) can be equivalently written as

Un(θ) =
m∑

i,j=1

∫ R

0
w(h)
{

[Q(h; θ)]ci,j

i,j − [Q̂n(h)]ci,j

i,j

}2
dh, (3.12)

where for a matrix A, [A]i,j denotes the (i, j)-th element of A. It is worth
mentioning that when m = 1 (univariate case), then the form of Un(θ) is nearly
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identical to the discrepancy measure considered in [20]. One difference is that the
authors of [20] considered the Q-function without edge-correction. See Appendix
A for the moment comparison between the two Q-function estimators.

Lastly, using the above discrepancy measure, our proposed minimum contrast
estimator for multivariate point processes is

θ̂n = arg min
θ∈Θ

Un(θ). (3.13)

4. Sampling properties of the minimum contrast estimator

In this section, we study the large sample properties of the minimum contrast es-
timator defined as in (3.13). We note that in practical scenario, one can consider
the Riemann sum approximation

Un(θ) =
n0∑

k=1

w(Rk

n0
) Tr
[(

Q(Rk

n0
; θ)◦C − Q̂n(Rk

n0
)◦C

)

×
(

Q(Rk

n0
; θ)◦C − Q̂n(Rk

n0
)◦C

)
]
=

n0∑
k=1

m∑
i,j=1

w(Rk

n0
)
{

[Q(Rk

n0
; θ)]ci,j

i,j − [Q̂n(Rk

n0
)]ci,j

i,j

}2

(4.1)

for some n0 ∈ N to obtain the feasible criterion of Un(θ). However, in this
article, we will not study the asymptotic behavior of θn = arg minθ∈Θ Un(θ).

4.1. Assumptions

To derive the sampling properties of θ̂n, we assume that the increasing sequence
of sampling windows {Dn} in R

d are convex averaging windows (c.a.w.) that
satisfy

Dn is convex, |Dn| ∝ nd, and λd−1(∂Dn) ∝ nd−1, (4.2)

where an ∝ bn means that there exists C > 0 such that C−1 < infn∈N |an|/|bn| ≤
supn∈N |an|/|bn| < C. Condition (4.2) implies that Dn grows “regularly” in
all coordinates of R

d, which is important in our theoretical development. For
example, (4.2) implies that {Dn} is regular in the sense of [36] and for an
arbitrary fixed r > 0, limn→∞ |D0n|/|Dn| = 1 and |Dn ∩ Dc

0n|/|Dn| ∝ n−1 as
n → ∞, where D0n is defined as in (3.4). See [23]. These properties are used
to calculate the asymptotic covariance matrix of Q-function estimators. See
Appendices A and B.

The next set of assumptions concerns the higher-order structure and the α-
mixing condition (cf. [41]) of the point processes. For Ei, Ej ⊂ R

d, Ei
∼= Ej

means Ei and Ej are congruent. For compact and convex subsets Ei, Ej ⊂ R
d,
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let d(Ei, Ej) = infxi∈Ei,xj∈Ej ‖xi − xj‖∞, where ‖x‖∞ is the �∞-norm (max
norm). Then, for p, k ∈ (0, ∞), the α-mixing coefficient is defined as

αp(k) = sup
Ai,Aj ,Ei,Ej

{
|P (Ai ∩ Aj) − P (Ai)P (Aj)| :

Ai ∈ F(Ei), Aj ∈ F(Ej), Ei
∼= Ej , |Ei| = |Ej | ≤ p, d(Ei, Ej) ≥ k

}
.

(4.3)

Here, F(E) denotes the σ-field generated by the superposition of X in E ⊂ R
d

and the supremum is taken over all compact and convex congruent subsets Ei

and Ej .

Assumption 4.1. X = (X1, . . . , Xm) is a simple, stationary, and ergodic mul-
tivariate point process on R

d that satisfies the following two conditions:

(i) Let � ≥ 4. The reduced joint cumulant intensity of (Xi(1), . . . , Xi(k)) of
order n = (n1, . . . , nk) defined as in (2.6) is well-defined for any non-
overlapping subset (i(1), . . . , i(k)) ⊂ {1, . . . , m} and positive order n =
(n1, . . . , nk) such that

∑k
i=1 ni ≤ �. Moreover, if 2 ≤

∑k
i=1 ni ≤ �, then

the reduced joint cumulant intensity functions are absolutely integrable
on R

N−1, where N =
∑k

i=1 ni.
(ii) There exists ε > 0 such that supp∈(0,∞) αp(k)/ max(p, 1) = O(k−d−ε) as

k → ∞.

We require Assumption 4.1(i) (for � = 4) to show the convergence of the
asymptotic covariance between the two empirical processes [Ĝn(h)]a,b and
[Ĝn(h)]c,d (a, b, c, d ∈ {1, . . . , m}), where

[Ĝn(h)]i,j = |Dn|1/2
{

[Q̂n(h)]i,j − E[Q̂n(h)]i,j
}

, i, j ∈ {1, . . . , m}. (4.4)

Assumption 4.1(ii) together with

max
1≤i,j≤m

sup
n

E|[Ĝn(h)]i,j |2+δ < ∞ for some δ > 0 (4.5)

are used to show the multivariate CLT for {[Ĝn(h)]i,j}m
i,j=1. When we choose b ∈

{b1, b2, b3}, then a sufficient condition for (4.5) (for δ = 1) to hold is Assumption
4.1(i) for � = 6. A proof for the sufficiency is similar to those in [27], Theorems
2 and 3. We refer interested readers to [47], Section 4, for various (univariate)
point process models that satisfy Assumption 4.1.

The last set of assumptions pertains to the parameter space. For i, j ∈
{1, . . . , m}, let

[∇θQ(h; θ)]i,j = ∂

∂θ
[Q(h; θ)]i,j and [∇2

θQ(h; θ)]i,j = ∂2

∂θ∂θ
 [Q(h; θ)]i,j
(4.6)
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be the gradient and Hessian of [Q(h; θ)]i,j , respectively. Further, let

[Q̂1n(h)]i,j =
∫ h

0
w(u)[Q̂n(u)]i,j [Q(h; θ0)]2ci,j−2

i,j [∇θQ(u; θ0)]i,jdu, (4.7)

where θ0 ∈ Θ is the true parameter of X.

Assumption 4.2. (i) The parameter space Θ ⊂ R
p is convex and compact,

θ → Q(·; θ) is continuous and injective, and the true parameter θ0 lies in
the interior of Θ.

(ii) For i, j ∈ {1, . . . , m}, [∇2
θQ(h; θ)]i,j defined as in (4.6) exists and is con-

tinuous with respect to θ ∈ Θ.
(iii) For i, j ∈ {1, . . . , m}, let [Q̂1n(r)]i,j be defined as in (4.7). Then, there

exists δ > 0 such that

max
1≤i,j≤m

sup
n

E

∥∥∥√|Dn|
{

[Q̂1n(h)]i,j − E

[
[Q̂1n(h)]i,j

]}∥∥∥2+δ

< ∞.

4.2. Asymptotic results

In this section, we state our main asymptotic results. The first theorem addresses
the asymptotic joint normality of {[Q̂n(h)]i,j}m

i,j=1. We first note that for b ∈
{b1, b2} (or, b ∈ {b1, b2, b3}, assuming X is isotropic), [Q̂n(h)]i,j is unbiased in
the sense that [E[Q̂n(h)]]i,j = [Q(h; θ0)]i,j . Therefore, recalling (4.4), we have

[Ĝn(h)]i,j = |Dn|1/2
{

[Q̂n(h)]i,j − [Q(h; θ0)]i,j
}

, i, j ∈ {1, . . . , m}. (4.8)

Since we take into account the asymmetric edge-correction factors, Ĝn(·) may
not be symmetric. Therefore, we consider the full entries of Ĝn and define

vec(Ĝn(h)) = ([Ĝn(h)]i,j)1≤i,j≤m, h ∈ [0, ∞), (4.9)

as the m2-dimensional vectorization of Ĝn(h). The following theorem shows the
asymptotic normality of vec(Ĝn(h)).

Theorem 4.1. Let X = (X1, . . . , Xm) be a multivariate stationary point process
that satisfies Assumption 4.1(i) (for � = 2). Moreover, we assume that the
increasing sequence of sampling windows {Dn} in R

d is c.a.w., and the edge-
correction factor is such that b ∈ {b1, b2} (or b ∈ {b1, b2, b3}, assuming X is
isotropic). Then, for fixed R > 0 and i, j ∈ {1, . . . , m},

sup
0≤h≤R

|Dn|−1/2
∣∣∣[Ĝn(h)]i,j

∣∣∣ = sup
0≤h≤R

∣∣∣[Q̂n(h)]i,j − [Q(h; θ0)]i,j
∣∣∣→ 0 (4.10)

almost surely as n → ∞. Furthermore, under Assumptions 4.1(i) (for � = 4),
(ii), and (4.5), we have

vec(Ĝn(h)) D→ N (0m2 , Σ(h; θ0)), (4.11)
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where D→ denotes weak convergence and N represents the multivariate normal
distribution. An expression for the asymptotic covariance matrix Σ(h; θ0) can
be found in Appendix B.

Proof. See Appendix C.1.

The next theorem addresses the asymptotic normality of the minimum con-
trast estimator. To obtain the asymptotic covariance matrix of θ̂n, we define
the following two quantities:

B(θ0) =
m∑

i,j=1
c2

i,j

∫ R

0
w(h)[Q(h; θ0)]2ci,j−2

i,j {[∇θQ(h; θ0)]i,j}

× {[∇θQ(h; θ0)]i,j}

dh

(4.12)

and

S(θ0) =
m∑

i1,j1,i2,j2=1
c2

i1,j1
c2

i2,j2

∫ R

0

∫ R

0
w(s)w(h)σ2

(i1,j1:i2,j2)(s, h)

×
{

[Q(s; θ0)]2ci1,j1 −2
i1,j1

}{
[Q(h; θ0)]2ci2,j2 −2

i2,j2

}
× {[∇θQ(s; θ0)]i1,j1} {[∇θQ(h; θ0)]i2,j2}


dsdh, (4.13)

where for i1, j1, i2, j2 ∈ {1, . . . , m},

σ2
(i1,j1:i2,j2)(s, h) = lim

n→∞
Cov
{

[Ĝn(s)]i1,j1 , [Ĝn(h)]i2,j2

}
. (4.14)

Under Assumption 4.1(i) (for � = 4), the limit of the right-hand side of (4.14)
exists and is finite for all indices i1, j1, i2, j2 ∈ {1, . . . , m} and fixed s, h ≥ 0. An
exact expression of σ2

(i1,j1:i2,j2)(s, h) can be derived using a similar technique
to calculate an expression of Σ(h; θ0) in Appendix B, but the form is more
complicated.

Using this notation, we show the asymptotic normality of θ̂n.

Theorem 4.2. Let X = (X1, . . . , Xm) be a multivariate stationary point pro-
cess that satisfies Assumptions 4.1 (for � = 4), 4.2(i), and (4.5). Moreover, we
assume that the increasing sequence of sampling windows {Dn} in R

d is c.a.w.
and the edge-correction factor is such that b ∈ {b1, b2} (or b ∈ {b1, b2, b3}, as-
suming X is isotropic). Then, θ̂n defined as in (3.13) uniquely exists and

θ̂n → θ0 almost surely as n → ∞. (4.15)

We further assume Assumptions 4.2(ii) and (iii) hold and B(θ0) defined as in
(4.12) is invertible. Then,√

|Dn|(θ̂n − θ0) D→ N (0p, B(θ0)−1S(θ0)B(θ0)−1). (4.16)

Proof. See Appendix C.2.
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Remark 4.1. The univariate analogous results for Theorem 4.2 were proved in
[20], Theorem 4. However, they only showed the consistency of θ̂n. As far as we
are aware, almost sure convergence of the MC estimator, even for the univariate
case.

Remark 4.2 (Application to the homogeneity testing). As a direct applica-
tion of our asymptotic results, let {xij : i ∈ {1, . . . , m}, j ∈ {1, . . . , n1i}} and
{yij : i ∈ {1, . . . , m}, j ∈ {1, . . . , n2i}} be two independent configurations of m-
variate spatial point patterns on Dn sampled from distributions Fθ1 and Fθ2 ,
respectively, where θ1, θ2 ∈ Θ ⊂ R

p. Now, we are interested in whether these
configurations are sampled from the same distribution or not. That is, we want
to test the hypotheses H0 : θ1 = θ2 versus HA : θ1 	= θ2. Let θ̂1,n and θ̂2,n be
the MC estimators based on the point patterns {xij} and {yij}, respectively.
For k ∈ {1, 2}, let Σ̂k,n be the consistent estimator of the asymptotic covariance
matrix of |Dn|−1/2θ̂k,n (one example of the consistent estimator can be found
in Section 5.1 below). Then, from Theorem 4.2, under the null of homogene-
ity, Tn = |Dn|(θ̂1,n − θ̂2,n)
(Σ̂1,n + Σ̂2,n)−1(θ̂1,n − θ̂2,n) converges weakly to
a chi-squared distribution with p degrees of freedom. Under the alternative, as
n → ∞, Tn converges to the non-central chi-squared distribution with divergent
mean. Thus, Tn has statistical power.

5. Practical considerations

5.1. Estimator of the asymptotic covariance matrix

In this section, our aim is to estimate the asymptotic covariance matrix of θ̂n.
Recall (4.16),

lim
n→∞

|Dn|Varθ̂n = B(θ0)−1S(θ0)B(θ0)−1 =: Σ(θ0). (5.1)

We first estimate B(θ) defined as in (4.12). From its definition, provided that
Q(·; θ) and ∇θQ(·; θ) have known expressions, Q(·; θ0) and ∇θQ(·; θ0) can be
easily estimated by replacing θ0 with its estimator θ̂n. Therefore, this gives
a natural estimator of B(θ0) and B(θ0)−1, denoted by B(θ̂n) and B(θ̂n)−1,
respectively. Next, to estimate S(θ0), we use a Monte Carlo method, which we
will describe below.

Recall (4.13), (4.14), and (4.4). It is easily seen that S(θ0) = lim
n→∞

Var {Vn(θ0)},
where

Vn(θ0) =
√

|Dn|
m∑

i,j=1
c2

i,j

∫ R

0

{
[Q̂n(h)]i,j − [Q(h; θ0)]i,j

}{
[Q(h; θ0)]2ci,j−2

i,j

}

×
{

[∇θQ(h; θ0)]i,j
}

dh. (5.2)

To generate the Monte Carlo samples of Vn(θ0), we simulate the multivariate
point process X from the fitted model based on θ̂n. For each simulation, we
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estimate Vn(θ0) by replacing θ0 with θ̂n in (5.2). Therefore, an estimator of
S(θ0), denoted Ŝn(θ0), can be obtained using the sample variance of the Monte
Carlo samples of Vn(θ̂n). Under the assumptions stated in Theorem 4.2, it
can be shown that B(θ̂n) and Ŝn(θ0) are both consistent. Therefore, our final
consistent estimator of the asymptotic covariance matrix of θ̂n is

Σ̂n(θ0) = {B(θ̂n)}−1{Ŝn(θ0)}{B(θ̂n)}−1. (5.3)

Remark 5.1 (Alternative estimation methods). As pointed out by the two
referees, there are alternative approaches to estimate B(θ0) and S(θ0). Firstly,
B(θ0) can be estimated using Monte Carlo samples of B(θ0) from simulated
spatial point patterns of X based on θ̂n. Secondly, S(θ0) can be estimated
using a subsampling method as described in [4] (see also [47], Appendix H). In
detail, we evaluate subsamples of Vn(θ̂n), denoted V

(k)
n (θ̂n), where the sampling

window is the subregions of Dn of the form D
(k)
n = k+[−an, an]d, k ∈ Zd. Here,

{an} is an increasing sequence of positive numbers that satisfies limn→∞ an/n =
0. We then estimate S(θ0) using the subsampling variance of V

(k)
n (θ̂n). Under

appropriate moment and mixing conditions such as conditions (S1)–(S6) in [4],
one can show the consistency of the subsampling variance estimator. Further
details, including the sampling properties and empirical studies of the alternative
estimators of B(θ0) and S(θ0), will not be considered in this study.

5.2. Selection of the optimal control parameters

Selecting the control parameters is a challenging task in the MC method, even for
the univariate case. For a univariate point process with a discrepancy measure
U(θ) defined as in (1.1), [14] suggested some empirical rules on the choice of the
control parameters. However, these choices are ad hoc. Moreover, to best of our
knowledge, there is no existing work on the selection of control parameters for
the MC method applied to multivariate point processes.

Now, using the asymptotic variance estimator, we propose a data-driven cri-
terion for selecting control parameters in multivariate point processes. Recall
(3.11) and (4.16), where the discrepancy function Un(θ) and the asymptotic
covariance matrix of θ̂n depend on the weight w(·), the range R, and the power
matrix C = [ci,j ]mi,j=1. Both w(·) and C control the fluctuation of Q̂n. For sim-
plicity, we fix w(h) ≡ 1 and allow C and R to vary. It is worth noting that
w(·) could be selected using the subsampling method proposed in [4], but this
method is not considered in our study.

By fixing the weight function to unity, we propose the following criterion for
selecting control parameters C and R:

(Copt, Ropt) = arg min
C,R

det Σ(θ0), (5.4)

where Σ(θ0) is the asymptotic covariance matrix of θ̂n defined as in (5.1). We
refer to (5.4) as “optimal” in the sense that for a fixed level, (Copt, Ropt) provides
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the smallest volume of the confidence ellipse. In practical scenarios, our final
feasible criterion for selecting optimal control parameters is

(C̃opt, R̃opt) = arg min
C,R

det Σ̂n(θ0), (5.5)

where Σ̂n(θ0) is defined as in (5.3) and the minimum is taken over the finite
grids of (C, R).

5.3. Constructing confidence regions

Let (C̃opt, R̃opt) be the optimal control parameters as in (5.4), and let Σ̃n be the
asymptotic covariance estimator corresponding to (C̃opt, R̃opt). Then, by Theo-
rem 4.2, an asymptotic (1−α) confidence ellipsoid using the optimal parameters
(C̃opt, R̃opt) is given by {

θ ∈ R
p : T (θ) ≤ χ2

p(1 − α)
}

, (5.6)

where T (θ) = |Dn|(θ̂n − θ)
(Σ̃n)−1(θ̂n − θ), and χ2
p(1 − α) is the (1 − α)th

quantile of the chi-squared distribution with p degrees of freedom. However,
as referees have pointed out, using (5.6) as a confidence region may produce
low coverage probabilities. Indeed, in our bivariate LGCP simulation study in
Section 6.1 below, we encountered this issue even for a large sampling window
size Dn = [−15, 15]2. A possible explanation for this phenomenon is that since
Σ̃n yields the smallest determinant among all asymptotic covariance estima-
tors, using (C̃opt, R̃opt) to calculate the asymptotic covariance estimator may
underestimate the true asymptotic covariance corresponding to (C̃opt, R̃opt).

As a remedy, we consider a simulation-based confidence region to solve the
low coverage probability issue in finite samples. Let θ̂n be the MC estimator
calculated based on the optimal control parameters (C̃opt, R̃opt). Next, we simu-
late i.i.d. replications of multivariate point patterns from the fitted parametric
model. Then, we estimate the simulation-based asymptotic covariance matrix
by Σ̃�

n = (|Dn|B)−1∑B
i=1(θ̂(i)

n − θ̂n)(θ̂(i)
n − θ̂n)
, where B is the number of

replications, θ̂
(i)
n is the MC estimator derived from the i-th replication, and

θ̂n = B−1∑B
i=1 θ̂

(i)
n . Our final simulation-based (1 − α) confidence ellipsoid is{

θ ∈ R
p : T �(θ) ≤ χ2

p(1 − α)
}

, (5.7)

where T �(θ) = |Dn|(θ̂n − θ)
(Σ̃�
n)−1(θ̂n − θ). In the same bivariate LGCP

simulations, we observed that using (5.7) as a confidence region successfully
recovers the (1 − α) coverage rate for all window sizes. Therefore, for practical
purposes, we recommend using (5.7) to construct a confidence region.

6. Simulations

To validate our theoretical results and assess the finite sample performance of
our proposed method, we conduct simulation studies for bivariate LGCP and
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five-variate PSNCP models. Supplementary simulation results can be found in
Appendix E.

6.1. The bivariate LGCP model

For the data-generating process, we first consider the bivariate LGCP model,
which is also used to fit the real data in Appendix F. Let X = (X1, X2) be a sta-
tionary LGCP on R

2 driven by the latent intensity field Λ(s) = (Λ1(s), Λ2(s)) =
(exp(Y1(s)), exp(Y2(s))), s ∈ R

2, where Yi(·) is a stationary Gaussian random
field with the parameter restriction E[eYi(s)] = 1. To formulate the joint distri-
bution of Y1 and Y2, we consider the following additive structure:(

Y1(s)
Y2(s)

)
=
(

μY1

μY2

)
+
(

1 0 1
0 1 b

)⎛⎝Z1(s)
Z2(s)
Z3(s)

⎞⎠ =
(

μY1 + Z1(s) + Z3(s)
μY2 + Z2(s) + bZ3(s)

)
, (6.1)

where b ∈ {−1, 1} indicates the positive (b = 1) or negative (b = −1) correlation
between Y1 and Y2, and {Zi}3

i=1 are zero mean independent Gaussian processes
on R

2 with isotropic exponential covariance functions. Therefore,

Cov{Zi(s1), Zj(s2)} = σ2
Zi

exp(−‖s1 − s2‖/φZi)1i=j , i, j ∈ {1, 2, 3}. (6.2)

Here, for i ∈ {1, 2, 3}, σZi and φZi are the positive scale and range parameters
of the covariance function of Zi(·). We note that the bivariate LGCP under
consideration satisfies Assumption 4.1. See Lemma D.1 in the Appendix. Using
[8], Equations (8.3.32) and (8.6.10), and [34], Equation (4), the entries of K(r; θ)
are given by

[K(r; θ)]i,j = 2π

∫ r

0
h exp(Cij(h; θ))dh, i, j ∈ {1, 2}, (6.3)

where θ = (σZ1 , φZ1 , σZ2 , φZ2 , σZ3 , φZ3)
 is the set of parameters of interest, and
Cij(h; θ) = Cov{log Λi(s1), log Λj(s2)} for h = ‖s1 −s2‖. To further investigate
the correlation between X1 and X2, let

ρ = ρ(θ) = Corr{log Λ1(0), log Λ2(0)}

be the cross-correlation coefficient of X1 and X2. Explicit expressions for Cij(·; θ)
and ρ in terms of the model parameters can be found in Appendix E.1. The Q-
functions [Q(r; θ)]i,j for i, j ∈ {1, 2} can be calculated using (6.3) and (3.9).
Throughout the simulation study, we assume that the first-order intensities are
known to be equal to one. Thus, when utilizing the Q-function, the set of pa-
rameters of interest remains the same as that used for the K-function.

Now, we consider the aforementioned bivariate LGCP model with four dif-
ferent combinations of the true model parameters, denoted as (M1)–(M4), as
displayed in Table 1. For each model, we let b take values of either 1 or -1. Taken
together, (M1)–(M4) allow us to consider a range of bivariate point patterns, in-
cluding variation in the strength (increasing from (M1) to (M4)) and sign (b = 1
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Table 1

Four different data generating processes of the parametric bivariate LGCP model. Note that
the reported cross-correlation coefficient ρ in the column is calculated based on the model

parameters and b ∈ {−1, 1}. See (E.3) in the Appendix.

Model σZ1 φZ1 σZ2 φZ2 σZ3 φZ3 ρ

(M1) 1 0.5 0.8 1 0.4 1.5 ± 0.166
(M2) 0.8 0.5 0.6 1 0.5 1.5 ± 0.339
(M3) 0.7 0.5 0.4 1.3 0.6 1 ± 0.541
(M4) 0.5 0.5 0.4 1.3 0.8 1 ± 0.758

or b = −1) of their cross-correlations. Figure E.1 in the Appendix illustrates a
realization of each model. For each model, we generate the bivariate point pat-
terns on the window D = [−WL/2, WL/2]2 of window length WL ∈ {10, 20, 30}.
Therefore, the expected numbers of points within the sampling windows are
100, 400, and 900, respectively. For each simulation, we estimate the param-
eters and correlation coefficient ρ using two methods: the minimum contrast
estimator (MC; see (3.13)) and the Bayesian inferential method for LGCP us-
ing the Metropolis-adjusted Langevin algorithm [BI; see 34, 44], with the latter
serving as our benchmark.

6.1.1. Processing the MC and BI estimators

For MC, we use Ripley’s edge-correction (which corresponds to b3(x, y) in Sec-
tion 3.1) to evaluate the Q-function matrix estimator. Ripley’s edge-correction
is known to outperform Translation correction or Minus sampling correction in
simulations (cf. [15], page 565). To numerically approximate the discrepancy
measure of the MC method, we use a Riemann sum approximation with 512
equally-spaced grids as in (4.1). When selecting the optimal control parameters
for MC, we set the weight function as a unit constant and assume common
powers ci,j = c for i, j ∈ {1, 2} in (4.1). This allows us to avoid introducing
excessive control parameters. Finally, we select the optimal control parameter
(c, R) using the method in Section 5.2 on the grids c ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and
R from 1 to 0.35 × WL with increment 0.025 × WL. For BI, we implement the
lgcp package in R CRAN [44] to compute the parameter estimates. Here, we
use 32 × 32 computational grid for WL = 10; a 64 × 64 grid for WL = 20; and a
128 × 128 computational grid for WL = 30 and the Markov chain in BI runs for
3.1 × 106 iterations. Lastly, for each model, we generate only 50 simulations for
BI due to its extensive computational cost, whereas we generate 500 simulations
for MC.

6.2. Results

6.2.1. Computation time

Table 2 presents the average computing time per simulation for evaluating the
two estimators for model (M1). Here, we vary the sign of correlation, the max-
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Table 2

Average computing time per simulation (unit: minute) for MC and BI estimator from (M1).
Here, we use the common power c = 0.2 for MC.

Estimator Correlation R WL = 10 WL = 20 WL = 30

MC
Negative 0.15WL 1.50 3.91 9.73

0.35WL 2.39 9.04 36.67

Positive 0.15WL 1.78 5.02 12.09
0.35WL 2.73 10.17 33.03

BI Negative – 172.10 658.77 1276.82
Positive – 129.56 586.32 1195.05

imum range R (for MC only), and the window length (WL). The average com-
puting times for models (M2)–(M4) exhibit a similar pattern, so we omit those
tables. For the bivariate LGCP models under consideration, there is a significant
difference in computation time between the MC and BI methods. The fastest
computing time for BI is about 172 minutes for the negative correlation models
and 130 minutes for the positive correlation models. Whereas, the computing
time for MC remains under 36 minutes across all settings. Even when employ-
ing a grid search approach to select the control parameters in the MC method,
as discussed in the next section, the computation time for the MC estimator
remains much faster than BI. Please refer to Table E.1 in the Appendix for
details.

Now, we discuss the effects of the control parameters on the computation
time of MC and BI. As expected, for MC, a larger range R results in longer
computation times. As WL increases, the computation time of MC also increases
due to the increase in the number of observations. The computational time of
the BI estimation is affected by the number of grids. Regarding the sign of the
correlation, except for the case of (WL, R) = (30, 0.35WL), the computation
time of the MC estimation for negatively correlated models seems to be slightly
faster than that for positively correlated models, whereas the opposite pattern
is observed for the BI.

6.2.2. Optimal control parameters for MC

In an effort to obtain more accurate parameter estimates for MC, we employ a
grid search method to select the optimal control parameters (c, R). To do so,
we first fix the window D = [−5, 5]2 and determine the appropriate number
of Monte Carlo samples. Table E.1 in the Appendix summarizes the selected
optimal control parameters (c, R) based on two independent realizations (Ex-
periment I and II) for each model, along with different numbers of Monte Carlo
samples of Σ̂n(θ0) in (5.3). Additional information such as the log determinant
of Σ̂n(θ0) and the total computing time can also be found in the same table.

From Table E.1 in the Appendix, we observe that using 300 or more Monte
Carlo samples leads to consistent selection of optimal control parameters across
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different realizations. However, with only 100 Monte Carlo samples, the selected
optimal parameters from two different experiments lack consistency. This sug-
gests that using 300 Monte Carlo samples is often sufficient for selecting control
parameters, providing robust results without unnecessary additional computa-
tion.

Next, Table 3 below presents the optimal parameter (c, R) based on 300
Monte Carlo samples for each model and window size. We observe that the
optimal parameter sets (c, R) are consistent across two different realizations
(Experiment I and II). For models (M1) and (M4) with WL=10, the optimal
control parameters are stable across the sign of the correlations. Interestingly,
however, for models (M2) and (M3) with WL=10, these values vary between
the positively and negatively correlated models. As the window length increases
(corresponding to WL∈ {20, 30}), the effect of correlation becomes more promi-
nent. For instance, for models (M1), (M3), and (M4) with WL=30, the difference
in the selected maximum range R between positively and negatively correlated
models exceeds 3 units. Specifically, positively correlated models tend to require
larger R values compared to those of negatively correlated models. Moreover,
when WL∈ {20, 30}, models with larger absolute cross-correlation (|ρ|) tend to
require smaller c values. For example, for models (M3) and (M4), the optimal
c is less than or equal to 0.3. This observation may be due to the fact that
larger |ρ|, which induces more fluctuation in the cross K-function, necessitating
a smaller c to mitigate this fluctuation. However, we do not have a theoretical
justification for this finding.

Table 3

Optimal control parameters (c, R) for different models and different window sizes. Here, we
use 300 Monte Carlo samples to estimate the asymptotic covariance matrix.

Model Correlation WL=10 WL=20 WL=30

(M1) Negative (0.5, 2.00) (0.2, 5.00) (0.5, 2.50)
Positive (0.5, 2.50) (0.5, 6.00) (0.5, 7.00)

(M2) Negative (0.5, 3.50) (0.5, 2.00) (0.5, 3.25)
Positive (0.4, 2.50) (0.5, 4.50) (0.5, 3.25)

(M3) Negative (0.5, 1.00) (0.2, 5.50) (0.2, 6.25)
Positive (0.4, 2.50) (0.3, 6.50) (0.1, 10.00)

(M4) Negative (0.5, 3.50) (0.3, 7.00) (0.3, 5.50)
Positive (0.5, 3.50) (0.1, 5.50) (0.2, 8.50)

6.2.3. Parameter accuracy

Now, we assess the accuracy of both the MC and BI estimators. When im-
plementing the MC method, we consider two variants of the MC estimators:
one with the optimal control parameters obtained in Table 3 (referred to as
“MC_opt”) and another using fixed control parameters (c, R) = (0.2, 0.15WL),
where WL ∈ {10, 20, 30} is the window length (referred to as “MC_fix”). This
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Fig 1. Boxplot of parameter estimates from MC estimators (“MC_opt” and “MC_fix”)
and BI estimator for positively correlated models (different rows) and different window sizes
(“WL10”, “WL20” and “WL30” in each panel). True parameter values are marked with hor-
izontal dashed lines.

allows us to assess the improvements to the MC approach from using our grid
search method for control parameter selection.

Figure 1 displays boxplots of the parameter estimates from the three estima-
tors for positively correlated models. The corresponding boxplots for negatively
correlated models can be found in Figure E.2 in the Appendix. The mean ab-
solute error (MAE), standard deviation (SD), and root mean squared error
(RMSE) of the three estimators are also summarized in Tables E.2–E.5 in the
Appendix.

From Figure 1 (see also Figure E.2 in the Appendix), the BI estimator has
the smallest SD across all models and window sizes, with the differences being
more pronounced for the smallest window (WL=10) and the scale parameters
σZi . This is because our estimator is constructed based on the nonparametric
estimator of the K-function matrix, which may require more observed points to
obtain reliable estimates (the average number of points in WL=10 is 100 for each
type). Moreover, we observe that as WL increases, the SDs of all parameters
for the MC estimators decrease and become comparable to those of the BI
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estimator. Furthermore, as window size increases, the root mean squared error
(RMSE) of both MC estimators in all parameter settings tends to converge to
zero, supporting the consistency result of the MC estimator shown in Theorem
4.2. For the largest window (WL = 30), boxplots of the scale parameters (σZi)
exhibit symmetric distributions with fewer than 3% outliers across all models,
suggesting the asymptotic Gaussianity of the MC estimator. However, when
evaluating the range parameters (φZi), even for a large sampling window, the
distributions remain slightly right-skewed with up to 5% outliers. This may
indicate an overestimation of range parameters, particularly for those with large
true values. In cases where an accurate normal approximation is desired, one
can apply an appropriate transformation (such as a logarithmic transformation)
to the parameter values to obtain better approximation results.

Interestingly, for some parameters (e.g., σZ1 and φZ1 in positively correlated
models), the BI estimator exhibits significant biases, resulting in the largest
mean absolute deviation (MAD) and RMSE for these parameters. This may
indicate the difficulty of obtaining reliable estimates based on the current com-
putational grids and the length of the Markov chains. We find that the biases of
the BI estimator are reduced when using finer (128 × 128) computational grids
compared to coarser (32×32) grids. However, BI estimation on finer grids takes
approximately eight times longer than on coarse grids and still yields larger
MAD and RMSE values than the MC estimators.

Lastly, we focus on the relative performance of the two MC estimators.
Compared to the MC estimator results using the fixed control parameters, we
observe a clear improvement in terms of MAE, SD, and RMSE for all mod-
els and window sizes when using the optimal control parameters. These gains
are more appreciable for smaller sampling windows, as the variance of θ̂n is
|Dn|−1Σ(θ0)+o(|Dn|−1) as n → ∞, and smaller |Dn| implies a larger difference
in the variances between “MC_opt” and “MC_fix”. Since obtaining reliable pa-
rameter estimates is one of the top priorities in estimation, implementing the
optimal control parameter selection in MC estimation is worth the additional
computational time required by the grid search method.

6.3. Utilizing the MC method for multivariate PSNCP model

In addition to the bivariate LGCP models above, we also implement our MC
method to the multivariate PSNCP model which offers a flexible approach to
modeling spatial point patterns characterized by clustered intra-specific inter-
actions alongside positive or negative inter-specific interactions. Specifically, we
consider the five-variate PSNCP model X = (X1, . . . , X5) on R

2, driven by
the latent intensity field Λ(x) = (Λ1(x), . . . , Λ5(x)), where each Λi(x) satisfies
Λi(x) = Si(x)Fi(x) for x ∈ R

2 and i ∈ {1, . . . , 5}. Here, the shot-noise fields
Si(x) are given by Si(x) = κ−1

i

∑
y∈Φi

k(‖x − y‖), where Φi is a homogeneous
Poisson point process with intensity κi ∈ (0, ∞), and k(r) is the Gaussian kernel
function defined as

k(r) = 1
2πω2 exp(−r2/(2ω2)), r ∈ R. (6.4)
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Si(·) accounts for the clustering within the i-th point process. Next, the com-
pound fields in PSNCP model are given by

Fi(x) = exp

⎛⎝∑
��=i

κlξli

k(0)

⎞⎠ ∏
l �=i

∏
y∈Φl

{
1 + ξlik̃(‖x − y‖)

}
, i ∈ {1, . . . , 5}.

(6.5)
Here, ξli ∈ (−1, ∞) and k̃(r) = k(r)/k(0), with k(r) defined as in (6.4). The
coefficients {ξij} in (6.5) indicate whether Xi is clustered around (ξij > 0) or
repelled by (ξij < 0) the latent process Φj . The compound field Fi(·) captures
the combined effect of all other processes on the i-th process. We note that the
analytic expressions for the marginal and cross PCFs are given in [26], Equation
(10). Thus, straightforward computation of K- and Q-function matrices are
available for multivariate PSNCP.

For the true data-generating process, we assume that the first-order intensi-
ties λ

(i)
1 are known and equal to one for all i. Furthermore, for the interest of

parsimony, we use common parameters κi = κ = 0.2 and ω2
i = η = 0.25 in the

shot-noise fields Si(x) and sparse interaction matrix {ξij}:

ξ12 = ξ21 = α1 = 0.7, ξ1,5 = ξ5,1 = α2 = −0.8,

ξ3,5 = ξ5,3 = α3 = 0.3, ξ45 = ξ54 = α4 = 0.5,

and ξi,j = 0 otherwise. Therefore, the parameters of interest are θ =
(κ, η, α1, α2, α3, α4)
.

Lastly, in simulations, we generate 500 five-variate spatial point patterns
from the above model and calculate two parameter estimators using (1) the MC
method and (2) the weighted composite likelihood (WCL) method as considered
in [26].

6.4. Results

Analogous to Section 6.2.2, we use 300 Monte Carlo samples to select the op-
timal control parameters of the MC estimator. The selected optimal control
parameters are (c, R) = (0.3, 1.75) for D = [−5, 5]2; (c, R) = (0.5, 1.00) for
D = [−10, 10]2; and (c, R) = (0.5, 1.00) for D = [−15, 15]2.

In Figure 2, we present boxplots of the parameter estimates from the 500 sim-
ulations. For the MC estimator, we consider both the optimal control parameters
(referred to as “MC_opt”) and fixed control parameters (c, R) = (0.2, 0.15WL)
(referred to as “MC_fix”). Results for the computation time and evaluation
metrics (MAE, SD, and RMSE) for the MC and WCL estimators are reported
in Table E.6 in the Appendix.

Regarding computation time, we observe that for the five-variate PSNCP
model under consideration, our MC method (both “MC_opt” and “MC_fix”)
is faster than the WCL method across all window sizes. As discussed in Section
6.2.1, the computing time of MC increases as the window size increases, while the
time required for the WCL estimator is not impacted by the sampling window.
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Fig 2. Boxplot of parameter estimates from MC estimators (“MC_opt” and “MC_fix”) and
WCL estimator for different window sizes (“WL10”, “WL20” and “WL30” in each panel).
True parameter values are marked with horizontal dashed lines.

Turning to parameter estimation of the MC (either type) and WCL estima-
tors, we observe that both perform quite well across all window sizes. Specif-
ically, the biases and standard errors of both estimators tend to zero as WL
increases, and for a large window size (WL=30), boxplots are symmetric and
centered around the true values. These results indicate that both the MC and
WCL estimators yield satisfactory large sample properties. Now, we compare
their accuracies. As discussed in Section 6.2.3, the performance of “MC_opt” is
superior to “MC_fix” for all parameters and windows, although the distinction
between the two MC estimators is not as clear as in the bivariate LGCP models
considered in Section 6.1. Interestingly, for parameters κ and η that correpond
to the shot-noise fields Si(·), our estimator (both “MC_opt” and “MC_fix”)
has smaller RMSE than the WCL estimator across all window sizes. However,
the WCL method performs better (in terms of RMSE) for the parameters in
the interaction matrix (α1, . . . , α4).

7. Concluding remarks and discussions

In this article, we propose a new inferential method for multivariate stationary
spatial point processes by minimizing the contrast (MC) between the matrix-
valued scaled K-function and its nonparametric edge-corrected estimator. When
the model is correctly specified, the resulting MC estimator has satisfactory
large sample properties. These enable us to conduct various statistical inferences
on multivariate spatial point processes, such as tests for the homogeneity of
multivariate spatial point patterns, as discussed in Remark 4.2. Moreover, the
proposed method is computationally efficient, and the form of the asymptotic
covariance matrix of the MC estimator provides insight into the selection of
optimal control parameters in the discrepancy measure.

From the results of our simulations, we believe that our method could serve
as a valuable alternative to the BI or WCL methods for analyzing multivariate
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spatial point processes. The significantly faster computing speed is the chief
advantage of our method, enabling researchers to obtain initial values, analyze
large samples, and evaluate numerous complex point process models efficiently.
Moreover, it is intriguing that under certain parameter settings, our estimator
outperforms those in the BI or WCL methods. Currently, we lack a theoretical
basis for explaining the relative efficiency of these estimators, but this appears
to be a good avenue for future research.

However, implementing our estimator for large-dimensional multivariate mod-
els requires some caution. Note that the “full” parameters in the m-variate
PSNCP model as in Section 6.3 increase with order O(m2). Therefore, even for
m = 5, numerical calculation of the MC estimator for the full model may not
be feasible without regularization methods. This limitation also applies to the
BI and WCL methods when analyzing large-dimensional multivariate models.
Indeed, we observe that both MC and WCL estimators become highly unstable
when the number of parameters in the five-variate PSNCP exceeds 10. In such
situations, it may be necessary to consider regularization methods as discussed
in [6, 25]. Details of the regularized MC method for multivariate spatial point
processes will be explored in future research.

Lastly, we discuss two possible extensions of our study. Firstly, the emphasis
of this paper is on using the scaled K-function matrix to construct a discrepancy
function. However, we believe that similar arguments as in Section 4.2 (also, Ap-
pendices B and C) can be applied to derive the asymptotic normality of the MC
estimator based on the PCF matrix G(x) = [gi,j(x)]mi,j=1. Please see [3], Section
4.1 for some technical results when implementing the PCF. Secondly, in practi-
cal scenarios, the joint stationarity assumption is often too stringent. Therefore,
we may relax this assumption and consider the MC estimator for second-order
intensity reweighted stationary [SOIRS; 2] processes. Indeed, [46] proposed a
least squares estimation of the multivariate SOIRS LGCP process. See also [7]
for the quasi-likelihood approach to fitting multivariate SOIRS processes and
[18, 45] for theoretical developments.

Appendix A: A comparison between the two Q-function estimators

Recall (3.2) and (3.3). For i, j ∈ {1, . . . , m}, we define the two marginal (i = j)
and cross (i 	= j) Q-function estimators as

[Q̂0n(r)]i,j = |Dn|−1
∑

x∈Xi

∑
y∈Xj

1{0<‖x−y‖≤r} (A.1)

and
[Q̂n(r)]i,j = |Dn|−1

∑
x∈Xi

∑
y∈Xj

b(x, y)1{0<‖x−y‖≤r}, (A.2)

where b(·, ·) is an edge-correction factor. The following theorem addresses the
first and second moment bounds for [Q̂0n(r)]i,j and [Q̂n(r)]i,j . The proof tech-
nique is almost identical to that in [3], Theorems 3.5 and 4.1, so we omit the
details.



1912 L. Zhu et al.

Theorem A.1. Let X = (X1, . . . , Xm) be a multivariate stationary point pro-
cess that satisfies Assumption 4.1(i) (for � = 4). Moreover, we assume that the
increasing sequence of sampling windows {Dn} in Rd is c.a.w., and the edge-
correction factor is such that b ∈ {b1, b2} (or b ∈ {b1, b2, b3}, assuming X is
isotropic). Then, for i, j ∈ {1, . . . , m}, the following three assertions hold:

E[[Q̂0n(r)]i,j − [Q̂n(r)]i,j ] = O(n−1), (A.3)
Var{[Q̂0n(r)]i,j − [Q̂n(r)]i,j} = O(n−1|Dn|−1) = O(n−d−1), (A.4)
Var{[Q̂n(r)]i,j} = O(|Dn|−1) = O(n−d). (A.5)

As a corollary, we show that the asymptotic covariance matrix of vec(Ĝn(h))
as in (4.9) is equal to that of a vectorization of non-edge corrected counterparts

[Ĝ0n(h)]i,j = |Dn|1/2
{

[Q̂0n(h)]i,j − E[Q̂0n(h)]i,j
}

. (A.6)

Corollary A.1. Suppose the same set of Assumptions and notation as in The-
orem A.1 holds. For i, j ∈ {1, . . . , m}, let [Ĝn(h)]i,j and [Ĝ0n(h)]i,j are defined
as in (4.8) and (A.6), respectively. Then, for a, b, c, d ∈ {1, . . . , m},

lim
n→∞

∣∣∣Cov
{

[Ĝn(h)]a,b, [Ĝn(h)]c,d

}
− Cov

{
[Ĝ0n(h)]a,b, [Ĝ0n(h)]c,d

}∣∣∣ = 0.

Proof. By triangular inequality and Cauchy-Schwarz inequality, we have

|Cov(X1, Y1) − Cov(X2, Y2)| ≤ |Cov(X1 − X2, Y1)| + |Cov(X2, Y1 − Y2)|
≤ {Var(X1 − X2)}1/2{Var(Y1)}1/2 + {Var(Y1 − Y2)}1/2{Var(X2)}1/2.

(A.7)
Let X1 = [Ĝn(h)]a,b, X2 = [Ĝ0n(h)]a,b, Y1 = [Ĝn(h)]c,d, and Y2 = [Ĝ0n(h)]c,d.
Then, from (A.4), we have

Var(X1−X2) = |Dn|Var{[Q̂0n(h)]a,b−[Q̂n(h)]a,b} = O(n−1), n → ∞. (A.8)

Similarly, Var(Y1 − Y2) = O(n−1) as n → ∞. Moreover, from (A.4) and (A.5),
we have

VarX2 ≤ 2(Var(X2 − X1) + Var(X1)) = O(1), n → ∞. (A.9)

Similarly, we have VarY1 = O(1) as n → ∞. Substitute (A.8) and (A.9) into
(A.7) gives∣∣∣Cov{[Ĝn(h)]a,b, [Ĝn(h)]c,d − Cov{[Ĝ0n(h)]a,b, [Ĝ0n(h)]c,d

∣∣∣ = O(n−1/2)

as n → ∞. Thus, we get the desired results. □
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Appendix B: Expression for the asymptotic covariance matrix

In this section, we provide an expression for the asymptotic covariance matrix
of vec(Ĝn(h)) in terms of the joint intensity functions of the underlying point
process X. For a, b, c, d ∈ {1, . . . , m}, let

σ2
(a,b:c,d)(h) = lim

n→∞
Cov
{

[Ĝn(h)]a,b, [Ĝn(h)]c,d

}
. (B.1)

Due to the asymmetry of the edge-correction, Ĝn(h) may not be symmet-
ric. Thus, calculations of σ2

(a,b:c,d)(h) are cumbersome. As a remedy, for i, j ∈
{1, . . . , m}, let [Q̂0n(h)]i,j be a nonparametric estimator of [Q(h; θ0)]i,j , but
without the edge-correction as in (A.1). Let

η2
(a,b:c,d)(h) = lim

n→∞
Cov
{

[Ĝ0n(h)]a,b, [Ĝ0n(h)]c,d

}
, (B.2)

where [Ĝ0n(h)]i,j is an empirical process of [Q(h; θ0)]i,j defined as in (A.6).
Then, in Corollary A.1, we show

σ2
(a,b:c,d)(h) = η2

(a,b:c,d)(h), a, b, c, d ∈ {1, . . . , m}. (B.3)

One advantage of using η2
(a,b:c,d)(h) over σ2

(a,b:c,d)(h) is that Ĝ0n(h) is symmetric.
Therefore, the number of different cases to consider in the expression η2

(a,b:c,d)(h)
is significantly reduced. Below, we provide the complete list of expressions for
σ2

(a,b:c,d)(h).

Theorem B.1. Let X = (X1, . . . , Xm) be a multivariate stationary point pro-
cess that satisfies Assumption 4.1(i) (for � = 4). Moreover, we assume that the
increasing sequence of sampling windows {Dn} in R

d is c.a.w. and the edge-
correction factor is such that b ∈ {b1, b2} (or b ∈ {b1, b2, b3}, assuming X is
isotropic). Then, σ2

(a,b:c,d)(h) is well-defined for all a, b, c, d ∈ {1, . . . , m} and
we have

σ2
(a,b:c,d)(h) = σ2

(b,a:c,d)(h) = σ2
(a,b:d,c)(h) = σ2

(b,a:d,c)(h). (B.4)

Let i, j, k, � be the distinct indices of {1, . . . , m} (If m < 4, then, we select at
most m distinct indices) and I() be the indicator function. Then, using (B.4),
we have seven distinct expressions for σ2

(a,b:c,d)(h), which we will list below.
[case 1]: (a, b) = (c, d) = (i, i);

σ2
(i,i:i,i)(h) =

∫∫∫
I(‖u1‖ ≤ h)I(‖u3‖ ≤ h)

{
λ

(i)
4,red(u1, u2, u2 + u3)

−λ
(i)
2,red(u1)λ(i)

2,red(u3)
}

du1du2du3

+4
∫∫

I(‖u1‖ ≤ h)I(‖u2‖ ≤ h)λ(i)
3,red(u1, u2)du1du2

+2
∫

I(‖u1‖ ≤ h)λ(i)
2,red(u1)du1.



1914 L. Zhu et al.

[case 2]: (a, b) = (c, d) = (i, j);

σ2
(i,j:i,j)(h) =

∫∫∫
I(‖u1‖ ≤ h)I(‖u3‖ ≤ h)

{
λ

(i,j)
2,2 (u2, u1, u2 + u3)

−λ
(i,j)
1,1,red(u1)λ(i,j)

1,1,red(u3)
}

du1du2du3

+
∫∫

I(‖u1‖ ≤ h)I(‖u2‖ ≤ h)
{

λ
(i,j)
2,1,red(u1, u1 + u2)

+λ
(j,i)
1,2,red(u1, u2)

}
du1du2 +

∫
I(‖u1‖ ≤ h)λ(i,j)

1,1,red(u1)du1.

[case 3]: (a, b) = (i, i), (c, d) = (j, j);

σ2
(i,i:j,j)(h) =

∫∫∫
I(‖u1‖ ≤ h)I(‖u3‖ ≤ h)

{
λ

(i,j)
2,2,red(u1, u2, u2 + u3)

−λ
(i,j)
1,1,red(u1)λ(i,j)

1,1,red(u3)
}

du1du2du3

[case 4]: (a, b) = (i, i), (c, d) = (i, j);

σ2
(i,i:i,j)(h) =

∫∫∫
I(‖u1‖ ≤ h)I(‖u3‖ ≤ h)

{
λ

(i,j)
3,1,red(u1, u2, u2 + u3)

−λ
(i)
2,red(u1)λ(i,j)

1,1,red(u3)
}

du1du2du3

+
∫∫

I(‖u1‖ ≤ r)I(‖u2‖ ≤ h)
{

λ
(i,j)
2,1,red(u1, u1 + u2)

+λ
(i,j)
2,1,red(u1, u2)

}
du1du2.

[case 5]: (a, b) = (i, i), (c, d) = (j, k);

σ2
(i,i:j,k)(h) =

∫∫∫
I(‖u1‖ ≤ h)I(‖u3‖ ≤ h)

{
λ

(i,j,k)
2,1,1,red(u1, u2, u2 + u3)

−λ
(i)
2,red(u1)λ(j,k)

1,1,red(u3)
}

du1du2du3

[case 6]: (a, b) = (i, j), (c, d) = (i, k);

σ2
(i,j:i,k)(h) =

∫∫∫
I(‖u1‖ ≤ h)I(‖u3‖ ≤ h)

{
λ

{i,j,k}
2,1,1,red(u2, u1, u2 + u3)

−λ
(i,j)
1,1,red(u1)λ(i,k)

1,1,red(u3)
}

du1du2du3

+
∫∫

I(‖u1‖ ≤ h)I(‖u2‖ ≤ h)λ(i,j,k)
1,1,1,red(u1, u2)du1du2.



MC method for multivariate SPP 1915

[case 7]: (a, b) = (i, j), (c, d) = (k, �);

σ2
(i,j:i,k)(h) =

∫∫∫
I(‖u1‖ ≤ h)I(‖u3‖ ≤ h)

{
λ

(i,j,k,�)
1,1,1,1,red(u1, u2, u2 + u3)

−λ
(i,j)
1,1 (u1)λ(k,�)

1,1,red(u3)
}

du1du2du3.

Proof. Under (4.2) and Assumption 4.1, for i, j ∈ {1, . . . , m}, it is straightfor-
ward that the limit of Var[Ĝn(h)]i,j finitely exists. Therefore, using the identity
Cov(X, Y ) = 1

2 (Var{X + Y } − VarX − VarY ), σ2
(a,b:c,d)(h) also exists for all

a, b, c, d ∈ {1, . . . , m}. Showing (B.4) is a direct consequence of (B.3) and the
symmetry of Ĝ0n(h).

Next, due to (B.3), it is enough to calculate η2
(a,b:c,d)(h) instead of σ2

(a,b:c,d)(h).
As indexed by [case 1]–[case 7] in the statement of the theorem, there are seven
different expressions for η2

(a,b:c,d)(h). Since [case 1] is shown in [20], Appendix
B, we only show [case 2]. The cases [case 3]–[case 7] can be derived in a
similar way. Let φ(x, y) = I(‖x −y‖ ≤ h), and we simplify the notation x ∈ Xi

to x ∈ [i] for i ∈ {1, . . . , m}. Using (B.1) and (A.1), for i 	= j, we have

Cov
{

[Ĝ0n(h)]i,j , [Ĝ0n(h)]i,j
}

= |Dn|−1
Cov

⎧⎨⎩ ∑
x∈[i],y∈[j]

φ(x, y),
∑

z∈[i],w∈[j]

φ(z, w)

⎫⎬⎭
= |Dn|−1

E

⎡⎣ ∑
x,z∈[i]; y,w∈[j]

φ(x, y)φ(z, w)

⎤⎦
−|Dn|−1

E

⎡⎣ ∑
x∈[i], y∈[j]

φ(x, y)]

⎤⎦E
⎡⎣ ∑

z∈[i], w∈[j]

φ(z, w)

⎤⎦ .

Since X is simple, P (x ∈ [i] & x ∈ [j]) = 0. Therefore, the above can be
decomposed as

Cov
{

[Ĝ0n(h)]i,j , [Ĝ0n(h)]i,j
}

= A1 + A2 + A3 + A4, (B.5)

where

A1 = |Dn|−1
E

⎡⎣ ∑
x∈[i],y∈[j]

φ(x, y)2

⎤⎦ ,

A2 = |Dn|−1
E

⎡⎣ ∑
x �=z∈[i],y∈[j]

φ(x, y)φ(z, y)

⎤⎦ ,

A3 = |Dn|−1
E

⎡⎣ ∑
x∈[i],y �=w∈[j]

φ(x, y)φ(x, w)

⎤⎦ , and
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A4 = |Dn|−1
{
E

⎡⎣ ∑
x �=z∈[i],y �=w∈[j]

φ(x, y)φ(z, w)

⎤⎦
−E

⎡⎣ ∑
x∈[i], y∈[j]

φ(x, y)]

⎤⎦E
⎡⎣ ∑

z∈[i], w∈[j]

φ(z, w)

⎤⎦}.

To represent each term above in integral form, we use the celebrated Campbell’s
formula which states that

E

⎡⎣ �=∑
x1,1,...,x1,n1 ∈X1

· · ·
�=∑

xm,1,...,xm,nm ∈Xm

g(x)

⎤⎦ =
∫

DN

g(x)λn(x)μ(dx) (B.6)

For any non-negative measurable function g : DN �→ R (N = n1 + · · · + nm),
where

∑�=
x1,··· ,xn∈X is the sum over the n pairwise distinct points x1, · · · , xn in

X and μ(dx) is a Lebesgue measure on R
N . Using (B.6) and since φ(x, y)2 =

φ(x, y), A1 is equal to

|Dn|−1
∫∫

D2
n

I(‖x − y‖ ≤ h)λ(i,j)
1,1 (x, y)dxdy.

Using change of variables: u1 = y − x and u2 = x and since λ
(i,j)
1,1 (x, y) =

λ
(i,j)
1,1,red(y − x),

A1 = |Dn|−1
∫

Dn

(∫
Dn−u2

I(‖u1‖ ≤ h)λ(i,j)
1,1,red(u1)du1

)
du2

= |Dn|−1
∫

D0n

(∼)du2 + |Dn|−1
∫

En

(∼)du2,

where Dn − u2 = {u1 − u2 : u1 ∈ Dn}, D0n is an inner window of Dn of depth
h as in (3.4), and En = Dc

0n ∩ Dn.
Next, we calculate each term in A1. When u2 ∈ D0n, then Bd(u2, h) ⊂ Dn.

Thus,∫
Dn−u2

I(‖u1‖ ≤ h)λ(i,j)
1,1,red(u1)du1 =

∫
Rd

I(‖u1‖ ≤ h)λ(i,j)
1,1,red(u1)du1.

Therefore, the first integral in A1 is

|Dn|−1
∫

D0n

∫
Dn−u2

I(‖u1‖ ≤ h)λ(i,j)
1,1,red(u1)du1du2

= |D0n|
|Dn|

∫
I(‖u1‖ ≤ h)λ(i,j)

1,1,red(u1)du1.

(B.7)
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The second integral in A2 is bounded with

|Dn|−1
∣∣∣∣∫

En

∫
Dn−u2

I(‖u1‖ ≤ h)λ(i,j)
1,1,red(u1)du1du2

∣∣∣∣
≤ |Dn|−1 sup

‖u‖≤h

|λ(i,j)
1,1,red(u)|

∫
En

∫
I(‖u1‖ ≤ h)u1u2

= O

(
hd |En|

|Dn|

)
= O(n−1), n → ∞,

(B.8)

where the first identity is due to Assumption 4.1(i) and the second identity is
due to (4.2). Combining (B.7), (B.8), and using that limn→∞ |D0n|/|Dn| = 1
due to (4.2), we have

lim
n→∞

A1 =
∫

I(‖u1‖ ≤ h)λ(i,j)
1,1,red(u1)du1.

Similarly, we can show

lim
n→∞

A2 =
∫∫

I(‖u1‖ ≤ h)I(‖u2‖ ≤ h)λ(i,j)
2,1,red(u1, u1 + u2)du1du2,

lim
n→∞

A3 =
∫∫

I(‖u1‖ ≤ h)I(‖u2‖ ≤ h)λ(i,j)
1,2,red(u1, u2)du1du2.

Evaluation of A4 is slightly different. Again, using Campbell’s formula, we have

A4 = |Dn|−1
∫∫∫∫

D4
n

I(‖x − y‖ ≤ h)I(‖z − w‖ ≤ h)

×
{

λ
(i,j)
2,2 (x, z, y, w) − λ

(i,j)
1,1 (x, y)λ(i,j)

1,1 (z, w)
}

dxdydzdw.

By using the following change of variables: u1 = y −x, u2 = z −x, u3 = w −z,
and u4 = x, we have,

A4 = |Dn|−1
∫

Dn

∫
Dn−Dn

∫
Dn−u4

I(‖u1‖ ≤ h)I(‖u3‖ ≤ h)

×
(∫

Dn−u3−u4

{
λ

(i,j)
2,2,red(u2, u1, u2 + u3)

−λ
(i,j)
1,1,red(u1)λ(i,j)

1,1,red(u3)
}

du2

)
du1du3du4.

It is not straightforward that the above integral exists. However, in Lemma D.2,
we show that λ

(i,j)
2,2,red(u2, u1, u2 + u3) − λ

(i,j)
1,1,red(u1)λ(i,j)

1,1,red(u3) can be written
as a sum of the reduced joint cumulant intensities where each term contains u2.
Then, the absolute integrability of the above integral follows from Assumption
4.1(i) (for � = 4). Therefore, we can apply Fubini’s theorem. Using the similar
techniques applied for the representation of A1, we can show that

lim
n→∞

A4 =
∫∫∫

I(‖u1‖ ≤ h)I(‖u3‖ ≤ h)

×
{

λ
(i,j)
2,2,red(u2, u1, u2 + u3) − λ

(i,j)
1,1,red(u1)λ(i,j)

1,1,red(u3)
}

du2du1du3.
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All together with (B.5), we prove [case 2]. Thus, proves the theorem. □

Appendix C: Proofs of Theorems 4.1 and 4.2

C.1. Proof of Theorem 4.1

We first show (4.10). Recall (3.10). We have

[Q̂n(h)]i,j = 1
|Dn|

∑
x∈Xi,y∈Xj

b(x, y)1{0<‖x−y‖≤r} a.s. h ∈ [0, ∞). (C.1)

Under ergodicity of X, we can apply [36], Theorem 1 and obtain

lim
n→∞

[Q̂n(h)]i,j = E[Q̂n(h)]i,j = [Q(h; θ0)]i,j a.s. h ∈ [0, ∞).

The identity above is due to the unbiasedness of [Q̂n(h)]i,j when using the ap-
propriate edge-correction factor. Since both Q̂n(h) and [Q(h; θ0)]i,j are positive
and increasing functions of h ∈ [0, ∞), the uniform almost sure convergence of
the above on h ∈ [0, R] can be obtained by applying standard techniques as in
[30], Proposition 5.24. Therefore, (4.10) follows.

Next, we show (4.11). Techniques to prove (4.11) are similar to those in [19],
Theorem 1, and [38], Section 3, so we only sketch the proof. Recall (4.8). To
show the central limit theorem of vec(Ĝn(h)), we use the so-called sub-block
technique. Let {Di

�(n) : 1 ≤ i ≤ kn} be the kn number of non-overlapping
subcubes of Dn with side length �(n) = nβ , where

β ∈ (2d/(2d + ε), 1). (C.2)

Here, ε > 0 is from Assumption 4.1(ii). Since {Di
�(n) : 1 ≤ i ≤ kn} are non-

overlapping, we have∣∣∣∪kn
i=1Di

�(n)

∣∣∣ = kn�(n)d = knndβ ≤ |Dn| ≤ Cnd.

Here, the last inequality is due to (4.2). Therefore, we have

kn = O(nd(1−β)) as n → ∞. (C.3)

Next, let {Di
m(n) : 1 ≤ i ≤ kn} be the subcubes of {Di

�(n) : 1 ≤ i ≤ kn}, where
for i ∈ {1, . . . , kn}, Di

m(n) is a subcube of Di
�(n) with the same center and side

length

m(n) = nβ − nη < nβ = �(n) for some η ∈ (2d/(2d + ε), β). (C.4)

Then, we have

d(Di
�(n), Dj

m(n)) ≤ nη for i 	= j ∈ {1, . . . , kn}. (C.5)



MC method for multivariate SPP 1919

For i ∈ {1, . . . , kn}, let Q̂
(i)
n (h), h ≥ 0, be a nonparametric edge-corrected esti-

mator of Q(h; θ0) defined similarly to (3.10), but within the sampling window
Di

m(n). For i ∈ {1, . . . , kn}, p, q ∈ {1, . . . , m}, and h ∈ [0, ∞), let

[Ĝ(i)
n (h)]p,q = |Di

m(n)|1/2
{

[Q̂(i)
n (h)]p,q − [Q(h; θ0)]p,q

}
, (C.6)

[Tn]p,q = k−1/2
n

kn∑
i=1

[Ĝ(i)
n (h)]p,q, and [T̃n]p,q = k−1/2

n

kn∑
i=1

[G̃(i)
n (h)]p,q. (C.7)

Here, [G̃(i)
n (h)]p,q represents independent copy of [Ĝ(i)

n (h)]p,q.
Next, let vec(Tn) = ([Tn]p,q)1≤p,q≤m be the vectorization of {[Tn]p,q} and

vec(T̃n) is defined similarly but replaces [Tn]p,q with [T̃n]p,q. Our goal is to show
that vec(Ĝn(h)) and vec(T̃n) are asymptotically negligible, thus, having the
same asymptotic distribution. To prove this, we use an intermediate random
variable, vec(Tn). We first show

vec(Ĝn(h)) − vec(Tn) P→ 0. (C.8)

To show this, we bound the first and second moments of the difference. Since
E[vec(Ĝn(h))] = E[vec(Tn)] = 0m×m, the first moment of the difference is zero.
To bound the second moment, we will show

lim
n→∞

Var
{

[Ĝn(h)]p,q − [Tn]p,q

}
= 0, p, q ∈ {1, . . . , m}. (C.9)

Then, by Markov’s inequality, we can prove (C.8). To show (C.9), let [Ĝ0n(h)]p,q

be the empirical process of Q(h; θ0) without edge-correction as in (A.6). Simi-
larly, we define [Ĝ(i)

0n(h)]p,q and [T0n]p,q as analogous no-edge-corrected estima-
tors to (C.6) and (C.7), respectively. Then, by the Cauchy-Schwarz inequality,
we have

Var
{

[Ĝn(h)]p,q − [Tn]p,q

}
≤ 3
(
Var
{

[Ĝn(h)]p,q − [Ĝ0n(h)]p,q

}
+Var

{
[Ĝ0n(h)]p,q − [T0n]p,q

}
+ Var {[T0n]p,q − [Tn]p,q}

)
.

By Theorem A.1, the first and third terms above are of order O(n−1). The
second term converges to zero as n → ∞, due to the calculations in [38], page
4200 (details omitted). Therefore, altogether, we show (C.9) and thus, (C.8)
holds.

Next, we will show
vec(Tn) − vec(T̃n) D→ 0. (C.10)

To show this, we focus on the characteristic functions of vec(Tn) and vec(T̃n).
For n ∈ N, let φn(t) and φ̃n(t) be the characteristic functions of vec(Tn) and
vec(T̃n), respectively, where t ∈ R

m×m. To show (C.10), it is enough to show

lim
n→∞

|φn(t) − φ̃n(t)| = 0, t ∈ R
m×m. (C.11)
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Proof of (C.11) is standard method using telescoping sum. Let

U (i)
n = exp(ik−1/2

n 〈t, vec(Ĝ(i)
n )〉, i ∈ {1, . . . , kn},

where 〈·, ·〉 denotes the dot product. Similarly, for i ∈ {1, . . . , kn}, we can define
Ũ

(i)
n by replacing [Ĝ(i)

n (h)]p,q with [G̃(i)
n (h)]p,q in the above definition. Then, by

definition,

φn(t) = E

[
kn∏
i=1

U (i)
n

]
and φ̃n(t) = E

[
kn∏
i=1

Ũ (i)
n

]
.

Since Ũ
(i)
n are jointly independent and has the same marginal distribution with

U
(i)
n , we have φ̃n(t) =

∏kn

i=1 EŨ
(i)
n =

∏kn

i=1 EU
(i)
n . Therefore, using telescoping

sum argument (cf. [38], equation (13)), we have

|φn(t) − φ̃n(t)| ≤
kn−1∑
j=1

∣∣∣∣∣Cov
{

j∏
i=1

U (i)
n , U (j+1)

n

}∣∣∣∣∣ . (C.12)

Now, we use the α-mixing condition. We first note that vec(Ĝ(i)
n ) ∈

(F(Di
m(n)))m×m, where for E ⊆ R

d, F(E) is the sigma algebra generated by X

in the sampling window E. Therefore, for i ∈ {1, . . . , kn − 1},

j∏
i=1

U (i)
n ∈ F(∪j

i=1Di
m(n)) and U (j+1)

n ∈ F(Dj+1
m(n)).

Moreover, for j ∈ {1, . . . , kn − 1}, we have: (1) |Uj | ≤ 1, (2) |Dj+1
m(n)| ≤ | ∪j

i=1

Di
m(n)| = jm(n)d, and (3) d

(
∪j

i=1Di
m(n), Dj+1

m(n)

)
≤ nη. Here, the third the

last inequality is due to (C.5). Therefore, using the α-mixing coefficient defined
as in (4.3) and the strong-mixing inequality (cf. [38], equation (9)), for i ∈
{1, . . . , kn − 1}, we have∣∣∣∣∣Cov

{
j∏

i=1
U (i)

n , U (j+1)
n

}∣∣∣∣∣ ≤ 4αjm(n)d(nη) ≤ Cjm(n)dn−η(d+ε),

where the last inequality is due to Assumption 4.1(ii). Summing the above over
j and using the bounds (C.3) and (C.4), we have

|φn(t) − φ̃n(t)| ≤ 4
kn−1∑
j=1

jm(n)dn−η(d+ε)

≤ Ck2
nm(n)dn−η(d+ε) = O(n2d−βd−η(d+ε)).

(C.13)

Since η ∈ (2d/(2d+ε), β), we have for all t ∈ R
m×m, limn→∞ |φn(t)−φ̃n(t)| = 0.

Therefore, we show (C.11), thus, shows (C.10).
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Back to our goal, combining (C.8) and (C.10), vec(Ĝn(h)) and vec(T̃n) share
the same asymptotic distribution. Now, we find the asymptotic distribution
of vec(T̃n). Recall (C.7). We have vec(T̃n) = k

−1/2
n
∑kn

i=1 vec(G̃(i)
n (h)), where

{vec(G̃(i)
n (h))} are i.i.d. mean zero random vectors. Since {Dn} is c.a.w., we

let kn → ∞. Therefore, under (4.5), we can apply the Lyapunov Central Limit
Theorem to conclude vec(T̃n) converges to the centered normal distribution. To
calculate the asymptotic covariance matrix of {vec(G̃(1)

n (h))}, since {D1
m(n)}

satisfies (4.2), the asymptotic covariance matrix of {vec(G̃(1)
n (h))} is the same

as the asymptotic covariance matrix of vec(G̃n(h)), where the exact expression
can be found in Appendix B. Altogether, we prove the theorem. □

C.2. Proof of Theorem 4.2

First, we will show that θ̂n, the minimizer of Un(θ), exists for all n ∈ N. To
demonstrate this, it suffices to show that

∫ R

0 [Q(h; θ)]i,j dh is continuous with re-
spect to θ. By assumption, Q(h; θ) is continuous in θ for fixed h ≥ 0. Moreover,
since Θ is compact and [Q(·; θ)]i,j is a positive and monotonically increasing
function, we have∫ R

0
sup
θ∈Θ

[Q(h; θ)]i,jdh ≤ R sup
θ∈Θ

[Q(R; θ)]i,j < ∞.

Therefore, by the Dominated Convergence Theorem, we show
∫ R

0 [Q(h; θ)]i,j dh
is continuous with respect to θ. Consequently, Un(θ) is continuous, ensuring
that θ̂n exists (which may not be unique) for all n ∈ N.

Next, we show θ̂n is uniquely determined up to a null set and satisfies (4.15).
Let θ̂n be one of the minimizers of Un(θ). Decompose

Q̂◦C
n (h) − Q◦C(h; θ̂n) =

{
Q̂◦C

n (h) − Q◦C(h; θ0)
}

+
{

Q◦C(h; θ0) − Q◦C(h; θ̂n)
}

= A + B.

Then, by definition of θ̂n, we have
∫ R

0 Tr(A + B)(A + B)
W (dh) ≤∫ R

0 Tr AA
W (dh), where W (dh) = w(h)dh. Expanding the above and using
that Tr BA
 = Tr AB
, we get

0 ≤
∫ R

0
Tr BB
W (dh) ≤ 2

∫ R

0
| Tr AB
|W (dh). (C.14)

For m × m symmetric matrix C, let λj(C) be the jth largest eigenvalue of C,
j ∈ {1, . . . , m}. Since, Q◦C is symmetric (here, we assume that C is symmetric),
by [17], Theorem 3, | Tr AB
| is bounded with

| Tr(AB
)| ≤ max
(∣∣λm(A) Tr(B) − λm(B) ·

{
mλm(A) − Tr(A)

} ∣∣,
∣∣λ1(A) Tr(B) − λm(B) ·

{
mλ1(A) − Tr(A)

} ∣∣)
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≤
∣∣λm(A) Tr(B) − λm(B) ·

{
mλm(A) − Tr(A)

} ∣∣
+
∣∣λ1(A) Tr(B) − λm(B) ·

{
mλ1(A) − Tr(A)

} ∣∣,
where A = (A + A
)/2. We will focus on the first term and the second term
can be treated in the same way. Integrate the first term above, we have∫ R

0

∣∣λm(A) Tr(B) − λm(B) · {mλm(A) − Tr(A)}
∣∣W (dh)

≤
∫ R

0
|λm(A)|| Tr(B)|W (dh)

+
∫ R

0
|λm(B)| · |mλm(A) − Tr(A)|W (dh).

(C.15)

Now, we bound both |λm(A)| and |mλm(A)−Tr(A)|. Since [A]i,j = [Q̂n(h)]ci,j

i,j −
[Q(h; θ0)]ci,j

i,j , from (4.10) and the continuous mapping theorem, we have
limn→∞ sup1≤i,j≤m sup0≤h≤R |[A]i,j | = 0 almost surely. Consequently, we ob-
tain

lim
n→∞

sup
0≤h≤R

max
1≤j≤m

|λj(A)| = 0 a.s. (C.16)

Moreover, since Tr(A) = Tr(A) =
∑m

i=1 λi(A), we have
∣∣mλm(A) − Tr(A)

∣∣ ≤
m|λm(A)| +

∑m
i=1 |λi(A)| ≤ 2m max1≤j≤m |λj(A)|. Therefore, from (C.16),

lim
n→∞

sup
0≤h≤R

∣∣mλm(A) − Tr(A)
∣∣ = 0 a.s. (C.17)

Substitute (C.16) and (C.17) into (C.15) and using the inequalities, |λm(B)| ≤∑m
j=1 |λj(B)| and | Tr B| ≤

∑m
j=1 |λj(B)|, we have∫ R

0

∣∣λm(A) Tr(B) − λm(B) · {mλm(A) − Tr(A)}
∣∣W (dh)

≤ oa.s.(1)
∫ R

0
(| Tr(B)| + |λm(B)|) W (dh)

≤ oa.s.(1) × 2
∫ R

0

⎧⎨⎩
m∑

j=1
|λj(B)|

⎫⎬⎭W (dh),

where oa.s.(1) is a sequence of random variables that converges to zero almost
surely. Similarly,∫ R

0

∣∣λ1(A) Tr(B) − λm(B) ·
{

mλ1(A) − Tr(A)
} ∣∣W (dh)

≤ oa.s.(1) ×
∫ R

0

⎧⎨⎩
m∑

j=1
|λj(B)|

⎫⎬⎭W (dh).
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Therefore, substitute the above two inequalities into (C.14) and using the Cauchy-
Schwarz inequality and Jensen’s inequality, we get

0 ≤
∫ R

0
Tr BB
W (dh) ≤ 0 ≤

∫ R

0
w(h)| Tr AB
|W (dh)

≤ oa.s.(1) ×
∫ R

0

⎧⎨⎩
m∑

j=1
|λj(B)|

⎫⎬⎭W (dh)

≤ oa.s.(1)
√

m ×
∫ R

0

⎧⎨⎩
m∑

j=1
|λj(B)|2

⎫⎬⎭
1/2

W (dh)

= oa.s.(1)
∫ R

0
(Tr BB
)1/2W (dh)

≤ oa.s.(1)
{∫ R

0
Tr BB
W (dh)

}1/2

.

Therefore,
∫ R

0 Tr(BB
W (dh)) =
∫ R

0 w(h)
{

Q◦C(h; θ̂n) − Q◦C(h; θ0)
}2

dh → 0
almost surely as n → ∞. Finally, since Q◦C(·; θ) is uniformly continuous with
respect to θ and θ �→ Q◦C(·; θ) is injective, by the continuous mapping theorem,
we have θ̂n → θ0 almost surely as n → ∞. Therefore, we prove (4.15) and also
show that θ̂n is uniquely determined up to a null set.

Next, we will show the asymptotic normality of θ̂n. By using Taylor expan-
sion, there exists θ̃n, a convex combination of θ̂n and θ0, such that

∂Un

∂θ
(θ̂n) = ∂Un

∂θ
(θ0) + ∂2Un

∂θ∂θ
 (θ̃n)(θ̂n − θ0) = 0. (C.18)

Now, we calculate the first and second derivatives of Un defined as in (3.12). By
simple algebra, we have

−∂Un

∂θ
(θ0) = 2

m∑
i,j=1

ci,j

∫ R

0

{
[Q̂n(h)]ci,j

i,j − [Q(h; θ0)]ci,j

i,j

}
× [Q(h; θ0)]ci,j−1

i,j [∇θQ(r; θ0)]i,jW (dh) = 2An(θ0),

(C.19)

∂2Un

∂θ∂θ
 (θ̃n)

= 2
m∑

i,j=1
c2

i,j

∫ R

0
[Q(h; θ̃n)]2ci,j−2

i,j

{
[∇θQ(h; θ̃n)]i,j

}
×
{

[∇θQ(h; θ̃n)]i,j
}


W (dh)

− 2
m∑

i,j=1
ci,j(ci,j − 1)

∫ R

0

{
[Q̂n(h)]ci,j

i,j − [Q(h; θ̃n)]ci,j

i,j

}
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× [Q(h; θ̃n)]ci,j−2
i,j

{
[∇θQ(h; θ̃n)]i,j

}{
[∇θQ(h; θ̃n)]i,j

}

W (dh)

− 2
m∑

i,j=1
ci,j

∫ R

0

{
[Q̂n(h)]ci,j

i,j − [Q(h; θ̃n)]ci,j

i,j

}
× [Q(h; θ̃n)]ci,j−1

i,j [∇2
θ(h; θ̃n)]i,jW (dh). (C.20)

Since θ̂n → θ0 almost surely from (4.15), we also have θ̃n → θ0 almost surely
as n → ∞. Therefore, using a similar approach as that used to show (4.10), we
have

lim
n→∞

max
1≤i,j≤m

∫ R

0

∣∣∣[Q̂n(h)]ci,j

i,j − [Q(h; θ̃n)]ci,j

i,j

∣∣∣W (dh) = 0 a.s. (C.21)

Using the above and Assumption 4.2(ii), we can show the second and third term
in (C.20) are asymptotic negligible, also we have

∂2Un

∂θ∂θ
 (θ̃n) = 2B(θ0) + oa.s.(1m×m), (C.22)

where B(θ0) is defined as in (4.12) and oa.s.(1m×m) denotes sequence of m × m
random matrices such that each entry converges to zero almost surely. Substitute
(C.19) and (C.22) into (C.18), we have√

|Dn|(θ̂n − θ0) =
{

B(θ0)−1 + oa.s.(1m×m)
}√

|Dn|An(θ0). (C.23)

Next, let

Ãn(θ0) =
m∑

i,j=1
c2

i,j

{
[Q̂1n(R)]i,j − E

[
Q̂1n(R)]i,j

]}
=

m∑
i,j=1

c2
i,j

∫ R

0

{
[Q̂n(h)]i,j − [Q(h; θ0)]i,j

}
[Q(h; θ0)]2ci,j−2

i,j

× [∇θQ(r; θ0)]i,jW (dh),

(C.24)

where [Q̂1n(R)]i,j is defined as in (4.7). Since Q(h; θ) is continuously differen-
tiable with respect to θ, for h ≥ 0, there exist [Q∗(h)]i,j between [Q̂n(h)]i,j and
[Q(h; θ0)]i,j such that

[Q̂n(h)]ci,j

i,j − [Q(h; θ0)]ci,j

i,j = ci,j

{
[Q̂n(h)]i,j − [Q(h; θ0)]i,j

}
[Q∗(h)]ci,j−1

i,j .

Therefore, the difference
√

|Dn|{An(θ0) − Ãn(θ0)} is bounded with

√
|Dn||An(θ0) − Ãn(θ0)|1 ≤

√
|Dn|

m∑
i,j=1

c2
i,j

×
∫ R

0

∣∣∣[Q̂n(h)]i,j − [Q(h; θ0)]i,j
∣∣∣ ∣∣∣[Q∗(h)]ci,j−1

i,j − [Q(h; θ0)]ci,j−1
i,j

∣∣∣
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×
∣∣∣[Q(h; θ0)]ci,j−1

i,j

∣∣∣ |[∇θQ(r; θ0)]i,j |1 W (dh)

where for vector x = (x1, . . . , xp)
, |x|1 =
∑p

i=1 |xi|. Using similar argu-
ment as in (C.21), it can be shown that max1≤i,j≤m sup0≤h≤R |[Q∗(h)]i,j −
[Q(h; θ0)]i,j | → 0 almost surely as n → ∞ and√

|Dn||An(θ0) − Ãn(θ0)|1

≤
m∑

i,j=1
c2

i,jop(1) ×
√

|Dn|
∫ R

0

∣∣∣[Q̂n(h)]i,j − [Q(h; θ0)]i,j
∣∣∣W (dh)

= op(1) ×
m∑

i,j=1
c2

i,j

∫ R

0
|[Ĝn(h)]i,j |W (dh),

(C.25)

where [Ĝn(h)]i,j is defined as in (4.8). Using (4.5) and Jensen’s inequality, it
can be shown that√

|Dn||An(θ0) − Ãn(θ0)|1 = op(1)Op(1) = op(1). (C.26)

Therefore, substitute (C.26) into (C.23) gives√
|Dn|(θ̂n − θ0) = B(θ0)−1

√
|Dn|Ãn(θ0) + op(1m×1). (C.27)

Next, we will show the asymptotic normality of
√

|Dn|Ãn(θ0). Recall (C.24). We
have E[Ãn(θ0)] = 0. Using similar techniques as those used to show the asymp-
totic normality of vec(Ĝn(h)) in the proof of Theorem 4.1, we can derive the
asymptotic normality of the vectorization of

√
|Dn|{[Q̂1n(R)]i,j −E[Q̂1n(R)]i,j}

(details omitted). Here, we use Assumption 4.2(iii) to apply the Lyapunov Cen-
tral Limit Theorem for multivariate i.i.d. random variables. To calculate the
asymptotic covariance matrix of

√
|Dn|Ãn(θ0), we note that

|Dn|Var{Ãn(θ0)}

=
m∑

i1,j1,i2,j2=1
c2

i1,j1
c2

i2,j2

∫ R

0

∫ R

0
w(s)w(h)Cov

{
[Ĝn(s)]i1,j1 , [Ĝn(h)]i2,j2

}

×
{

[Q(s; θ0)]2ci1,j1 −2
i1,j1

[Q(h; θ0)]2ci2,j2 −2
i2,j2

}
× {[∇θQ(s; θ0)]i1,j1} {[∇θQ(h; θ0)]i2,j2}


dsdh.

Therefore, using the notion σ2
(i1,j1:i2,j2)(s, h) and S(θ0) defined as in (4.14) and

(4.13), respectively, we have limn→∞ |Dn|Var{Ãn(θ0)} = S(θ0) and thus,√
|Dn|Ãn(θ0) D→ N (0p, S(θ)). (C.28)

Finally, combining (C.28), (C.27), and using the delta method, we have√
|Dn|(θ̂n − θ0) D→ N (0p, B(θ0)−1S(θ)B(θ0)−1).

Thus, proves (4.16). □
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Appendix D: Technical lemmas

In this section, we prove two auxiliary lemmas. The first lemma addresses the
conditions of the LGCP model in order to satisfy Assumption 4.1.

Lemma D.1. Let X = (X1, . . . , Xm) be an m-variate stationary LGCP. For
i, j ∈ {1, . . . , m}, the cross-covariance process of the (i, j)th component of the
latent multivariate Gaussian random field is denoted by Ci,j(s) for s ∈ R

d.
Then, the following two assertions hold:

(i) For i, j ∈ {1, . . . , m}, suppose Ci,j(s) is absolutely integrable. Then, X
is ergodic and satisfies Assumption 4.1(i) for all � ∈ N. Therefore, (4.5)
holds for all δ > 0.

(ii) For i, j ∈ {1, . . . , m}, suppose |Ci,j(s)| = O(‖s‖−2d−ε) as ‖s‖ → ∞ for
some ε > 0. Therefore, 4.1(ii) holds.

Proof. Proof of (ii) is a direct consequence of [16], Corollary 2 on page 59. To
prove (i), we note that by [34], Theorem 3, X is ergodic if |Ci,j(s)| → 0 as
‖s‖ → ∞ for all i, j ∈ {1, . . . , m}. To show the (absolute) integrability of the
reduced joint cumulants, for i, j ∈ {1, . . . , m} and s1, s2 ∈ Rd, let

g(i,j)(s1 − s2) = λ
(i,j)
(1,1),red(s1 − s2)/{λ(i)λ(j)}

be the (reduced) cross pair correlation function. We will only show Assumption
4.1(i) for γ

(i,j,k)
(1,1,1)(x1, x2, x3), where i, j, k are all distinct. The general case can

be treated in a similar way. Using the cumulant identity in [5], equation (2.3.1),
we have

γ
(i,j,k)
(1,1,1)(s1, s2, s3) = λ

(i,j,k)
(1,1,1)(s1, s2, s3) −

{
λ(i)λ

(j,k)
(1,1)(s2, s3)

+ λ(j)λ
(i,k)
(1,1)(x1, s3) + λ(k)λ

(i,j)
(1,1)(s1, s2)

}
+ 2λ(i)λ(j)λ(k).

(D.1)

From [34], equations (2) and (12), the scaled joint intensities of the stationary
LGCP can be written in terms of the product of g(i,j). For examples,

λ
(i,j)
(1,1)(s1, s2)

λ(i)λ(j) = g(i,j)(s1 − s2),

γ
(i,j,k)
(1,1,1)(s1, s2, s3)

λ(i)λ(j)λ(k) = g(i,j)(s1 − s2)g(j,k)(s2 − s3)g(k,i)(s3 − s1).

(D.2)

Substitute (D.2) into (D.1) and after some algebra, under stationarity, we get

γ
(i,j,k)
(1,1,1)(s1, s2, s3)

λ(i)λ(j)λ(k)

= g(i,j)(s1 − s2)g(j,k)(s2 − s3)g(k,i)(s3 − s1)

−
{

g(i,j)(s1 − s2) + g(j,k)(s2 − s3) + g(k,i)(s3 − s1)
}

+ 2

(D.3)
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Let u1 = s2 − s1 and u2 = s3 − s1 for s1, s2, s3 ∈ R
d. Then, the scaled reduced

joint cumulant can be written as

γ
(i,j,k)
(1,1,1),red(u1, u2)

λ(i)λ(j)λ(k)

= g1(u1)g2(u1 − u2)g3(u2) − {g1(u1) + g2(u1 − u2) + g3(u2)} + 2,

(D.4)

where g1 = g(i,j), g2 = g(j,k), and g3 = g(k,i). We also note from [34], Theorem
1, that g1(u) = exp(Ci,j(u)). Therefore, since we assume Ci,j(·) is absolutely
integrable, we have |Ci,j(u)| → 0 as ‖u‖ → ∞. This implies that g1(u) → 1 as
‖u‖ → ∞. Similarly, g2(u) and g3(u) converge to 1 as ‖u‖ → ∞. Our goal is to
express the right-hand side in (D.4) as a function of hk(u) = gk(u) − 1. After
some algebra, we have

γ
(i,j,k)
(1,1,1),red(u1, u2)

λ(i)λ(j)λ(k) = h1(u1)h2(u1 − u2)h3(u2) +
{

h1(u1)h2(u1 − u2)

+ h2(u1 − u2)h3(u2) + h1(u1)h3(u2)
}

.

(D.5)

Since |Ci,j(u)| is bounded, for k ∈ {1, 2, 3}, there exist Ck, Mk > 0 such that

|hk(u)| = | exp(C(u)) − 1| ≤ Ck · |(C(u))| < Mk, u ∈ R
d,

where C(·) is the cross covariance process which may varies by the value k ∈
{1, 2, 3}. Therefore, integral of the first term in (D.5) is bounded with∫

R2d

|h1(u1)h2(u1 − u2)h3(u2)|du1du2

≤ M2

(∫
Rd

|h1(u1)|du1

)(∫
Rd

|h3(u2)|du2

)
≤ M2C1C3

(∫
Rd

|Ci,j(u1)|du1

)(∫
Rd

|Ck,i(u2)|du2

)
< ∞.

Similarly, all four terms in (D.5) are absolutely integrable, thus,
∫
R2d |γ(i,j,k)

(1,1,1),red(
u1, u2)|du1du2 < ∞. This proves the Lemma. □

Next, we require the integrability of the function of joint intensities, which is
used to derive the expression of the asymptotic covariance matrix
limn→∞ Cov{[Ĝ0n(h)]i,j , [Ĝ0n(h)]i,j}.

Lemma D.2. Let X = (X1, . . . , Xm) be a simple multivariate stationary point
process that satisfies Assumption 4.1(i) (for � = 4), and let {Dn}n∈N on Rd be
the sequence of sampling windows that satisfies (4.2). For i 	= j ∈ {1, . . . , m},
define λ

(i,j)
2,2,red(·, ·, ·) and λ

(i,j)
1,1,red(·) as in (2.5). Then, we have

sup
u1,u2∈Rd

∫ ∣∣∣λ(i,j)
2,2,red(u2, u1, u2 + u3) − λ

(i,j)
1,1,red(u1)λ(i,j)

1,1,red(u3)
∣∣∣ du2 < ∞.
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Proof. Let γn,red be the reduced joint cumulant intensity function defined as in
(2.6). This proof requires a lengthy cumulant expansion. Using the cumulant
expansions in [38], page 4196, and after lengthy calculation, we have

λ
(i,j)
2,2,red(u2, u1, u2 + u3) − λ

(i,j)
1,1,red(u1)λ(i,j)

1,1,red(u3)

= γ
(i,j)
2,2,red(u2, u1, u2 + u3) + λ(i)[γ(i,j)

1,2,red(u1 − u2, u3)

+λ(i)γ
(j)
2,red(u2 + u3 − u1) + λ(i)γ

(i,j)
1,1,red(u1 − u2)

]
+λ(i)γ

(i,j)
1,2,red(u1, u2 + u3) + λ(j)γ

(i,j)
2,1,red(u2, u2 + u3) + λ(j)γ

(i,j)
2,1,red(u2, u1)

+γ
(i)
2,red(u2)

[
γ

(j)
2,red(u2 + u3 − u1) + (λ(i))2]

+γ
(i,j)
1,1,red(u2 + u3)

[
γ

(i,j)
1,1,red(u1 − u2) + λ(i)λ(j)].

Under Assumption 4.1(i) (for � = 4), each term above are absolutely integrable
with respective to u2 and the bound does not depend on u1 and u3. Thus, we
get desired result. □

Appendix E: Additional simulation results

In this section, we supplement the simulation results in Section 6.

E.1. Explicit forms

Recall that (X1, X2) is driven by the latent intensity field (Λ1(s), Λ2(s)), where
the log-intensity field is Gaussian. Combining (6.1) and (6.2), it is easily seen
that the marginal and cross covariances of log Λ1 and log Λ2 have the following
expressions:

C11(r; θ) = σ2
Z1

exp (−r/φZ1) + σ2
Z3

exp (−r/φZ3),
C22(r; θ) = σ2

Z2
exp (−r/φZ2) + σ2

Z3
exp (−r/φZ3),

C12(r; θ) = C21(r; θ) = bσ2
Z3

exp (−r/φZ3), (E.1)

where the parameter of interest is θ = (σZ1 , φZ1 , σZ2 , φZ2 , σZ3 , φZ3)
. The
marginal and cross correlation of log Λ1 and log Λ2 has the following expres-
sions:

Corr11(r; θ) = C11(r; θ)
σ2

Z1
+ σ2

Z3

,

Corr22(r; θ) = C22(r; θ)
σ2

Z2
+ σ2

Z3

, and

Corr12(r; θ) = C12(r; θ)√
(σ2

Z1
+ σ2

Z3
)(σ2

Z2
+ σ2

Z3
)
.

(E.2)

Lastly, using (E.1), the cross-correlation coefficient of X1 and X2, denoted by
ρ = Corr{log Λ1(u), log Λ2(u)}, is
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ρ = ρ(θ) = bσ2
Z3

/
√

(σ2
Z1

+ σ2
Z3

)(σ2
Z2

+ σ2
Z3

). (E.3)

Therefore, positive (resp., negative) sign in b indicates positive (resp., negative)
correlation between X1 and X2.

E.2. Additional figures and tables

Here, we provide additional figures and tables that are not displayed in Section 6.

Fig E.1. Realization of the parametric bivariate LGCP models that are considered in Section
6 (ρ: correlation coefficient; ◦: first process; �: second process; N1: total number of points
of the first process; N2: total number of points of the second process). The heatmap indicates
the intensity function of the point process. Here, we use the sampling window D = [−10, 10]2

and the common first order intensities λ
(1)
1 = λ

(2)
1 = 1.
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Table E.1

The optimal control parameter (c, R), the log determinant of the estimated asymptotic
covariance matrix based on the optimal (c, R), and the total computing time of grid search

based on the two realizations (Experiment I and II) for different models from bivariate
LGCP in Table 1 and different Monte Carlo simulations to calculate asymptotic covariance

matrix. Here, the sampling window is set to D = [−5, 5]2.

Number of Monte Carlo samples of Vn(θ̂n)

Model Correlation Experiment 100 300 600 1000

(M1)

Optimal (c, R)
Negative I (0.5, 2.00) (0.5, 2.00) (0.5, 2.00) (0.5, 2.00)

II (0.5, 2.00) (0.5, 2.00) (0.5, 2.00) (0.5, 2.00)
Positive I (0.5, 2.50) (0.5, 2.50) (0.5, 2.50) (0.5, 2.50)

II (0.5, 2.50) (0.5, 2.50) (0.5, 2.50) (0.5, 2.50)

log det Σ̂n(θ0)
Negative I -34.03 -34.39 -34.46 -34.41

II -34.60 -33.98 -34.26 -34.38
Positive I -10.69 -10.15 -10.05 -10.19

II -10.61 -10.34 -9.97 -9.94

Time (min)
Negative I 56.36 158.03 313.80 514.89

II 47.64 158.07 310.81 516.73
Positive I 36.82 108.59 210.18 370.70

II 33.29 123.43 216.95 347.79

(M2)

Optimal (c, R)
Negative I (0.5, 3.50) (0.5, 3.50) (0.5, 3.50) (0.5, 3.50)

II (0.5, 3.50) (0.5, 3.50) (0.5, 3.50) (0.5, 3.50)
Positive I (0.4, 2.50) (0.4, 2.50) (0.4, 2.50) (0.4, 2.50)

II (0.4, 3.25) (0.4, 2.50) (0.4, 2.50) (0.4, 2.50)

log det Σ̂n(θ0)
Negative I -32.77 -33.16 -33.16 -33.36

II -32.33 -32.71 -32.83 -32.98
Positive I -17.98 -16.81 -16.61 -16.73

II -16.58 -15.93 -16.12 -16.20

Time (min)
Negative I 41.01 118.57 220.71 386.21

II 35.22 110.44 229.82 399.69
Positive I 37.72 108.65 211.62 351.63

II 34.16 106.01 211.83 352.45

(M3)

Optimal (c, R)
Negative I (0.5, 1.00) (0.5, 1.00) (0.5, 1.00) (0.5, 1.00)

II (0.5, 1.00) (0.5, 1.00) (0.5, 1.00) (0.5, 1.00)
Positive I (0.4, 2.50) (0.4, 2.50) (0.4, 2.50) (0.4, 2.50)

II (0.4, 3.00) (0.4, 2.50) (0.4, 2.50) (0.4, 2.50)

log det Σ̂n(θ0)
Negative I -31.22 -31.43 -30.97 -31.04

II -31.42 -31.25 -31.64 -31.56
Positive I -21.76 -21.60 -21.75 -21.44

II -19.98 -20.00 -20.57 -21.01

Time (min)
Negative I 45.76 128.01 253.18 411.64

II 39.20 126.49 250.20 414.76
Positive I 39.24 114.95 227.93 362.86

II 34.63 111.82 219.91 354.70

(M4)

Optimal (c, R)
Negative I (0.5, 3.50) (0.5, 3.50) (0.5, 3.50) (0.5, 3.50)

II (0.5, 2.50) (0.5, 3.50) (0.5, 3.25) (0.5, 3.25)
Positive I (0.5, 3.50) (0.5, 3.50) (0.5, 3.50) (0.5, 3.50)

II (0.5, 2.50) (0.5, 3.50) (0.5, 3.50) (0.5, 3.50)

log det Σ̂n(θ0)
Negative I -33.31 -33.40 -33.37 -33.31

II -32.40 -32.55 -32.99 -33.15
Positive I -25.69 -23.10 -23.44 -23.55

II -19.63 -24.39 -23.63 -23.48

Time (min)
Negative I 38.01 104.84 210.83 349.03

II 33.22 107.95 223.86 350.76
Positive I 38.06 107.68 212.14 350.64

II 33.81 108.43 218.71 347.56
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Table E.2. The MAE, SD and RMSE (3 columns from left to right for each parameter) of two MC estimators and BI estimator from (M1) for
different sampling windows. Here, “Opt” stands for the MC estimator using optimal control parameters and “Fix” stands for the MC estimator
using fixed control parameter (c, R) = (0.2, 0.15WL), where WL is the window length.

Window Correlation Estimator (c,R) σZ1 φZ1 σZ2 φZ2 σZ3 φZ3 ρ

WL=10

Negative
(MC)

Opt 0.27 0.35 0.36 0.58 1.70 1.74 0.29 0.37 0.39 0.70 1.07 1.07 0.29 0.33 0.33 1.99 7.75 7.75 0.24 0.28 0.30

Fix 0.44 0.51 0.59 2.08 3.56 4.08 0.52 0.44 0.61 2.03 2.70 3.23 0.40 0.45 0.48 2.36 7.63 7.67 0.39 0.38 0.48

(BI) – 0.23 0.12 0.25 0.68 0.23 0.72 0.14 0.16 0.17 0.31 0.24 0.38 0.09 0.07 0.11 0.32 0.13 0.35 0.12 0.07 0.14

Positive
(MC)

Opt 0.27 0.36 0.37 0.43 1.18 1.20 0.28 0.36 0.37 0.74 1.32 1.32 0.41 0.45 0.47 3.91 6.16 6.92 0.29 0.30 0.35

Fix 0.32 0.42 0.44 1.39 3.98 4.18 0.43 0.47 0.54 2.05 3.79 4.14 0.52 0.60 0.60 2.9e2 3.3e3 3.3e3 0.29 0.35 0.36

(BI) – 0.27 0.14 0.30 0.63 0.15 0.65 0.17 0.14 0.19 0.23 0.18 0.28 0.22 0.08 0.24 0.23 0.22 0.27 0.28 0.10 0.29

WL=20

Negative
(MC)

Opt 0.14 0.15 0.18 0.17 0.23 0.24 0.12 0.15 0.16 0.50 0.80 0.85 0.17 0.20 0.21 0.47 0.42 0.52 0.15 0.16 0.19

Fix 0.14 0.16 0.18 0.27 0.36 0.41 0.14 0.19 0.19 0.72 0.94 1.09 0.21 0.27 0.28 0.48 0.41 0.52 0.17 0.19 0.22

(BI) – 0.31 0.08 0.32 0.55 0.21 0.59 0.14 0.10 0.17 0.46 0.32 0.55 0.05 0.06 0.07 0.26 0.21 0.30 0.13 0.08 0.15

Positive
(MC)

Opt 0.15 0.21 0.22 0.21 0.33 0.33 0.14 0.19 0.19 0.42 0.60 0.61 0.20 0.23 0.25 1.96 3.89 4.03 0.15 0.17 0.19

Fix 0.12 0.14 0.15 0.16 0.21 0.22 0.12 0.15 0.15 0.43 0.68 0.69 0.34 0.36 0.39 4.82 5.98 7.45 0.23 0.22 0.27

(BI) – 0.33 0.08 0.33 0.52 0.20 0.56 0.15 0.09 0.17 0.44 0.26 0.50 0.07 0.05 0.09 0.28 0.30 0.31 0.17 0.07 0.18

WL=30

Negative
(MC)

Opt 0.08 0.10 0.10 0.13 0.17 0.18 0.09 0.11 0.11 0.45 0.55 0.61 0.12 0.15 0.16 0.80 0.85 0.95 0.09 0.11 0.11

Fix 0.09 0.10 0.12 0.12 0.15 0.16 0.08 0.10 0.11 0.44 0.55 0.63 0.11 0.13 0.14 0.73 0.75 0.85 0.10 0.11 0.13

(BI) – 0.31 0.06 0.32 0.45 0.17 0.48 0.16 0.06 0.17 0.47 0.28 0.54 0.05 0.06 0.06 0.18 0.21 0.22 0.12 0.08 0.14

Positive
(MC)

Opt 0.10 0.14 0.14 0.15 0.21 0.21 0.09 0.12 0.12 0.31 0.48 0.48 0.11 0.15 0.15 2.03 4.07 4.29 0.09 0.11 0.11

Fix 0.08 0.09 0.09 0.10 0.12 0.12 0.08 0.10 0.10 0.25 0.38 0.38 0.17 0.22 0.23 3.55 5.96 6.68 0.12 0.13 0.15

(BI) – 0.32 0.06 0.32 0.47 0.15 0.49 0.15 0.06 0.16 0.55 0.27 0.61 0.05 0.06 0.06 0.22 0.25 0.28 0.12 0.07 0.14
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Table E.3. Similar to Table E.2, but for (M2).

Window Correlation Estimator (c,R) σZ1 φZ1 σZ2 φZ2 σZ3 φZ3 ρ

WL=10

Negative
(MC)

Opt 0.34 0.42 0.44 0.46 0.97 1.00 0.31 0.38 0.38 0.76 1.68 1.68 0.24 0.30 0.30 1.07 1.37 1.50 0.27 0.31 0.32

Fix 0.47 0.51 0.57 2.90 3.84 4.76 0.49 0.60 0.65 9.56 21.6 23.5 0.36 0.43 0.43 1.93 4.18 4.21 0.39 0.39 0.43

(BI) – 0.11 0.11 0.13 0.71 0.20 0.74 0.12 0.13 0.16 0.28 0.22 0.35 0.06 0.07 0.07 0.31 0.17 0.34 0.06 0.07 0.07

Positive
(MC)

Opt 0.31 0.39 0.41 0.75 3.51 3.54 0.32 0.40 0.40 0.90 1.99 2.00 0.40 0.45 0.48 5.27 7.63 8.97 0.32 0.33 0.36

Fix 0.35 0.42 0.46 1.99 5.72 6.01 0.41 0.43 0.48 2.47 4.86 5.28 0.55 0.60 0.60 7.7e2 6.2e2 6.2e2 0.39 0.41 0.41

(BI) – 0.17 0.10 0.20 0.61 0.16 0.64 0.06 0.08 0.08 0.22 0.16 0.27 0.15 0.10 0.18 0.19 0.24 0.25 0.19 0.10 0.21

WL=20

Negative
(MC)

Opt 0.14 0.19 0.18 0.47 0.69 0.77 0.19 0.25 0.25 0.89 1.22 1.33 0.13 0.18 0.18 0.81 1.07 1.09 0.16 0.20 0.20

Fix 0.16 0.22 0.23 0.59 0.79 0.93 0.20 0.26 0.27 1.06 1.29 1.53 0.16 0.22 0.23 0.73 0.81 0.89 0.19 0.21 0.23

(BI) – 0.21 0.09 0.23 0.64 0.23 0.68 0.08 0.09 0.10 0.41 0.34 0.51 0.05 0.06 0.07 0.23 0.29 0.29 0.09 0.10 0.11

Positive
(MC)

Opt 0.16 0.22 0.22 0.22 0.37 0.37 0.15 0.20 0.20 0.49 0.71 0.71 0.14 0.18 0.20 2.16 3.50 3.84 0.15 0.18 0.19

Fix 0.14 0.18 0.19 0.27 0.47 0.49 0.16 0.22 0.23 0.60 0.93 0.94 0.28 0.29 0.36 4.35 5.01 6.39 0.23 0.21 0.27

(BI) – 0.23 0.08 0.24 0.60 0.21 0.63 0.08 0.08 0.10 0.34 0.26 0.42 0.05 0.06 0.06 0.28 0.33 0.34 0.12 0.08 0.14

WL=30

Negative
(MC)

Opt 0.09 0.11 0.12 0.20 0.27 0.28 0.09 0.13 0.13 0.66 0.86 0.96 0.07 0.08 0.09 0.51 0.56 0.61 0.10 0.12 0.12

Fix 0.11 0.11 0.14 0.21 0.27 0.30 0.09 0.13 0.13 0.73 0.90 1.06 0.07 0.08 0.09 0.50 0.52 0.60 0.11 0.12 0.14

(BI) – 0.24 0.07 0.25 0.49 0.19 0.52 0.10 0.05 0.11 0.40 0.30 0.49 0.06 0.07 0.08 0.17 0.20 0.23 0.11 0.10 0.14

Positive
(MC)

Opt 0.09 0.11 0.11 0.14 0.20 0.20 0.09 0.11 0.11 0.39 0.57 0.57 0.11 0.14 0.15 0.60 0.75 0.76 0.10 0.12 0.13

Fix 0.08 0.10 0.10 0.13 0.18 0.19 0.09 0.11 0.11 0.35 0.50 0.50 0.11 0.15 0.16 0.62 0.77 0.82 0.10 0.12 0.13

(BI) – 0.24 0.07 0.25 0.50 0.18 0.53 0.09 0.06 0.11 0.45 0.29 0.53 0.05 0.05 0.06 0.22 0.27 0.29 0.11 0.08 0.13
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Table E.4. Similar to Table E.2, but for (M3).

Window Correlation Estimator (c,R) σZ1 φZ1 σZ2 φZ2 σZ3 φZ3 ρ

WL=10

Negative
(MC)

Opt 0.44 0.51 0.51 1.61 2.52 2.91 0.46 0.51 0.52 7.14 20.7 21.7 0.32 0.35 0.39 1.44 3.50 3.57 0.34 0.36 0.39

Fix 0.48 0.50 0.55 2.68 3.06 4.03 0.42 0.47 0.49 10.5 24.7 26.7 0.34 0.41 0.41 1.29 3.29 3.33 0.35 0.38 0.39

(BI) – 0.09 0.11 0.11 0.71 0.20 0.74 0.25 0.11 0.28 0.18 0.21 0.22 0.12 0.07 0.14 0.19 0.15 0.23 0.20 0.07 0.21

Positive
(MC)

Opt 0.32 0.40 0.40 0.44 0.81 0.83 0.33 0.38 0.38 9.17 1.5e2 1.5e2 0.34 0.38 0.42 4.84 6.44 7.87 0.25 0.28 0.29

Fix 0.38 0.45 0.47 0.81 1.38 1.52 0.38 0.46 0.47 31.3 3.3e2 3.3e2 0.62 0.67 0.67 12.9 12.5 17.9 0.42 0.43 0.44

(BI) – 0.12 0.08 0.14 0.63 0.14 0.64 0.17 0.09 0.19 0.17 0.16 0.19 0.11 0.11 0.13 0.40 0.26 0.46 0.08 0.10 0.10

WL=20

Negative
(MC)

Opt 0.19 0.26 0.28 0.39 0.67 0.71 0.22 0.27 0.28 0.86 1.42 1.42 0.09 0.11 0.12 0.30 0.35 0.37 0.16 0.18 0.19

Fix 0.18 0.25 0.26 0.79 1.17 1.35 0.27 0.32 0.33 1.21 1.99 2.10 0.11 0.15 0.16 0.36 0.46 0.47 0.17 0.19 0.20

(BI) – 0.14 0.08 0.16 0.62 0.24 0.66 0.11 0.08 0.13 0.25 0.33 0.32 0.11 0.05 0.12 0.33 0.25 0.40 0.10 0.09 0.12

Positive
(MC)

Opt 0.10 0.09 0.12 0.56 0.12 0.58 0.18 0.09 0.20 0.22 0.14 0.24 0.09 0.10 0.10 0.16 0.18 0.22 0.09 0.07 0.11

Fix 0.16 0.21 0.21 0.35 0.59 0.62 0.23 0.29 0.29 0.90 1.31 1.32 0.20 0.24 0.29 1.36 1.84 2.19 0.17 0.18 0.20

(BI) – 0.16 0.07 0.18 0.56 0.20 0.60 0.08 0.07 0.10 0.21 0.25 0.25 0.07 0.05 0.08 0.45 0.28 0.52 0.06 0.08 0.08

WL=30

Negative
(MC)

Opt 0.13 0.15 0.17 0.21 0.29 0.30 0.15 0.18 0.20 0.94 1.47 1.52 0.06 0.07 0.08 0.23 0.27 0.29 0.13 0.12 0.15

Fix 0.12 0.14 0.16 0.24 0.33 0.36 0.16 0.20 0.21 0.99 1.64 1.72 0.06 0.07 0.08 0.22 0.25 0.27 0.12 0.13 0.15

(BI) – 0.19 0.07 0.20 0.49 0.20 0.53 0.04 0.04 0.05 0.21 0.27 0.27 0.10 0.05 0.11 0.40 0.19 0.44 0.07 0.08 0.08

Positive
(MC)

Opt 0.09 0.11 0.11 0.15 0.21 0.22 0.11 0.14 0.14 0.62 1.05 1.05 0.08 0.07 0.10 0.39 0.52 0.61 0.11 0.12 0.13

Fix 0.09 0.12 0.12 0.17 0.23 0.24 0.12 0.16 0.16 0.77 1.24 1.25 0.06 0.08 0.08 0.48 0.65 0.76 0.09 0.11 0.11

(BI) – 0.20 0.07 0.21 0.49 0.19 0.53 0.04 0.06 0.06 0.21 0.26 0.26 0.09 0.04 0.10 0.43 0.21 0.48 0.06 0.08 0.08
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Table E.5. Similar to Table E.2, but for (M4).

Window Correlation Estimator (c,R) σZ1 φZ1 σZ2 φZ2 σZ3 φZ3 ρ

WL=10

Negative
(MC)

Opt 0.37 0.42 0.43 0.51 1.18 1.20 0.35 0.39 0.39 0.91 1.23 1.32 0.16 0.22 0.22 0.49 0.91 0.93 0.19 0.24 0.25

Fix 0.48 0.50 0.53 5.53 7.36 9.17 0.42 0.45 0.46 9.25 20.65 22.50 0.26 0.35 0.35 0.81 1.72 1.73 0.26 0.32 0.32

(BI) – 0.19 0.10 0.21 0.71 0.16 0.73 0.29 0.12 0.32 0.16 0.20 0.20 0.23 0.10 0.25 0.23 0.16 0.27 0.35 0.08 0.36

Positive
(MC)

Opt 0.39 0.41 0.42 0.50 2.84 2.84 0.35 0.39 0.39 1.48 5.34 5.34 0.23 0.31 0.33 1.98 3.61 3.96 0.19 0.23 0.23

Fix 0.38 0.44 0.45 4.88 26.1 26.5 0.38 0.47 0.47 1.81 5.57 5.61 0.66 0.71 0.74 6.85 5.17 8.46 0.29 0.38 0.39

(BI) – 0.08 0.09 0.11 0.62 0.10 0.63 0.19 0.10 0.21 0.18 0.16 0.20 0.10 0.13 0.13 0.41 0.26 0.48 0.13 0.11 0.16

WL=20

Negative
(MC)

Opt 0.28 0.29 0.33 0.50 0.94 0.97 0.22 0.26 0.27 0.96 1.78 1.78 0.08 0.09 0.09 0.26 0.29 0.31 0.12 0.14 0.14

Fix 0.28 0.36 0.37 1.33 2.27 2.58 0.29 0.33 0.34 1.35 2.68 2.81 0.08 0.10 0.10 0.23 0.27 0.29 0.14 0.17 0.17

(BI) – 0.06 0.07 0.07 0.67 0.21 0.70 0.13 0.08 0.15 0.22 0.29 0.29 0.17 0.06 0.18 0.43 0.23 0.48 0.16 0.09 0.19

Positive
(MC)

Opt 0.23 0.33 0.33 0.41 0.65 0.67 0.21 0.31 0.31 0.71 0.79 0.86 0.08 0.11 0.11 0.55 1.02 1.11 0.12 0.15 0.16

Fix 0.23 0.32 0.32 0.42 0.62 0.65 0.23 0.31 0.31 0.75 0.82 0.90 0.13 0.20 0.21 1.52 2.84 3.17 0.11 0.14 0.14

(BI) – 0.05 0.06 0.07 0.61 0.17 0.64 0.07 0.07 0.09 0.18 0.19 0.21 0.12 0.06 0.13 0.52 0.28 0.59 0.08 0.07 0.10

WL=30

Negative
(MC)

Opt 0.22 0.25 0.28 0.42 0.85 0.88 0.17 0.21 0.22 0.78 1.14 1.14 0.05 0.06 0.07 0.19 0.23 0.24 0.10 0.11 0.12

Fix 0.20 0.25 0.27 0.55 1.04 1.12 0.19 0.23 0.24 0.80 1.18 1.19 0.05 0.06 0.06 0.16 0.18 0.20 0.10 0.12 0.12

(BI) – 0.08 0.07 0.09 0.57 0.17 0.60 0.06 0.06 0.07 0.16 0.19 0.19 0.15 0.05 0.16 0.51 0.16 0.53 0.08 0.07 0.11

Positive
(MC)

Opt 0.13 0.17 0.17 0.27 0.40 0.41 0.11 0.14 0.14 0.58 0.80 0.81 0.06 0.07 0.08 0.22 0.29 0.31 0.08 0.10 0.11

Fix 0.13 0.18 0.18 0.31 0.45 0.47 0.12 0.16 0.16 0.66 0.88 0.89 0.06 0.07 0.07 0.24 0.30 0.34 0.08 0.11 0.11

(BI) – 0.09 0.06 0.10 0.56 0.20 0.60 0.05 0.07 0.07 0.19 0.25 0.25 0.13 0.04 0.14 0.52 0.18 0.55 0.05 0.06 0.07
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Table E.6. Average computing time per simulation (unit: minute), MAE, SD and RMSE (3 columns from left to right for each parameter) for MC
and WCL estimators from multivariate PSNCP Models for different sampling windows. Here, “Opt” stands for the MC estimator using optimal
control parameters and “Fix” stands for the MC estimator using fixed control parameter (c, R) = (0.2, 0.15WL), where WL is the window length.

MAE, SD and RMSE of estimators

Window Estimator (c, R) time κ η α1 α2 α3 α4

WL = 10
MC

Opt 2.65 0.08 0.12 0.14 0.10 0.23 0.24 0.33 0.39 0.43 0.19 0.23 0.24 0.32 0.39 0.39 0.31 0.37 0.39
Fix 1.66 0.09 0.13 0.14 0.11 0.23 0.25 0.33 0.39 0.43 0.18 0.21 0.22 0.31 0.38 0.39 0.31 0.37 0.38

WCL – 7.21 0.08 0.14 0.16 0.06 0.07 0.08 0.41 0.53 0.53 0.21 0.26 0.26 0.36 0.44 0.45 0.36 0.45 0.45

WL = 20
MC

Opt 1.92 0.03 0.04 0.04 0.04 0.05 0.06 0.17 0.20 0.20 0.10 0.12 0.12 0.15 0.19 0.19 0.18 0.21 0.22
Fix 2.75 0.03 0.03 0.04 0.04 0.05 0.05 0.18 0.21 0.22 0.11 0.13 0.13 0.17 0.22 0.22 0.19 0.23 0.24

WCL – 6.09 0.03 0.04 0.04 0.03 0.05 0.05 0.20 0.25 0.25 0.12 0.15 0.15 0.18 0.23 0.23 0.19 0.23 0.24

WL = 30
MC

Opt 2.17 0.02 0.02 0.02 0.02 0.02 0.03 0.13 0.16 0.16 0.07 0.09 0.09 0.10 0.13 0.13 0.12 0.14 0.14
Fix 7.42 0.02 0.02 0.02 0.03 0.04 0.04 0.15 0.18 0.18 0.08 0.10 0.10 0.12 0.15 0.16 0.14 0.16 0.17

WCL – 7.61 0.02 0.02 0.02 0.02 0.03 0.03 0.14 0.18 0.18 0.09 0.10 0.10 0.12 0.15 0.15 0.13 0.16 0.16
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Fig E.2. Similar to Figure 1, but for negatively correlated models.

Appendix F: Application: Terrorism in Nigeria

In this section, we apply our methods to the bivariate point pattern data of
the 2014 terrorism attacks in Nigeria. Figure F.1 plots the point pattern of
terror attacks by Boko Haram (BH; 436 terror attacks) and Fulani Extremists
(FE; 156 terror attacks) in Nigeria during 2014 which is obtained from the
Global Terrorism Database [GTD; 43]. In the raw data, there are several events
with identical spatial coordinates which occur at different times. Thus, we add
random Gaussian noise with a standard deviation of 10−3 degrees (◦) to both
coordinates to distinguish these events. We observe in Figure F.1 that the BH
attacks are mostly concentrated in the northeast corner of the country’s border,
while the majority of the FE attacks are located in the middle of the countryside.
This indicates repulsiveness between the two sources of terror attacks.

Now, we fit our data using the bivariate LGCP model with negative cross-
correlation. As referees criticized, since the point pattern data may indicate that
the first-order intensities are not homogeneous over the domain, it is more appro-
priate to fit inhomogeneous point process models (e.g., inhomogeneous bivariate
LGCP model) to describe the nature of the given point pattern data. However,
the likelihood-ratio based inhomogeneity test for both marginal point patterns
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Fig F.1. Point pattern of terror attacks by Boko Haram (BH; 436 terror attacks) and Fulani
Extremists (FE; 156 terror attacks) in Nigeria during 2014.

of BH and FE did not reject the null hypothesis of homogeneity of the first-order
intensity. Moreover, one can still obtain meaningful information on the second-
order interactions within and between BH and FE by fitting the (homogeneous)
bivariate LGCP model as in Section 6.1. To elaborate, intriguingly, under the
SOIRS framework, we show that the non-edge corrected Q-function estimator
as in (A.1) estimates the second-order structure of the (stationary) intensity-
reweighted point process. Therefore, the fitted scale and range parameter values
in Section 6.1 may have interpretation even in the case when the process is in-
homogeneous. Details on this work will be reported in future research.

Back to our bivariate terrorist attack data, let θ = (σBH, φBH, σFE, φFE,
σCommon, φCommon)
 be the set of parameters of interest, where the indices
“BH”, “FE”, and “Common” correspond to Z1, Z2, and Z3 in (6.2), respectively.
Since it is apparent from the figure above that BH and FE repel each other, we
set b = −1 to indicate negative cross-correlation. Using the methods in Section
5.2 (see also Section 6.2.2), we search for the optimal control parameters over
the grids c ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and R ∈ {60km, 80km, . . . , 500km}, where
the sampling window is approximately D = 1, 347 × 1, 088km2. Consequently,
we select the optimal parameters (c, R) = (0.1, 420km).

In Table F.1, we report the parameter estimation, asymptotic standard error
estimator, and two 95% confidence intervals (CIs): asymptotic and simulation-
based, as described in Section 5.3. When reporting parameter estimates, we
also include the cross-correlation coefficient ρ between BH and FE (see, (E.3)).
From the results in Table F.1, we observe that both the 95% asymptotic and
simulation-based CIs suggest no significant difference in the scale (σBH and
σFE) and range (φBH and φFE) parameters associated with BH and FE. The
appearance of negative values in the lower bound of the asymptotic confidence
interval is due to the large standard error. However, both 95% CIs of the cross-
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Table F.1

Estimated parameter value (EST), asymptotic standard error (SE), and 95% asymptotic
and simulation-based confidence intervals (CI) for the minimum contrast method to fit the

terror attacks in Nigeria in 2014 by BH and FE. Units of φx (x ∈ {BH, FE, Common}) are
in kilometers.

Param. EST Asymptotic SE 95% asymptotic CI 95% simulation-based CI
σBH 1.28 0.41 (-0.47, 2.09) (0.22, 1.58)
φBH 63.99 58.04 (-49.77, 177.75) (5.32, 158.62)
σFE 1.94 0.46 (1.05, 2.83) (1.15, 2.47)
φFE 12.68 24.72 (-35.77, 61.13) (1.68, 45.48)

σCommon 1.33 0.44 (0.48, 2.19) (0.58, 1.54)
φCommon 370.43 305.90 (-229.12, 969.99) (46.46, 400.95)

ρ -0.41 0.17 (-0.74, -0.08) (-0.62, -0.11)

correlation coefficient ρ̂ lie on the negative side, suggesting significant repulsion
between BH and FE attacks.
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