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Asymptotically nonlocal field theories approximate ghost-free nonlocal theories at low energies, yet are

theories of finite order in the number of derivatives. These theories have an emergent nonlocal scale that

regulates loop diagrams and can provide a solution to the hierarchy problem. Asymptotic nonlocality has

been studied previously in scalar theories, Abelian and non-Abelian gauge theories with complex scalars,

and linearized gravity. Here we extend that work by considering an asymptotically nonlocal generalization

of QCD, which can be used for realistic phenomenological investigations. In particular, we derive Feynman

rules relevant for the study of the production of dijets at hadron colliders and compute the parton-level cross

sections at leading order. We use these to determine a bound on the scale of new physics from Large Hadron

Collider data, both for a typical choice of model parameters, and in the nonlocal limit.
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I. INTRODUCTION AND FRAMEWORK

The Lee-Wick Standard Model (LWSM) is a theory with

higher-derivative quadratic terms, leading to propagators

that fall off more quickly with momentum than those of the

Standard Model [1]. As a consequence, the quadratic

divergence of the Higgs boson squared mass is eliminated

and the hierarchy problem is resolved. Each propagator in

the LWSM has an additional pole representing a new, heavy

particle that is a “partner” to the given Standard Model

particle. The residues of the new poles are opposite in sign

to those of ordinary particles; in an auxiliary field descrip-

tion, this sign difference leads to diagrammatic cancella-

tions that reproduce the expected ultraviolet behavior of

the higher-derivative theory. Wrong-sign residues imply

that Lee-Wick particles are ghosts. Nevertheless, it has

been argued that if Lee-Wick particles are excluded from

the spectrum of asymptotic scattering states, and if

loop diagrams are evaluated using appropriate pole pre-

scriptions [2–4], Lee-Wick theories are unitary and viable

as extensions of the Standard Model.

The LWSM, like the minimal supersymmetric extension

of the Standard Model, predicts heavy particles that have

not been observed. While new particle masses can always

be pushed just above current experimental bounds, doing so

gradually reintroduces the unwanted fine-tuning needed to

keep the Higgs boson mass close to the weak scale. While

the precise amount of fine-tuning that is tolerable may be

debated, the reintroduction of fine-tuning motivates con-

sideration of higher-derivative theories that do not predict

unobserved heavy particles at the TeV scale.

Nonlocal theories present such a possibility (see, for

example, Refs. [5–11]). In these theories, the mass and

kinetic terms in the Lagrangian are typically modified by a

nonlocal form factor, an infinite-derivative operator that is

an entire function of□=Λ2

nl, where□≡ ∂μ∂
μ and Λnl is the

nonlocal scale. Such a choice modifies the ultraviolet

behavior of propagators without introducing additional

poles. The simplest constructions have employed the

exponential of the □ operator, as in this generalization

of the theory of a real scalar field:

L∞ ¼ −
1

2
ϕð□þm2

ϕÞel
2
□ϕ − VðϕÞ: ð1:1Þ

Here l≡ 1=Λnl. The ϕ propagator involves a factor of

el
2p2

which becomes e−l
2p2

E in loop amplitudes after Wick

rotation, where pE is the Euclidean momentum. This leads

to improved convergence, with Λnl serving as a regula-

tor scale.

Asymptotically nonlocal theories represent another pos-

sibility, one that interpolates between Lee-Wick theories

and ghost-free nonlocal theories [12–16]. These theories

allow the decoupling of the Lee-Wick particles without

reintroducing the fine-tuning problem due to the emergence

of a derived regulator scale (i.e., one that does not appear as

a fundamental parameter in the Lagrangian) that is hier-

archically smaller than the lightest Lee-Wick resonance
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mass. Asymptotically nonlocal theories have been explored

in the recent literature in the context of scalar theories [12],

Abelian gauge theories [13], non-Abelian gauge theo-

ries [14], and linearized gravity [15]. To review the basic

construction, we note that Eq. (1.1) is recovered from

L ¼ −
1

2
ϕð□þm2

ϕÞ
�

1þ l
2
□

N − 1

�

N−1

ϕ − VðϕÞ; ð1:2Þ

in the limit thatN is taken to infinity. At finiteN, this theory

is not quite what we want, since the ϕ propagator has an

(N − 1)th order pole, which does not have a simple particle

interpretation. However, we can obtain the same limiting

form by working instead with

LN ¼−
1

2
ϕð□þm2

ϕÞ
"

Y

N−1

j¼1

�

1þ
l2j□

N−1

�

#

ϕ−VðϕÞ; ð1:3Þ

where the lj are nondegenerate but approach a common

value, l, as N becomes large. In this case, the propagator is

given by

DFðp2Þ ¼ i

p2 −m2

ϕ

Y

N−1

j¼1

�

1 −
l
2
jp

2

N − 1

�

−1

; ð1:4Þ

which has N first-order poles, representing a spectrum of

particles with masses mϕ and mj ≡
ffiffiffiffiffiffiffiffiffiffiffiffi

N − 1
p

=lj, for

j ¼ 1…N − 1. In the past literature [12–16], a convenient

parametrization was chosen for how the mj are decoupled

as N becomes large, while the regulator scale l is held

fixed, namely

m2
j ¼

N

l
2

1

1 −
j

2NP

; j ¼ 1…N − 1; P > 1: ð1:5Þ

The results discussed in Refs. [12–16] did not depend

strongly on how the nonlocal limiting theory was

approached. For any finite N, the propagator, Eq. (1.4),

may be expressed via a partial fraction decomposition as a

sum over simple poles with residues of alternating signs (a

behavior that is expected in higher-derivative theories [17]).

The poles with wrong-sign residues are Lee-Wick particles.

Lee-Wick theories involving higher-derivative terms that

are of higher-order than those found in the LWSM have

been considered before [18], including the identification

of equivalent auxiliary field formulations (that is, with

Lagrangians expressed in terms of additional fields but

without higher-derivative terms). Auxiliary field formula-

tions were also considered in the context of asymptotically

nonlocal theories in Refs. [12–16]; here, we work exclu-

sively in the higher-derivative formulation of these theories.

The propagator in Eq. (1.4) can be expressed in terms of

the masses mj,

DFðp2Þ ¼ i

ðp2 −m2

ϕÞ
Q

N−1
j¼1

ð1 − p2=m2
jÞ
: ð1:6Þ

For Euclidean momentum, the product in the denominator

of Eq. (1.6) approaches a growing exponential in the large

N limit of Eq. (1.5). This regulates loop diagrams at the

scale Λnl, where Λ
2

nl is roughly a factor of N smaller than

the square of the lightest Lee-Wick resonance massm2

1
. It is

interesting to note that nonlocal propagators, including

those with exponential form factors, have been considered

in the past in the context of low-energy effective descrip-

tions of QCD, namely the nonlocal chiral quark model, and

have been applied previously in the study of low-energy

strong interaction phenomenology (see, for example,

Refs. [19,20]). In the present context, the nonlocality is

part of the fundamental description of the theory, and not

derived from a specific model of underlying dynamics.

Asymptotically nonlocal theories represent a class of

higher-derivative theories that are different from the sim-

plest Lee-Wick theories and ghost-free nonlocal theories,

which makes study of their properties and phenomenology

well motivated. These theories may provide a different

approach to considering unitarity in nonlocal theories [21],

namely by applying approaches that are known to work in

Lee-Wick theories of finite order [2–4] and then taking

the limit as N becomes large. Of greater relevance to the

present work is that asymptotically nonlocal theories can

be considered the ultraviolet completions of theories that

appear nonlocal at low energies. Tree-level scattering

processes at the Large Hadron Collider (LHC) exist in

Minkowski space, where the exponential factor in Eq. (1.1)

may produce unbounded growth in cross sections with

center-of-mass energy. In asymptotically nonlocal theories,

however, such growth is truncated due to the change in the

theory at the scale of the first Lee-Wick resonance,m1 [16].

In other words, if one were to integrate out all the heavy

particles in an effective field theory approach, then the

effective theory below the cutoff m1 would look (approx-

imately) like a ghost-free nonlocal theory; the asymptoti-

cally nonlocal theory provides an ultraviolet completion.

From a phenomenological perspective, it is natural to

seek a bound on the nonlocal scale Λnl [22]. While

asymptotically nonlocal theories delay the appearance of

new particles, the momentum dependence of scattering

amplitudes is nonetheless affected by the same physics that

accounts for the regulation of loop diagrams which, based

on naturalness arguments, one would expect to be asso-

ciated with the TeV scale. Since the LHC is currently the

highest-energy collider available to probe new physics, it is

natural to investigate how the relevant physics might be

probed there, in one of the most common processes: the

production of dijets. Hence, we will focus on computing

the parton-level cross sections in an asymptotically non-

local generalization of QCD that determine the proton-

proton cross section for dijet production, in particular,
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the differential cross section with respect to the dijet in-

variant mass. The dijet invariant mass spectrum has been

used in other contexts to bound new physics, for example,

to determine a lower bound on the mass of colorons in

Ref. [23]. The Feynman rules for asymptotically nonlocal

QCD have not appeared in the literature (only scalar QCD

was considered in Ref. [14]), so we first determine the rules

relevant to two-into-two scattering in the next section.

We then give our expressions for the parton-level cross

sections σ̂, which are significantly more complicated than

what one obtains in QCD, and explain how gauge-fixing

and the identification of asymptotic states works in our

higher-derivative construction. The expressions for the

various σ̂ also have not appeared before in the literature

and can be incorporated in detailed collider physics studies.

While an exhaustive collider physics study is not the focus

of the present work, we nevertheless use our theoretical

results and data from the LHC to obtain a bound on the

nonlocal scale from the dijet invariant mass spectrum. In

the final section, we summarize our conclusions.

II. ASYMPTOTICALLY NONLOCAL QCD

An asymptotically nonlocal SU(N) gauge theory with

complex scalar matter was presented in Ref. [14], where

loop corrections to the scalar two-point function were

studied given their relevance to the hierarchy problem.

Here we are interested in a realistic SU(3) gauge theory

with spin-1=2 fermions, namely QCD with color-triplet

quarks, for phenomenological applications. Following the

notation of Ref. [14], we define a covariant box operator

□≡DμD
μ, with SU(3) covariant derivative Dμ ¼ ∂μ −

igTaAa
μ and

fð□Þ≡
Y

N−1

j¼1

�

1þ a2j□
�

; ð2:1Þ

where we define a2j ≡ l
2
j=ðN − 1Þ. Equation (2.1) is a

gauge-covariant version of the higher-derivative product

that appears in Eq. (1.3). We then define the asymptotically

nonlocal extension of QCD by inserting fð□Þ in the kinetic
and mass terms, in analogy to Eq. (1.3),

L ¼ −
1

2
TrFμ¿fð□ÞFμ¿ þ 1

2
q̄fði =D −mqÞ; fð□Þgqþ Lg:f:;

ð2:2Þ

where Lg:f: represents gauge-fixing terms. Here, Fμ¿
≡

Fμ¿aTa, and the flavor indices on the quark field have been

suppressed. The braces in the second term represent an

anticommutator, defined by fX; Yg≡ XY þ YX, which is

included to preserve the Hermiticity of the Lagrangian. In

the local limit, fð□Þ → 1, one obtains the usual QCD

Lagrangian. We assume a familiar form for the gauge-

fixing term,

Lg:f: ¼ −
1

2À
ð∂μAa

μÞ2: ð2:3Þ

A nonlocal modification to the gauge-fixing term is

unnecessary, as nothing physical depends on this choice;

the form in Eq. (2.3) is convenient for implementing the

usual Fadeev-Popov gauge-fixing ansatz.

A. Feynman rules

The quark and gluon propagators follow from the purely

quadratic terms in Eqs. (2.2) and (2.3). For the quark fields

we find

DðpÞ ¼ ið=pþmqÞ
ðp2 −m2

qÞfð−p2Þ ; ð2:4Þ

while for the gluons

Dab
μ¿ðpÞ ¼ −

i

p2fð−p2Þ

�

ημ¿ −
pμp¿

p2

�

1 − Àfð−p2Þ
�

�

δab;

ð2:5Þ

where a and b are color indices. In the calculations that we

present in Sec. II B, we will work in the nonlocal equivalent

of Landau gauge, where À ¼ 0, as this simplifies inter-

mediate algebraic steps. We note that the factor of fð−p2Þ
in the denominator of Eq. (2.5) becomes a growing

exponential as a function of Euclidean momentum in the

nonlocal limit, which accounts for the elimination of

quadratic divergences in the theory of complex scalars

discussed in Ref. [14].

To evaluate the two-into-two scattering processes of

interest to us, we need the interaction vertices involving at

least one gluon and no more than four lines of any type. It is

straightforward, though somewhat tedious, to extract the

interactions involving a specified number of gluon fields

from the Lagrangian that involves the product of an

arbitrary number of covariant box operators defined in

Eq. (2.1). For vertices involving a quark line, one can have

either one or two gluon lines. We find the Feynman rules

ð2:6Þ

where
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V
μ
1gðp1; p2Þ≡

1

2

	

f1ðp2

1
Þ þ f1ðp2

2
Þ



γμ − ðp1 − p2Þμ
�

=p1 − =p2

2
−mq

�

f2ðp2

1
; p2

2
Þ; ð2:7Þ

and

ð2:8Þ

where

V
μ¿
2gðp1; p2; q1; q2Þ≡ ημ¿

�

=p1 − =p2

2
−mq

�

f2ðp2

2
; p2

1
Þ þ ðq1 þ 2p2Þμðq2 þ 2p1Þ¿

×

�

=p1 − =p2

2
−mq

�

f3
�

p2

2
; ðq2 þ p1Þ2; p2

1

�

þ 1

2
γμðq2 þ 2p1Þ¿f2

�

ðq2 þ p1Þ2; p2

1

�

−
1

2
ðq1 þ 2p2Þμγ¿f2

�

p2

2
; ðq2 þ p1Þ2

�

: ð2:9Þ

The three- and four-gluon self-interactions are the same as those found in Ref. [14]. We provide these Feynman rules here

for completeness:

ð2:10Þ

where

V
μ¿ρ
3g ðp1; p2; p3Þ≡ ημρp¿

1
f1ðp2

1
Þ þ 1

2
ðp1 − p3Þ¿ðp1 · p3η

μρ − p
ρ
1
p
μ
3
Þf2ðp2

1
; p2

3
Þ: ð2:11Þ

Here “all permutations” refers to the 3! ways we may permute the elements of the set fðp1; μ; aÞ; ðp2; ¿; bÞ; ðp3; ρ; cÞg,
which label the lines of the vertex. Finally,

ð2:12Þ

where
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V
μ¿ρσ
4g ðp1; p2; p3; p4Þ ¼

1

4
ημρη¿σf1

�

ðp3 þ p4Þ2
�

− η¿σp
μ
4
ðp3 þ 2p4Þρf2

�

ðp1 þ p2Þ2; p2

4

�

−
1

2
η¿ρðp1 · p4η

μσ − pσ
1
p
μ
4
Þf2ðp2

1
; p2

4
Þ − 1

2
ð2p1 þ p2Þ¿ðp3 þ 2p4Þρ

× ðp1 · p4η
μσ − pσ

1
p
μ
4
Þf3

�

p2

1
; ðp1 þ p2Þ2; p2

4

�

: ð2:13Þ

In these Feynman rules, we define the functions f1, f2, and f3 as follows:

f1ðp2Þ≡
Y

N−1

j¼1

�

1 − a2jp
2
�

;

f2ðp2

1
; p2

2
Þ≡

X

N−1

k¼1

a2k

"

Y

k−1

j¼1

�

1 − a2jp
2

1

�

#"

Y

N−1

j¼kþ1

�

1 − a2jp
2

2

�

#

;

f3ðp2

1
; p2

2
; p2

3
Þ≡

X

N−1

n¼1

X

N−1

k¼nþ1

a2na
2

k

"

Y

n−1

j¼1

�

1 − a2jp
2

1

�

#"

Y

k−1

j¼nþ1

�

1 − a2jp
2

2

�

#"

Y

N−1

j¼kþ1

�

1 − a2jp
2

3

�

#

: ð2:14Þ

As one might surmise, the functions f2 and f3 arise by extracting the one- and two-gluon parts of the product in Eq. (2.1),

respectively. As noted in Ref. [14], these functions are totally symmetric under interchange of their arguments and approach

the following exponential forms in the large N limit:

lim
N→∞

f1ðp2Þ ¼ e−l
2p2

;

lim
N→∞

f2ðp2

1
; p2

2
Þ ¼ e−l

2p2

1 − e−l
2p2

2

p2

2
− p2

1

;

lim
N→∞

f3ðp2

1
; p2

2
; p2

3
Þ ¼ e−l

2p2

1

ðp2

2
− p2

1
Þðp2

3
− p2

1
Þ þ

e−l
2p2

2

ðp2

1
− p2

2
Þðp2

3
− p2

2
Þ þ

e−l
2p2

3

ðp2

1
− p2

3
Þðp2

2
− p2

3
Þ : ð2:15Þ

In the limit that Λnl → ∞, the ak → 0, so that f1ðp2Þ→ 1, f2ðp2

1
; p2

2
Þ→ 0 and f3ðp2

1
; p2

2
; p2

3
Þ → 0, independent of the

arguments of these functions and the value of N. One thereby recovers the QCD Lagrangian in this limit.

B. Two-into-two parton-level cross sections

Following the notation of Ref. [24], the cross section for a two-jet final state can be expressed as

dσ

dy1dy2dp⊥

¼ 2π

s
p⊥

X

ij

h

f
ðaÞ
i ðxa; Q2ÞfðbÞj ðxb; Q2Þσ̂ijðŝ; t̂; ûÞ

þ f
ðaÞ
j ðxa; Q2ÞfðbÞi ðxb; Q2Þσ̂ijðŝ; û; t̂Þ

i

=ð1þ δijÞ; ð2:16Þ

where y1 and y2 are the jet rapidities, p⊥ is the jet transverse

momentum, the fi are parton distribution functions, and s,
t, and u are the Mandelstam variables with a hat indicating

those of the parton-level process. We comment further

on the kinematical variables that are relevant to our later

analysis and on the arguments of the parton distribution

functions in Sec. III. Here, we simply note that Eq. (2.16)

defines the parton-level cross sections σ̂ij, which have

been known for some time in QCD but are modified in the

asymptotically nonlocal theories we consider here. In this

section and in the Appendix, we summarize the results

we obtain for the σ̂, which were computed using the

Feynman rules of Sec. II A via the FeynCalc package [25]

in Mathematica.

Before proceeding to these results, we make a few

technical comments. First, we note that a field in the

higher-derivative theory is associated with a number of

distinct particle states, while we are interested in diagrams

where the external lines correspond to the lightest of these

states. As described in Refs. [12–16], a higher-derivative

field can be decomposed into a sum of quantum fields in an

auxiliary field description where each exclusively creates

or annihilates one type of particle. The coefficient of the

component field that annihilates or creates the lightest
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state is determined by the wave function renormalization

factor that one finds at the corresponding pole in the higher-

derivative theory. For massless partons, the form of our

Lagrangian assures that this factor is unity [since fð0Þ ¼
f1ð0Þ ¼ 1], so that the field in the higher-derivative theory

creates or annihilates the lightest particle component

without any numerical correction factor compared to a

canonically normalized quantum field in a theory that has

conventional mass and kinetic terms. Secondly, we men-

tioned earlier that we work in the higher-derivative gener-

alization of Landau gauge, which implies that we must

include ghosts if we sum over all possible polarization

states of the external gluon lines. Alternately, we may omit

the ghosts if we also omit the unphysical polarization states

that the ghosts would cancel in the polarization sums. This

can be accomplished using standard techniques involving

an auxiliary vector (see, for example, Sec. 3 of Ref. [26]).

This is the approach we follow and we have verified as a

consistency check that our cross sections correctly repro-

duce all the expected QCD results in the limit that the scale

of new physics is taken to be infinitely large.

For the case of quark-antiquark annihilation through

s-channel gluon exchange, the cross section is given by

σ̂qiq̄i→qjq̄j
¼ 4α2s

9ŝ

t̂2 þ û2

ŝ2f1ðŝÞ2
; i ≠ j; ð2:17Þ

where i and j are quark flavor indices. Here, and hence-

forth, we assume all partons are massless, and the final state

jets include five light flavors, with the top quark excluded.

For t-channel scattering of different flavors of quark or

antiquark, the cross section is

σ̂qiqj→qiqj
¼ 4α2s

9ŝ

ŝ2 þ û2

t̂2f1ðt̂Þ2
; i ≠ j: ð2:18Þ

For the special case of quark-antiquark scattering into

quark-antiquark of the same flavor, there are both s- and
t-channel contributions

σ̂qiq̄i→qiq̄i
¼ 4α2s

9ŝ

�

t̂2 þ û2

ŝ2f1ðŝÞ2
þ ŝ2 þ û2

t̂2f1ðt̂Þ2
−

2û2

3ŝ t̂ f1ðŝÞf1ðt̂Þ

�

;

ð2:19Þ

and for the similar case of quark-quark scattering of a single

flavor, there are t- and u-channel diagrams, leading to

σ̂qiqi→qiqi
¼ 4α2s

9ŝ

�

ŝ2 þ û2

t̂2f1ðt̂Þ2
þ ŝ2 þ t̂2

û2f1ðûÞ2
−

2ŝ2

3t̂ û f1ðt̂Þf1ðûÞ

�

:

ð2:20Þ

While the modified form of the σ̂ for processes exclu-

sively involving quarks and/or antiquarks might be easy to

intuit, those involving gluon external lines are much more

complicated due to the modification of the Feynman rules

in Eqs. (2.10)–(2.13). The cross section for a quark-

antiquark pair scattering into two gluons may be expressed

in the form

σ̂qq̄→gg ¼
α2s

9ŝ

X

4

i;j;k¼0

f2ð0; 0Þif2ðt̂; 0Þjf2ðû; 0ÞkFijkðŝ; t̂; ûÞ;

ð2:21Þ

where the coefficientsFijkðŝ; t̂; ûÞ are given in Appendix A 1.

The function f2 vanishes in the Λnl → ∞ limit, which

implies that the QCD result lives entirely in the F000 part of

Eq. (2.21) in the same limit. The parton-level cross sections

σ̂gg→qq̄ and σ̂qg→qg can be obtained from Eq. (2.21) by

means of crossing symmetry. This involves specific inter-

changes of Mandelstam variables, as well as adjustments in

overall signs and spin/color factors, as discussed in standard

textbooks [27]. We find

σ̂gg→qq̄ ¼
9

64
σ̂qq̄→ggðt̂↔ ûÞ ð2:22Þ

and

σ̂qg→qg ¼ σ̂q̄g→q̄g ¼ −
3

8
σ̂qq̄→ggðŝ↔ t̂Þ: ð2:23Þ

Finally, the cross section for gluon-gluon scattering to

two gluons may be written in the form

σ̂gg→gg ¼
α2s

ŝ

X

4

i;j;k;l;m¼0

f2ð0; 0Þif2ðt̂; 0Þjf2ðû; 0Þkf3ð0; t̂; 0Þl

× f3ð0; û; 0ÞmFijklmðŝ; t̂; ûÞ; ð2:24Þ

where the coefficients Fijklmðŝ; t̂; ûÞ are provided in

Appendix A 2. Again, the QCD limit lives entirely in

the term involving F00000ðŝ; t̂; ûÞ.1
Before proceeding to an analysis of the bounds on the

nonlocal scale, a word of caution is warranted.

Equation (2.16) is reliable in QCD but it is possible that

its factorized form and the evolution with energy scale of

the parton distribution functions could be modified above

the nonlocal scale. Below the nonlocal scale, asymptoti-

cally nonlocal QCD approaches ordinary QCD exponen-

tially fast. Hence, we expect Eq. (2.16) to be reliable and

that there should be no substantial difference in the DGLAP

evolution [28] of the parton distribution functions from the

scale where they are extracted from low-energy experi-

mental data (for example, from deep inelastic scattering) to

around the TeV scale. We will see in the next section that

1
A Mathematica file with all the σ̂ used in our analysis is

available upon request.
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the range of energies between the point where new physics

effects on the cross section become noticeable and the point

where the bound is exceeded is relatively small, due to the

exponential growth in the cross section due to the new

physics. The impact of new physics on the factorized

form of Eq. (2.16) and on the evolution of the parton

distribution functions with energy scale may be limited by

the fact that this latter energy scale interval is relatively

small. Nevertheless, a quantitative evaluation of these

issues would require a dedicated analysis in asymptotically

nonlocal QCD. This is not yet at hand but would be an

interesting direction for future work.
2

III. A BOUND FROM THE DIJET INVARIANT

MASS SPECTRUM

With the parton-level cross sections σ̂ defined in the

previous section, we may compute the cross section for

pp→ jet jet with the goal of determining a bound on the

nonlocal scale Λnl using LHC data. We focus on the dijet

invariant mass spectrum which is related to the σ̂ via

dσ

dM
¼ πM

2s

Z

Y

−Y

dy1

Z

ymax

ymin

dy2 sech
2y�

×
X

ij

h

f
ðaÞ
i ðxa; Q2ÞfðbÞj ðxb; Q2Þσ̂ijðŝ; t̂; ûÞ

þ f
ðaÞ
j ðxa; Q2ÞfðbÞi ðxb; Q2Þσ̂ijðŝ; û; t̂Þ

i

=ð1þ δijÞ:

ð3:1Þ

Here M is the dijet invariant mass, the yi are the jet

rapidities in the proton-proton center of mass frame, with

the boost-invariant quantity y� ≡ ðy1 − y2Þ=2. Since we

treat the partons as massless, there is no distinction between

rapidty and pseudorapidity, so we use these terms inter-

changeably. The parton distribution function for the ith

parton within hadron a, f
ðaÞ
i ðxa; Q2Þ, is a function of the

parton momentum fraction xa and the renormalization

scale Q. The Mandelstam variables ŝ, t̂, and û, and the

momentum fractions xa and xb, are related to M and the

integration variables by

ŝ ¼ M2; ð3:2Þ

t̂ ¼ −
1

2
M2ð1 − tanh y�Þ; ð3:3Þ

û ¼ −
1

2
M2ð1þ tanh y�Þ; ð3:4Þ

xa ¼
M
ffiffiffi

s
p eyboost ; ð3:5Þ

xb ¼
M
ffiffiffi

s
p e−yboost ; ð3:6Þ

where yboost ≡ ðy1 þ y2Þ=2 and
ffiffiffi

s
p

is the proton-proton

center-of-mass energy. The proton-proton cross section in

Eq. (3.1) assumes a cut Y > 0 is placed on the jet rapidity,

such that jyij < Y; this leads to the integration region

shown with

ymin ¼ maxð−Y; ln τ − y1Þ; ð3:7Þ

ymax ¼ maxðY;− ln τ − y1Þ; ð3:8Þ

where τ ¼ M2=s. Equations (3.7) and (3.8) follow from

the allowed range of the momenta fractions xa and xb
which must fall between 0 and 1. Note that Eqs. (3.1)–(3.8)

are well established and can be found in the literature on

hadron collider physics, for example, in Ref. [24].

We wish to compare the predictions of our scenario with

data on the dijet invariant mass spectrum from the LHC.

The dijet spectrum has been considered in searches for new,

heavy resonances (see, for example, Refs. [31–33]) provid-

ing us with experimental results that we can utilize to

determine a bound in the present scenario. For definiteness,

we use the results from the CMS experiment that are

displayed in Fig. 5 of Ref. [31]. To match this data, we

assume a rapidity cut of Y ¼ 2.5; Ref. [31] places an

additional cut on the difference between the pseudorapid-

ities, translating to jy1 − y2j < 1.1, which we impose by

including an appropriate Heaviside theta function in the

integrand of Eq. (3.1) that vanishes when this constraint

is not satisfied. To compare to this dataset, we set the

proton-proton center-of-mass energy
ffiffiffi

s
p ¼ 13 TeV, and

evaluate the dijet spectrum over the range 1.5 TeV ≤

M ≤ 8.5 TeV, with the renormalization scale Q set equal

to the dijet invariant mass M. Equation (3.1) is evaluated

numerically on Mathematica using the ManeParse pack-

age [34] which provides convenient access to parton

distribution functions (pdfs) [35]. We used the nCTEQ15

pdfs for free protons in this computation. We normalize our

theoretical prediction for a given nonlocal scale Λnl to the

result that is obtained when the nonlocal scale is taken to

infinity, i.e., setting f1 ¼ 1 and f2 ¼ f3 ¼ 0. We compare

this to the same ratio of data to QCD prediction given

in Ref. [31].

As an example of typical results, we show in Fig. 1 the

case where there are N ¼ 30 poles, with P ¼ 1.1 in the

parametrization given by Eq. (1.5), for Λnl ¼ 3.8, 4.2, and

4.6 TeV. The theoretical predictions shown in the figures

are computed at leading order, as no computation of next-

to-leading-order (NLO) effects exists for the nonlocal

theory. We assume these effects are captured by 20%

2
In fact, there are many other topics that have been studied in

detail over the years in perturbative QCD that might be interesting
to revisit in the context of asymptotically nonlocal QCD. One of
them is gluon reggeization [29] which is known to affect dijet
physics [30]. That goes beyond the scope of the present work.
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theoretical errors, which are comparable in size to NLO

effects that have been studied in QCD (see, for example,

Ref. [36]). To determine a bound, we compute a χ2 that

captures the agreement between the theoretical prediction

and the data points, with total error for each data point in

the χ2 function determined by adding the experimental and

the assumed theoretical errors in quadrature. We find for the

case shown in Fig. 1 that

Λ
30

nl > 4.2 TeV ð95% CLÞ; ð3:9Þ

where the superscript on Λnl denotes the number of poles

N. We do not find that the bound differs appreciably as we

vary N, since this parameter does not have to be very large

before f1, f2, and f3 approach theirN → ∞ limiting forms.

We can compute the results in the nonlocal limit using those

limiting forms, given in Eq. (2.15), which lead to Fig. 2. In

this case, the same procedure for determining a bound on

the nonlocal scale gives

Λ
∞
nl > 4.7 TeV ð95% CLÞ: ð3:10Þ

As a consistency check, we computed the same bound

using the CTEQ 6.1 pdfs and found a qualitatively similar

result, Λ∞
nl > 4.9 TeV (95% CL). We note that the choices

of Λnl for the curves displayed in Figs. 1 and 2 were

selected to be near the bounds in Eqs. (3.9) and (3.10),

respectively.

We view the results of this section at finite N as

illustrative and similar in spirit to the analysis of the

bounds on coloron models presented in Ref. [23]. Our

results assume a particular parametrization of resonance

masses, namely Eq. (1.5), but the value of the theoretical

results presented in our earlier sections is that they can be

applied to any desired parametrization leading to different

forms for the functions f1, f2, and f3; all should approach

the same N → ∞ limit. These general results can also

be used in more detailed collider physics investigations,

including realistic modeling of jets (for example, jet cone

algorithms), detector acceptances and efficiencies, and

studies of jet angular distributions. Those topics go beyond

the scope of the present work, and may be better motivated

after a calculation of NLO effects in the nonlocal theory are

at hand.

IV. CONCLUSIONS

In this paper, we have built upon earlier work on

asymptotically nonlocal field theories. These theories

appear nonlocal at low energies but have sensible ultra-

violet completions in terms of Lee-Wick theories that are

finite order in derivatives. We focused on the strongly

interacting sector [14], whose modification affects the

physics of jets at the highest energy hadron colliders;

our goal was to obtain preliminary bounds on the scale of

new physics, Λnl, and provide the necessary tools for future

collider analyses. We began by determining the relevant

Feynman rules for an asymptotically nonlocal SU(3) theory

of fermions, since the past literature only considered a

theory with complex scalar matter [14]. While the gluon

FIG. 2. Ratio of the predicted dijet invariant mass spectrum to

the Standard Model expectation, for the nonlocal limit N → ∞,

for Λnl ¼ 4.2, 4.6, and 5.0 TeV. The open circles represent LHC

data from Ref. [31].

FIG. 1. Ratio of the predicted dijet invariant mass spectrum to

the Standard Model expectation, for N ¼ 30, P ¼ 1.1, and

Λnl ¼ 3.8, 4.2, and 4.6 TeV. The open circles represent LHC

data from Ref. [31].
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self-interactions and the procedure for gauge-fixing to

obtain the gluon propagator are the same as those given in

Ref. [14], the one- and two-gluon vertices involving

fermions were not previously available in the literature.

With the complete set of Feynman rules in hand, we

considered the most basic jet process, dijet production

from two-into-two parton scattering. We found that the

relevant parton-level cross sections are in some cases

considerably more complicated than those in ordinary

QCD. Nevertheless, we checked that in the limit

Λnl → ∞, we precisely recover the QCD results we expect

in the absence of new physics. We then computed the dijet

invariant mass spectrum in proton-proton collisions at
ffiffiffi

s
p ¼ 13 TeV, to compare the deviation from the QCD

expectation at high dijet invariant mass with experimental

data from the LHC. We found that in the exactly nonlocal

limit (where the number of resonances N in the asymp-

totically nonlocal theory is taken to infinity), the scale of

new physics was bounded by Λnl > 4.7 TeV at the

95% confidence level. For finite N, we obtain bounds that

are similar in magnitude, but that depend in detail on the

parametrization of the Lee-Wick mass spectrum. We

presented one example with N ¼ 30 where we found

Λnl > 4.2 TeV (95% CL). These bounds are similar in

magnitude to other collider bounds on nonlocal theories

that have been discussed in the literature [22].

Our approach to obtaining a bound at leading order on

the scale of new physics from the dijet invariant mass

spectrum is similar in spirit to the bound on the coloron

mass in Ref. [23]. More detailed leading-order studies

might include modeling of jet hadronization, detector

acceptances and efficiencies, and the effect of new physics

on the angular dependence of jet cross sections. The

theoretical results presented here make such studies fea-

sible, but they go beyond the scope of the present work. A

more accurate assessment of the bounds on the nonlocal

scale would require the computation of next-to-leading-

order (NLO) effects that are not known in the asymptoti-

cally nonlocal or nonlocal theories; these have been taken

into account in our assumed theoretical error bars. A full

NLO calculation in the present framework would no doubt

be a complicated undertaking; it may be sensible to defer

such a task until some indication of a deviation from the

QCD expectations is observed at high dijet invariant

masses.
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APPENDIX: FULL EXPRESSIONS

1. qq̄ → gg scattering amplitude

The parton-level cross section σ̂qq̄→gg was written in

Sec. II B in the form

σ̂qq̄→gg ¼
α2s

9ŝ

X

4

i;j;k¼0

f2ð0; 0Þif2ðt̂; 0Þjf2ðû; 0ÞkFijkðŝ; t̂; ûÞ:

ðA1Þ

The cross sections σ̂gg→qq̄ and σ̂qg→qg ¼ σ̂q̄g→q̄g were then

related to this result by crossing symmetry, in Eqs. (2.22)

and (2.23), respectively. In this appendix, we present the

functions Fijkðŝ; t̂; ûÞ. For each Fijk that we display, there is

another nonvanishing one, Fikj, found by swapping the t̂

and û variables:

Fikjðŝ; t̂; ûÞ ¼ Fijkðŝ; û; t̂Þ: ðA2Þ

Any coefficients not listed below, or obtained from those

shown by Eq. (A2), are zero. We find:

F200ðŝ; t̂; ûÞ ¼
12t̂ û

f1ðŝÞ2
; ðA3Þ

F022ðŝ; t̂; ûÞ ¼
2t̂3û3

3ŝ2f1ðt̂Þf1ðûÞ
; ðA4Þ

F040ðŝ; t̂; ûÞ ¼
8t̂3û3

3ŝ2f1ðt̂Þ2
; ðA5Þ

F030ðŝ; t̂; ûÞ ¼ −
16t̂2û2ðf1ðt̂Þ − 1Þðt̂ − ûÞ

3ŝ2f1ðt̂Þ2
; ðA6Þ

F120ðŝ; t̂; ûÞ ¼
6t̂2û2

ŝf1ðŝÞf1ðt̂Þ
; ðA7Þ

F021ðŝ; t̂; ûÞ ¼
2t̂2û2ðf1ðûÞ − 1Þðt̂ − ûÞ

3ŝ2f1ðt̂Þf1ðûÞ
; ðA8Þ

F110ðŝ; t̂; ûÞ ¼ −
6t̂ ûðf1ðt̂Þ − 1Þðt̂ − ûÞ

ŝf1ðŝÞf1ðt̂Þ
; ðA9Þ

F011ðŝ; t̂; ûÞ¼−
t̂ ûðf1ðt̂Þ−1Þðf1ðûÞ−1Þð3t̂2−2t̂ ûþ3û2Þ

3ŝ2f1ðt̂Þf1ðûÞ
;

ðA10Þ
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F100ðŝ; t̂; ûÞ ¼ −
6t̂ û

ŝf1ðŝÞ

�

f1ðt̂Þ þ f1ðûÞ þ
1

f1ðt̂Þ
þ 1

f1ðûÞ
−

8

f1ðŝÞ
þ 4

�

; ðA11Þ

F010ðŝ; t̂; ûÞ ¼
1

3ŝ2

�

8ûð2t̂2 − t̂ ûþû2Þ
�

f1ðt̂Þ −
1

f1ðt̂Þ2
�

þ
�

1

f1ðt̂Þ
− 1

�

×

�

t̂ðt̂2 − t̂ ûþ2û2Þ
�

1

f1ðûÞ
þ f1ðûÞ

�

þ 2ðt̂3 − 9t̂2ûþ 6t̂û2 − 4û3Þ þ 36t̂ ûðt̂ − ûÞ
f1ðŝÞ

��

; ðA12Þ

F020ðŝ; t̂; ûÞ ¼
t̂ û

6ŝ2

�

8ð3t̂2 − 5t̂ ûþ4û2Þ
�

1þ 1

f1ðt̂Þ2
�

þ 1

f1ðt̂Þ

×

�

t̂f1ðûÞðt̂ − 3ûÞ
�

1þ 1

f1ðûÞ2
�

− 2ð23t̂2 þ 11t̂ ûþ16û2Þ þ 72t̂ û

f1ðŝÞ

��

; ðA13Þ

F000ðŝ; t̂; ûÞ ¼
1

6ŝ2

2

4

288t̂ û
�

1

f1ðŝÞ − 1

�

f1ðŝÞ
−

72t̂ û
�

f1ðt̂Þ þ 1

f1ðt̂Þ þ f1ðûÞ þ 1

f1ðûÞ

�

f1ðŝÞ

þ
4û

�

f1ðt̂Þ2 þ 1

f1ðt̂Þ2
�

ð3t̂2 þ û2Þ
t̂

þ
4t̂
�

f1ðûÞ2 þ 1

f1ðûÞ2
�

ðt̂2 þ 3û2Þ
û

−

2

�

f1ðt̂Þ þ 1

f1ðt̂Þ

�

ðt̂3 − 26t̂2ûþ t̂û2 − 8û3Þ
t̂

þ
2

�

f1ðûÞ þ 1

f1ðûÞ

�

�

8t̂3 − t̂2ûþ 26t̂û2 − û3
�

û

− ðt̂ − ûÞ2
�

f1ðt̂Þf1ðûÞ þ
f1ðt̂Þ
f1ðûÞ

þ 1

f1ðt̂Þf1ðûÞ
þ f1ðûÞ

f1ðt̂Þ

�

þ 4
�

6t̂4 − t̂3ûþ 38t̂2û2 − t̂û3 þ 6û4
�

t̂ û

3

5: ðA14Þ

2. gg→ gg scattering cross section

The scattering cross section σgg→gg is complicated, but can be summarized via the following decomposition:

σ̂gg→gg ¼
α2s

ŝ

X

4

i;j;k;l;m¼0

f2ð0; 0Þif2ðt̂; 0Þjf2ðû; 0Þkf3ð0; t̂; 0Þlf3ð0; û; 0ÞmFijklmðŝ; t̂; ûÞ: ðA15Þ

We find that

Fikjmlðŝ; t̂; ûÞ ¼ Fijklmðŝ; û; t̂Þ; ðA16Þ

that is, there are nonvanishing functions F in addition to those shown below that are obtained by swapping both j and k and

l andm, and whose value is obtained from the result shown by swapping t̂↔ û. All other Fijklmðŝ; t̂; ûÞ are zero. We find:

F00020ðŝ; t̂; ûÞ ¼
9t̂2û2ð3t̂2 þ 10t̂ ûþ10û2Þ

4ŝ2
; ðA17Þ

F40000ðŝ; t̂; ûÞ ¼
9

256

�

2ŝ2

f1ðŝÞ2
ðt̂ − ûÞ2 þ 2t̂2

f1ðt̂Þ2
ðt̂þ 2ûÞ2 þ 2û2

f1ðûÞ2
ð2t̂þ ûÞ2 − ŝ t̂

f1ðŝÞf1ðt̂Þ
ðt̂ − ûÞðt̂þ 2ûÞ

þ ŝ û

f1ðŝÞf1ðûÞ
ðt̂ − ûÞð2t̂þ ûÞ þ t̂ û

f1ðt̂Þf1ðûÞ
ð2t̂þ ûÞðt̂þ 2ûÞ

�

; ðA18Þ

F04000ðŝ; t̂; ûÞ ¼
9t̂2û2ð5t̂2 þ 16t̂ ûþ16û2Þ

8ŝ2f1ðt̂Þ2
; ðA19Þ
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F13000ðŝ; t̂; ûÞ ¼ −
9t̂2û2ðt̂þ 2ûÞ

ŝf1ðt̂Þ2
; ðA20Þ

F03000ðŝ; t̂; ûÞ ¼ −
9t̂û2ðt̂2 þ 4t̂ ûþ8û2Þ

2ŝ2f1ðt̂Þ2
; ðA21Þ

F11010ðŝ; t̂; ûÞ ¼
9t̂2û2ðt̂þ 2ûÞ

ŝf1ðt̂Þ
; ðA22Þ

F10110ðŝ; t̂; ûÞ ¼
9t̂2û2ð2t̂þ 5ûÞ

4ŝf1ðûÞ
; ðA23Þ

F10010ðŝ; t̂; ûÞ ¼ −
9t̂ û

8ŝ2

�

−2ŝ

f1ðt̂Þ
ðt̂ − 2ûÞðt̂þ 2ûÞ þ ŝ

f1ðûÞ
ð2t̂2 þ 3t̂ û−3û2Þ

þ ŝ

f1ðŝÞ
ðt̂ − ûÞð2t̂þ 3ûÞ þ 2ð3t̂3 þ 6t̂2ûþ 4t̂û2 þ 9û3Þ

�

; ðA24Þ

F01010ðŝ; t̂; ûÞ ¼ −
9t̂û2ðt̂f1ðt̂Þðt̂þ 2ûÞ − t̂2 − 4t̂ û−8û2Þ

2ŝ2f1ðt̂Þ
; ðA25Þ

F01001ðŝ; t̂; ûÞ ¼
9t̂û2ðŝ t̂ f1ðt̂Þ − t̂2 þ 7t̂ ûþ4û2Þ

4ŝ2f1ðt̂Þ
; ðA26Þ

F20010ðŝ; t̂; ûÞ ¼
9t̂ û

32

�

2t̂ðt̂þ 2ûÞ2
ŝf1ðt̂Þ

þ ûð2t̂þ ûÞðt̂þ 3ûÞ
ŝf1ðûÞ

−
ðt̂ − ûÞð2t̂þ 3ûÞ

f1ðŝÞ

�

; ðA27Þ

F02010ðŝ; t̂; ûÞ ¼ −
9t̂2û2ð5t̂2 þ 16t̂ ûþ16û2Þ

4ŝ2f1ðt̂Þ
; ðA28Þ

F02001ðŝ; t̂; ûÞ ¼ −
9t̂2û2ð9t̂2 þ 21t̂ ûþ8û2Þ

8ŝ2f1ðt̂Þ
; ðA29Þ

F00011ðŝ; t̂; ûÞ ¼
9t̂2û2ð5t̂2 þ 12t̂ ûþ5û2Þ

4ŝ2
; ðA30Þ

F31000ðŝ; t̂; ûÞ ¼
9t̂ û

32f1ðt̂Þ

�

−
ŝ

f1ðŝÞ
ðt̂ − ûÞ þ 4t̂

f1ðt̂Þ
ðt̂þ 2ûÞ þ û

f1ðûÞ
ð2t̂þ ûÞ

�

; ðA31Þ

F30000ðŝ; t̂; ûÞ ¼ −
9

64

�

1

ŝ

�

t̂

f1ðt̂Þ
ðt̂þ 2ûÞð3t̂2 þ t̂ ûþ6û2Þ þ û

f1ðûÞ
ð2t̂þ ûÞð6t̂2 þ t̂ ûþ3û2Þ

�

þ ðt̂ − ûÞ
f1ðŝÞ

�

t̂

f1ðt̂Þ
ðt̂þ 2ûÞ − û

f1ðûÞ
ð2t̂þ ûÞ

�

þ 3ŝ t̂ û

f1ðt̂Þf1ðûÞ
−

4t̂2

f1ðt̂Þ2
ðt̂þ 2ûÞ − 4û2

f1ðûÞ2
ð2t̂þ ûÞ

−
ŝðt̂ − ûÞ
f1ðŝÞ

�

ðt̂ − ûÞ
�

3þ 4

f1ðŝÞ

�

−
t̂

f1ðt̂Þ
þ û

f1ðûÞ

��

; ðA32Þ

F22000ðŝ; t̂; ûÞ ¼
9t̂ û

64f1ðt̂Þ

�

1

f1ðŝÞ
ðt̂ − ûÞð3t̂þ 4ûÞ − 4t̂

ŝf1ðt̂Þ
ðt̂2 þ 16t̂ ûþ16û2Þ

−
û

ŝf1ðûÞ
ð2t̂þ ûÞðt̂þ 4ûÞ

�

; ðA33Þ
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F02200ðŝ; t̂; ûÞ ¼
9t̂2û2ð16t̂2 þ 41t̂ ûþ16û2Þ

16ŝ2f1ðt̂Þf1ðûÞ
; ðA34Þ

F00010ðŝ; t̂; ûÞ ¼ −
9

8ŝ2

�

t̂ û

f1ðŝÞ
ðt̂ − ûÞð2t̂þ 3ûÞ þ 2û

f1ðt̂Þ
ðt̂3 þ 2t̂2ûþ 4û3Þ

þ t̂

f1ðûÞ
ð2t̂3 þ 2t̂2û − t̂û2 þ 3û3Þ − t̂û2ðt̂ − ûÞf1ðŝÞ − 2t̂2ûðt̂þ 2ûÞf1ðt̂Þ

þ ŝ t̂ û2f1ðûÞ þ 2t̂ ûðt̂þ 2ûÞð3t̂þ 4ûÞ
�

; ðA35Þ

F21100ðŝ; t̂; ûÞ ¼
9t̂2û2

2f1ðt̂Þf1ðûÞ
; ðA36Þ

F21000ðŝ; t̂; ûÞ ¼
9û

32

�

8t̂3 þ 2t̂2û − t̂û2 þ 2û3

ŝf1ðt̂Þf1ðûÞ
−
ðt̂ − ûÞð5t̂þ 2ûÞ

f1ðŝÞf1ðt̂Þ
þ t̂ðt̂ − ûÞ

f1ðŝÞ

−
4t̂ð3t̂2 − 5t̂ ûþ6û2Þ

ŝf1ðt̂Þ
−
4t̂ð5t̂2 þ 2t̂ û−4û2Þ

ŝf1ðt̂Þ2
−
t̂ ûð2t̂þ ûÞ
ŝf1ðûÞ

�

; ðA37Þ

F11200ðŝ; t̂; ûÞ ¼ −
9t̂2û2ð8t̂þ 3ûÞ
8ŝf1ðt̂Þf1ðûÞ

; ðA38Þ

F20000ðŝ; t̂; ûÞ ¼
9

64

�

t̂ û

ŝ

�

ðt̂þ 2ûÞ f1ðûÞ
f1ðt̂Þ

þ ð2t̂þ ûÞ f1ðt̂Þ
f1ðûÞ

�

þ 4ðt̂ − ûÞ2
f1ðŝÞ

�

3

f1ðŝÞ
þ 2

�

þ t̂ − û

f1ðŝÞ

�

ûf1ðûÞ − t̂f1ðt̂Þ þ
2t̂3 − t̂2û − 4t̂û2 − 2û3

ŝ t̂ f1ðt̂Þ
þ 2t̂3 þ 4t̂2ûþ t̂û2 − 2û3

ŝ û f1ðûÞ

�

þ ðt̂ − ûÞf1ðŝÞ
ŝ

�

t̂ðt̂þ 2ûÞ
f1ðt̂Þ

−
ûð2t̂þ ûÞ
f1ðûÞ

�

þ 2t̂4 þ 2t̂3ûþ 21t̂2û2 þ 2t̂û3 þ 2û4

t̂ û f1ðt̂Þf1ðûÞ

−
4

ŝ

�

3t̂3 þ 4t̂2ûþ 4t̂û2 þ 4û3

f1ðt̂Þ2
þ 4t̂3 þ 4t̂2ûþ 4t̂û2 þ 3û3

f1ðûÞ2
þ t̂ð3t̂2 þ t̂ ûþ18û2Þ

f1ðt̂Þ

þ ûð18t̂2 þ t̂ ûþ3û2Þ
f1ðûÞ

�

þ 4

ŝ2
ð15t̂4 þ 21t̂3ûþ 44t̂2û2 þ 21t̂û3 þ 15û4Þ

�

; ðA39Þ

F12000ðŝ; t̂; ûÞ ¼
9t̂ û

16ŝ2f1ðt̂Þ

�

ŝ

f1ðŝÞ
ðt̂ − ûÞð3t̂þ 4ûÞ − 4ŝ

f1ðt̂Þ
ðt̂2 þ 4t̂ û−8û2Þ

þ s

f1ðûÞ
ð4t̂2 þ 7t̂ û−4û2Þ þ 9t̂3 þ 13t̂2ûþ 24û3

�

; ðA40Þ

F11100ðŝ; t̂; ûÞ ¼
9t̂ û

4ŝ

�

2

f1ðt̂Þf1ðûÞ
ð2t̂2 − t̂ ûþ2û2Þ − t̂ û

�

1

f1ðt̂Þ
þ 1

f1ðûÞ

��

; ðA41Þ

F02100ðŝ; t̂; ûÞ ¼
9t̂3ûðûf1ðûÞ − 10t̂ − 19ûÞ

8ŝ2f1ðt̂Þf1ðûÞ
; ðA42Þ
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F11000ðŝ; t̂; ûÞ ¼
9

8ŝ2

�

2ŝ2ûðt̂ − ûÞ
f1ðŝÞf1ðt̂Þ

−
2ŝðt̂3 − t̂2ûþ 3t̂û2 − û3Þ

f1ðt̂Þf1ðûÞ
þ ŝ t̂ ûðt̂ − ûÞ

f1ðŝÞ

−
4ŝ ûð2t̂2 − t̂ ûþ2û2Þ

f1ðt̂Þ2
−
ûðt̂3 þ 11t̂2û − 6t̂û2 þ 12û3Þ

f1ðt̂Þ
−

ŝ t̂ û2

f1ðûÞ

þ ŝ t̂ û

f1ðt̂Þ
ððt̂ − ûÞf1ðŝÞ þ ûf1ðûÞÞ þ t̂ ûð3t̂2 þ 5t̂ ûþ6û2Þ

�

; ðA43Þ

F01100ðŝ; t̂; ûÞ ¼
9t̂ û

4ŝ2

�

1

f1ðt̂Þf1ðûÞ
ð2t̂2 þ 13t̂ ûþ2û2Þ þ t̂

f1ðûÞ
ð2t̂þ ûÞþ û

f1ðt̂Þ
ðt̂þ 2ûÞ þ t̂ û

�

; ðA44Þ

F02000ðŝ; t̂; ûÞ ¼
9

16ŝ2

�

t̂ ûðt̂ − ûÞð3t̂þ 4ûÞ
f1ðŝÞf1ðt̂Þ

þ t̂ð6t̂3 þ 8t̂2û − 3t̂û2 þ 4û3Þ
f1ðt̂Þf1ðûÞ

−
t̂2û2f1ðûÞ
f1ðt̂Þ

þ 4ûðt̂3 þ 8t̂2ûþ 8t̂û2 þ 16û3Þ
f1ðt̂Þ2

þ t̂2ûðt̂ − ûÞf1ðŝÞ
f1ðt̂Þ

þ 4t̂ ûðt̂þ 2ûÞð3t̂þ 4ûÞ
f1ðt̂Þ

þ 8t̂2û2
�

; ðA45Þ

F10000ðŝ; t̂; ûÞ ¼ −
9

16ŝ2

�

ŝðt̂ − ûÞ2
�

3f1ðŝÞ þ
1

f1ðŝÞ

�

þ t̂f1ðt̂Þð3t̂2 þ 5t̂ ûþ6û2Þ

þ ûf1ðûÞð6t̂2 þ 5t̂ ûþ3û2Þ þ 12ŝðt̂2 þ t̂ ûþû2Þ þ 2ŝ2ðt̂ − ûÞ
f1ðŝÞ

�

û

t̂f1ðt̂Þ
−

t̂

ûf1ðûÞ

�

− 4ŝ

�ðt̂ − ûÞ2
f1ðŝÞ2

−
t̂2 þ 2û2

f1ðt̂Þ2
−
2t̂2 þ û2

f1ðûÞ2
�

− ŝðt̂ − ûÞ
�

t̂f1ðŝÞ
f1ðt̂Þ

−
t̂f1ðt̂Þ
f1ðŝÞ

−
ûf1ðŝÞ
f1ðûÞ

þ ûf1ðûÞ
f1ðŝÞ

�

− ŝ t̂ û

�

f1ðt̂Þ
f1ðûÞ

þ f1ðûÞ
f1ðt̂Þ

�

þ 2ŝðt̂4 þ 5t̂2û2 þ û4Þ
t̂ û f1ðt̂Þf1ðûÞ

−
1

t̂f1ðt̂Þ
ð3t̂4 þ 3t̂3ûþ 24t̂2û2 þ 8t̂û3 þ 12û4

�

−
1

ûf1ðûÞ
�

12t̂4 þ 8t̂3ûþ 24t̂2û2 þ 3t̂û3 þ 3û4
�

�

; ðA46Þ

F01000ðŝ; t̂; ûÞ ¼ −
9

8ŝ2

�

t̂ ûðt̂ − ûÞ
�

f1ðŝÞ −
1

f1ðŝÞ

�

þ t̂û2
�

f1ðûÞ −
1

f1ðûÞ

�

þ 4t̂2ûf1ðt̂Þ þ
2t̂3

f1ðûÞ
þ û

f1ðŝÞf1ðt̂Þ
ðt̂ − ûÞðt̂þ 2ûÞ

þ 1

f1ðt̂Þf1ðûÞ
ð2t̂3 þ 8t̂2û − t̂û2 þ 2û3Þ − 4û

t̂f1ðt̂Þ2
ðt̂3 − 2t̂2û − 2t̂û2 − 4û3Þ

þ û

f1ðt̂Þ
ðf1ðŝÞðt̂ − ûÞð3t̂þ 2ûÞ þ ûf1ðûÞðt̂þ 2ûÞ þ 4ðt̂þ 2ûÞð2t̂þ 3ûÞÞ

�

; ðA47Þ

F00000ðŝ; t̂; ûÞ ¼ −
9

16ŝ2

�ðt̂ − ûÞ
f1ðŝÞ

�

t̂f1ðt̂Þ − ûf1ðûÞ þ 4ðt̂ − ûÞ − 2ðt̂ − ûÞ
f1ðŝÞ

−
t̂2 þ 2t̂ ûþû2

t̂f1ðt̂Þ
þ 2t̂2 þ 2t̂ ûþû2

ûf1ðûÞ

�

− 20ðt̂2 þ t̂ ûþû2Þ þ 1

t̂f1ðt̂Þ
½ðt̂ − ûÞðt̂2 − 2t̂ û−2û2Þf1ðŝÞ þ ûðt̂2 − 2û2Þf1ðûÞ − 4ûðt̂þ 2ûÞ2�

þ 1

ûf1ðûÞ
½ðt̂ − ûÞð2t̂2 þ 2t̂ û−û2Þf1ðŝÞ − t̂ð2t̂2 − û2Þf1ðt̂Þ − 4t̂ð2t̂þ ûÞ2�

−
2

t̂2f1ðt̂Þ2
ðt̂4 þ 4t̂2û2 þ 4t̂û3 þ 4û4Þ − 2

û2f1ðûÞ2
ð4t̂4 þ 4t̂3ûþ 4t̂2û2 þ û4Þ

− ðt̂ − ûÞf1ðŝÞððt̂ − ûÞð2f1ðŝÞ − 4Þ þ t̂f1ðt̂Þ − ûf1ðûÞÞ − t̂ û f1ðt̂Þf1ðûÞ

− 2ðt̂2f1ðt̂Þ2 þ û2f1ðûÞ2Þ −
1

t̂ û f1ðt̂Þf1ðûÞ
ð2t̂4 þ 4t̂3ûþ 13t̂2û2 þ 4t̂û3 þ 2û4Þ

�

: ðA48Þ
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