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Abstract— Designs incorporating kinematic loops are becom-
ing increasingly prevalent in the robotics community. Despite
the existence of dynamics algorithms to deal with the effects of
such loops, many modern simulators rely on dynamics libraries
that require robots to be represented as kinematic trees. This
requirement is reflected in the de facto standard format for
describing robots, the Universal Robot Description Format
(URDF), which does not support Kinematic loops resulting
in closed chains. This paper introduces an enhanced URDF,
termed URDF+, which addresses this key shortcoming of URDF
while retaining the intuitive design philosophy and low barrier
to entry that the robotics community values. The URDF+ keeps
the elements used by URDF to describe open chains and
incorporates new elements to encode loop joints. We also offer
an accompanying parser that processes the system models
coming from URDF+ so that they can be used with recursive
rigid-body dynamics algorithms for closed-chain systems that
group bodies into local, decoupled loops. This parsing process
is fully automated, ensuring optimal grouping of constrained
bodies without requiring manual specification from the user.
We aim to advance the robotics community towards this elegant
solution by developing efficient and easy-to-use software tools.

I. INTRODUCTION

The recursive dynamics algorithms upon which modern
rigid-body dynamics (RBD) libraries are built [1], [2] were
initially developed only for open-chain systems. To date,
these libraries [3], [4], [5], [6], [7] have not implemented
techniques for dealing with kinematic loops that are as simple
or efficient as the original recursive algorithms. Instead, they
resort to either (i) approximating their dynamic effects or
(ii) using non-recursive algorithms that scale poorly with the
robot’s dimension. This lack of attention given to kinematic
loops likely contributed to the decision made by the original
developers of the Universal Robotic Description Format
(URDF) [8] not to support the modeling of robots with
kinematic loops. Despite lacking such support, the URDF
has become the de-facto standard format for describing robot
models [9].

With designs involving kinematic loops becoming increas-
ingly popular (Fig. 1) as a means to achieve proximal
actuation [10], this shortcoming is no longer acceptable.
Designs such as parallel belt transmissions [11], differential
drives [12], [10], [13], and four-bar mechanisms [14], [13],
[15] enable high-speed limb motion while focusing the
inertia of the actuators in the robot’s base structure.

While the original recursive dynamics algorithms were
developed for open chains, they can be adapted to systems
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Fig. 1. Robots employing kinematic loops to achieve proximal actuation.
Left to right: LIMS2-AMBIDEX [21], MIT Humanoid [11], Kangaroo [15],
Hermes [12], Digit [22].

with kinematic loops. This was first recognized by Jain, who
approached the problem through Spatial Kernel Operators
(SKO) [16] and demonstrated that systems with kinematic
loops can be represented with SKO models [17]. Thus, they
are compatible with the original recursive algorithms [18]. In
our recent work [19], we provided a self-contained deriva-
tion of these algorithms from Featherstone’s perspective of
propagation methods [4], which is the prevailing perspective
among modern RBD libraries [3], [5], [6], [7].

These “constraint-embedding” algorithms for closed
chains have yet to achieve widespread proliferation. One
possible reason may be a lack of efficient, easy-to-use
software tools employing these techniques. The goal of this
paper, along with our related RBD library [20], is to push the
robotics community toward embracing this elegant solution
for dealing with a critical problem facing the field.

However, we want to emphasize that our push does
not involve a paradigm shift away from the URDF. Many
commendable attempts at larger-scale shifts have been pro-
posed [23]. For example, the Simulation Description Format
(SDF) [24] offers many of the features requested by URDF
users [25], such as support for multiple robots, support for
several types of sensors, and support for kinematic loops.
MulJoCo’s MICF format [7] uses a kinematic-tree-based
design philosophy similar to URDF’s. The MIJCF supports
new and more detailed elements compared to URDF, such
as sensors, actuators, constraints, and contacts. The Asyn-
chronous Multi-Body Framework (AMBF) Format [26], on
the other hand, uses an entirely different modular design phi-
losophy aimed at improving human readability and constraint
handling.

Despite these efforts, a majority of the community believes
that URDF will be more commonly used in the future [25].
Therefore, we accept this sentiment and choose to augment,
rather than replace, the URDF. The main features of our



augmented format, the URDF+, are:

o Simple additions to the original URDF data structures
that allow for many more constraints to be modeled,

o A new parser that automatically produces models whose
bodies are optimally grouped according to Jain’s mini-
mal aggregation criteria [27].

When the kinematic loops of the system are “local,” i.e., in-
volve a small number of bodies, the optimal grouping makes
the parsed model well-suited for constraint-embedding algo-
rithms [17], [19]. In cases where the loops are not local and
non-recursive methods such as [28] are more efficient, the
optimal parsing is still useful in providing the sparsity pattern
of the constraint Jacobians. The URDF+ data structures and
parser are implemented open-source [29], [30] as forks of
the ROS URDF parser [31], [32].

In this work, we also provide examples demonstrating how
URDF+ can model complicated closed-chain robots incom-
patible with the existing URDF format. We emphasize that
the URDF+ retains the design philosophy of the URDF with
which so many in the community are familiar. URDF+ files
are fully backward-compatible with URDF. RBD libraries
and simulators can either (i) update their algorithms to use
the fully recursive techniques of [17], [33], [19] or (ii) keep
their existing algorithms and use the new description format
to model and compute closed-loops using their existing non-
recursive algorithms.

The rest of the paper is organized as follows. Sec. II
provides background on robot modeling, the URDF, and
recursive algorithms for closed-chain systems. Sec. III and IV
describe how URDF+ modifies the data structures and parser
of the existing URDEF, respectively. Examples of how the
URDF+ is employed are shown in Sec. V. Finally, Sec. VI
concludes the work and discusses future steps toward achiev-
ing efficient and accessible dynamic simulation for robotics.

II. BACKGROUND
A. System Modeling

Robotic systems are commonly modeled using graphs [4],
[34]. A graph G consists of a set of nodes N and undirected
edges £. When the graph G is directed (also called a
digraph), its edges & are directed from one node to another.
A graph describing a robotic system is called a connectivity
graph (CG) and has the following properties:

o The nodes represent bodies.

o The edges represent joints.

« Exactly one root node represents a fixed base.
o The graph is undirected and connected.

A graph is called a topological tree when exactly one
path exists between any two nodes in a graph. A spanning
tree (ST) of a CG is a subgraph containing all of the original
CG nodes along with a set of edges in the original CG
such that the subgraph is a topological tree. These included
edges constitute the set of tree joints 7. The leftover edges
constitute the set of loop joints L. Thus, for a CG with
Np non-root nodes and N; edges, there will be Np tree
joints and Ny, = Nj; — Np loop joints. We will describe

connectivity graphs by their bodies, tree joints, and loop
joints, Go = (B, T U L).

The properties of spanning trees are used to develop the
“regular numbering” convention for assigning identifying
numbers to the nodes and edges [4]:

1) Choose the edges to include in the ST.

2) Assign the number 0 to the root node.

3) Assign the remaining nodes from 1 to Np so each
node has a higher number than its parent in the ST.

4) Number the edges in the ST such that edge 7 connects
node ¢ to its parent.

5) Number all remaining edges from Np + 1 to N in
any order.

We will use the following index convention to distinguish
between the different types of joints. The indices ¢ and j
will be used to index tree joints and bodies (1 to Ng), [ will
be used to index loops (1 to Ni), and k identifies the loop
joint that closes loop [ (k =1+ Npg).

The number of tree joint variables, n, and loop-closure
constraints, n°, are given by

NB NJ
n:Zni, n’ = Z ng, (1)
i=1

k=Np-+1

where n; is the degrees of freedom permitted by the ith tree
joint, and nj, is the number of constraints imposed by the
kth loop joint.

We now consider the particular case where the original
CG is an ST. Such a CG is called a “kinematic tree”
and corresponds to a robot free of kinematic loops. As
previously noted, the current URDF can only represent robots
as kinematic trees.

B. Joint Models

A robot’s configuration can be described by the poses of
the coordinate frames attached to each of its bodies. We use
the following convention to describe a coordinate frame: F7 ;.
The subscript ¢ denotes which body the frame is rigidly
attached to. The subscript j denotes which joint the frame
is associated with. When ¢ = j, we omit j, leaving F;. A
schematic of these coordinate frames and their relationships
is shown in Fig. 2.

Two spatial transforms are used to transform from F) ;)
to F;, where A(%) is the parent of body i. The tree transform
Xr(s) is a fixed transform that describes the pose of Fy;)
relative to F(;). This intermediate frame F(;; gives the
location of F; when q; = 0. The joint transform X ;;) gives
the pose of Fj relative to F)(; ; for arbitrary q;. The joint
transform is a function of the joint position q; and depends
on the joint type.

For the kth loop joint, the predecessor transform X p(y)
is a fixed transform that gives the pose of F,) j relative to
Fy1), where p(k) is the predecessor body. The successor
transforms Xg ;) does the same for the successor body.
Finally, the joint transforms X ;) describes the transform
from Fp(k),k to Fs(k:),k-



Fy o
/
Fis QL/
Xr(2)
F Fs ‘6/
L

1
1X 71

Foat /) Fost )
Fot
— L
Xp(y——————X71(3)

Fig. 2. Exploded view of a four-bar mechanism showing its coordinate
frames and the transforms between them. Tree joint quantities are shown in
blue, and loop joint quantities are shown in

Joint models provide the information to describe the
permitted relative motion between connected bodies. This
information is captured by three quantities: X, S, and
W. The motion subspace matrix S; € R6*" maps the
joint velocity ¢; to the difference in 6D spatial velocity
between the preceding and succeeding bodies. Similarly, the
constraint force subspace matrix ¥; € RS*™ maps the
constraint forces f to the 6D spatial force across the joint.
The joint model determines how to compute these quantities
given the joint position g;.

C. Loop Constraints

The motion constraints imposed by loop joints can be
expressed in either “implicit” form

¢(a) =0,

or, in cases where an independent set of coordinates exists,
explicit form

Kq=0, Kg=k, 2)

G=Gy +g, 3)

where q is the set of complete coordinates of the robot
and y is the set of independent coordinates. The constraint
Jacobians and biases for the implicit and explicit constraints
are given by

q=7(y), a=Gy,

K= 9@ o _ K4 G- M) g = Gy.
dq dy
D. URDF

The main idea behind the URDF is that it encodes a
kinematic tree. The description of the entire CG is contained
within the contents of the <robot> element. The nodes
of the graph (links of the robot) are given by the <link>
elements. Similarly, the edges of the graph (tree joints of the
robot) are described by <joint> elements. The contents of
the <1ink> elements describe the dynamics and appearance
of the respective links. For example, the <inertial> child
element gives the link’s spatial inertia, and the <visual>
child element provides information about its appearance
(shape, size, color, etc.). Similarly, the contents of <joint>
elements describe kinematic constraints between links. The

<parent> and <child> elements give the links being
constrained, the <origin> gives the tree transform X7, and
the type and <axis> describe the joint model. For more
information on the elements and attributes comprising URDF
files, see [8].

E. Recursive Algorithms for Closed-Chain Systems

The critical insight to enable recursive algorithms for
closed chains, as originally demonstrated in [17] and revis-
ited in [33], [19], is the transformation of non-ST connec-
tivity graphs into ST connectivity graphs via the grouping
of bodies involved in local loop constraints. Grouping the
bodies enables loop constraints to be resolved locally, i.e.,
only when that group of bodies is encountered during a
forward or backward pass. This local treatment avoids the
need for large-scale matrix factorization. The original pre-
sentation of the algorithms [17] refers to the grouping as
“constraint embedding” and the resulting groups of bodies
as “aggregate links.” In service of our propagation method-
based perspective [19], we previously used the terms “clus-
tering” and “clusters,” respectively. We default to the original
nomenclature (constraint embedding and aggregate links)
here due to less reliance on it in our subsequent development.

In modeling robots as graphs, constraint embedding in-
volves representing multiple bodies as a single node. Specif-
ically, the bodies constituting an aggregate link are repre-
sented with a single node. When all bodies are grouped in
their respective aggregate nodes, the resulting connectivity
graph is guaranteed to be an ST and is referred to as a
loop-aggregated connectivity graph (LACG). A LACG G4
consists of the aggregate links C and the collections of
tree and loop joints associated with each group of bodies
Tc. Following this process, constraints are embedded within
the aggregate link and will not otherwise lead to loop
constraints with other groups. A key property of the recursive
algorithms for closed chains is that their advantage over non-
recursive methods diminishes as the size of the aggreate links
increases [35], [19]. Thus, while the choice of aggreate links
may be non-unique, there always exist a subset of optimal
groupings. In a thorough, graph-theoretic-based analysis of
multibody system dynamics, Jain derives a criteria for min-
imal aggregation that, when satisfied, guarantees the model
is optimally grouped [27].

III. MODIFICATIONS TO DESCRIPTION FORMAT

We first address the challenge of extending the description
format of the URDF to accommodate kinematic loops. In ad-
dressing this challenge, we want to be mindful of preserving
the properties of the URDF that have led to its proliferation.
Specifically, the current URDF is intuitive, has a low barrier
to entry, and is compatible with many software interfaces.
To preserve these properties, we ensure that URDF+:

1) Uses elements that correspond to physically meaning-
ful properties,

2) Requires no knowledge of constraint embedding,

3) Minimally modifies the existing URDEF,

4) Maintains backward compatibility with the URDF.



URDF+ makes only three modifications to the URDF. Two
are new child elements of the <robot> element, and one
is an optional new attribute of the <joint> element. The
key idea behind our modification is that we maintain all of
the elements URDF uses to describe kinematic trees and
instead use them to describe spanning trees. We then use
our new elements to encode the loop joints and complete
the connectivity graph. We emphasize that the user does not
have to specify the aggregate links manually. Aggregation
takes place “under the hood” from the user’s perspective,
which is important since requiring detailed knowledge of
spatial kernel operators, constraint embedding, or clustering
could raise the barrier to entry considerably.

A. Loops

The first element we add to the URDF to make URDF+ is
the <loop> element. As noted earlier, loops refer to edges
present in the CG but absent from the ST. Most CGs permit
multiple STs. Thus, it is the responsibility of the user to
determine which joints to declare as tree joints and which to
declare as loop joints. Some choices are more natural than
others (i.e., declaring the controlled and observed joints as
tree joints), but all combinations are supported by URDF+.

The information needed to specify a <loop> is similar to
that for a <joint>, although slightly more information is
required. The following template shows the full contents of
the <loop> element:

<loop name="name" type="type">
<predecessor name="name"/>

—_n —n.

<origin xyz="x y z" rpy="r p y"/>
</predecessor>
<successor name="name"/>
<origin xyz="x y z" rpy="r p y"/>
</successor>
<axis xyz="x y z"/>
</loop>

For the kth loop joint, the <predecessor> element gives
the predecessor node p(k) via the name attribute and the pre-
decessor transform X p;) via the <origin> child element.
The <successor> element provides the same information
but for the successor node s(k). Like the <joint> element,
the type attribute and <axis> child element specify the
joint model.

The <loop> element described above contains all the
information needed to formulate the implicit constraint asso-
ciated with the /th loop. The first step is to find the tree joints
involved in the loop constraint. This is done by finding the
nearest common ancestor (NCA) between the predecessor
and successor. The “ancestors” of rigid body ¢ are all the
rigid bodies in the ST that are on the path from the root
body to body i. We use j < ¢ to denote that body j is an
ancestor of body ¢, which we emphasize is different from
j <i. Thus, the NCA between predecessor and successor is
given by:

nca ((p(k), s(k)) = max{i[i 2 p(k), i <s(k)}. (4

The tree joints involved in the Ith loop are those encoun-
tered on the path from the NCA to the predecessor and those
encountered from the NCA to the successor. These sets of

joints are the tree joints associated with the bodies in the path
subchains v,y and v (g, respectively. These path subchains
are defined by,

Vp(ky = p(k) U {i|nca ((p(k),s(k)) <, i < p(k)},
Vsiy = (k) U {i|nca ((p(k),s(k)) <1, < s(k)}.
The standard definition of K; has its jth block column as [4]
Klj = Elj‘I’ESj, (6)

&)

where ¢;; is —1 for j € v, 1 for j € vy, and O for
all other j. For conciseness, we omit from (6) the spatial
transforms that ensure W, and S; are expressed in the same
frame. Recall that since the joint model is known for loop I,
W, is known, and since the joint models are known for all
spanning joints, all S; are known.

To prepare for later constraint grouping operations, we will
remove all columns where ¢;; = 0 so that K; has nj, rows
and n, columns instead of n columns, where

ny=Y ni+ Y mn ©)

1€Vp 1€V,

The algorithmic steps for computing (6) are given in Algo-
rithm 8.4 of [4].

B. Coupling Constraints

Joints encode kinematics constraints on the relative motion
between connected bodies. While joints capture many motion
constraints encountered in robotics, they do not capture
another popular type of constraint: coupling constraints. Cou-
pling constraints enforce relationships between joint states
q rather than between motions of rigid bodies. In other
words, they couple the constraint imposed by one joint with
the constraint imposed by a different joint. Therefore, they
cannot be described by conventional joint transforms, motion
subspaces, and constraint force subspaces. We instead make
a new element, <coupling>, to describe such constraints.

For now, we restrict the class of possible coupling con-
straints to linear relationships between the positions of tree
joints. The following template shows the full contents of the
<coupling> element:

<coupling name="name">

<predecessor name="name"/>

<successor name="name"/>

<ratio value="value"/>
</coupling>
For the coupling constraint represented as the kth loop joint,
the <predecessor> and <successor> elements again give
p(k) and s(k). The coupling constraint also depends on the
NCA of the predecessor and successor nodes. Specifically,
the <ratio> element gives the ratio between (i) the position
of the predecessor tree joint relative to the NCA and (ii) the
rotation of the successor tree joint relative to the NCA!,

doa=m Y, q ®)

1€Vp(k) JE€Vs(i)

'The <joint-mimic> element that exists for the conventional URDF
is a specific case of <coupling> where the NCA of the predecessor and
successor is also the parent of both bodies.



Note that (8) requires all of the tree joints associated with the
bodies in v, and v, to have the same number of degrees of
freedom and to encode the same type of motion (i.e., rotation
or translation).

Unlike <loop> constraints, which tend to be most natu-
rally represented as implicit constraints, coupling constraints
are most naturally represented as explicit constraints, where
the explicit constraint Jacobian Gy is a function of only
Ni. A geared transmission is the most common example
of a coupling constraint, although many variations exist in
robotics.

C. Independent Coordinates

If the user wishes to represent any of the loop constraints
in explicit form, they must also specify a set of independent
generalized velocity coordinates y. We remark that the
recursive algorithms for closed-chain systems only require
the loop constraint Jacobians and biases, G and gy, to be
expressed explicitly. They do not rely on explicit constraint
definitions of the form q = «(y). Therefore, even in cases
where loop constraints are formulated as implicit (e.g., (6)),
equivalent explicit constraint Jacobians and biases can be
systematically derived [33].

The choice of independent coordinates is non-unique, so
the final modification we make to the URDF is an optional
attribute allowing the user to specify which tree joints should
be included in the independent coordinates and which should
not. We name this attribute independent and show a
template for its usage here:

<joint name="name" type="type" independent="bool">
<origin xyz="x y z" rpy="r p y"/>
<axis xyz="x y z"/>
<parent name="name"/>
<child name="name"/>
</joint>

Since the attribute is optional, the model will successfully
parse if omitted. However, in that case, the user will be
restricted to describing its configuration using valid sets of
ST coordinates. By making the attribute optional, we satisfy
our goal of not requiring the user to have knowledge of
constraint embedding.

The URDF+ method of determining independent coordi-
nates restricts the independent coordinates to be a subset of
the complete spanning coordinates (y C ), even though
the recursive algorithms for closed-chain systems permit
alternative choices. Furthermore, we note that for a model
with n degrees of freedom, the number of independent
coordinates is n® = n — Zf\fl rank (K;). To deal with cases
where the user specifies an incompatible number, we have
ensured that the parser will detect the incompatibbility and
throw an error.

IV. PARSER

The new data structures encoded by the URDF+ ne-
cessitate an accompanying new parser. The parser for the
original URDF processed the elements encoding nodes and
edges and produced a kinematic tree. However, because
the URDF+ supports closed chains, the new parser must

perform additional processing to produce a loop-aggregated
connectivity graph. This parser, specifically its automation
of Jain’s constraint embedding strategy [27], constitutes the
second contribution of this work.

A. Relation to Strongly Connected Components

Jain’s constraint embedding strategy [27] requires the
user to “identify the smallest subtree that contains [the
predecessor and successor bodies of a loop constraint].” This
identification is not trivial and, especially in cases of nested
or overlapping loops, may require background knowledge of
constraint embedding - which we aim to avoid. Therefore,
we propose a parser that automatically identifies the minimal
aggregation links. We do this by using the concept of strongly
connected components in a directed graph. First, consider the
physical interpretation of the minimal aggregation criteria:
an aggregate link C is minimally aggregated if and only if
for every pair of bodies (B;,B;) € C, a valid motion of
B; cannot be computed without simultaneously computing
the motion of B;, and vice versa. This condition parallels
the definition of a Strongly Connected Component (SCC)
in graph theory [36]: a strongly connected component of a
digraph G = (N, &) is a maximal set of vertices V C N
such that for all V;,V; € V, V; is reachable from V; and V;
is reachable from V;.

We base our URDF+ parser on this parallel. Specifically,
our parser consists of three steps, shown in Alg. 1. We
first create the CG by reading the URDF file, which is
similar to the original URDF Parser and shown in Alg. 2.
Next, we build a directed graph where the SCCs in the
digraph correspond to minimally aggregated links. We call
this digraph a “constraint dependency digraph.” Finally, we
use a standard SCC algorithm [36] to extract the SCCs from
the constraint dependency digraph (CDD) and, therefore,
form the LACG.

Algorithm 1 URDF+ Parser
Require: robot.urdf
1: Go = connectivityGraphFromUrdf (robot . urdf)
2. Gp = constraintDependencyDigraphFromCG égc§

Gp

3: G4 = extractStronglyConnected Components
4: return Go, Gy

B. Constraint Dependency Digraph

Forming a constraint sub-group is not as simple as con-
catenating the v, and v, for a given loop joint. For example,
consider the cases of “nested” and “overlapping” loops,
shown in Fig. 3(a). A nested loop occurs when the predeces-
sor or successor of a loop joint [ is in the path subchain v,/
or vy of another loop joint /. Overlapping loops occur
when a single body is the predecessor or succesor of multiple
loop joints [ and I’. In both of these cases, the motions of the
bodies in v,,x) and v () must be simultaneously computed
with those of the bodies in vy and vgpry.

Dealing with these cases, therefore, requires extra steps.
The idea behind the CDD is to use the path subchains, which



Algorithm 2 connectivityGraphFromUrdf

Algorithm 3 constraintDependencyDigraphFromCG

Require: robot.urdf
B={}LT={}LL={}

2: for every <link> in robot .urdf do
3:  Create body B from <link>

4 B+ BUB

5: end for

6: for every <joint> in robot .urdf do
7

8

9

—_

Build tree joint 7' from <joint>
T«TUuT
: end for
10: for every <loop> and <coupling> in URDF+ do
11:  Build loop joint L from <loop> or <coupling>
122 L+ LUL
13: end for
14: return Go + (B, TUL)

are easy to find, to construct a directed graph and then allow
the reachability between nodes in the digraph to determine
the aggregation. The aggregation links emerging from apply-
ing SCC decomposition to the CDD are guaranteed to satisfy
the minimal aggregation criteria. The steps for building the
CDD are given by Alg. 3 as well as depicted in Fig. 3.

Connectivity Constraint Dependency
Graph Digraph

Loop-Aggregated
Connectivity Graph

Overlapping
(a) (b) ()

Fig. 3. Tllustrative connectivity graphs for a system with kinematic loops
resulting in multiple aggregate links.

The constraint dependency digraph contains all the nodes
in the original connectivity graph. Every tree joint edge in
the original spanning tree is then added to the digraph as
a directed edge from its parent to its child. On the other
hand, every loop joint leads to two directed edges in the
constraint dependency digraph. These two edges capture the
dependence between the motion of the predecessor and the
successor subchain and the motion of the successor and
the predecessor subchain. The first directed edge goes from
the predecessor to the lowest numbered node in v,, and
the second directed edge goes from the successor to the
lowest numbered node in v,. Thus, the constraint dependency
digraph has Np nodes and N; + Ny, directed edges.

C. Extracting Sub-Groups

Standard algorithms in computer science exist for auto-
matically decomposing graphs in SCCs [36]. The algorithm
we use involves two depth-first searches, one on the CDD

Require: (B,7,L)
LN=BE={}
2: for every tree joint T; € 7 do
3:  Create directed edge E from By to B;
5 — gU Ez
end for
for every loop joint L; € £ do
Buea = nca ((p(Li), s(Li))
v, = pathSubchain (p(L;), Brea)
vs = pathSubchain (s(L;), Bnea)
10:  Create directed edge E; from p(L;) to min v
11:  Create directed edge Ej from s(L;) to minu,
122 £+« EU{E;, E;}
13: end for
14: return Gp (./\/, 5)

R A A

Algorithm 4 pathSubchain
Require: B;, B;

1. v= {}
2: while B; # B; do
3 v+ rvUB;
5
6

. end while
: return v

and another on its reverse digraph. The reverse digraph is
formed by flipping the direction of every edge in the original
digraph. Upon sorting the sub-groups, the parser stores the
corresponding constraints K; and G; with the correct sub-
groups, and the newly formed LACG is ready to be used
in recursive dynamics algorithms. Note that even though
our parser gives an optimal sub-grouping, some of them
may still be large due to the robot’s morphology. In these
cases, sparsity-exploiting algorithms (e.g., [37], [28]) may
outperform recursive ones. The URDF+ data structures and
parser are still useful because in the process of parsing the
model, the original spanning tree is stored, and so too are the
loop constraints K and G, along with their sparsity patterns.

V. EXAMPLES

We provide some illustrative examples to demonstrate how
to use the new features of URDF+ and how to apply them
to model different types of closed-chain mechanisms. Note
that for the sake of space, we only include the portions
of the URDF+ that are needed to communicate how to
use the new features. Therefore, some examples might be
“underspecified” and not directly usable by an RBD library.

A. LIMS2-AMBIDEX Wrist

We first provide an example using the <loop> element,
applying it to a 2-DOF virtual rolling joint for wrist pitch/roll
motion [21]. A picture of the joint is shown in Fig. 4.
The clever design of the mechanism allows it to emulate
the pure rolling contact of two spheres while maintaining a
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Fig. 4. Schematic of the 2-DOF wrist joint for the LIMS2-AMBIDEX
robot [21] and its corresponding connectivity graphs.

wide range of motion free of singular poses. The connecting
rods create kinematic loops that prevent the mechanism from
being accurately modeled by URDF.

The abridged URDF+ for this mechanism is:

<link name="Base"/>

<link name="Link 1"/>

<link name="Link 2"/>

<link name="Link 3"/>

<link name="Output"/>

<joint type="universal" independent="true">
<parent name="Base"/>
<child name="Link 1"/>

</joint>

<joint type="universal" independent="false">
<parent name="Base"/>
<child name="Link 2"/>

</Jjoint>

<joint type="universal" independent="false">

<parent name="Base"/>

<child name="Link 3"/>
</joint>
<joint type="universal" independent="false">

<parent name="Link 1"/>

<child name="Output"/>
</joint>
<loop type="universal">

<predecessor name="Link 2"/>

<successor name="Output"/>
</loop>
<loop type="universal">

<predecessor name="Link 3"/>

<successor name="Output"/>
</loop>

The connectivity graph, the constraint dependency di-

graph, and the loop-aggregated connectivity graph for this
URDF+ are also shown in Fig. 4. Observe in the constraint
dependency digraph that the connecting rods and output body
are all reachable from one another. Thus, they constitute an
SCC. Following the parsing rules from Sec. IV, the implicit
constraint Jacobian for the mechanism is

K K, \Ilfsl 1IIISQ 0 \IIIS4 )

= = T T T
K v, S; 0 ¥,S; W¥,S,

Since the total number of degrees of freedom of the tree
joints is 8, and the rank of the constraint matrix is 6, the
mechanism has the expected number of independent degrees
of freedom: 2.

B. Parallel Belt Transmission

We also provide an example of a coupled constraint as
part of a parallel belt transmission [11], shown in Fig. 5.
The simplest example of a coupled constraint is a geared

Connectivity  Constraint Dependency
Graph

Loop-Aggregated
Connectivity Graph

Robot "
Digraph

Motor (B2)

Foot (g,

Fig. 5. CAD view of the parallel belt transmission in the MIT Hu-
manoid [11] and its corresponding connectivity graphs.

transmission. This is easily modeled by URDF+. However,
there are also simple changes to the conventional recursive
algorithms that can approximately account for the effects of
geared motors [38]. For a more complicated design like a
parallel belt transmission where the NCA of the predecessor
and successor is not also the parent of the predecessor and
successor, the constraint gets more complicated, and the
geared motor approximation technique fails to generalize.
The abridged URDF+ for this mechanism is:

<link name="thigh"/>

<link name="shank"/>

<link name="motor"/>

<link name="foot"/>

<joint type="revolute" independent="true">
<parent name="thigh"/>
<child name="shank"/>

</Jjoint>

<joint type="revolute" independent="false">
<parent name="thigh"/>
<child name="motor"/>

</joint>

<joint type="revolute" independent="true">
<parent name="shank"/>
<child name="foot"/>

</joint>

<coupling>
<predecessor name="foot"/>
<successor name="motor"/>
<ratio value="eta"/>

</coupling>

The connectivity graph, the constraint dependency di-
graph, and the loop-aggregated connectivity graph for this
URDF+ are also shown in Fig. 5. The predecessor subchain
vy, includes the foot and shank, and the successor subchain
v, includes only the motor. Therefore, the explicit constraint
can be expressed

Qshank + Qfoot = Mmotor- (10)

leading to the constraint Jacobian

qshank 1 0 q ik
d=| e | =0 1 [(;fﬂ _ay. A
Qmotor 1/77 1/77 0

VI. CONCLUSION

The introduction of URDF+ represents an advancement
in the ability of modern RBD libraries to seamlessly sup-
port robots with kinematic loop designs. By enhancing the



conventional URDF to include such loops while preserv-
ing its intuitive design and usability, URDF+ addresses a
critical gap in the existing standards. Our modifications
maintain the familiar elements of URDF for describing
kinematic trees and add new elements for loop joints, en-
suring compatibility with recursive algorithms for closed-
chain systems. The development of an automated parser
to handle the new elements and generate loop-aggregated
connectivity graphs underscores the user-centric approach of
URDF+. This automation eliminates the need for manual
specification of aggregate links, simplifying the modeling
process for users and ensuring optimal performance. Through
illustrative examples and the creation of supporting tools, we
demonstrate the practical benefits and feasibility of URDF+.
Our goal is to encourage the robotics community to adopt
this enhanced format, which will facilitate the design and
simulation of more complex robotic systems. Future work
will focus on adding features such as more complicated cou-
pling constraints (e.g. differential joints), specifying arbitrary
independent coordinates, and parsing models in a manner
that detects when which constraints should be handled with
constraint-embedding versus non-recursive alternatives such
as [28] or [39].
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