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Abstract—This work introduces an optimization-
ning and control framework for real-time synthesi
body motions for legged robots. At the core of tt
framework is a cascaded-fidelity model predictiv
(CAFE-MPC). CAFE-MPC strategically relaxes the pla
lem along the prediction horizon (i.e., with descen
fidelity, increasingly coarse time steps, and relaxed
for computational and performance gains. This
numerically solved with an efficient customized multi
iLQR (MS-iLQR) solver that is tailored for hybi
The action-value function from CAFE-MPC is th
the basis for a new value-function-based whole-b
(VWBC) technique that avoids additional tuning. In
the proposed framework unifies whole-body MPC
conventional whole-body quadratic programming (
have been treated as separate components in previou
study the effects of the cascaded relaxations in CAFE-
tracking performance and required computation tir
show that CAFE-MPC, if configured appropriately, a
performance of whole-body MPC without necessaril
computational cost. Further, we show the superior
of VWBC over a conventional Riccati feedback c
terms of constraint handling. The proposed framew
accomplishing a gymnastic-style running barrel roll for the first
time on quadruped hardware, where CAFE-MPC runs at 50 Hz,
and the solver spends on average 5.3 ms per iteration. Results
are incorporated in the accompanying video .
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I. INTRODUCTION

NLOCKING biological-level mobility on legged robots
is helpful to understand and discover their full potential
for applications. Significant progress has been made over the
past decades on both very capable hardware platforms and
advanced control techniques. The MIT Cheetah-series robots
demonstrated robust stair climbing skills [1], jumping over
obstacles [2], and back-flipping maneuvers [3]. The ETH
ANYmal-series robots showed remarkable capabilities with
stepping stones [4], and traversing extremely unstructured en-
vironments [5]. Researchers from KAIST enabled quadruped
robots to walk on vertical walls [6] and deformable soft
terrains [7]. The hydraulic-actuated HyQ-series robots were
shown to drag a 3-ton airplane [8], and with terrain adaptation
capability [9].
Despite the rapid progress, achieving biological levels of
mobility on robots remains difficult. Well-trained human pro-
fessionals can perform parkour and gymnastics that involve
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Fig. 1: In-place barrel roll on MIT Mini Cheetah accomplished with the
proposed control framework. The robot performs an in-place barrel roll,
followed by a hopping step, and a pacing gait. All transitions are fully
synthesized online. The results section includes more challenging tasks where
the robot synthesized a barrel roll in the middle of running.

significant body rotations (barrel roll, flip, etc.) in the middle
of running. This level of mobility is a challenge for robots,
and has not been shown on any quadruped platforms in
the literature. The challenges are two fold. First, gymnastic-
style motions require careful coordination of the whole body.
When using a model-based approach, the whole-body dy-
namics poses a challenge to satisfy real-time computation
constraints, due to its non-convexity and high dimension.
Second, the controller should be sufficiently flexible and robust
to smoothly synthesize different motions (e.g., running, in-air
body rotations, etc.), and the transitions between them.

Prior studies have made important progress toward attaining
dynamic acrobatic maneuvers on quadruped robots. Offline
trajectory optimization (TO) with a detailed dynamics model
including the motors was used in [3] to achieve a back flip
with the MIT Mini Cheetah. Due to its offline nature, the robot
needed to be sufficiently close to a proper initial condition for
successful execution. Tuning of the tracking controller was
further treated as a fully separate component. Online TO with
single-rigid body (SRB) models has been studied [10], [11]
to accomplish an in-place barrel roll. Since leg momentum
is ignored, the SRB inertia needs to be tuned as a proxy for
the leg inertia in order to obtain sufficient take-off velocity.
In addition to the model-based method, Li et al. [12] sought
to learn a back-flipping policy from partial demonstration.
Regardless, the acrobatic maneuvers attained in all previous
works require intermediate static starting and landing poses.

This work aims to further push the mobility of quadruped
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robots. We propose an optimization-based control framework
that takes as its input a reference trajectory obtained from a
motion library, and then outputs commands that are directly
executable on the robot hardware. Apart from diverse regular
locomotion skills such as pacing and bounding, this framework
unlocks on-the-fly synthesis of gymnastic running barrel rolls.
An in-place barrel roll reference is used, and the controller
is capable of adapting it online to several running gaits
with different initial contact configurations. The proposed
framework makes it easy to create diverse behaviors by simply
specifying the references. Figure 1 highlights one of the main
results achieved in this work.

The proposed framework is built upon model predictive
control (MPC), a method of producing control inputs by
predicting the future behavior of the robot as part of solving
a TO problem. MPC accounts for model uncertainties and
external disturbances by frequently adapting the predicted plan
to the most recent state. Whole-body MPC produces a high-
fidelity plan that is coherent with the full robot dynamics.
However, it is known to be subject to large computation times,
leading to a policy delay and prohibiting the use of a long
prediction horizon or fast update frequency. For this reason, the
capability of this approach to control highly dynamic motions
on robot hardware has not yet been demonstrated [13]-[15].
A local feedback Riccati controller [13] that runs at a much
higher frequency can be used to account for the policy delay
and the slow MPC update. While this local feedback controller
admits an analytical solution in the unconstrained case, it is
not guaranteed to respect the constraints from the whole-body
MPC. A notable strategy to alleviate the computational burden
is to instead use a simplified template model, thus template
MPC. A low-level controller that converts the low-dimensional
plan to whole-body commands is needed, often an inverse-
dynamics quadratic program (QP). This strategy is thus far
the most popular MPC approach, and has demonstrated great
success for legged locomotion [4], [9], [16]-[20]. However,
the omitted model details and the possibly added artificial
constraints may result in infeasible or over-conservative target
plans [21]. As a result, nontrivial tuning of the whole-body QP
is often needed. The proposed framework introduces a novel
approach that accelerates the whole-body MPC, and a novel
low-level controller that integrates the Riccati controller and
the whole-body QP.

A. Contributions

The contributions of this work are summarized as follows.
The first contribution is a cascaded-fidelity model predictive
controller (CAFE-MPC). CAFE-MPC generalizes our previous
MPC formulation ideas [22] beyond model cascades, exploring
the use of increasingly coarse integration time steps and
progressively relaxed constraints along the prediction horizon.
The second contribution is to extend multiple-shooting iLQR
[23] to a class of hybrid systems whose phase sequence and
timings are fixed. Specifically, we focus on how value function
approximations can be back-propagated and how shooting
nodes are updated across the switching surfaces. The third
contribution is a value-function-based whole-body controller

(VWBC). The VWBC employs a local action-value function
as its minimization objective, ensuring a direct link between
MPC and the WBC objectives. This makes it tuning-free, as
opposed to the non-trivial additional cost design needed for
conventional WBCs. The resulting scheme of CAFE-MPC +
VWBC provides a structure that unifies whole-body MPC and
whole-body QPs, which were conventionally implemented as
separate designs.

The last contribution is the overall optimization-based con-
trol framework. Beyond regular locomotion skills, this frame-
work unlocks real-time synthesis of gymnastic-style motions,
by simply specifying an input reference motion without further
tuning of the system parameters. With the developed frame-
work, we show a quadruped robot can achieve a barrel roll
in the middle of running. To the best of our knowledge, this
is the first time a running barrel roll has been accomplished
on quadruped hardware. Figure 1 highlights the result of an
in-place barrel roll on the MIT Mini Cheetah, while more
challenging tasks are described in Section VII-C. Our code is
open-sourced 2. We hope it can be a helpful companion for
readers and a useful resource for the broader community.

B. System Overview and Outline

An overview of the system architecture is shown in figure 2.
The overall control framework takes as input a reference tra-
jectory, and outputs the whole-body commands (joint torques,
angles, and velocities) which are directly executable on the
robot. For regular locomotion skills like trotting and bound-
ing, simple heuristic reference trajectories are sufficient. For
combined motions with the barrel roll, a long-horizon TO is
solved offline to provide a more detailed motion sketch that
can then be generalized to new situations. For example, the
in-place barrel roll reference can be combined with a pacing
reference, with the online synthesis of a running barrel roll
then left to our framework. The CAFE-MPC runs at 33-50 Hz,
and the VWBC refines the MPC command at 500 Hz. For
both offline TO and online MPC, the customized MS-iLQR is
employed as the underlying numerical solver.

The rest of the paper is structured as follows. In Section II,
we summarize related works that are associated with the
core components of figure 2. Section III first reviews our
previous work on MS-ILQR, and discusses its extension to
constrained multi-phase optimal control problems. In Sec-
tion IV, we present the detailed formulation of CAFE-MPC.
Section V proposes the novel VWBC, and discusses its relation
with conventional controllers. In Section VI, we present the
heuristic reference generation, offline TO for the barrel roll,
and other details used to complete the blocks in figure 2.
Section VII discusses the simulation and hardware results.
Section VIII discusses limitations, and concludes the paper
with suggestions for future work.

II. RELATED WORK
A. MPC for Legged Robots
MPC provides a means of controlling robotic systems by
predicting future behaviors. The expected behaviors (e.g.,

Zhttps://github.com/ROAM-Lab-ND/CAFE-MPC
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Fig. 2: An overview of the system architecture. The proposed control framework takes a reference trajectory as input, and outputs commands that are directly
executable on the robot. The main control block consists of the CAFE-MPC, the customized MS-iLQR solver for numerical optimization, and the VWBC.
The MS-ILQR solver is used for offline TO as well. The MPC shares the same cost function for all tasks, and the VWBC is tuning-free.

maintaining balance) are achieved via minimizing an objective
function subject to some modeled dynamics and constraints,
which are often nonlinear. The capability of MPC to cope with
nonlinear dynamics and constraints makes it well-suited and
increasingly popular for the control of legged robots, as seen
by a growing body of literature [4], [9], [16], [24]-[28].

The classical template-MPC approach generates plans of
low dimensions. Therefore, a low-level controller is needed
to (1) produce the whole-body commands (2) provide fast
feedback control for stabilization. One such notable controller
is the inverse-dynamics QP [29]. Popular template models
include the Linear Inverted Pendulum Model (LIP) [24], the
Spring-Loaded Inverted Pendulum Model (SLIP) [30], Single-
Rigid-Body Model [16], [31], [32], and the centroidal model
[4], [33]-[36]. Template MPC has the advantage of fast
computation due to the relatively small and possibly convex
optimization problems. One limitation of this approach, how-
ever, is that the operational envelope of the resulting motions
either underestimates or overestimates the set of whole-body
feasible motions. As a result, the resulting target plan may
not be tractable by the low-level whole-body controller. A
recent survey paper provides a more detailed overview of this
perspective [21].

The whole-body MPC approach does not have the problem
of producing infeasible trajectories of the template MPC.
This approach, however, is notoriously known for its com-
putational burden, due to the increased dimensions, non-
linearity, and non-convexity. For these reasons, numerous
efforts have been made to accelerate the whole-body MPC
by developing efficient structure-exploiting solvers [14], [37]-
[40], fast analytical dynamics [41], [42], and by using inverse
dynamics [13]. Several works have shown the success of this
approach on robot hardware with regular locomotion skills
[13]-[15]. However, highly dynamic behaviors have yet been
demonstrated on any hardware platform.

Our prior work on Model Hierarchy Predictive Control
(MHPC) [22] combines the benefits of whole-body MPC and
template MPC, by placing a whole-body model in the near
term and a template model in the distant term. This similar
idea was further explored in several follow-up works [43]-[45]
with different models that were tailored towards humanoid
robots. While the effect of model schedule on disturbance

rejection is studied in [22], Kahzoom et al. [46] proposed a
method to optimize the model schedule. Following a related
but distinct idea, Norby et al. [47] fixed the prediction horizon
while adapting the model fidelity based on the task complexity.
The CAFE-MPC proposed in this work further relaxes the
template plan using coarse timesteps and relaxed constraints.
The motivation is that the template model has slower dynamics
(e.g., due to ignoring fast swinging appendages), and the
constraints in the distant end are less critical to the current
decisions. Similar ideas have also been studied beyond the
legged robot community, such as for chemical process control
[48], with simple mobile robots [49], and with autonomous
vehicles [50].

Contact-implicit MPC is another line of compelling research
for legged locomotion, which enables simultaneous generation
of the contact modes and the whole-body motions. Prior
studies that leverage differentiable contact models have shown
the promise of this approach of generating complex multi-
contact behaviors [25], [51]-[53]. This approach, however, is
known to have numerical problems such as the difficulty to
obtain good initial guesses, and computational burden. Our
work is complementary to the contact-implicit approach, in the
sense that the contact-implicit planning could be considered as
a low-frequency top layer that informs the CAFE-MPC with
contact sequences, and leverages CAFE-MPC for fast online
synthesis.

B. Numerical Optimization for MPC

One critical factor for the success of MPC is to reliably and
efficiently solve the underlying TO problems. Conventional
numerical optimization methods for TO take one of the three
approaches [54]: dynamic programming, indirect methods, and
direct methods. Direct methods are the most widespread in
robotics, and they proceed by transcribing the TO problems
to a Nonlinear Programming (NLP) problem, which could
be effectively solved using well-developed off-the-shelf NLP
solvers, for instance, SNOPT [55] or IPOPT [56]. Most NLP
solvers proceed by taking successive linearization of the first-
order necessary conditions for optimality (i.e., the KKT con-
ditions), resulting in complexity of O(/N?) (in the worst case)
where N is the problem size. Consequently, this approach is



prohibitive for online use with robots where N is large. For-
tunately, some direct methods such as multiple shooting and
direct collocation result in sparse NLPs whose computation
complexity could be reduced to O(N) [57]. For this reason
and thanks to the development of computation hardware, direct
methods have been employed by some research groups to
successfully solve nonlinear MPC for legged robots [4], [26],
[27], [40]. It was shown in [4] that the nonlinear MPC can
run up to 100 Hz with a real-time iteration scheme [58] and
an interior-point-method (IPM) based QP solver [59].

Differential Dynamic Programming (DDP) [60] (also known
as iLQR when adopting a Gauss-Newton Hessian approxi-
mation [25]) is a powerful tool for nonlinear optimal control
and has gained increasing attention in the past decade in the
robotics community. It successively solves a sequence of small
sub-problems leveraging Bellman’s equation. Similar to the
structure-exploiting sparse NLP solvers [39], [40], [59], DDP
has a linear computational cost relative to the prediction hori-
zon. However, it comes with a value function approximation
and a local feedback policy for free as intermediate results,
which can be used for higher-rate lower-level control [13],
[61]. These properties make DDP/AILQR well-suited for MPC
of legged robots.

Many research groups have made efforts toward this direc-
tion. Tassa et al. achieved complex motion control with iLQR
on a simulated humanoid robot, with slow simulation speed
[25]. Koenemann et al. implemented the same framework on
the humanoid robot HRP-2 [62]. Though the task was simple
(balanced standing), it was the first time whole-body MPC
was achieved on humanoid robot hardware. Neunert et al.
accomplished locomotion control on two high-performance
quadruped robots, ANYmal and HyQ, in simulation [63] and
on hardware [37], where iLQR served as the underlying solver.
Though promising, there are several aspects where opportu-
nities for improvement are clearly seen. Effective constraint
handling and sensitivity to initial guesses have been the major
bottlenecks. A large amount of recent works thus have con-
tributed to addressing these problems. To deal with constraints,
DDP/iLQR is combined with many common algorithms in the
numerical optimization community, for instance, the Projected
Newton method [64], penalty method [65], barrier method [61]
and interior-point method [66], Augmented Lagrangian (AL)
method (e.g., [67]-[69]) and primal-dual AL [15]. To deal
with the sensitivity problem, DDP /iLQR is extended with
multiple-shooting formulations that permit an infeasible warm
start with a state trajectory. [15], [23], [38], [67], [70].

C. Whole-Body Control

The whole-body controller is an important component in
many MPC-based control frameworks. It operates at a higher
loop frequency and produces commands that are directly
executable on the robot hardware. Multiple WBC techniques
have been developed in the literature. A classical approach is to
formulate WBC as a QP problem [4], [28], [29], [71], where
the objective function incorporates multiple tasks related to
operational space control [72], thus denoted as OSC-QP. These
tasks are designed to track certain references at the accelera-
tion level in the least-square sense, such as the center of mass

(CoM) and swing foot accelerations, etc. It was shown in [73]
that the dynamic capability of a quadruped can be significantly
improved by incorporating the ground reaction force (GRF)
in the objective. The OSC-QP reasons about the whole-body
dynamics, and enforces constraints such as torque limits, non-
slipping constraints, etc. As such, it ensures physical feasibility
of the control actions. The OSC-QP requires non-trivial tuning,
which arises from three aspects. First, the relative importance
between tasks is based on heuristics. Second, the tasks are
often designed using simplified models, which are inconsistent
with the whole-body dynamics in the OSC-QP. Third, the
OCS-QP is designed for a short term (one control step). The
long-term stability of the OSC-QP relies on the quality of the
reference, which is regulated by a PD controller, and requires
further tuning.

The Riccati controller is a less-known but powerful WBC
technique. The feedback gains can be computed either via
DDP/ALQR [13], [61], [74], or via multiple-shooting based
numerical optimization [4], though the ideas are similar where
the difference Riccati equations are computed. The Riccati
controller can either be directly used if the MPC reasons about
whole-body dynamics [13], or an additional layer is needed
to produce the whole-body actuation if the MPC reasons
about simplified models [61], [74]. A known problem of this
approach is that the feedback control does not necessarily
satisfy constraints, which can interfere with robot stability, for
instance, when the friction cone constraints are violated.

The VWBC proposed in this work overcomes the issues
of the conventional OSC-QP and the Riccati controller. The
VWBC is not significantly different from OSC-QP in terms of
formulation. The novelty is that it employs an objective func-
tion that considers the long-term cost-to-go (value function).
This value function is a proxy of the long-term stability, and is
readily available from the top-level CAFE-MPC, thus leaving
the VWBC free of additional tuning. The VWBC generalizes
the Riccati controller to include constraints, thereby unifying
whole-body MPC with conventional WBC.

The works most relevant to VWBC in the literature are
[71], [75]. The value functions in these works are approxi-
mated based on simplified models, which reflect the long-term
balance only in a low-dimensional state space. Consequently,
additional tracking terms and regularization terms are needed
to produce whole-body coordination. The value function used
by the VWBC in this work, however, reasons about the whole-
body model, which does not require additional cost terms.

D. RL for Legged Robots

Reinforcement Learning (RL) is yet another powerful tech-
nique for the control of legged robots. Instead of performing
heavy online optimization as in MPC, RL trains a control
policy offline in simulated environments. The control policy
can be made very robust (either in the sense of sim-to-real
transfer or uncertain environments) by injecting noise during
training into the robot dynamics, the environments, and the
sensory information (encode measurements, depth images,
etc). As such, great success has been shown with RL that
enables quadruped robots to traverse extremely unstructured



environments [5], [76], imitate animal locomotion behaviors
[77], run on slippery ground [78], and walk over deformable
terrains [7].

Despite the remarkable progress of RL on robust quadruped
locomotion, it remains challenging to achieve highly dynamic
animal-like behaviors on hardware. Many researchers thus
have shifted gears towards agile quadruped locomotion. Recent
works [79], [80] accomplished parkour-like maneuvers with
RL on quadruped robots. Though impressive versatility and
agility are achieved, the gap remains in terms of dynamic capa-
bilities when compared to the jumping-over-obstacle behaviors
previously achieved with the optimization-based approach [2],
not to mention biological-level mobility. Other works show
fast locomotion [81] and continuously dynamic jumping [82],
which focus on regular locomotion gaits, while versatility and
agility remain to be explored.

A recent work [83] shows the promise of advancing RL
using MPC. Though a pure RL policy enables robust locomo-
tion, precision (such as foot placements) has been a problem.
It was shown in [83] that both robustness and precision can be
achieved by guiding RL with MPC-planned foot placements.
Since our work advances MPC, it can potentially be used to
advance learning-based frameworks such as [83] as well.

ITI. MULTIPLE-SHOOTING DIFFERENTIAL DYNAMIC
PROGRAMMING

CAFE-MPC considers multiple dynamics phases along the
planning horizon due to the cascaded model fidelity and the
change of contact status, resulting in a hybrid system. We
assume this hybrid system has a fixed phase (dynamics) se-
quence and timings. Optimal control over such hybrid systems
can be modeled by a multi-phase TO problem [68]. In this
section, we present an efficient customized multiple-shooting
DDP (MS-DDP) solver for generic multi-phase TO problems.
We then discuss how to construct a multi-phase TO problem
from CAFE-MPC in Section IV.

Let n,, denote the number of phases, and ¢ denote the phase
index. We model such systems in discrete time as below [84]

XEH = fi(xg],ug])
xg = Pixy)

i

; (D

where x denotes the state variable, u the control variable,
f;(-,-) the phase dynamics, and P;(-) is the reset map from
the current phase to the next phase, /V; denotes the number of
time steps of the i" phase. Note that the dimensions of x and
u may vary between phases. A constraint is applied at the end
of each phase

gi(xi) = 0. )

The switching constraint (2) (also known as phase terminal
constraint [68]) encodes state-based switching. It requires that
the trigger of the reset map is conditioned on satisfying the
constraint (2). For legged robots, for instance, the impact
dynamics is triggered only when a foot touches the ground
(foot height is zero). Without Eq. (2), the system (1) represents
a time-based switched system. Details can be found in [84].
Giftthaler et al. [70] and Mastalli et al. [38] introduced
two seminal implementations of MS-DDP. Our previous work

[23] provides a framework that unifies these previous methods
and offers a few more advancements. Nevertheless, these
past implementations were either presented for single-phase
systems [70], or were not designed to cope with state-based
switching constraints. In this section, we advance the MS-
DDP for TO of hybrid systems (with fixed phase sequence
and time), specifically dealing with the reset maps and the
constraints. We first review the background on MS-DDP for
single-phase TO. We then discuss how to incorporate the
reset maps in MS-DDP for unconstrained multi-phase TO, and
finally introduce methods to deal with the constraints.

A. MS-DDP for Single-Phase TO
A single-phase TO problem has the form

N-1

min J(X,U) = kZ:O lp(xp,ug) + o(xn)  (3a)
subject to f(xg,ux) — Xp41 =0 (3b)
where k£ (0 < k < N) denotes the time index with N the
length of the predicted trajectory, uy € R™ is the control
variable, x; € R™ denotes the state variable, U = {u;}2 '
and X = {x;}2_, respectively, stack the controls and states
along the trajectory, i (xx,ux) and ¢(xy) respectively are
the running cost and the terminal cost, and f(xy,uy) is the
system dynamics. In Eq. (3), we omit the dependency on the
phase index ¢ for clarity as it is a single-phase problem.

In the multiple-shooting setting, both X and U are decision
variables, whereas in the single-shooting setting, U is the
decision variable, and X depends on U via system dynamics.
Denote X, U the current estimates for the optimal solution
(also known as the nominal values) of X and U. The simulated
state f(Xy, uy) and the estimate Xy, are likely different. This
difference is also known as the defect [38], [70], and is defined
as

ak+1 = f(ik, flk) — Xk41- 4)

Giftthaler [70] proposed a flexible formulation that allows
a subset of X to be independent while keeping the rest
dependent variables. These independent variables are called
shooting states, the indices of which are collected to a set
M. These dependent variables are called roll-out states, the
indices of which are collected to the complementary set M. If
k € M, then X, is seeded from an initial guess. Otherwise, it
is overwritten by the simulated state f(Xj_1, Gg—1). MS-DDP
iteratively improves (X, U) until the defects are sufficiently
small and the cost function is minimized. At each iteration,
it performs a backward sweep followed by a forward sweep
within a line search process.

1) Backward Sweep: Leveraging Bellman’s principle of
optimality for discrete-time systems, the backward sweep
performs a one-step optimization at every time step along
the nominal trajectory, which produces a local optimal control
policy. Denote (dx,du) small perturbations to (X,u), and 7



the local optimal control policy. The one-step optimization
performs

(X + 0Xg) = ar% min (5€k(5xk, oug) + vg+1(0Xg41) )

Qrk (dxk,0ur)

®)
where 64y (-,-) is the variation of ¢ (-,-) in the neighborhood
of (X, ug) due to (6, dug), vg41 is the local value function
(optimal cost-to-go) approximation for the perturbed state
at time k + 1, and Q(-,-) denotes the local action-value
function at time k. The function Q(-,-) cannot generally be
represented in closed form, and thus is approximated to the
second order. Temporarily omitting the subscript k£, we have

Q(dx,0u) ~
1 {ox ' Qxx quT ox T T
5 |:(£)‘u:| |:qu Quu 6u + Qx 5X+ Qu 5u (6)
where Quu and Qux are second-order partials, and Qx and

Qu are first-order partials. Performing the minimization in
Eq. (5) with Eq. (6) results in the locally optimal control policy

T (XE) = —Q;i,kQu,k _Q;&,kqu,k(Xk —-xi), (1)

5ﬁk Kk,

where du and K are the locally-optimal feed-forward con-
trol and the locally-optimal feedback gain, respectively. At
convergence, du = 0 and the resulting policy is the Riccati

feedback controller [13]. Let A = g—i (x.1)° B = % (xa)°
Denote f_, f,u, fux the tensors that represent the second-order

partials of f. Denote q; and ry the gradients of /; w.r.t. x and
u respectively, Qr, Ry, and Py the second-order partials of
). The derivatives of Q(-,-) along the trajectory are then
calculated recursively using

Skt1 = Sk41 + Spr1dip1 (8a)
Qxp = qr + AL 8541 (8b)
Qui =11 + B8 (8¢c)
Quxk = Qr + AL Ski1 Ay + 5541 f k (8d)
Quu,k = Ry + B} Sit1Bk + 811 - fuu i (8e)
Qux.k = Pi + B[ Sip1 Ak + Skt - fuxcp (8

where Sy41, Sg+1, and sg4; are the Hessian, gradient, and
drift terms that quadratically approximate viy; (Eq. (5)) at
the shooting state, and §;11 is an intermediate variable. The
operator - denotes the vector-tensor multiplication. The value
function approximations are recursively calculated using

Sk = Quxk — Qe s Qa4 Quic e (9a)
sk = Quk — Qe t Qa1 Qui (9b)
Sk = Sp41 — %Q£7/gQ;ikQu,k (9¢)
where the boundary conditions for Egs. (8) and (9) are
Sy =Qn,sy =qn, sy =0. (10

The Egs. (8) and (9) become the standard DDP backward
sweep equations [25], [60] when the defect is identically zero,
and become multiple-shooting iLQR [38], [70] when the last

terms of Eqs. (8d)-(8f) are removed. Our previous work [23]
enables unifying the backward sweep equations of all previous
formulations [25], [38], [60], [70].

Remark 1. The action-value function (6) measures the effect
of a control action on the long-term cost-to-go given the
current state. In the context of legged robots, the use of
MPC not only provides an optimal open-loop control, but also
imbues viability as a side effect [85] with suitable cost design.
Minimizing (6) allows local adjustment of the optimal open-
loop control based on the current state. Therefore, if (6) can
be incorporated somehow in the whole-body QP, then a high-
frequency feedback control may be generated for stabilization.
With MS-iLOR, the function (6) naturally results from the
solution process, providing a direct synergy between CAFE-
MPC and the ultimate lower-level VWBC in Section V.

2) Forward Sweep: MS-DDP employs a hybrid forward
roll-out [70] to update the nominal trajectory (X, U) by
applying the control policy

u;(./ =10 + aduy + Kk(X% — Xk).

(1)

where the superscript ’ indicate variables after a trial step of
size « € (0,1], which is determined by a backtracking line
search. This control policy is first used to update X for 0 <
k < N — 1 via linearized dynamics

X;c+1 =X + z’Xk(X;c — Xp) + aBgoug + ak+1. (12)

Then the following equation is executed to sequentially over-
write the roll-out states, i.e., for k +1 &€ M

X)yq = F(x),a)). (13)

The defect variable and the cost function are then evaluated
along the trial trajectory (X', U’). In practice, Eq. (13) is
evaluated in parallel, i.e., we simulate the dynamics starting
from a shooting node until the next subsequent shooting node.

3) Line Search and Regularization: An adaptive merit
function that automatically balances the defect and cost is
used for backtracking line search. An exact expected cost
change in the sense of linearized dynamics and quadratic
cost approximation with the Armijo condition is used for the
acceptance condition. Details on this regard are found in [23].
A similar regularization method as in [25] is used to ensure
the positive definiteness of Quy in Eq. (8¢). The result of a
successful line search is that the nominal trajectory X, U is
updated, with the backward and forward sweeps then repeated
to convergence.

B. MS-DDP for Multi-Phase TO

This section discusses the extension of MS-DDP to account
for the hybrid system effects (1) and (2), which represents
a contribution compared to our previous work [23]. We first
discuss the case without considering the switching constraint.

1) Unconstrained Multi-Phase TO: An unconstrained
multi-phase TO problem is formulated as

. ~ 1l xcli] il
Join ;J (x [ gl (14a)
subject to (1) (14b)
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Fig. 3: Conceptual illustration of a forward sweep and backward sweep of
MS-DDP for hybrid systems TO.

where the variables with the superscript [/ or subscript i
indicate they are phase-dependent. The remaining variables
share the same definitions as in problem (3) and Eq. (1).

The reset map (Eq. (1)) instantaneously changes the state,
potentially to a lower-dimensional space, involving a discon-
tinuous jump. While the forward sweep and the backward
sweep remain the same as in a single-phase problem until
the end of a phase, care must be taken when performing the
forward sweep and backward sweep across the reset map. We
define the defect after the reset map as

dyt =pi(xll) — =it (15)

which is evaluated in the forward sweep once the state
trajectory X% is initialized for each phase. In the backward
sweep, we update the value functions across the reset map
using

syt =si sl alt (16a)
i iq, 0P
s =y + 58 (16b)
i 0 OP) jit1) OP; i
st — Qlil + - sg“]a—xz syt P (160)

where Py ; is a tensor representing the second-order partials
of P. Same as Eq. (8), omitting the last term in Eq. /'4¢~
results in iLQR/MS-ILQR. The Eq. (16) is an impact-a
backward step. It is analogous to HS-DDP in our pre
work [84], but is extended to incorporate defects due |
infeasible warm start. Figure 3 graphically illustrates a for
sweep and a backward sweep across two consecutive ph

2) Constrained Multi-Phase TO: We now conside:
constrained multi-phase TO problems, which are formu
as

~ ~ il xcli] il
o, 3o o

subject to (1),(2) {
hi(x}),u))) > 0,

where h;(-) : R™ x R™ — R"™ represents general inequality
constraints.

We follow the previous work [84] to take a bi-level ap-
proach to solve the problem (17) with MS-DDP. The terminal
constraint (2) is handled with Augmented Lagrangian (AL)
methods [86], and the inequality constraint (17c) is dealt with
using the Relaxed Barrier (ReB) method [87]. Though similar
in spirit to the previous work [84], the inner-loop optimization
here is based upon the multiple-shooting formulation. We
can now provide a reasonable initial guess of X so that
the violation of the terminal constraint is not as bad as in
the previous single-shooting formulation, facilitating faster
convergence. Note that we omit the second-order terms in
Egs. (8) and (16) for real-time implementation, thus resulting
in MS-iLQR, which we use in the rest of the paper. Work
on incorporating second-order analytical derivatives [88] is in
progress.

IV. CASCADED-FIDELITY MODEL PREDICTIVE CONTROL

This section describes in detail the CAFE-MPC formulation.
Our previous work [22] proposed an MPC formulation that
schedules a sequence of models with descending fidelity along
the prediction horizon in each planning problem. The leading
part of the plan (figure 4) reasons about higher-fidelity models
that are more consistent with the physics of the real robot. The
trailing part of the plan reasons about less-expressive models
to gain computational efficiency. The trailing part provides an
approximation of the long-term cost to guide the leading part
of the plan. With the same motivation, CAFE-MPC generalizes
this idea of cascaded fidelity beyond dynamics modeling.
Specifically, it employs a finer integration time step in the
near term and a coarse time step in the long run. Further, it
considers the full set of constraints in the leading plan and
removes certain constraints in the trailing plan.

An overview of the CAFE-MPC formulation is shown in
figure 4, illustrated for a quadruped robot. We use the whole-
body dynamics for the leading plan, and the SRB dynamics for
the trailing plan. The durations of the two plans are denoted
by T, and T, respectively. As opposed to planar models
in previous work [22], these 3D representations enable more
behaviors in the 3D space, for instance, a barrel roll. We
use multi-resolution integration time steps, dty, = 10 ms for
whole-body dynamics, and dt; = 50 ms for the SRB dynamics.
In Section VII-A, we study the effect of different dt; on
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Fig. 4: Illustration of the sequentially cascaded-fidelity plans along the
prediction horizon.
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of constraints in the leading whole-body plan, such as torque
limits, friction constraints, etc, and leave the the trailing SRB
plan unconstrained. The rest of this section describes how each
planning problem is constructed, and how they are connected
and are cast into a multi-phase TO problem.

A. Whole-Body Plan Formulation

The leading high-fidelity whole-body plan employs whole-
body dynamics with hard contacts. We use Euler angles 0 €
R3 to represent the orientation of the floating base. Let ¢ €
R3 be the zyz position of the floating base, q; € R!? be
the joint angles, 7 € R'? be the actuation torques, and q =
07,c",q;"] € R' be the generalized coordinates, and
p € R'2 be foot locations. Let x = [q',¢"]" be the state
variable, and u = 7 be the control variable.

1) Cost Function: The running cost in this work consists
of three terms (1) tracking of a state reference (2) tracking of
swing foot positions and velocities and (3) torque minimiza-
tion, i.e.,

2 12
I = | Adllw, + | Adllw, +
ISAP|I%y, + [SAPIy, + lullf,  (18)

where A- denotes the difference between a variable and its
reference. Let s; € {0,1} denote the swing status of the j®
leg, then S € R'2%12 i5 a diagonal matrix whose diagonal
concatenates vectors [s;, s;, s;] of all four legs. The terminal
cost is similarly defined but without the last term.

2) Dynamics: The dynamics of a quadruped robot in con-
tact are given by

M(q)d +n(q,q) =BT+ J/F, (19)

where M is the generalized mass matrix, n collects the
Coriolis, centripetal, and gravity forces, B, € R'2*X18 is a
constant selection matrix due to the un-actuated floating base,
F. € R*" concatenates the GRF frp, € R® of each contact
foot, with n.. the number of active contacts, and J. € R37x18
is the contact Jacobian. In addition to the dynamics (19), the
contact foot is often assumed to be static with the acceleration-
level non-slip constraint

Jeg+Jeq=—-aleq (20)

where we use the first-order Baumgarte stabilization [26], [89]
to mitigate the violation of non-slip constraint at the velocity
level due to numerical integration, and o > O represents the
first-order Baumgarte stabilization parameter. We use o = 10
in this work for a stabilization time constant of 1/10 second.
Further, we address the constraint (20) at the dynamics level,
resulting in the well-known KKT contact dynamics [90]

M JI[a]_ [BiT—n(qd)

Jo 0| |-F.| | -Jq+aleq]|’
To model a change in the contact mode, when a new foot
touches down, the impact dynamics are similarly defined as

ool =)

2y

(22)

where the superscripts © and ~ indicating post and pre-
impact event, and A, represents the impulse. The linear
systems (21) and (22) can be efficiently solved with Cholesky
decomposition when J. has full rank, which is performed
using Pinocchio [91] in this work. The contact dynamics (21)
and the impact dynamics (22) vary based on the foot contact
status, resulting in a hybrid system. Assuming a fixed contact
sequence and timing throughout this work, we obtain the
discrete-time state-space equation via explicit Euler integration
ay
)

x| =x ¢ dty, (23)

where the superscript [/ follows the convention of Eq. (1)
to indicate phase-dependent dynamics. It is emphasized here
that dt,, is the integration time step for the whole-body plan.
Similarly, the state-space reset map Py, is

ST . T T il
@] =P,

[i+1] _
X0 = |( Ni) i ( 0

(24
To clarify the notation, the post-reset velocity q([j 1 is noted
equivalently by gq* in Eq. (22). Care must be taken here that
the reset map (24) should also consider the case of taking off,
where the mode-transition dynamics are trivial, with 7 = ¢~.

3) Constraints: Multiple constraints are considered in the
whole-body plan. At the moment of touchdown, we require
that the height of the touchdown foot be on the contact surface.
Let peg, be the foot position of the 4™ foot in world frame.
Then the touchdown constraint is

[0,0,1] pgE, —he =0 Vj touch down (25)

where h. is the height of the contact surface in the world
frame, pgg, is calculated via the forward kinematics. For
each contact foot, the contact force needs to satisfy the
friction cone constraint. In this work, we use an inner pyramid
approximation

\fe8,] < nfke, (26)

where u > 0 is the friction coefficient. Note that Eq. (26)
implies fZ, > 0. In addition, the torque limit, joint limit, and
joint speed Timit are always enforced throughout the whole-
body plan

T, 2T X TU, (27a)
d;, 2qs 2 qJy, (27b)
arn, 247 24y, (27¢)

where the subscripts L and U indicate lower bound and upper
bound, and < denotes element-wise inequality.

B. SRB Plan Formulation

The trailing lower-fidelity SRB plan uses coarse integration
time step dt; > dt,, and removes all constraints. For the
SRB model, let x = [0, c",w",¢T]T be the state variable,
u = [fig . fip . fop,,fip,]" be the control variable (for
the ground forces at the feet). Additionally, let w € R? be the
angular velocity of the floating base in the body frame.



1) Cost Function: The running cost consists of a tracking
cost and a GRF regularization term

2 2

b= 120, ac)y, + [1d6.a¢l]  +||SaFse]

(28)
where Wy . are the components in W, corresponding to 6
and c, and W . are the components in W corresponding to

+
VVé@

# and ¢, and S = 1,2 — S is the contact status matrix where
115 € R¥2%12 i an identity matrix and S denotes swing status
as defined in Eq. (18). The terminal cost is similarly defined
but excludes the regularization term.

2) Dynamics: The SRB dynamics is

4
. _ feE;
Cc = E Sj
—"7 m
j

-8
(29)

4
w=T"(~wxIw+R"Y 5(per, — ) x feg,),
j=1

where I is the rotational inertia of the body, g is the earth
gravity, R denotes the body orientation w.r.t. the world frame,
5; is a diagonal component of S indicating the contact status
of the j" foot. All quantities except for w are expressed
in the world frame. Let T(:) be the transformation matrix
that converts angular velocity to the rate of change of Euler
angles [92]. With § = T(0)w, its time derivative, and the
second equation of (29), we can obtain @ as a function as the
SRB state. The discrete-time state-space equation of the SRB
dynamics is then

. . T
Xk+1=xk+[9T i éT] dt,  (30)

where it is emphasized here that dts is the integration time
step for the simplified model. Note that the foot location prg;
in the SRB model is assumed to be known from a reference
trajectory according to Raibert heuristics [16], it is neither part
of the state nor the control.

3) Constraints: The SRB planning is formulated as an
unconstrained optimization problem. The idea of CAFE-MPC
is to relax the problem constraints/cost/dynamics later in the
horizon for computational efficiency over accuracy. In our
case, we empirically find that removing the constraints on the
tail is adequate for the highly dynamic motions we aim to
produce.

C. Connecting WB Plan & SRB Plan

The WB plan and the SRB plan are not decoupled in CAFE-
MPC , but rather are connected via a transition constraint.
To differentiate their dimensionality, we use x, to denote
the whole-body state and x; to denote the SRB state in this
section. At the instance of model transition (figure 4), the
whole-body plan and SRB plan are connected via

X:_ = Ty Pu(xy)

€2y

where the superscripts © and ~ denote the moment immedi-
ately before and after the model transition, Py, (-) is given by
Eq. (24), and

06X6 06X12

16 06X12

Tyos = 06x6 (6x12 16

05%12 (32)

12x36

is the state projection matrix.

D. Cast To Multi-Phase TO

As discussed in Section III, a new phase is determined when
there is a change in one of the following (1) system dynamics,
(2) state or control, (3) cost function, or (4) constraint. A
rough choice of phases would be to consider the full whole-
body plan as one phase and the SRB plan as another. This
choice of phases, however, is not sufficiently accurate, as
the contact status of each foot can likely change along the
whole-body plan. The dimension of the KKT matrix of the
contact dynamics depends on the number of active contacts.
Therefore, the whole-body plan is further divided into multiple
phases depending on foot contact status. A whole-body phase
is determined when there are any foot contact changes. Since
the contact schedule is known a priori, the number of whole-
body phases as well as the start and end time of each phase
can be induced given the prediction horizon T}, of the whole-
body plan. The SRB plan is considered as one single phase,
since with the predetermined contact schedule, the variable s
is simply a time-varying parameter, and the foothold locations
PeE, are specified from a reference trajectory [16].

Remark 2. We emphasize two important features of the CAFE-
MPC. Firstly, the trailing SRB plan provides an approximation
(with low-rank Hessian) for the long-term cost to go of the
whole-body model. Adding future costs to an optimal control
problem empirically helps make the state more viable [85],
provided the cost function is designed properly. An ideal
case is perhaps to extend the whole-body plan with the same
problem structure. This strategy, however, is computationally
expensive. Relaxing the dynamics/cost/constraints later in the
prediction saves computational effort, while still capturing
salient features of the future plan. Secondly, the choice of
the whole-body model and SRB model can be generalized to
other sequences of models [22]. For instance, [43] employs
a centroidal followed by a choice of convex model (such as
linear inverted pendulum (LIP)) for humanoid walking, and
[45] employs a centroidal model followed by an SRB model
for humanoid balancing.

Remark 3. For readers already familiar with adaptive-
complexity MPC [47], we note its major differences with
CAFE-MPC. CAFE-MPC aims to robustify whole-body MPC
by adding a low-rank future cost without significantly increas-
ing computational efforts. The adaptive-complexity MPC, by
contrast, focuses on adjusting the model expressiveness along
the horizon based on the assessed need for motion complexity.
In the worst case, it comes at the same computational cost
as whole-body MPC. Naturally, these two ideas could be
combined, for example, changing the prediction model in the
tail as needed to further improve the long-term cost predictions
in CAFE-MPC.

V. VALUE-BASED WHOLE-BODY CONTROLLER

The whole-body plan of CAFE-MPC incorporates the ac-
tuation torque (7) and the whole-body states (q, ¢), which
are executable on the robot. As a result, one strategy for



WBC is to directly apply the feed-forward torque with a PD
controller that regulates toward the optimized (q, q). When
gains are low, this approach is similar to open-loop MPC, and
requires higher MPC update frequency to account for model
uncertainties. The whole-body plan, however, includes a value
function approximation and a local feedback policy, which
are available for free as intermediate results of MS-iLQR. An
alternative approach for WBC is thus to apply the closed-loop
control

TI';.C(Xk) = uz + Kk(X — X;;) (33)

where K Q,.Qux as in Eq. (7). This approach is
known as the Riccati feedback control. It smooths the actuation
torque in between MPC time steps, enables improved stability,
and allows for slower MPC updates [13], [61]. Despite these
benefits, a well-known problem with (33) is that the closed-
loop trajectory does not necessarily satisfy certain physical
constraints. This problem can be critical to the robot stability,
for instance, the robot can fall when friction cone constraints
are violated.

A. Value-Function Based WBC

The VWBC proposed in this work embeds the Riccati
feedback controller (33) within a conventional OSC-QP for-
mulation, thereby unifying the conventional WBC and the
Riccati feedback control. The VWBC produces a whole-body
control command that is close to the Riccati controller, while
at the same time satisfying all necessary physical constraints.
The VWBC is formulated as

min Q. (x —xj, 7 — 7}) (34a)
7,4,

st M(q)g+n(q,q) =BT +JF.  (34b)

Ja+J3;q=—-aJ;q, Vjel (34¢)

T, 2T X TU, (34d)

|f§%j < pufgp, Vi€l (34e)

where Q(-,-) is the action-value function approximation
defined in Eq. (6), k£ is the time index in the whole-body plan
of CAFE-MPC, Eq. (34b) is the whole-body contact dynamics
as in Eq. (19), C denotes the set of active contacts. Eq. (34¢)
represents the acceleration-level non-slipping constraint with
first-order Baumgarte stabilization. Eqgs. (34d) - (34e), respec-
tively, represent the torque limits, the unilateral constraint, and
the linearized friction-cone constraint with an inner pyramid
approximation.

The partial derivatives of Q(,-), the (sub)optimal state-
control pair (x},uj}), and the contact status C are obtained
from the whole-body plan of CAFE-MPC for the time index
k that is the closest to the current low-level control tick.
Minimizing Q; will encourage the resulting solution to stay
close to the optimal control policy (7). Since Quy in Eq. (6)
is guaranteed (via regularization) to be positive definite, the
resulting QP (34) is strictly convex.

The VWBC (34) is a generalization of the Riccati con-
troller (7). This can be seen by removing all the constraints
in (34). The problem (34) then becomes an unconstrained
optimization problem, the solution of which is Eq. (7). Thus,
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the VWBC seeks a control signal that is the closest to
the Riccati controller (7) but with all necessary constraints
satisfied. More formally, one can show that minimizing the
objective in Eq (34a) is equivalent to minimizing

2
H Qs (33)

In other words, the VWBC can be considered as the Riccati
controller disguised in a QP, thus enjoying the benefit of
feedback stabilization, while preventing the resulting solution
from being too aggressive to violate the constraints. The
VWBC is similar in spirit as [71], [75], except that the value
functions in [71], [75] are obtained for simplified models.

The VWBC avoids additional cost tuning beyond CAFE-
MPC. The action-value function Q(-,-) marries the VWBC
to CAFE-MPC. Thus, one can focus on the cost design for
the CAFE-MPC, and leave CAFE-MPC to fully specify the
VWBC cost. This is an advantage over the conventional OSC-
QP, since conventional OSC-QP concatenates multiple tasks
specified in the operational space, such as CoM tracking,
swing feet tracking, torque regularization, etc. As a result,
nontrivial tuning is often unavoidable to balance the relative
importance of each task. Further, these tasks are often gen-
erated independently using separate planners that are based
on simplified models. For instance, CoM trajectories can be
generated using LIP model [24], [28], [71], [93], SRB model
[1], [16], [73], and Centroidal dynamics [4], [26]. Swing foot
trajectories are often generated by interpolating predicted foot
placements using Bezier polynomials [1], [4], [16], where the
foot placements are obtained with Raibert heuristics. The loss
of whole-body information can potentially produce a plan
that is not trackable by the low-level controller [94]. The
VWBC, by contrast, overcomes the above issues, and avoids
any additional meticulous tuning beyond the MPC.

Solving the QP (34) can be warm started using solutions
of CAFE-MPC, and thus requiring fewer solver iterations. The
whole-body plan of CAFE-MPC incorporates 7, qy,, q, F7. ;..
We obtain q;, = (45, — 4;)/dtw, and use 7, d;, F;
as an initial guess for the QP (34). Detailed evaluation and
benchmark of the proposed VWBC and its performance are
discussed in Section VII-B.

1
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VI. IMPLEMENTATION DETAILS

In this section, we discuss a few implementation details, in-
cluding reference generation, offline TO design for barrel rolls,
motion composition of a running barrel roll, and other engi-
neering details that are important to maintain fast computation
and robust hardware execution. For regular locomotion skills
such as bounding, pacing, etc, we use kinematic references
that are based on integrating the twist and Raibert heuristics
and use IK for reference joint angles. For the barrel roll and
any composed motions that incorporate the barrel roll, the
reference trajectories are obtained via offline TO that covers
all degrees of freedom.

The contact patterns and timings are heuristically deter-
mined by observing the gaits of similar-sized quadruped
animals. The contact patterns are represented by a switched
system formulation, i.e., an ordered sequence of phases. Each



phase is associated with a start time and
change of phase is determined by a take
a touch-down event of any legs. Let FR,
represent the stance status of the front righ
right, and hind left legs, respectively. Le
flight phase, and FS represent a full-stance
contact sequence of one gait cycle of a
represented by {HL-HR, FT, FL-FR, FT
ciated timings {[tE], tLl]], [t[el],t[f]], [t[f},tl[es]
switched-system representation makes form
phase TO problem (17) straightforward. W
used here to determine the contact patter
approach is to employ a contact planner,
design [32], [95] or via online re-planning

A. Heuristic Locomotion Reference

The kinematic references for regular loc
designed via simple heuristics, consisting of the CoM trajec-
tory, the foot placements, and the swing foot trajectory. The
users provide commands that include horizontal velocities v,
and v, height z, and yaw rate 0.. The horizontal positions
x,y, and the yaw angle 0, are obtained via integrating the
corresponding velocity components. The rest of CoM states
are set to zero. The reference foot placements are obtained
via Raibert heuristics [1], [16], but are clamped to be within
a bounded box about the corresponding hip so that they are
kinematically reachable. The foot placements are interpolated
with cubic Bezier polynomials [1], [16], from which the swing
foot positions and velocities are obtained, with reference joint
angles then obtained via IK and reference joint velocities at
zero. All components of the kinematic reference are used in
Eq. (18) to design the cost of the whole-body plan. The CoM
reference is used in Eq. (28) to design the cost of SRB plan, as
well as normal GRF references that are obtained by averaging
the total weight of the robot over the number of active contacts.

B. Offline Barrel Roll TO

While a heuristic kinematic reference is sufficient for regular
locomotion skills, we empirically find that richer dynamic
information addressing leg coordination is helpful to quickly
synthesize complex motions online such as barrel roll given
the real-time constraints. As such, we solve a TO problem
offline to obtain a whole-body reference trajectory for an
in-place barrel roll starting on all fours. We then let the
CAFE-MPC perform the fine-tuning online to account for the
model mismatch or mismatch in initial motion or contact
configuration. Details of this offline design process can be
found in the Appendix VIII-B.

C. Engineering Details

Engineering implementations are important for successful
and robust executions on robot hardware. In this section,
we review some of these implementation details in terms
of CAFE-MPC configuration, warm-start strategy, policy-lag
compensation, evaluation of dynamics and its partials, etc.

CAFE-MPC is configured to use fixed prediction horizons
(i.e., whole-body plan horizon T,, and SRB plan horizon 7T’
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Fig. 5: Conceptual illustration of a large defect when a new phase involving
state jumps is added to the current MPC problem. In warm-starting the current
MPC problem, the previous MPC is shifted forward by one step. The last state
of the previous MPC solution is duplicated to initialize the newly created state,
causing a large defect due to the state jump. The illustration example shows
when the MPC moves out of a flight phase, and adds in a new stance phase.

in figure 4). As discussed in Section IV, the SRB plan is
designed to have a single phase while the whole-body plan is
constructed to span multiple phases. As the CAFE-MPC shifts
forward, the phases involved in the whole-body plan may vary
as the most recent contact status moves out of the horizon,
and the upcoming contact status moves in (as illustrated in
figure 5). In other words, the CAFE-MPC may entail dynamic
removal of old phases and addition of new phases.

It is well accepted that for fixed-horizon MPC, the optimiza-
tion problems between two control ticks are similar. Thus, a
common approach to save computational effort is to warm start
the current MPC problem using the solution from the previous
MPC problem. In constructing the current MPC problem, the
previous MPC solution is shifted forward by a certain amount
of time steps, and new decision variables of proper sizes are
appended to the shifted trajectory so that the prediction horizon
remains invariant. With a multiple-shooting-based solver, the
new state variables are initialized with the last state in the
previous MPC solution. Care must be taken, however, on this
warm-start strategy for multi-phase problems (17) subject to
state jumps (e.g., impact (22)) as in CAFE-MPC. When a new
phase is added, this scheme can produce a large defect due
to the state jump (illustrated in figure5), potentially requiring
more iterations to converge. We propose an adaptive scheme
to address this issue. If no new phases are created or the new
phase does not create any state jumps (e.g., stance to flight), we
keep the appended states as shooting states and use the same
warm-start scheme. Otherwise, the new states are treated as
roll-out states, and are computed via the transition map (32)
with impact dynamics (22). As a result, the defect of the new
states is identically zero. To remind the readers, a shooting
state refers to an independent state that can be initialized by
the user, whereas a roll-out state is a dependent variable on
controls and previous states, as is detailed in Section III.

We solve the first CAFE-MPC problem to convergence. For
all subsequent CAFE-MPC problems, the MS-iLQR solver
is terminated with either maximum CPU time (18 ms) or a
maximum number of iterations (4), whichever is reached first.
We use Pinocchio [91] for the calculation of the whole-body
dynamics and its analytical derivatives, and use CasADi [96]



for SRB dynamics and its derivatives. All gradient information
(dynamics, costs, and constraints) along the trajectory are
computed in parallel with 4 threads using OpenMP.

While the VWBC runs on the robot hardware at 500 Hz,
CAFE-MPC is executed on a separate computer at 33 to 50
Hz depending on the motion task. To account for the policy
lag due to the MPC solve time and communication latency,
the first six commands (states, value function, etc.) of the
MPC solution are sent to the low-level VWBC controller along
with their timestamps. The VWBC then finds the solution
command with the timestamp closest to the current instant to
formulate Eq. (34a). Since the VWBC plays a role of Riccati
feedback controller and executes at a significantly higher rate
than CAFE-MPC, it further minimizes the effect of policy lag
on the system stability.

VII. RESULTS

The performance of the proposed motion control framework
is benchmarked on MIT Mini Cheetah with several tasks:
regular locomotion skills, a dynamic running jump, and highly
dynamic barrel rolls. The benchmark is carried out both in
simulation with a highly-fidelity dynamics simulator and on
the robot hardware. For all regular locomotion skills, it is
sufficient to run CAFE-MPC at 33 Hz. For the dynamic running
jump and highly dynamic barrel roll, CAFE-MPC runs at
50 Hz. Results and analysis of CAFE-MPC are presented in
Section VII-A. Results and discussions of VWBC are reported
in Section VII-B. In addition, we compare CAFE-MPC with
two other MPC schemes: an SRB MPC developed in previous
work [74], and a whole-body MPC. The comparisons are to
investigate their capabilities to accomplish a barrel roll. The
comparison results are discussed in Section VII-C. A subset of
the simulation results (e.g., for the dynamic running jump) are
omitted herein but can be found in the accompanying video.

A. CAFE-MPC

We investigate the performance of CAFE-MPC under differ-
ent model schedules and integration time steps. As a reminder,
a model schedule & = (Ty,T;) specifies the whole-body
prediction horizon Ty, and the SRB prediction horizon 7. The
performance is measured in terms of reference tracking and
solve times. This investigation considers a bounding gait in
simulation and a trotting gait on hardware. For the simulation
study, three groups of experiments (denoted, G1, G2, and G3)
are conducted, as summarized in Table I. Each experiment
starts with a whole-body plan of 0.25 s, and differs in how an
additional planning horizon 7'y is added to the formulation.
The choice of 0.25 s is empirically determined as it is the
shortest whole-body plan that enables bounding after some
careful tuning of the terminal cost. For experiment groups G1
and G2, the additional horizon 7y is an SRB plan, and the

TABLE I: Three groups of experiments for CAFE-MPC benchmark.

Tw Ts dtw dts
Gl 0.25s Ty 10ms 10 ms
G2 0.25s Ty 10ms 50 ms
G3 025s+ T4 0 10 ms 50 ms
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Fig. 6: Tracking performance of CAFE-MPC using model schedules and
integration time steps in Table I. The data were collected with a bounding
gait on a simulated MIT Mini Cheetah. Tracking performance is measured
using RMS error on pitch 6y (top) and pitch rate 6, (bottom).

difference is in the integration time step. For G3, the additional
plan is a whole-body plan, so CAFE-MPC becomes whole-
body MPC. We increase 77 from O s to 2 s, and examine the
effect of the extended horizon on tracking performance and
solve time.

1) Simulation Results: Figure 6 reports the tracking per-
formance, which is measured using the root-mean-square
(RMS) errors of the pitch angle 6, and the pitch rate Gy
For each group of experiments, CAFE-MPC attains the worst
performance in the base case when 7, = 0. As the length of
horizon grows with increases to 7y, whether it is SRB plan or
whole-body plan, the tracking errors are significantly reduced
(roughly 90% reduction on 6, and 73% reduction on 6,)
until 7} = 0.5 s, after which the performance enhancement
is minimal. The lack of further performance improvement is
justifiable, which is likely a result of the extended horizon
already providing a reasonable metric for the satisfaction of
long-term goals. The extended horizon helps ensure that the
current actions are appropriate to ensure longer-term balance.

The results of G1 and G2 reveal that even though the long-
term objective is formulated using a simplified model, it helps
improve the whole-body plan in the near term. This analysis
is aligned with the results on disturbance rejection obtained
in previous work [22], but is benchmarked in a high-fidelity
simulator herein and using more practical real-time MPC
implementation. In addition, this performance enhancement is
observed for both dt; = 10 ms and dt; = 50 ms, meaning that
using a fine integration timestep later in the prediction horizon
is not necessary. The results of G3 shows that the tracking
performance of whole-body MPC becomes worse when T’
is beyond 1.5 s. This is likely because the MPC problem has
become more difficult to solve due to the accumulation of
high nonlinearity from the whole-body dynamics over long
horizons, which makes it easier to reach bad local optima. This
observation shows the advantage of CAFE-MPC over whole-
body MPC for long-horizon problems.

Figure 7 depicts the solve time statistics, which are mea-
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Fig. 7: Solve time statistics of CAFE-MPC using model schedules and

integration time steps in Table I. Solve time here refers to the average

computation time per MS-iLQR iteration. Top: solve times for all three groups

in Table I. Bottom: solve times for groups G1 and G2.

sured per MS-iLQR iteration and averaged over all MPC
control ticks for each motion. Comparing the results of Gl
and G2, we found that the coarse integration timestep dt; =
50 ms is more favorable than the fine integration timestep
dt; = 10 ms for CAFE-MPC . There are two reasons. First,
the solve times associated with dt; = 50 ms are in general
less than those with dt; = 10 ms, and this difference tends to
increase as the planning horizon grows. Second, the difference
in tracking performances between the two, as observed in
figure 6, is negligible as the SRB plan horizon increases. In
addition, a notable increase in solve time is observed with
whole-body MPC (i.e., G3). With T, = 2s, the solve time of
whole-body MPC is 8x slower than that of CAFE-MPC (G2).
In summary, CAFE-MPC achieves better or on par tracking
performance than whole-body MPC for regular locomotion
skills with significantly less computation time, which can be
further decreased with a coarse integration time step.

2) Hardware Results: To further examine the performance
of CAFE-MPC as observed in figure 6, we conduct a series
of similar experiments on MIT Mini Cheetah hardware with a
trotting gait. Rather than testing all model schedules (Table I)
as in the previous section, we use the configuration of G2
with T between 0 s and 0.4 s, since the most significant error
reductions are observed in this range in figure 6. Note that
we use dt; = 50 ms for the SRB plan. Figure 8 depicts the
tracking results in terms of forward velocity (v,) and the body
CoM height (2). The solid lines represent the actual states
of the robot under different model schedules, and the dashed
line represents the desired states. With Ty = 0 s, the robot
gradually deviates from the desired trajectory, and eventually
falls down after walking for a few steps. The robot can move
longer with 75 = 0.1 s but still eventually falls down. By
further elongating the SRB plan, stable trotting is achieved,
and the tracking performance is improved until 75 = 0.2 s. The
lack of further performance improvement is similarly observed
in figure 6, and is likely because the trailing SRB plan already
serves as a reasonable indication of the long-term goal.
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Fig. 8: Tracking performance of CAFE-MPC under model schedules of G2
(Table I) evaluated with a trotting gait on MIT Mini Cheetah hardware.

B. VWBC

In this section, we study the performance of the VWBC, and
compare it with the performance of the Riccati controller. To
remind the readers of the differences, the Riccati controller
controls robots with the feedforward-feedback controller (7)
resulting from the MS-iLQR solver. The VWBC solves a
value-based QP (34) that embeds (7), but with all necessary
constraints satisfied. Toward that regard, we benchmark the
differences with a disturbance rejection test, and are mainly
concerned with constraint satisfaction and disturbance recov-
ery. We use qpOASES [97] as the QP solver. The whole-body
plan of CAFE-MPC offers an initial guess for the valued-based
QP without additional computational cost. We compare the QP
solve times with and without using this initial guess.

1) Disturbance Recovery: The disturbance rejection test
was conducted with the same bounding gait as in Sec-
tion VII-A. We change the body velocity by a total of 1.5
m/s over 50 ms, which corresponds to an effective external
force of 270 N over the period. Figure 9 depicts the joint
torques of the front right and back right legs as well as
their upper and lower limits. It demonstrates that the Riccati
controller sometimes violates the torque constraints, especially
after the push disturbance, whereas the VWBC consistently
satisfies the torque constraints. One may argue that a simple
clamping technique can work here, and question the need
for the proposed technique. This argument is true in this
case, and clamping torque is sufficient to prevent control
saturation. However, the VWBC provides a systematic way of
balancing optimality (via the local Q function) and constraint
satisfaction. Further, some other constraints such as friction
that cannot be clamped are important to robot stability. To
demonstrate, figure 11 shows time-series snapshots of the
robot after the push disturbance. With the Riccati controller,
the robot has a non-trivial slipping that eventually disablizes
the robot. With the VWBC, the slipping is slight, and the robot
quickly recovers a stable contact in one gait cycle.

2) QP Solve Time: We compare the number of solver
iterations® to solve the QP (34) with and without warm-

3In gpOASES, the concept of working number of recalculations (nWSR)
is used. The number of iterations here is nWSR + 1.
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Fig. 10: Histogram for the number of required solver iterations needed to
solve the QP (34) with and without warm start during a bounding gait (left)
and a pacing gait (right).

start on a bounding gait and a pacing gait. The number of
required solver iterations is collected at each controller step
(500 controller steps per second from VWBC, figure 2), and
the histogram of the collected data is shown in figure 10. For
bounding, the VWBC with the proposed warm-start strategy
only requires one iteration to solve the QP (34) for 79.85%
of all controller steps, and no more than three iterations for
97.7R% of all timee Far nacino 00 NRY. af the OP< are anlved
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C. Barrel Roll

To investigate the capability of the CAFE-MPC+VWBC
framework, three tasks are conducted that each involve a
highly dynamic barrel roll. (1) In the first task, the robot is
commanded to execute an in-place barrel roll followed by a
pacing gait. We then compare the proposed approach with a
conventional MPC approach in terms of their capabilities to
accomplish this task. (2) In the second task, we make the
motion a bit more challenging. The robot is commanded to
perform a barrel roll in the middle of a running locomotion
gait. An intermediate full-stance phase is used before the barrel
roll to help gain stability. Two locomotion gaits (trotting and
pacing) are tested. (3) In the third task, we make the robot
imitate a human athlete performing a Fosbury flop. This task
is the most difficult as no intermediate full stance is employed
before the barrel roll. We repeat this task multiple times for
the reliability test. We discuss the task (1) and (3) in detail
in this manuscript, and encourage the readers to check the
results of task (2) in the accompanying video. For all three
tasks, CAFE-MPC is configured with T3, = 0.25 s, T,= 0.5 s,
dty, = 10 ms, and dt; = 50 ms.

References for the barrel roll are generated via the offline
TO as discussed in Section VIII-B. All three tasks share the
same barrel-roll reference, though it is designed assuming
taking off in place. References for the locomotion gaits are
obtained from a similarly constructed offline TO, but the
objective is to track a kinematic trajectory as introduced in
Section VI-A. The resulting references capture rich informa-
tion in the joint space, enabling the CAFE-MPC to use one
single cost function across all tasks. The composed reference
trajectory for each task is obtained by simply connecting the
two types of references in proper order without special care
on motion transitions.

Figure 1 shows time-series snapshots of executing task (1)
on the Mini Cheetah hardware. The hopping step after barrel
roll and before pacing is introduced by design to mimic a gym-
nast who often takes a step to gain balance after large aerial
rotations. The successful hardware execution demonstrates the
capability of the proposed framework to refine references
online for highly dynamic motions, effectively accounting for
model uncertainties. By comparison, previous works [10], [11]
on in-place barrel roll need nontrivial tuning of both cost
function and dynamics, and the robot has to be locked to a
pre-defined configuration for landing.

1Y Comnaricon Tn Temnlate MP('- Ta farther investigate

conven-
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Fig. 11: Time-series snapshots of Mini Cheetah bounding under disturbances (1.5 m/s forward direction) in simulation using different whole-body control
schemes. Top: Riccati feedback controller. The highlighted area in orange indicates foot slipping, leading to a fall. Bottom: proposed VWBC. The robot

recovers from the initial slip (green markers), preventing a fall.
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Fig. 12: Time-series snapshots of in-place barrel roll using HKD-M
robot fails to accomplish the barrel-roll task because the swing-leg
are not coordinated with the body motion.
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Fig. 13: Offline-composed running barrel roll reference (solid bl
the executed trajectory (dashed red) on the Mini Cheetah in sin
The circled areas represent discontinuities when composing the ba
reference and the pacing reference. The grey area indicates the barre

use the Hybrid Kinodynamic MPC (HKD-MPC) developed
in our previous work [74]. The HKD-MPC reasons about
SRB dynamics, and employs contact-dependent kinematics
(full joint kinematics for swing legs and prismatic foot for
stance legs). The HKD-MPC computes the CoM trajectory
(translation and orientation), foot placements, and GRFs. The
GRFs are directly used for stance leg control. A separate swing
controller is used to track swing trajectories that interpolate the
optimized foot placements. The HKD-MPC has been shown
to have robust performance for synthesizing running jumps,
and strong disturbance rejection capability [74]. We utilize the
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Fig. 15: Joint torques of the Mini Cheetah hardware during the mid-run barrel
roll. Dashed lines indicate torque limits.

already proficient HKD-MPC to follow the identical reference
as CAFE-MPC in the task (1). Figure 12 shows the time-
series snapshots of the resulting motion in simulation. The
robot behaves reasonably until after taking off, where the
swing legs cross over the body fast, reducing the body angular
momentum and resulting in an unsafe landing configuration.
Fundamentally, the failure arises from the fact that HKD-MPC
does not coordinate the body angular momentum and the leg
angular momentum. By comparison, CAFE-MPC explores the
whole-body dynamics (though over a short prediction horizon)
and accounts for the conservation of angular momentum
implicitly via the whole-body dynamics for re-orienting the
body for safe landing.

2) Fosbury Flop: The Fosbury flop is a challenging tech-
nique used by well-trained athletes in high jumps. We push the
capability of the CAFE-MPC +VWBC framework to imitate
this highly dynamic behavior on the robot hardware. The

Fig. 14: Time-series snapshots of the MIT Mini Cheetah performing a Fosbury Flop. The robot runs at 0.8 m/s with a pacing gait, decelerates and performs
a barrel roll over a 0.4 m cable, hops for one step, and accelerates to 0.8 m/s with the pacing gait. All motions and transitions are synthesized online in real
time. The proposed controller is sufficiently powerful so that no intermediate full stance is needed before the barrel roll.
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Fig. 16: Forward velocity, height, and roll angle of the Mini Cheetah hardware
during the mid-run barrel roll. The dashed line indicates the height of the string

over which the robot jumps.

robot alternates between left and right legs (pacing) at a
certain speed, decelerates while holding the right legs, and
suddenly makes a barrel roll. Pacing is resumed with the
same speed after landing and a hopping step. Note that there
is no intermediate full stance before the barrel roll. The
composed trajectory is obtained by simply terminating the
pacing reference with left legs at stance, starting the barrel
roll reference with right legs at stance, and connecting them
without additional effort. The solver takes roughly 5.3 ms
per iteration and performs 3.6 iterations on average per MPC
update. Note that CAFE-MPC is configured with 25 time steps
for the whole-body plan and 10 time steps for the SRB plan.
Figure 13 depicts the composed reference and the executed
trajectory obtained in simulation. The green circle represents
the discontinuity of the composed reference. CAFE-MPC is
capable of synthesizing a smooth transition online to deviate
from this discontinuity. The jump in the actual state at the
end of the barrel roll arises from the impact at touchdown.
Figure 14 shows time-series snapshots of the executed motion
on the robot hardware. As shown in figure 16, the robot
jumps up to 0.52 m, and clears the string at 0.4 m high. The
attained clearance height matches that of the MIT Cheetah 2
[2], which is twice the size of the Mini Cheetah, though the
jumping manners are different. The robot runs at up to 0.8 m/s
before and after the barrel roll. Figure 15 depicts the torque
measurements, indicating that the torque limits are almost
always satisfied with small violations at a few moments. We
note that there are relatively large torque oscillations on the
right stance legs at taking off. These oscillations happen at
about 50 Hz, close to the CAFE-MPC update frequency. A
hypothesis to explain these oscillations thus is that the control
bandwidth of CAFE-MPC is not sufficient to resolve the fast
dynamics at take-off.

3) Reliability Test: We repeat the Fosbury-Flop experiment
22 times to evaluate the reliability of the proposed control
framework. Sixteen experiments are successful, resulting in
a success rate of 72.6%. Figure 17 depicts screenshots of
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Fig. 17: Reliability test of performing a mid-run barrel roll on Mini Cheetah.
22 experiments were conducted with a success rate of 72.6%. 10 successful
experiments are shown here, where the blue and red boxes at different
locations indicate the experiments were performed independently.

10 successful experiments, where the blue and red boxes at
different locations indicate these experiments were conducted
independently. While two failed tests are due to low battery,
and one due to temporary loss of Ethernet connection, the rest
of the failed experiments were mainly caused by the sliding of
the stance feet immediately before the barrel roll. This sliding
arises from the oscillation (similar as observed in figure 15) of
the stance legs that break the friction constraints. We believe
that once the oscillation problem is resolved, the reliability of
the proposed control framework will be further improved.

D. Comparison to Whole-Body MPC

In a final investigation, we compare CAFE-MPC with whole-
body MPC regarding their capability to achieve a Fosbury-
Flop. In Section VIII-B, the barrel-roll reference for the
Fosbury-Flop was obtained via offline TO, with a period of
flight time 0.4 s. In this section, we extend the flight time
by 0.1 s online without re-optimizing the reference offline. To
obtain this new reference, the last state of the flight phase of
the original barrel-roll reference is repeated until the length of
the new plan is reached. This hand-crafted reference is harder
to track since it breaks the dynamics feasibility. However, if it
is trackable, it would make the reference design process easier,
and enable online generalization to different the flight times.

Table II shows the model schedules of the participating
MPC schemes used in the comparison study. The notation
& represents model schedule, which specifies the lengths of
the whole-body plan and the SRB plan. The model schedules
8o, &1, and &3 have zero-length SRB plan, thus representing
whole-body MPC. For &, &1, 82, and &3, the simulation runs
at full speed to mimic the real-time scenario, and the real-
time constraints are imposed on the solver. For &;-slowsim,
the real-time constraint is disabled, and the simulation runs
at 0.5x. For each model schedule in Table II, we repeat the
Forbury-Flop task for twenty trials. Each trial is slightly differ-
ent from the other due to uncertainties from (1) measurement



TABLE II: Model schedules of CAFE-MPC for performance comparison of
executing Fosbury flop and success rates.

Model schedule So $1 §1-slowsim So S3
Tw (seconds) 0.70  0.80 0.80 090 040
Ts (seconds) 0.00  0.00 0.00 0.00  0.50
Success rate 15%  35% 95% 30% 95%

noises (2) variations in controller frequency and (3) run-time
variations of the solver. A trial is considered to fail if the robot
cannot recover locomotion after landing.

The success rates achieved with each participating MPC
scheme are reported in Table II. With the real-time constraints,
CAFE-MPC (&3) shows a significantly better success rate
than all the whole-body MPC controllers ($y, &1, and &5).
Among the whole-body MPC controllers, better performance
is achieved with &7 and &5 than &y, which is due to the
extended planning horizon. Note that even though the whole-
body MPC schemes &) and &> employ a similar-length overall
prediction horizon as CAFE-MPC, they achieve lower success
rates. This loss of performance is because the whole-body
MPC problems are harder to solve and may not find feasible
solutions given limited computation times. This argument is
verified with &7 —slowsim where the real-time constraints are
removed, and the resulting success rate is comparable to
CAFE-MPC . In a nutshell, for whole-body MPC to synthesize
the running barrel roll, the planning horizon needs to be
sufficiently long, which on the other hand, increases the com-
putational difficulty, thus impeding the control performance.
Speeding up computation time for whole-body MPC is a
vibrant research area [13], [15]. We anticipate that whole-
body MPC has the potential to execute a running barrel roll
on hardware in the foreseeable future. Nonetheless, it’s worth
noting that our approach offers a straightforward yet powerful
means of integrating whole-body planning into MPC and
making the best use of available computational resources.

VIII. CONCLUSIONS AND FUTURE WORK
A. Discussions and Future Works

The results in Section VII-A show the enhanced perfor-
mance of CAFE-MPC with the increased horizon of the SRB
plan. This improvement is explained as follows. Minimizing
the value function obtained at the initial state of the SRB plan
provides a proxy for ensuring viability and long-term tracking
performance. When this value function is used as a terminal
cost, the WB plan has a better idea of how the current decision
would affect the long-term performance. This approach is
similar to the finite-horizon LQR when the terminal cost is
given by the value function of an infinite-horizon LQR.

There are a few limitations with the CAFE-MPC . The ori-
entation is represented by Euler angles, which are notoriously
known for the singularity problem. Future work would use
quaternions [22], [98], and unlock more gymnastic maneuvers
such as mid-run front flip. Self-collision is currently not
considered, which can cause the robot to fall during leg
crossing. Contact timing optimization is another line of future
research to account for contact mismatch. Our previous work
[84] and current research on timing-free optimization show
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promise in this direction. Further, the computational efficiency
of CAFE-MPC can further be improved with the real-time
iteration scheme [58].

The VWBC disguises the Riccati feedback controller in a
QP problem. Results in Section VII-B demonstrate that the
VWBC enjoys the benefits of Riccati feedback closing the
control loop at a higher rate, while at the same time satis-
fying necessary constraints. This feature allows the high-level
CAFE-MPC to be solved at coarse precision. One limitation of
VWBC is that the foot contacts are currently specified using a
known schedule, which can cause instability problems in the
presence of a large contact mismatch. Future work would seed
VWBC with contact detection [99].

B. Conclusion

The major contribution of this work is the control pipeline
of CAFE-MPC + VWBC. CAFE-MPC enables flexible schedul-
ing of multi-fidelity models, multi-resolution time steps, and
relaxed constraints along the prediction horizon. When com-
pared to the whole-body MPC on the regular locomotion tasks,
CAFE-MPC was shown to achieve better tracking performance
due to an appended template SRB plan that grows the pre-
diction horizon. Further, this performance enhancement for
CAFE-MPC does not necessarily increase the computational
time with the appropriate design of the SRB plan, which is
beneficial for on-board computing with limited computational
resources. Thanks to the multiple-shooting iLQR, CAFE-MPC
computes for free a local Q-value function for the current
state of the whole-body model. This local Q-value function
measures the long-horizon effects of the current control per-
turbations on the resulting cost. The VWBC minimizes this
value function so that the resulting solution is encouraged to
stay near the optimal path discovered by MPC. As a result,
the VWBC is free of additional tuning, which is an advantage
over conventional QP whole-body controllers.

The proposed method is sufficiently powerful that it can
synthesize multiple highly dynamic and complex behaviors
on the fly. This capability is demonstrated via performing
common locomotion skills, unusual dynamic running jump,
and extremely dynamic running barrel rolls on MIT Mini
Cheetah. The reference for running barrel roll is obtained
by simply connecting an in-place barrel roll trajectory to a
pacing gait, without sophisticated processing. The running
barrel roll experiment was repeated 22 times on the Mini
Cheetah hardware, and a 72.6% success rate was achieved.
Most failures were caused by the sliding of the stance feet.
A template MPC that does not incorporate leg momentum is
shown with failure to accomplish an in-place barrel roll in
simulation, indicating the importance of incorporating whole-
body dynamics for highly dynamic motions. Further, a whole-
body MPC is shown with less success rates than CAFE-MPC
due to the excessive computational cost. Beyond quadrupeds,
the proposed control pipeline is very general and could be
applied to many other robotic platforms. Further work will
investigate its application to humanoid robots, in particular.



ACKOWLEDGEMENTS

We would like to thank David Kelly, Shenggao Li, Nicolas
Adrian, John Nganga, and Xuemin Liu for their help on the
experimental setup and video shooting, Prof. Hai Lin and
Zihao Song for lending the lab space, and Dr. Tingnan Zhang
and Dr. Wenhao Yu for their helpful discussions. The Mini
Cheetah is sponsored by the MIT Biomimetic Robotics Lab
and NAVER LABS.

[1]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

REFERENCES

G. Bledt, M. J. Powell, B. Katz, J. Di Carlo, P. M. Wensing, and S. Kim,
“MIT cheetah 3: Design and control of a robust, dynamic quadruped
robot,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2018,
pp. 2245-2252.

H.-W. Park, P. M. Wensing, and S. Kim, “High-speed bounding with
the MIT cheetah 2: Control design and experiments,” Int. J. of Robotics
Research, vol. 36, pp. 167-192, 2017.

B. Katz, J. Di Carlo, and S. Kim, “Mini cheetah: A platform for pushing
the limits of dynamic quadruped control,” in Int. Conf. on Robotics and
Automation, 2019, pp. 6295-6301.

R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter, ‘“Per-
ceptive locomotion through nonlinear model-predictive control,” IEEE
Transactions on Robotics, 2023.

J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, 2019.

S. Hong, Y. Um, J. Park, and H.-W. Park, “Agile and versatile climbing
on ferromagnetic surfaces with a quadrupedal robot,” Science Robotics,
vol. 7, no. 73, p. eadd1017, 2022.

S. Choi, G. Ji, J. Park, H. Kim, J. Mun, J. H. Lee, and J. Hwangbo,
“Learning quadrupedal locomotion on deformable terrain,” Science
Robotics, vol. 8, no. 74, p. eade2256, 2023.

E. Ackerman. (2022) Watch the hyqreal robot pull
an  airplane. [Online].  Available: https://spectrum.ieee.org/
watch-iits-new-hyqreal-quadruped-robot- pull-an-airplane

O. Villarreal, V. Barasuol, P. M. Wensing, D. G. Caldwell, and C. Sem-
ini, “MPC-based controller with terrain insight for dynamic legged
locomotion,” in IEEE Int. Conf. on Robotics and Automation, 2020,
pp. 2436-2442.

M. Chignoli and S. Kim, “Online trajectory optimization for dynamic
aerial motions of a quadruped robot,” in [EEE Int. Conf. on Robotics
and Automation, 2021, pp. 7693-7699.

Z. Song, L. Yue, G. Sun, Y. Ling, H. Wei, L. Gui, and Y.-H. Liu, “An
optimal motion planning framework for quadruped jumping,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2022, pp. 11366-11373.

C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grimminger, and G. Mar-
tius, “Learning agile skills via adversarial imitation of rough partial
demonstrations,” in Conference on Robot Learning. PMLR, 2023, pp.
342-352.

C. Mastalli, S. P. Chhatoi, T. Corbéres, S. Tonneau, and S. Vijayakumar,
“Inverse-dynamics mpc via nullspace resolution,” IEEE Transactions on
Robotics, 2023.

E. Dantec, M. Naveau, P. Fernbach, N. Villa, G. Saurel, O. Stasse,
M. Taix, and N. Mansard, “Whole-body model predictive control for
biped locomotion on a torque-controlled humanoid robot,” in IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids), 2022, pp. 638-644.

W. Jallet, A. Bambade, E. Arlaud, S. El-Kazdadi, N. Mansard, and
J. Carpentier, “Proxddp: Proximal constrained trajectory optimization,”
2023.

J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2018, pp. 1-9.

A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti,
“Biconmp: A nonlinear model predictive control framework for whole
body motion planning,” IEEE Transactions on Robotics, vol. 39, no. 2,
pp. 905-922, 2023.

Y.-M. Chen, J. Hu, and M. Posa, “Beyond inverted pendulums:
Task-optimal simple models of legged locomotion,” arXiv preprint
arXiv:2301.02075, 2023.

18

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

J. Li, J. Ma, O. Kolt, M. Shah, and Q. Nguyen, “Dynamic loco-
manipulation on hector: Humanoid for enhanced control and open-
source research,” arXiv preprint arXiv:2312.11868, 2023.

Z. Gu, R. Guo, W. Yates, Y. Chen, and Y. Zhao, “Walking-by-
logic: Signal temporal logic-guided model predictive control for
bipedal locomotion resilient to external perturbations,” arXiv preprint
arXiv:2309.13172, 2023.

P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and
A. Del Prete, “Optimization-based control for dynamic legged robots,”
IEEE Transactions on Robotics, 2023.

H. Li, R. J. Frei, and P. M. Wensing, “Model hierarchy predictive control
of robotic systems,” IEEE Robotics and Automation Letters, vol. 6, no. 2,
pp. 3373-3380, 2021.

H. Li, W. Yu, T. Zhang, and P. M. Wensing, “A unified perspective
on multiple shooting in differential dynamic programming,” in 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1IEEE, 2023, pp. 9978-9985.

P.-B. Wieber, “Trajectory free linear model predictive control for sta-
ble walking in the presence of strong perturbations,” in IEEE-RAS
Int. Conf. on Humanoid Robots, 2006, pp. 137-142.

Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in /[EEE/RSJ
Int. Conf. on Intelligent Robots and Systems, 2012, pp. 4906-4913.

S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter,
T. Koolen, P. Marion, and R. Tedrake, “Optimization-based locomotion
planning, estimation, and control design for the atlas humanoid robot,”
Autonomous robots, vol. 40, no. 3, pp. 429-455, 2016.

G. Bledt and S. Kim, “Implementing regularized predictive control for
simultaneous real-time footstep and ground reaction force optimization,”
in [EEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2019, pp.
6316-6323.

T. Apgar, P. Clary, K. Green, A. Fern, and J. W. Hurst, “Fast online
trajectory optimization for the bipedal robot cassie.” in Robotics: Science
and Systems, 2018.

M. Hutter, H. Sommer, C. Gehring, M. Hoepflinger, M. Bloesch, and
R. Siegwart, “Quadrupedal locomotion using hierarchical operational
space control,” The Int. Journal of Robotics Research, vol. 33, pp. 1047—
1062, 2014.

P. M. Wensing and D. E. Orin, “High-speed humanoid running through
control with a 3d-slip model,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2013, pp. 5134-5140.

G. Bledt, P. M. Wensing, and S. Kim, “Policy-regularized model
predictive control to stabilize diverse quadrupedal gaits for the MIT
cheetah,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2017, pp. 4102-4109.

A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait
and trajectory optimization for legged systems through phase-based
end-effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560-1567, 2018.

D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a
humanoid robot,” Autonomous robots, vol. 35, pp. 161-176, 2013.

H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion plan-
ning with centroidal dynamics and full kinematics,” in IEEE-RAS
Int. Conf. on Humanoid Robots, 2014, pp. 295-302.

P. M. Wensing and D. E. Orin, “Improved computation of the humanoid
centroidal dynamics and application for whole-body control,” Int. Jour-
nal of Humanoid Robotics, vol. 13, 2016.

G. Romualdi, S. Dafarra, G. L’Erario, I. Sorrentino, S. Traversaro,
and D. Pucci, “Online non-linear centroidal mpc for humanoid robot
locomotion with step adjustment,” in 2022 International Conference on
Robotics and Automation (ICRA). 1EEE, 2022, pp. 10412-10419.
M. Neunert, M. Stduble, M. Giftthaler, C. D. Bellicoso, J. Carius,
C. Gehring, M. Hutter, and J. Buchli, “Whole-body nonlinear model
predictive control through contacts for quadrupeds,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1458-1465, 2018.

C. Mastalli, W. Merkt, J. Marti-Saumell, H. Ferrolho, J. Sola,
N. Mansard, and S. Vijayakumar, “A feasibility-driven approach to
control-limited ddp,” Autonomous Robots, pp. 1-21, 2022.

S. Katayama and T. Ohtsuka, “Structure-exploiting newton-type method
for optimal control of switched systems,” International Journal of
Control, no. just-accepted, p. 1, 2023.

A. Jordana, S. Kleff, A. Meduri, J. Carpentier, N. Mansard, and
L. Righetti, “Stagewise implementations of sequential quadratic pro-
gramming for model-predictive control,” 2023.

J. Carpentier and N. Mansard, “Analytical derivatives of rigid body
dynamics algorithms,” in Robotics: Science and systems, 2018.


https://spectrum.ieee.org/watch-iits-new-hyqreal-quadruped-robot-pull-an-airplane
https://spectrum.ieee.org/watch-iits-new-hyqreal-quadruped-robot-pull-an-airplane

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

S. Singh, R. P. Russell, and P. M. Wensing, “Efficient analytical
derivatives of rigid-body dynamics using spatial vector algebra,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 1776-1783, 2022.
J. Wang, S. Kim, S. Vijayakumar, and S. Tonneau, ‘“Multi-fidelity
receding horizon planning for multi-contact locomotion,” in 2020 IEEE-
RAS 20th International Conference on Humanoid Robots (Humanoids).
IEEE, 2021, pp. 53-60.

Y. Liu, J. Shen, J. Zhang, X. Zhang, T. Zhu, and D. Hong, “Design and
control of a miniature bipedal robot with proprioceptive actuation for
dynamic behaviors,” in 2022 International Conference on Robotics and
Automation (ICRA). 1EEE, 2022, pp. 8547-8553.

C. Khazoom and S. Kim, “Humanoid arm motion planning for improved
disturbance recovery using model hierarchy predictive control,” in 2022
International Conference on Robotics and Automation (ICRA). 1EEE,
2022, pp. 6607-6613.

C. Khazoom, S. Heim, D. Gonzalez-Diaz, and S. Kim, “Optimal
scheduling of models and horizons for model hierarchy predictive
control,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2023, pp. 9952-9958.

J. Norby, A. Tajbakhsh, Y. Yang, and A. M. Johnson, “Adaptive
complexity model predictive control,” arXiv preprint arXiv:2209.02849,
2022.

S. Shin and V. M. Zavala, “Diffusing-horizon model predictive control,”
1IEEE Transactions on Automatic Control, 2021.

T. Briidigam, D. Prader, D. Wollherr, and M. Leibold, “Model predictive
control with models of different granularity and a non-uniformly spaced
prediction horizon,” in 2021 American Control Conference (ACC).
IEEE, 2021, pp. 3876-3881.

V. A. Laurense and J. C. Gerdes, “Long-horizon vehicle motion planning
and control through serially cascaded model complexity,” IEEE Trans-
actions on Control Systems Technology, vol. 30, no. 1, pp. 166-179,
2022.

G. Kim, D. Kang, J.-H. Kim, S. Hong, and H.-W. Park, “Contact-implicit
mpc: Controlling diverse quadruped motions without pre-planned con-
tact modes or trajectories,” arXiv preprint arXiv:2312.08961, 2023.

V. Kurtz, A. Castro, A. O. Onol, and H. Lin, “Inverse dynamics
trajectory optimization for contact-implicit model predictive control,”
arXiv preprint arXiv:2309.01813, 2023.

S. Le Cleac’h, T. A. Howell, S. Yang, C.-Y. Lee, J. Zhang, A. Bishop,
M. Schwager, and Z. Manchester, “Fast contact-implicit model predictive
control,” IEEE Transactions on Robotics, 2024.

M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct
multiple shooting algorithms for optimal robot control,” in Fast motions
in biomechanics and robotics, 2006, pp. 65-93.

P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99-131, 2005.

A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, pp. 25-57, 2006.

J. T. Betts, Practical methods for optimal control and estimation using
nonlinear programming. SIAM, 2010.

M. Diehl, H. G. Bock, and J. P. Schldder, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control,” SIAM Journal
on control and optimization, vol. 43, no. 5, pp. 1714-1736, 2005.

G. Frison and M. Diehl, “Hpipm: a high-performance quadratic program-
ming framework for model predictive control,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 6563-6569, 2020.

D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” Int. Journal of Control,
vol. 3, no. 1, pp. 85-95, 1966.

R. Grandia, F. Farshidian, R. Ranftl, and M. Hutter, “Feedback mpc for
torque-controlled legged robots,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2019, pp. 4730-4737.

J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control applied
to the HRP-2 humanoid,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 3346-3351.

M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli, “Trajec-
tory optimization through contacts and automatic gait discovery for
quadrupeds,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp.
1502-1509, 2017.

Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential
dynamic programming,” in IEEE Int. Conf. on Robotics and Automation,
2014, pp. 1168-1175.

19

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

[79]
[80]

(81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli,
“An efficient optimal planning and control framework for quadrupedal
locomotion,” in /IEEE Int. Conf. on Robotics and Automation, 2017, pp.
93-100.

A. Pavlov, I. Shames, and C. Manzie, “Interior point differential dynamic
programming,” IEEE Transactions on Control Systems Technology,
vol. 29, no. 6, pp. 2720-2727, 2021.

T. A. Howell, B. E. Jackson, and Z. Manchester, “ALTRO: a fast solver
for constrained trajectory optimization,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 2019, pp. 7674-7679.

G. Lantoine and R. P. Russell, “A hybrid differential dynamic program-
ming algorithm for constrained optimal control problems. part 1: theory,”
Journal of Optimization Theory and Applications, vol. 154, no. 2, pp.
382-417, 2012.

B. Plancher, Z. Manchester, and S. Kuindersma, “Constrained unscented
dynamic programming,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2017, pp. 5674-5680.

M. Giftthaler, M. Neunert, M. Stiduble, J. Buchli, and M. Diehl, “A
family of iterative gauss-newton shooting methods for nonlinear optimal
control,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2018, pp. 1-9.

S. Kuindersma, F. Permenter, and R. Tedrake, “An efficiently solv-
able quadratic program for stabilizing dynamic locomotion,” in [EEE
Int. Conf. on Robotics and Automation, 2014, pp. 2589-2594.

L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” International Journal of
Humanoid Robotics, vol. 2, no. 04, pp. 505-518, 2005.

D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” arXiv preprint arXiv:1909.06586, 2019.

H. Li, T. Zhang, W. Yu, and P. M. Wensing, “Versatile real-time motion
synthesis via kino-dynamic mpc with hybrid-systems ddp,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2023, pp. 9988-9994.

M. Chignoli and P. M. Wensing, “Variational-based optimal control of
underactuated balancing for dynamic quadrupeds,” IEEE Access, vol. 8,
pp. 4978549797, 2020.

J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics,
vol. 5, no. 47, 2020.

X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” 2020.

G. Ji, J. Mun, H. Kim, and J. Hwangbo, “Concurrent training of a control
policy and a state estimator for dynamic and robust legged locomotion,”
IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4630-4637,
2022.

D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour:
Learning agile navigation for quadrupedal robots,” 2023.

X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” arXiv preprint arXiv:2309.14341, 2023.

G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal,
“Rapid locomotion via reinforcement learning,” arXiv preprint
arXiv:2205.02824, 2022.

Y. Yang, G. Shi, X. Meng, W. Yu, T. Zhang, J. Tan, and B. Boots, “Cajun:
Continuous adaptive jumping using a learned centroidal controller,”
arXiv e-prints, pp. arXiv—2306, 2023.

F. Jenelten, J. He, F. Farshidian, and M. Hutter, “Dtc: Deep tracking
control.” Science Robotics, vol. 9, no. 86, pp. eadh5401-eadh5401, 2024.
H. Li and P. M. Wensing, “Hybrid systems differential dynamic program-
ming for whole-body motion planning of legged robots,” IEEE Robotics
and Automation Letters, vol. 5, no. 4, pp. 5448 — 5455, 2020.

P-B. Wieber, “Viability and predictive control for safe locomotion,”
in 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 1EEE, 2008, pp. 1103-1108.

J. Nocedal and S. Wright, Numerical optimization.
& Business Media, 2006.

J. Hauser and A. Saccon, “A barrier function method for the optimization
of trajectory functionals with constraints,” in IEEE Conference on
Decision and Control (CDC), 2006, pp. 864-869.

S. Singh, R. P. Russell, and P. M. Wensing, “On second-order derivatives
of rigid-body dynamics: Theory & implementation,” IEEE Transactions
on Robotics (to appear), 2024.

J. Baumgarte, “Stabilization of constraints and integrals of motion
in dynamical systems,” Computer methods in applied mechanics and
engineering, vol. 1, no. 1, pp. 1-16, 1972.

Springer Science



[90] R. Budhiraja, J. Carpentier, C. Mastalli, and N. Mansarc
dynamic programming for multi-phase rigid contact dynar

RAS 18th Int. Conf. on Humanoid Robots (Humanoids),

J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel,

O. Stasse, and N. Mansard, “The pinocchio c++ librar

flexible implementation of rigid body dynamics algorit
analytical derivatives,” in [EEE International Symposii
Integrations (SII), 2019.

K. J. Waldron and J. Schmiedeler, “Kinematics,” Springe
robotics, pp. 11-36, 2016.

X. Xiong and A. Ames, “3-d underactuated bipedal wa

based gait synthesis and stepping stabilization,” IEEE T
Robotics, vol. 38, no. 4, pp. 2405-2425, 2022.

M. Focchi, G. A. Medrano-Cerda, T. Boaventura, M. Frige

J. Buchli, and D. G. Caldwell, “Robot impedance contro

analysis with inner torque and velocity feedback loops,” (

and Technology, vol. 14, pp. 97-112, 2016.

M. Posa, C. Cantu, and R. Tedrake, “A direct method
optimization of rigid bodies through contact,” The [i.. co....
Robotics Research, vol. 33, pp. 69-81, 2014.

J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi — A software framework for nonlinear optimization and opti-
mal control,” Mathematical Programming Computation, vol. 11, no. 1,
pp. 1-36, 2019.

H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:
A parametric active-set algorithm for quadratic programming,” Mathe-
matical Programming Computation, vol. 6, no. 4, pp. 327-363, 2014.
B. E. Jackson, K. Tracy, and Z. Manchester, “Planning with attitude,”
IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5658-5664,
2021.

G. Bledt, P. M. Wensing, S. Ingersoll, and S. Kim, “Contact model
fusion for event-based locomotion in unstructured terrains,” in IEEE
Int. Conf. on Robotics and Automation, 2018, pp. 4399-4406.

[91]

[92]

[93]

[94]

[95]

we vy

[96]

[971
[98]

[99]

APPENDIX: OFFLINE TO DESIGN OF IN-PLACE BARREL
ROLL

The contact sequence for the in-place barrel roll is given
by {FS, FR-HR, FT, FS}, meaning full-stance — right-stance
— flight — full-stance. Further, we append a recovery step
({FT, FS}) to the in-place barrel roll, in case the stance phase
after landing is not sufficient to balance the robot. This choice
is motivated by the additional steps that are often taken by
human gymnasts after landing to assist in balancing. The
contact timings for the barrel roll are heuristically determined
by mimicking that of a backflip in previous work [3].

The in-place barrel roll TO employs the whole-body dy-
namics. It shares almost the same problem structure as the
whole-body planning problem of CAFE-MPC (Section IV-A),
enabling tailoring available code for this specific task, and
significantly reducing the amount of engineering efforts. There
are two differences. First, we add to the in-place barrel roll
TO a minimum body-height constraint at the full-stance phase
after landing to avoid ground collision. Second, rather than
tracking a reference trajectory, we manually design a few
keyframes, one for each phase. The running cost and terminal
cost of each phase are simply to track the allocated keyframes
(Fig. 18). The swing trajectory cost and the foot placement
cost are not used in the barrel roll TO.

The design of the keyframes starts with the floating base
and then associates it with appropriate joint angles. The robot
experiences a 27 rotation during the barrel roll. The roll rate
is assumed constant and calculated by averaging 27 over the
barrel roll duration. The lateral velocity is assumed constant
and is given by the user. With the minimum landing height and
flight duration, the vertical speed and position are determined

\ Translation Right Legs

(\ Rotation %\ s Left Legs
Keyframe 4 Keyframe 3 Keyframe 2 Keyframe 1 Initial Config
(Full stance) (Flight) (FR-HR) (Full stance) (Full stance)

Fig. 18: Illustration of keyframes used for barrel roll TO, depicted from the
front view of the robot. Each keyframe is the desired terminal state for the
associated phase (as labeled in parenthesis).

assuming parabolic motion. Yaw and pitch angles are assumed
to be always zero. An illustration of the keyframes is shown
in Fig. 18, drawn from the front view of the robot. For stance
legs in keyframes 1 and 2, the joint angles are solved via
inverse kinematics. For swing legs in keyframes 2 and 3, the
joint angles are set to a reasonable landing configuration. Joint
angles in keyframe 4 are set via a default standing pose.

The resulting trajectory obtained from this offline TO is
then used as a reference and an initial guess for the online
CAFE-MPcC. Though the offline TO is designed for the in-place
barrel roll, the same trajectory is used to seed the running
barrel roll online for multiple contact configurations. More
specifically, the locomotion references Section VI-A are placed
ahead and/or appended to the in-place barrel roll trajectory
with simple manipulations, for instance, the roll angles of
the appending trajectory are shifted by 27. Though there are
no advanced techniques used here to glue the trajectories
together, CAFE-MPC plays a role of online synthesizing a
smooth transition.
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