Bare PAKE: Universally Composable Key
Exchange from Just Passwords

Manuel Barbosal®®) Kai Gellert?, Julia Hesse®, and Stanislaw Jarecki?

! University of Porto (FCUP) and INESC TEC, Porto, Portugal
mbb@fc.up.pt
2 University of Wuppertal, Wuppertal, Germany
kai.gellert@uni-wuppertal.de
3 IBM Research Europe - Zurich, Riischlikon, Switzerland
jhs@zurich.ibm.com
4 University of California Irvine, Irvine, USA
sjarecki@uci.edu
5 Max Planck Institute for Security and Privacy, Bochum, Germany

Abstract. In the past three decades, an impressive body of knowledge
has been built around secure and private password authentication. In
particular, secure password-authenticated key exchange (PAKE) proto-
cols require only minimal overhead over a classical Diffie-Hellman key
exchange. PAKEs are also known to fulfill strong composable security
guarantees that capture many password-specific concerns such as pass-
word correlations or password mistyping, to name only a few. However, to
enjoy both round-optimality and strong security, applications of PAKE
protocols must provide unique session and participant identifiers. If such
identifiers are not readily available, they must be agreed upon at the
cost of additional communication flows, a fact which has been met with
incomprehension among practitioners, and which hindered the adoption
of provably secure password authentication in practice.

In this work, we resolve this issue by proposing a new paradigm for
truly password-only yet securely composable PAKE, called bare PAKE.
We formally prove that two prominent PAKE protocols, namely CPace
and EKE, can be cast as bare PAKEs and hence do not require pre-
agreement of anything else than a password. Our bare PAKE modeling
further allows to investigate a novel “reusability” property of PAKEsS, i.e.,
whether n? pairwise keys can be exchanged from only n messages, just as
the Diffie-Hellman non-interactive key exchange can do in a public-key
setting. As a side contribution, this add-on property of bare PAKEs leads
us to observe that some previous PAKE constructions relied on unneces-
sarily strong, “reusable” building blocks. By showing that “non-reusable”
tools suffice for standard PAKE, we open a new path towards round-
optimal post-quantum secure password-authenticated key exchange.

®

Check for
updates

J. Hesse—The author was supported by the Swiss National Science Foundation (SNSF)
under the AMBIZIONE grant “Cryptographic Protocols for Human Authentication

and the IoT.

© International Association for Cryptologic Research 2024
L. Reyzin and D. Stebila (Eds.): CRYPTO 2024, LNCS 14921, pp. 183-217, 2024.
https://doi.org/10.1007/978-3-031-68379-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68379-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-68379-4_6

184 M. Barbosa et al.

1 Introduction

Passwords continue to be a dominant form of user authentication on the inter-
net. While some alternatives to password-based authentication emerge, such as
WebAuthn [44], passwords remain prevalent, primarily due to usability issues
(see e.g. [12]). More broadly, there is no alternative to low-entropy secrets in
applications where authentication is based on something you know, such as a
Personal Identification Number (PIN). Finally, passwords also play a central
role at the infrastructure level, where they are widely used for device authenti-
cation, e.g., when setting up local wireless networks and IoT devices [30].

Due to its practical significance, cryptographically secure password authen-
tication is an active area of research that dates back to the seminal paper of
Bellovin and Merritt [9], more than thirty years ago. These protocols aim at
ensuring minimal leakage of passwords while still allowing for checking their
correctness. However, despite the impressive body of knowledge that was built
during this time, there has not been much adoption of provably secure password
authentication in the real world. Almost all password-protected login sites still
deploy the privacy elusive “password-over-TLS”, where cleartext passwords are
handed over to service providers, who hash the password and compare it with
their database. For PIN-based authentication, ad-hoc solutions are also often
deployed and are then subject to a-posteriori analyses (e.g., Password Authenti-
cated Connection Establishment (PACE) [10], and the Client-to-Authenticator
Protocol in FIDO2 [5,11]).

One reason for the adoption of provably secure password authentication to
remain scarce is that there are almost no specifications that could serve as a basis
for implementors to adopt this type of cryptography. Writing good specifications
is challenging, and in the case of password authentication, it is further hindered
by a gap between the security models used to formally analyze such protocols and
their use in practice. In particular, existing models [1,17,22,26,31] impose on
the implementation a notion of a unique party identifier and/or a unique session
identifier, and it is often unclear [16] how these parameters should be instantiated
in practice. Known ways to correctly instantiate them impose significant protocol
costs. The consequences are either specifications to which proofs in the literature
do not apply or ones that are potentially unnecessarily inefficient.

In this paper, we revise models for secure password authentication to opti-
mize for specification simplicity and implementation efficiency. In particular, we
dispense with the need for the above-mentioned identifiers, introduce a security
notion that captures true password-only authentication, and show that password-
only implementations of known protocols meet this notion. Overall, we simplify
and clarify the requirements that an implementer must meet to deploy password-
authenticated protocols, leading to standards that are easier to adopt.

Security Models for Password Authentication. Cryptographic literature
models password authentication as a Password-Authenticated Key Exchange
(PAKE) [9], which establishes a secure shared key between two participants if
they run the protocol on the same password. PAKE security was first formalized

Bare PAKE: Universally Composable Key Exchange from Just Passwords 185

in a game-based model by Bellare-Pointcheval-Rogaway (BPR) [8]. The BPR
model has been adopted in the analysis of many PAKE proposals, e.g., EKE [8],
SPEKE [29,34,39], SPAKE2 [4], TBPEKE [40], and CPace [3]. However, the
BPR model provides only limited assurance of real-world security, most impor-
tantly because it analyzes each user in separation, and assumes that every user
chooses their password independently, while in the real world, password choices
are often correlated, e.g. with prior passwords of the same user, or with passwords
used by other family members, etc. To deal with these (and other) shortcom-
ings of the BPR model, Canetti et al. [17] proposed a Universally Composable
(UC) PAKE model which addresses password correlations, password mistyp-
ing, password information leakage, and arbitrary interactions between proto-
col instances. The UC model further ensures security under arbitrary protocol
composition, enabling security arguments for protocols that use generic PAKE
as a subroutine, e.g., generic compilers from symmetric PAKE to asymmetric
PAKE (where one party, the server, knows only a password hash instead of
the password itself) [26,33], or from asymmetric PAKE to strong asymmetric
PAKE (where the server’s password hash is privately salted) [35]. For these
reasons the UC PAKE model has become a gold standard of PAKE security
[1,3,13,26,27,31,35,41,42].

Limitations of the UC PAKE Model. Despite their widely recognized bene-
fits, all previous UC PAKE models! come with hidden costs and fail to implement
password-only authentication. Indeed, according to these models, each protocol
participant P must supply three further inputs: i. a session identifier sid ii. a
party identifier, and iii. a corresponding identifier CP of the intended counter-
party in this protocol instance.?

The UC PAKE requirements on the session identifier are due to general con-
ventions of the UC framework [14], namely that each protocol instance must
be identified by a globally unique session identifier. The standard UC PAKE
model [17] implies that PAKE participants can successfully establish a joint ses-
sion key only if they use the same session identifier sid. Moreover, the require-
ment for global uniqueness implies no security guarantees to an honest party
that re-uses the same sid string that was used by some pair of honest parties
before. The requirements on party identifiers are similar: The UC framework
assumes that each party that participates in the protocol has a unique identifier,
i.e., that no two honest parties carry the same identifier P.> The UC PAKE

! We use the term standard UC PAKE to denote the original notion of Canetti et al.
[17], and UC PAKE for including variants thereof, e.g., [1,31].

2 The same problem appears in the BPR model for party identifiers, but not for session
identifiers, which are protocol outputs rather than inputs.

3 For a protocol realizing an ideal functionality that runs an independent session,
with a globally unique session identifier, for a small set of parties, this means only
that each of these participants must have a different party identifier. However, when
analyzing protocols that realize multi-instance versions of ideal functionalities that
may interact with an arbitrary number of honest participants, the uniqueness of
party identifiers becomes a global requirement.

186 M. Barbosa et al.

model enforces the use of these identifiers in the protocol because it allows the
parties to establish a key only if they use matching identifiers, i.e., if one party
uses its own and counterparty identifiers P and CP, then the other must use

respectively P’,CP’ s.t. P/ =CP and CP' = P.

Problems Caused by Requirements on sid, P,CP Identifiers. All of these
inputs are problematic for an implementer, and they cannot be set to “don’t
care” symbols because of the above requirements of the UC PAKE model.
Regarding the globally unique sid requirement, the standard way of satisfying
it, as suggested in [14], is to precede a PAKE instance by a sid-picking protocol,
where sid is set as a concatenation of two fresh nonces which the parties send
to each other. However, this adds a network flow to the resulting implemen-
tation. Anyone who attempts to implement a PAKE in any application would
surely be annoyed by this requirement, in particular, because the only justifica-
tion that researchers could give is that unique identifiers are required by the UC
PAKE model. While there is no known attack on implementations that ignore
the uniqueness of identifiers, or skip them completely, current proofs in the lit-
erature do not carry over to such more efficient and straightforward PAKEs.

The UC PAKE requirement that participants hold unique identifiers for
themselves and their counterparties is also problematic. How should such iden-
tifiers be implemented? Should they be IP addresses? First, it is not clear what
security guarantees the model implies if two honest parties happen to use the
same self-identifier, and TP addresses can be dynamic. Second, if one party is
behind a firewall then their counterparty will not know their IP address. Should
the identifiers be DNS names instead? That is good for servers but not for clients.
In summary, whatever an implementation chooses to use for these identifiers, it
is possible that they turn out not to be unique, or it will tie the implementation
too strongly to a particular networking setting, and it will break if the setting
changes. In this aspect too, an implementer can ask why they need these unique
identifiers at all as an input to the protocol, and a cryptographer’s answer is
currently the same as above, i.e. that current proofs do not imply that a PAKE
is UC secure without them.

Given the troubles of pre-exchanging and agreeing on all these identifiers, the
following research question repeatedly comes up while standardizing or imple-
menting UC PAKE protocols:

Can PAKE protocols enjoy composable security without relying
on pre-agreed unique session- and party identifiers?

Our Proposal: The UC bare PAKE Model. In this work, we answer the
above question in the affirmative. We propose to shift from standard UC PAKE
to bare PAKE (bPAKE), which models composable key exchange from just pass-
words. Our bPAKE model eliminates all the above implementation dilemmas
regarding identifier choices, and consequently yields more practical protocols
that do not require the application to pre-agree on anything other than a pass-
word: In our bare PAKE model the only required input s the password. Session

Bare PAKE: Universally Composable Key Exchange from Just Passwords 187

identifiers still appear in our model, albeit only as an output of a protocol. They
can be thought of (and used as such by applications) as a protocol transcript
that uniquely identifies one particular key exchange session.

If two parties want to use PAKE to establish an agreement not only on
their passwords but also on identifiers that might not be pre-agreed before the
protocol starts, bare PAKE allows each party to enter its name as an optional
input, and such name becomes part of their counterparty output. This way an
application can reject a session if it was established with the counterparty whose
name does not match the application’s criteria, but these names do not have
to be pre-agreed, and instead they can be communicated as part of the PAKE
protocol. Furthermore, the name each party supplies is an arbitrary value, does
not have to be unique, and can be set to L.

In summary, our UC bare PAKE functionality is just like the standard UC
PAKE functionality in that it password-authenticates not only a session key
but also a session and counterparty identifiers, but the latter are protocol out-
puts instead of inputs. The UC bare PAKE model therefore offers a simpler and
application-friendly PAKE syntax—we argue that it is even friendlier than that
of the BPR model [8]—but it is a variant of the UC PAKE model of Canetti
et al. [17], hence it assures all the good properties of the UC framework includ-
ing security under arbitrary password correlations, concurrent executions, and
arbitrary protocol composition.

Further Benefits and New Insights: Reusability. The UC bare PAKE
model draws further benefits from the above simplifications. If a PAKE protocol
considers a password as the only necessary input, and the session identifier and
counterparty’s optional name are protocol outputs, then it becomes possible
for a bare PAKE protocol participant to reuse their state and create keys with
several counterparties from one password, where each key is accompanied by a
separate session identifier and counterparty’s name. Most PAKE schemes from
the literature are password-encoded variants of the Diffie-Hellman (DH) non-
interactive key exchange (NIKE) [21], which is known to enable the exchange
of n? pairwise keys between n users. Can these PAKEs, such as EKE [9,22]
or CPace [3,28], allow for a similar flavor of reusability, i.e., allow parties to
reuse their state to produce password-authenticated keys from many incoming
messages instead of just one? The standard UC PAKE versions of these protocols
could not do that, because they require each party to specify a unique session
and counterparty identifier as an input for each exchanged key. By contrast,
bare PAKE allows us to investigate if PAKEs can be reusable.

As an application example, consider a client C who does not remember which
password she should use with server S, but holds n password candidates, while
server S has a single password registered for this user. With a reusable bare
PAKE, C can run n PAKE instances, one for each password candidate, while S
runs a single instance on its single password. If S’s PAKE message is processed by
each of (s instances, the client computes n session keys, and when S’s instance
processes each of the n messages sent by C’s instances, the server also computes
n session keys, and then they can learn if any of C’s passwords is correct using a

188 M. Barbosa et al.

key confirmation protocol. One could use n independent instances of UC PAKE
in the same application, but a reusable bare PAKE reduces the costs because S
initializes only one PAKE instance and sends only one PAKE message to C.*
In another example, consider an Internet of Things (IoT) setting [45], where
each IoT device at home or office is initialized with the same password. With a
reusable bare PAKE, each device can broadcast a single message to the network
and then establish a password-authenticated pairwise key with any other device
after processing that device’s PAKE message. Concretely, if EKE or CPace are
secure UC bare PAKEs, then all devices will be able to establish password-
authenticated pairwise keys at the cost of a single broadcast per party!

Our Contributions. Besides the formal modeling of the new bare PAKE
paradigm, our paper contains several contributions that we summarize below.

(1) THE UC BARE PAKE MODEL. We define a UC bare PAKE model which
reformulates the standard UC PAKE notion of Canetti et al. [17] to make
PAKEs truly password-only. A PAKE scheme secure in the UC bare PAKE
model does not need pre-established unique session or party identifiers, which
removes unnecessary hurdles for implementers. We stress that we achieve this
without sacrificing any composability guarantees: our definitional work guaran-
tees that the standard UC composition theorem implies that any usage of bare
PAKE in an application can be replaced with the bare PAKE ideal function-
ality in the security analysis. Furthermore, the bare PAKE model allows UC
PAKEs to be reusable, i.e., it allows for a single PAKE instance to establish
password-authenticated session keys with an arbitrary number of parties. In our
presentation we rely on the notion of structured UC protocols [15, eprint 2020
version] to clarify the subtle syntactical issues of what it means for a UC proto-
col not to depend on the local party and session identifiers, even though these
technical artifacts are inherent to a security analysis in the UC framework.

(2) CoMPILERS. Notably, the input/output interfaces of our bare PAKE model
and previous models differ, e.g., standard UC PAKE requires a new password
input for each key exchange while bare PAKE can exchange many keys from
one input password. It is hence not possible to say that the UC model of bare
PAKE is stronger than the one for standard PAKE, or vice versa. To demon-
strate the usefulness of our bare PAKE notions, we thus give generic and simple
compilers between them. First, we show that any UC bare PAKE can be gener-
ically converted to a standard UC PAKE, by simply running the bare PAKE
on pw = pwl|sid||P||CP. This compiler justifies our bare PAKE approach in
the sense that our model is strong enough to realize standard PAKE, essentially
without a performance penalty. The compiler further offers a smooth migration
path towards the bare PAKE paradigm: applications that for some reason do
have unique session- and party identifiers at hand get the expected standard
PAKE interface from a bare PAKE as well! Second, we show that any secure

4 This application appeared in [36], which give a BPR-model analysis of a solution
assuming pseudorandomness of PAKE protocol messages. Note that S can limit
guessing attempts by upper-bounding the number n of C’s instances it processes.

Bare PAKE: Universally Composable Key Exchange from Just Passwords 189

standard UC PAKE implies a one-time UC bare PAKE, where one-time means
that a party terminates a password instance after producing one key from it.
The compiler lets parties exchange unique session- and party identifiers before
executing the standard UC PAKE with them. In settings where no external
uniqueness guarantee on party identifiers is available, our compiler reflects the
overhead that implementations need to account for if only standard UC PAKE
protocols are available.

(3) CPACE 1S SECURE WITHOUT IDENTIFIERS, AND REUSABLE. We then inves-
tigate which PAKEs from the literature can be cast as bare PAKEs, i.e., can be
deployed without unique session or party identifiers and establish keys from
pre-agreed passwords alone. Of course, with our second compiler above, every
standard UC PAKE can be converted into a bare PAKE, albeit at the cost of
one additional round of nonce exchanges. We are instead looking for round-
preserving bare versions of Diffie-Hellman-based PAKEs, i.e., that only take one
round. We start with CPace [28], a PAKE that won the recent symmetric PAKE
selection process [20] of the IRTF and which is currently undergoing standardiza-
tion [2]. CPace lets parties perform a Diffie-Hellman key exchange with a group
generator g «— H(pw||sid||P||CP) that encodes the password and all identifiers.
We prove that “bare CPace” securely realizes our new notion with a genera-
tor g «— H(pw) that just encodes the password. Our proof relies on the same
assumptions taken in the analysis of its (sid, P,CP)-dependent version [3]. Our
result implies reusability and composable security guarantees of the Internet-
Draft version of CPace [2] with sid,P,CP all set to L. We recommend that
the specification switches to bare CPace, as this would enable the authenticated
transmission of party names without any uniqueness requirements.

(4) EKE 1s SECURE WITHOUT IDENTIFIERS, AND REUSABLE. We continue
with the seminal Encrypted Key Exchange (EKE) protocol of Bellovin and Mer-
rit [8,9], which was the first in line of the many PAKE protocols built upon the
non-interactive Diffie-Hellman key exchange. The idea of EKE is to password-
encrypt the DH public keys, i.e., using a symmetric cipher and the password
as the encryption key. In our work, we consider a general “bare EKE compiler”
which starts from any non-interactive key exchange (NIKE) and any symmetric
cipher, to obtain a PAKE that requires only pre-agreed passwords and doesn’t
need any additional sid, P,CP inputs. We prove that this compiler can transform
any NIKE that satisfies the standard notion of security for these protocols [19,23]
into a reusable bare PAKE in the ideal cipher (IC) model. Our result shows that
EKE can enjoy composability without unique identifiers, and it can be used
to exchange an arbitrary number of keys from just one password. As a corol-
lary of this result we get a modular proof that Hashed Diffie-Hellman (Hashed
DH) NIKE—i.e., a Diffie-Hellman NIKE where the pairwise key is computed as
K, ; = H(g" %) where H is a hash function—can be compiled into a reusable
bare PAKE using EKE. The resulting protocol is tightly secure under gap-CDH
in the Ideal Cipher and Random Oracle Models.

190 M. Barbosa et al.

(5) TowaRDS PosST-QUANTUM SECURE PAKE FrROM NIKE. An interesting
side observation of our work on the bare version of EKE is that the reusability
aspect crucially relies on the fact that secret keys of the underlying NIKE must
be secure to reuse. Because standard UC PAKE does not allow for such reuse, an
immediate question is whether we can relax the assumptions on the NIKE when
aiming for the non-reusable standard UC PAKE notion. Indeed, we can show
that a “one-time” version of NIKE is enough to realize standard UC PAKE and,
furthermore, that “one-time” NIKE follows from passively secure NIKE in the
Random Oracle Model. As a corollary, we derive that Hashed DH NIKE is one-
time secure under CDH in the ROM, a result that explains previous CDH-based
EKE security proofs [22] with a nice flavor of modularity. These results also open
a path for round-optimal post-quantum secure EKE instantiations based on, for
example, the passively secure version of Swoosh [25].

Other Related Work. Shoup [43] carries out an analysis of a concrete PAKE
protocol in a variant of the UC model that addresses some of the concerns we
also address in this paper. In particular, globally unique session identifiers are
already replaced by locally unique instance identifiers, and session identifiers
are seen as protocol outputs. However, the protocols in this model are still not
password-only due to the use of party identifiers.

Kiisters and Tuengerthal [38] identify conditions on protocols under which
single-session security implies security in the local-sid multi-session setting. For
the case of PAKE the latter is like our bPAKE functionality, except it still
requires globally unique party identifiers and does not support re-use. However,
their results assume multi-round protocols, since the simulator for the single-
session protocol must compute each party’s first message by following their pro-
tocol. Moreover, the joint-state cryptographic tools they consider do not include
Ideal Ciphers or Random Oracles, which are essential in resp. EKE and CPace.

The NIST post-quantum competition and the upcoming standardization of
Kyber KEM have driven several proposals of black-box constructions of PAKE
protocols from KEM [7,41]. The modularity of these constructions is aligned, and
indeed closely related to, our analysis of EKE-NIKE. One substantial difference,
however, is that we focus on reusable single-simultaneous-flow PAKESs, which we
show to be easy to construct from simplified® NIKE. KEM-based constructions
seem to allow only one-sided reusability by the party who generates the KEM
public key; indeed, the other party is carrying out KEM encryption and stores
no reusable state. We do not explore one-sided reusability in this paper, but our
definitions already cater to this possibility for future work.

Dos Santos et al. [41] propose an alternative to the use of the Ideal Cipher
in EKE variants that they call a randomized Half-Ideal-Cipher. This proposal
solves an important problem in EKE, which is how to instantiate an Ideal Cipher
over a structured data type such as a KEM public key, or a group element
in DH-based systems. The Half-Ideal Cipher is essentially a two-round Feistel
network, where a small part of the input (of size twice the security parameter) is

5 In contrast to the standard notion of NIKE, where party identities are an input to
the protocol, simplified NIKE has only public keys [24].

Bare PAKE: Universally Composable Key Exchange from Just Passwords 191

generated uniformly at random and encrypted using an Ideal Cipher that works
over this small domain. The remaining (potentially large) part of the input, e.g.,
the KEM public key, is simply masked using a group operation according to
the structure of the Feistel construction. We believe that the proof of the EKE-
NIKE construction we present in this paper can be easily adapted to rely on the
same half-ideal cipher construction, thereby simplifying its instantiation with
post-quantum secure NIKEs such as Swoosh [25].

2 Preliminaries

Notation. We denote the security parameter as k. We denote [¢] = {1,...,¢}.
We write z <y S for sampling z from uniform distribution over set S. For a
probabilistic polynomial-time (PPT) algorithm A we write y <z A(z1,...,2¢)
for assigning to y an output of a randomized execution of A on input z, ..., x,.
For any variable a, by record (a,[b]) we denote a 2-tuple of values, where the
first value is equal to a, and we assign variable name b to the second entry. We
use {a,b}ord to denote string al|b if @ <jex b and string b||a otherwise.

2.1 Computational Assumptions

We recall several standard computational assumptions we use in our security
proofs. The last assumption, sim-gapCDH is used in the security analysis of
CPace, both by us and in prior works on CPace [3,28].

Definition 1 (Pseudorandomness). Let F : {0,1}" x {0,1}" — {0,1}" be
an efficiently computable function. We call F pseudorandom if for all PPT A
there exists a negligible function p, such that for all k € N we have

Advj?g—‘om(/ﬁ) = keRl?(IJ‘ 1}"[AF(k,')(1H) - 1] B f<—1];Frunc [Af(.)(lﬁ) - 1] < M(K)’

where Func,, is the set of all functions of input and output length k.

Definition 2 (Computational Diffie-Hellman (CDH)). Let G be a family
of cyclic groups indexed by the security parameter, each of some prime order
q and with generator g. Then we say that the Computational Diffie-Hellman
assumption holds in G if for every PPT adversary A there exists a negligible
function p, such that for all k € N it holds

Advi[’)(g(/i) :=Pr [.A((Gmg,g“,gb) = gab | a,b g Zq] < u(k).

Definition 3 (Gap Computational Diffie-Hellman (gapCDH)). Let G be
a family of cyclic groups, each with some prime order q. Then we say that the
Gap Computational Diffie-Hellman assumption holds in G if for every PPT
adversary A there exists a negligible function p, such that for all k € N it holds
that

AdvE (k) i= Pr | APPH0)(G, g, g%, g") = g

g +—r Gy
a,b—p ZJ < plk)

where oracle DDH, (Y, Z) returns 1 if Z =Y* and 0 otherwise, for x = a,b.

192 M. Barbosa et al.

Definition 4 (Simultaneous Gap Computational Diffie-Hellman (sim-
gapCDH)). Let G be a family of cyclic groups, each with some order q. Then
we say that the Simultaneous Gap Computational Diffie-Hellman assumption
holds in G if for every PPT adversary A there exists a negligible function p,
such that for all k € N it holds that Advi{?@_gapCDH(n) =

Pr [APPHC)(G,, g,9", 9", 9%) = (B, BY", BY"™)

g < r Gy
<
R Zq] < u(w),

where oracle DDH, (Y, Z) returns 1 if Z = Y*/* and 0 otherwise, for x = r,r’.
In other words, A wins if it provides B, K, K' such that DDH(¢",¢% B, K) =
DDH(¢" ,¢9*, B, K') = 1.

3 Bare Password-Authenticated Key Exchage

3.1 Previous UC PAKE Models

We briefly recall the original UC PAKE model of [17] and its multi-session [18]
and lazy-extraction [1] extensions, all captured in Fig. 1, and then we introduce
our UC Bare PAKE model, shown in Fig.2, and we explain its mechanics.

UC PAKE Notion Canetti et al. The single-session PAKE functionality
Foaxess of [17], see Fig. 1, defines how an ideal PAKE scheme should behave
if each pair of participants uses a pre-agreed globally unique session identifier
sid (and matching party and counterparty identifiers). The NewSession interface
models the first party P using a given session identifier sid to initialize PAKE
on password pw, with counterparty identifier CP, and role specifying whether P
plays an initiator or a responder role.® All inputs except for the password can be
leaked, hence the ideal-world adversary A learns (sid, P,CP, role). Functionality
Fpaxess assumes that only two parties ever run the protocol using a given sid,
and that these two parties respectively use identifiers (P,CP) and (P’,CP’) s.t.
(P',CP") = (CP,P), and any other NewSession requests are dropped.

When a session is initialized it is marked fresh, and the adversary has two
options: (1) First, it can passively connect the two sessions using the matching
sid,P,CP inputs by passing the message between them, which is modeled by a
session-termination command (NewKey, sid, P, -) issued when P is fresh: If this
is the first party to terminate then Fppxgss makes it output a random key K
(step 3 in NewKey). If it is the second party to terminate then Fppkpss makes
it output the same key if the two parties used equal passwords (step 2), or an
independent key if the two passwords were unequal (step 3). Alternatively, (2)
the adversary can mount an active attack against either session, modeled by the
TestPwd interface, which restricts each such attack to a unique password guess

5 Field role can be set to L if the protocol is symmetric.

Bare PAKE: Universally Composable Key Exchange from Just Passwords 193

Session initialization, single session [17]

r---- - - - - -~ - -~ - - -~ " —-" —" " 7—"T°"T°" """ -~ -~ " """ ~" " " -" T -~ -—" =T T" - " =" " - " T - " =—“=7 A
|

On (NewSession, sid, P,CP, pw,role) from P, send (NewSession, sid,P,CP,
i role) to A, and if this is the first NewSession query, or it is the second one
and record (CP, P, [pw']) exists, then record (P,CP, pw) marked fresh.

|
|
|
| |
| |
b e o e e e e e e e e e e e e m e - .

Session initialization, multi session [18]

On (NewSession, sid, P, ssid, CP, pw, role) from P send (NewSession, sid, P, ssid,
CP,role) to A. If this is the first NewSession query for this ssid, or it is the second
one and record (CP, ssid, P, [pw']) exists, record (P, ssid,CP, pw) marked fresh.

Active attack

On (TestPwd, sid, P, ssid, pw™) from A, if 3 record (P, ssid,[CP, pw]) marked
fresh then:
— If pw™ = pw then change the mark to compromised }and reply “correct guess”‘.

— Otherwise change the mark to interrupted Pnd reply “wrong guess”‘.

Lazy password extraction [1]

— On (RegisterTest, sid, ssid, P) from A, if 3 record (P, ssid, ...) marked fresh
then change the mark to interrupted and flag it Tested;
— On (LateTestPwd, sid, ssid, P, pw*) from A, if 3 record (P, ssid, [CP, pw, K])
with flag Tested then remove this flag and return K’ to A s.t.:
e If pw* = pw then set K' := K else pick K’ «x {0,1}".

Key generation

On (NewKey, sid, P, ssid , K*) from A, if 3 record rec = (P, ssid, [CP, pw]) not
marked completed then do:
1. If the record is compromised, er-eitherP-or-CP-iseorrupted; then set K := K™.
2. If rec is marked fresh and 3 record (CP, ssid , P, pw, [K']) marked completed
which was marked fresh when CP output (sid, ssid, K') then set K := K.
3. In all other cases pick K «x {0,1}".

Finally, append K to rec, change its mark to completed, output (sid, ssid, K) to P.

Fig. 1. The original single-session PAKE functionality Fpaxess of Canetti et al. [17],
with single-use session identifiers sid, includes dashed boxes and excludes light gray

parts. Crossed-out code corresponds to subsequent patches [3]. Excluding dashed boxes
and including light gray parts creates a multi-session variant of the same functional-
ity [18], denoted Fpaxems (or Fpake for short), with global session identifier sid and

single-use subsession identifiers ssid. Adding dark gray parts to Fpake defines Fpaxgte,
which allows lazy extraction from active attacks [1]. Adding the defines a

leaky variant of either functionality, which the default version excludes.

194 M. Barbosa et al.

pw*. If this guess is correct, the session’s mark is changed to compromised,” oth-
erwise it becomes interrupted.® Moreover, if P’s session is compromised then A’s
session-termination query (NewKey, P, sid, K*) causes P to output an adversar-
ially chosen key K* (step 1), while if it is interrupted then P outputs a ran-
dom key (step 3), but unlike in option (1) this key cannot be transferred to
party P’ because Fpakpss ensures that two parties can output the same key only
if they use the same passwords and both terminate as fresh (see step 2).

Multi-session and Lazy-Extraction Extensions of UC PAKE. Canetti
and Rabin [18] showed that cach single-session functionality can be cast as
a multi-session one, where individual protocol instances are differentiated by
unique sub-session identifiers ssid, and the session identifier sid designates global
parameters e.g. a CRS, or an instance of a “globally available” functionality
which all parties can rely on, e.g. a Random Oracle hash or an Ideal Cipher
encryption. In Fig. 1 we show this multi-session form of the UC PAKE function-
ality, denoted Fpaygms. As shown in [18], if a protocol realizes Fpakgss then it also
realizes Fppkens, as long as the environment ensures that tuples (ssid, P,CP) sat-
isfy the same requirements posed above on tuples (sid, P,CP). In the remainder
of this work we will treat the multi-session version of the PAKE functionality,
i.e. Fpakews, as the definition of UC PAKE, denoted Fpake for short.

Abdalla et al. [1] introduced a lazy-extraction extension of the UC PAKE
functionality, which we show as functionality Fpakgte in Fig. 1. In this extension
the adversary can use interface RegisterTest to actively attack a session on a
committed but hidden password guess. Such session becomes interrupted and
outputs a random key K when it is terminated via the NewKey query, but the
adversary can then reveal a unique password guess pw* used in this attack
via interface LateTestPwd, and Fpakgie responds with the correct key K if the
guess is correct, or an independent value if the guess is wrong. We include this
extension because [1] showed it is necessary and sufficient to capture several
round and computation-efficient PAKE protocols, including CPace [3,28], which
in this work we generalize to the UC bare PAKE model.

3.2 The UC Bare PAKE Model

In Fig.2 we describe an ideal functionality Fppake which defines our proposed
UC bare PAKE (bPAKE) model. It is a multi-session functionality, where identi-
fier sid identifies global common parameters, e.g. an instance of an Ideal Cipher
or a Random Oracle. However, our bPAKE functionality Fppake makes sev-
eral major departures from the multi-session PAKE functionality Fpake. First
and foremost, functionality Fppake models PAKE as a password-only protocol,
where the functionality does not enforce that the participants have pre-agreed
unique subsession identifiers ssid or party identifiers P,CP. Indeed, interface
NewSession in Fupake does not take inputs (P, ssid,CP) which were present in

" In [17] the PAKE functionality leaks if this case occures to the adversary, but our
default notion omits that leakage since it is not present in the protocols we analyze.
8 Either mark prevents A from issuing another TestPwd query for the same session.

Bare PAKE: Universally Composable Key Exchange from Just Passwords 195

Fpake, and when sessions are passively connected, via interface PassiveNewKey,
functionality Fppake allows two sessions to output the same session key K only if
their passwords pw are the same (see step 2 in PassiveNewKey in Fig. 2).

In addition to the password input pw, the other inputs of bPAKE (see the
NewSession interface in Fig. 2) include an instance identifier i, and fields id and
role. Input role plays the same function of distinguishing protocol initiators
and responders as in UC PAKE. The instance identifier i plays no security
role, and is used only to distinguish between many bPAKE instances which
one party can execute, hence i’s must only be locally unique. Finally, id is a
party identifier which party P uses in that instance. It is an arbitrary string,
might not be unique, can be set to L, and P’s counterparty does not need prior
knowledge of it. Its security property is that if the PAKE instances of P and P’
are passively connected then P outputs cpid used by P’ as its counterparty name
cpid, and vice versa. In particular, in bPAKE party P outputs an identifier of its
counterparty instead of specifying that identifier in its inputs.

The bPAKE functionality supports (sub)session identifiers ssid, but it treats
ssid also as a protocol output rather than input. The session identifiers ssid are
public and their only semantic implication is that each ssid output is globally
unique except for a pair of instances which are passively connected. Functional-
ity Fopake enforces this by storing previously used ssid’s in set S, and ensuring
that any new ssid satisfies ssid ¢ S.” Note that this implies that each session
key corresponds to a globally unique public ssid, and that different ssid’s are
associated with independent random session keys. In more details, let P; and
P} be two bPAKE instances which are initialized by P and P’ on respective
inputs (4, pw, id, role) and (j, pw’,id’,role’), and which are passively connected
by the adversary, and let (K, ssid, cpid) and (K, ssid’, cpid") be their outputs.
Rules of Fupake imply that if pw # pw’ or ssid # ssid’ then K and K’ are
independent. Indeed, unless two random keys picked by Fppake collide, two pas-
sively connected instances output the same keys if and only if they use the same
passwords and they are passively connected. Furthermore, if ssid = ssid’ then
(cpid, cpid’) = (id’,id), i.e. shared ssid implies correct counterparty names.
Taken together, Fppake rules imply that event K = K’ can occur if and only
(except for negligible probability of collision among random keys) if either of the
following two conditions hold:

1. (pw, ssid, id, cpid) = (pw’, ssid’, cpid’, id"), moreover this case can occur only
it P; and ”Pj‘ are passively connected.

2. Both P; and PJ’- are actively attacked, via the ActiveNewKey interface, and
both attacks are successful, i.e. the attack against P; used pw* = pw and
the attack against Pj'- used pw* = pw’. In this case cpid, cpid’ are arbitrary
but ssid, ssid” are globally unique, i.e. ssid # ssid’ and ssid and ssid” are not
output as session identifiers on any other session (by any party).

9 Foeake rules allow the ideal-world adversary to set ssid’s at will when a session
terminates, but each of our protocols implements ssid as a protocol transcript, and
the global ssid uniqueness is assured by the entropy of protocol messages.

196 M. Barbosa et al.

‘Functionality initiation: set S := {}‘

Session initiation

On (NewSession, sid, i, pw, id, role) from P, send (NewSession, sid, P, i, id, role) to
A. If record (P, 1,...) does not exists, record (P, i, pw, id).

Key generation

On (ActiveNewKey, sid, P, i, pw™, K*, ssid, cpid) from A, if 3 record (P, i, [pw, id]):
— // Repeat ssid means repeat output.
If 3 record (sesact, P, i, ssid, cpid, [K]) output (sid, i, K, ssid, cpid) to P.
— // Actively attacked parties still get ssid uniqueness guarantee.
Otherwise, if ssid € S:
e Add ssid to S
e If pw* = pw then set K := K* else pick K « {0,1}"
If pw* = L then save (latetest, P, ssid, pw, K)
Save (sesact, P, 1, ssid, cpid, K)
Output (sid, i, K, ssid, cpid) to P.

On (PassiveNewKey, sid, P, i,P’, i, ssid) from A, if 3 record (P, i, [pw, id]):
— // Repeat ssid means repeat output.
If 3 rec. (sesnve, P, i, [P, 4], ssid, [cpid, K]) output (sid, i, K, ssid, cpid) to P.
— // If peer was not created, request is ignored.
Otherwise, if 3 record (P’,4’, [pw’,id’]) then set cpid := id’ and do:
1. // Complete protocol for the first-to-terminate participant.
If ssid ¢ S:
Add ssid to S
Pick K < {0,1}".
Save (seshpe, P, 4, P’, 4, ssid, cpid, K)
Output (sid, i, K, ssid, cpid) to P.
2. // Complete protocol for the second-to-terminate participant.
If 3 record (seshpe, P’, 4, P, i, ssid, id, [K']):
If pw’ = pw then set K := K’ else pick K «r {0,1}".
Save (seshpe, P, 4, L, L, ssid, cpid, K)
Output (sid, i, K, ssid, cpid) to P.
3. // Re-use of ssid but with mismatched remaining data
Otherwise, ignore PassiveNewKey request

Late Password Test Attack
On (LateTestPwd, sid, P, i, ssid, pw™) from A, if 3 record (latetest, P, ssid, [pw, K])
then delete this record and return K’ to A s.t.:

— If pw* = pw then set K’ := K else pick K’ <5 {0,1}".

Fig. 2. The bare PAKE functionality Fupake. Including dark grey text defines a lazy
extraction version of this functionality, denoted Fypaxete-

Bare PAKE: Universally Composable Key Exchange from Just Passwords 197

Functionality Fpake guarantees item (1) with regards to passively connected
parties, but it requires ssid, id, cpid to be pre-agreed, it requires id, c¢pid (denoted
P, P’ therein) to be globally unique, and it requires the environment to create a
globally unique ssid, while Fopake does not impose such requirements on inputs,
and instead enforces property (1) on its outputs. Moreover, functionality Fpake
does not enforce guarantee (2), in particular ssid = ssid’ can hold in all attack
cases because these are Fpake inputs instead of outputs.

The global uniqueness of ssid’s implies that ssid output by Fppake is a chan-
nel binder, see e.g. [32], which uniquely identifies a channel defined by key K,
and which can be used to authenticate it with secondary means, e.g. with a
public key, using the SIGMAC method [32,37]. By contrast, the fact that Fpaxe
does not enforce guarantee (2) implies that Fpake’s ssid’s cannot play that role.

Non-leaky and “free dating” Aspects of Bare PAKE Functionality.
Functionality Fypake handles active attacks and session outputs differently from
Fpake. First, note that if functionality Fpake is non-leaky, i.e. Fig.1 omitting
the fragments in solid boxes, the adversary A doesn’t learn if pw* = pw in an
active attack, therefore w.l.o.g. A can postpone an attack until the creation
of the session output. This is why in Fppake we combine an active attack and
session-output fixing into query ActiveNewKey that takes both a password pw™*
and a key K*. This has the same effect as sending TestPwd with pw™* followed
by NewKey with K* to Fpake. On the other hand, if a session concludes without
an active attack, A can emulate that using query PassiveNewKey.

Another Fppake feature is that the pair of protocol instances which can be
matched, i.e. which share a key if they are passively connected and use the same
passwords, is not fixed before the protocol starts, and instead can be adap-
tively chosen in protocol execution. In Fpake instances can match only if they
use the same ssid, and the environment can give the same ssid to at most
two instances. By contrast, matching in Fppake is based only on passwords,
and a given instance can be potentially matched with any other which uses
the same password. Hence query PassiveNewKey identifies the target instance
P; together with the counterparty instance P, it connects with. If id[P;] is
the name used by instance P; in NewSession, functionality F,pake reacts to
(PassiveNewKey, P, i, P’, i’ ssid) by picking random key K, setting cpid :=
id[P})], storing (sesnpc, P, 1, P’, 1, ssid, cpid, K) and sending (K, ssid, cpid) to
P;. The adversary then has an option to also connect P}, to P; by querying
(PassiveNewKey, P’ i, P, i, ssid) with the same session identifier ssid. (If ssid is
a protocol transcript this happens if the last message of P; is sent to P.,.) Since
ssid is not new, i.e. ssid € S, and 3 record (seshye, P, 4, P’, ', ssid, id[P}], K),
instance P/, will output (K', ssid, cpid’ = id[P;]) for K’ = K if pw[P;] = pw[P/]
and random K’ otherwise.'”

10 See step (2) in PassiveNewKey in Fig. 2, although it can be difficult to pattern-match
the above with Fig. 2 because in this second PassiveNewKey instances P;, and P; play
the opposite roles compared to the notation in that step in the figure.

198 M. Barbosa et al.

Re-use of Bare PAKE Instances. If instance-matching in bPAKE is adaptive,
then can it happen more than once? Indeed, if a PAKE protocol each party
sends only one message,'! party P; sends its message m; and holds a local state
st;, and when it receives message m; from counterparty P;, it uses (sti,m]—)
to compute session output (K, ssid, cpid). But could P; not terminate at that
point, continue holding state st;, and when P; receives a second message, let’s
say message m; from party P, then could P; compute another session output
(K', ssid’, cpid'), this time on input (st;,m;)?

Functionality Fppake allows for such re-use of bPAKE session state: After
bPAKE instance P; is created via NewSession, and e.g. if P; is an initiator a
real-world P; would send its first message, every time a real-world adversary
forwards to P; a message from some other session P, the ideal-world adversary
A sends (PassiveNewKey, P, i, P}, ssid) with some ssid, and this query is pro-
cessed as explained above, but this can happen unlimitted number of times for
the same P;. Likewise, if the real-world adversary sends his own message instead
of one produced by some honest instance, its ideal-world counterpart A will send
(ActiveNewKey, P, i, pw*, K*, ssid, cpid), and since some messages the real-world
‘P; can be forwarded from honest parties and some created by the adversary, the
ideal-world adversary A can send messages of the form (PassiveNewKey, P, i, ...)
and messages of the form (ActiveNewKey, P, i,...) interspered in an arbitrary
sequence. Each command creates a new session information on P;, each one
identified by a unique ssid: Some of them can represent passively connected
sessions, some actively attacked ones, but Fppake rules imply that there is no
difference between re-using the state of a single bPAKE instance P; and running
multiple independent PAKE instances on the same password.'?

Finally, if P; reuses its bPAKE state to process responses from multiple
counterparties, then P; might process the same response twice. Since this would
make P;’s transcript the same in these two interactions, this corresponds to A
re-using the same ssid in two key-generation queries, either PassiveNewKey or
ActiveNewKey. In that case real-world P; has identical session outputs in response
to such queries, hence Fppake assures the same happens in the ideal world, by sav-
ing respectively (seshbe, P, i, ..., ssid, cpid, K) or (ses,ct, P, 1, ssid, cpid, K), and
whenever PassiveNewKey and ActiveNewKey query is made for some P, 1, ssid,
Fupake checks if the corresponding record exists, and if so then Fppake resends
to P; tuple (K, ssid, cpid) stored in that record.

3.3 Syntax of Bare PAKE and Structured Protocols

The way we defined Fppake allows us to think of a unique global instance of the
bare PAKE ideal functionality /protocol to which a party can resort at any time
to establish a key with a counterparty that uses the same password. Indeed, a

' As e.g. in EKE [8], SPEKE [29,34,39], SPAKE2 [4], TBPEKE [40], and CPace [3].

2 If party P; wants to use state st; to process only n sessions then it can process only
the first n session triples output by P;. This is equivalent to terminating a bPAKE
instance, and one can extend Fppake to explicitly support such feature.

Bare PAKE: Universally Composable Key Exchange from Just Passwords 199

party can create an arbitrary number of sessions using the input parameter i,
and these will behave independently of each other. In what follows we discuss the
syntax of such protocols in the real-world and clearly separate what is the code
of a bare PAKE protocol from the boiler-plate infrastructure that manages com-
munications, network addresses and other pieces of information that have no
bearing on correctness and security.

A structured protocol [15, 2020 version on eprint, Sect. 5] consists of a proto-
col shell and a protocol body. We leverage this terminology to resolve the conun-
drum of formalizing interactive protocols where message recipients are unknown:
as proposed by Canetti, we use this formalism to syntactically restrict real-world
protocol access to session identifiers and party identifiers that are a UC frame-
work artifact and should not be required by the practical protocol. The idea
is to let a shell, which is a modelling component in the security analysis that
abstracts the operation of a maliciously controlled network, to manage the send-
ing of outgoing messages and the assignment of incoming ones. The body runs
the “cryptographic core”, i.e., it executes the bare PAKE code oblivious of any
addressing information and session identification that could be provided from
the outside. In this section we give only the minimum terminology that should
allow the reader to follow the rest of the paper, without being overwhelmed
with the details. For the full terminology and reasoning underlying structured
protocols, we refer to the full version of this work [6].

The Body: Syntax of a Bare PAKE. A bare PAKE protocol is a five-tuple of ppt
algorithms (Setup, StartIni, StartRsp, EndIni, EndRsp).'?

— Setup(1*) takes as input the security parameter and produces some parame-
ters prm that are (locally) shared between multiple protocol instances.

— StartIni(prm, pw, id) takes as input the parameters prm, a password pw and
a party name id and it outputs a first message m; and a state stj.

— StartRsp(prm, pw, id) takes as input the parameters prm, a password pw and
a party name name and it outputs a state stg.

— EndRsp(stgr, m1) takes as input a state stz and a message m; and, if it com-
pletes successfully, it outputs a key K, a session identifier ssid, a counterparty
name cpid and a message my. Otherwise it outputs L.

— EndIni(sty, my) takes as input a state st; and a message mg and, if it com-
pletes successfully, it outputs a key K, a subsession identifier ssid and a
counterparty name cpname. Otherwise it outputs L. This algorithm is deter-
ministic.

In the case of single-simultaneous-flow (SSF) protocols, only StartIni and EndIni
need to be specified, and we assume that m; produced by StartIni can be used
as an input to EndIni.

Correctness of the protocol requires that an honest execution results in both
parties agreeing on the same key K, session identifier ssid and obtain the counter-

13 This limits our analysis to two-pass protocols, which we do in this paper for the sake
of simplicity. Our approach can be extended to protocols with additional rounds.

200 M. Barbosa et al.

party name that was initially provided by their peer. Formally, the following
should hold for all id;, idg, pw:

prm g Setup(1*)
(idy, cpid;) = (cpidg, idR) | (m1, st;) <x StartIni(prm, pw, idy)
Pr A str < StartRsp(prm, pw, idg) =1.
(ssidr, K1) = (ssidr, Kgr) | (Kp,ssidy, cpidy, mo) <y EndRsp(my, stg)
(ssidg, cpid p, Kr) < EndIni(ma, sty)

The Shell: Handling Instances and Communications. The above body of a bare
PAKE is completed with a “wrapper” that models communication and session
handling, called a shell. The shell resolves questions such as “Which of Alice’s
passwords is used to compute a key from an incoming message?”. Various such
wrappers could be defined: one that always compute the maximum number of
keys from incoming messages, or one that allows pointing at a particular pass-
word instance to compute a key with. In this work, we mostly work with the
latter option, as we believe most applications will be working in this scenario.
We call this shell 7g,. For the sake of this overview, we illustrate its workings
in Fig. 3. mgy propagates messages to the “malicious network”, which in UC ter-
minology is represented by the adversary. This captures the non-determinism of
where messages are sent to, i.e., all possible scenarios of who is using a message
that the shell propagates.

4 Transformations Between PAKE and Bare PAKE

From a theoretical point of view, one might ask how the two primitives relate,
e.g., “Is PAKE stronger than bPAKE?” or vice versa, but one cannot say that
either functionality directly implies the other in the UC-emulation sense, since
their input/output behaviors are trivially distinguishable. Instead, we consider
more interesting practical questions of whether we can build one protocol from
the other:

— Suppose we have an implementation of a UC PAKE, but we do not know how
to guarantee global session identifier uniqueness, nor are we sure what kind
of party identifiers to use. Can we use it to agree on a key based only on a
password? In other words, can we build a bare PAKE from a PAKE?

— Conversely, suppose we have an implementation of a bare PAKE, and we want
to integrate it into a higher level protocol that expects the PAKE interface.
Can we build a PAKE from a bare PAKE?

We see the first question as a formal clarification of the often raised question of
how to fix session identifiers and party identifiers in practice. We see the second
question as a way to formalize several choices for secure deployment that PAKE
standards can offer to end-users: starting from a bare protocol taking only the
password, but explaining how to cater to applications that need to fix session

Bare PAKE: Universally Composable Key Exchange from Just Passwords 201

Alice’s bare PAKE usage

2: StartIni(pw, Alice) — ma, st
6: StartIni(pw, Alice) — ma, st1

10: EndIni(st1, ma, Bob) — K ~
13: EndIni(st1, mg, Charlie) — K

: Port42, my, Alice B

: Port99, ma, Alice // AN
\ network |
9: Port42, mz, Bob ‘\\ /,’

~N W
\
/

Instances:
4: Portd2, sty
8: Port99, sty

\

,,,,,,,,,,,,,,,,,,,,,,,,,,, 12: Port42, mg, Charlie
1: ¢ = Port42, pw 11: Port42, {(7 Bob
5: 1 = Port99, pw 14: Port42, K, Charlie
| z |

Fig. 3. Illustration of the shell wgn handling multiple passwords of Alice (omitting
interface names and session- and subsession identifiers from inputs, outputs and mes-
sages for brevity, and showing a single-simultaneous flow protocol). Upon NewSession
input (1:) with instance identifier Port42 and password pw, the shell (2:) calls the body
to produce a message, (3:) propagates it to the network and stores the instance state
(4:). The same happens for another input password pw with instance identifier Port99
(5:,6:,7:,8:). An incoming message (9:) is inspected by the shell for its instance identi-
fier. The shell finds a corresponding instance, (10:) invokes the body with the incoming
message and the instance state and (11:) outputs the key. Another incoming message
(12:) for the same instance is treated the same way (13:,14:), resulting in Alice sharing
keys with Bob and Charlie on instance Port42.

identifiers and/or party identifiers externally and bind them to the agreed key.
We provide two compilers that transform a PAKE into a bare PAKE, and vice
versa. The intuition of both compilers is given in Fig.4. The detailed protocol
description in the UC terminology as well as their formal security proofs can be
found in the full version [6].

Corollary 1. There exists a non-interactive protocol that tightly realizes Fpake
in the Fopake-hybrid model, and there exists a 1-round protocol that tightly real-
1zes Fppake in the Fpake-hybrid model.

5 Password-Only Encrypted Key Exchange

In this section we present a black-box construction of a bare PAKE from a non-
interactive key exchange (NIKE) protocol. This modular construction shows that
the standard notion of security for NIKE implies, with small computational and
bandwidth overhead, a reusable bare PAKE. The construction can be instan-
tiated with a post-quantum NIKE, such as SWOOSH [25], which opens the

202 M. Barbosa et al.

PArTY P

Upon input P, ssid, pw
pw — {P, P’ }ord||ssid|pw

pw

PARTY P’

Upon input P, ssid, pw’
pw’ — {P', Ploral[ssid|pw’

pw'’

beAKE
K

—

Output (ssid, K)

K’

Output (ssid, K')

PARrTY P

Upon input pw, A
Sample N g {0,1}"

ssid «— {N, N'}o
pw — {A, Blou||pw

PArTY P’

Upon input pw', B
Sample N' —x {0,1}"

N, A
N'.B ssid" — {N', N}ora
P’ — {B, Alou||pw’
N, ssid, pw N, ssid’, puw’
K Frake K’

Output (ssid, K)

Output (ssid, K')

Fig. 4. Left: BarePAKE-to-PAKE compiler. Parties use the bare PAKE with their
password, appended by all identifiers, without the optional name input. Right: PAKE-
to-barePAKE compiler. Parties exchange nonces which serve both as their unique party
identifier as well as subsession identifier for the PAKE. Their clear-text transmitted
names are appended to the password, to ensure authenticity.

way for new PAKE constructions based on lattice-based components and possi-
bly post-quantum-secure PAKEs.!4 Furthermore, plugging in the resulting bare
PAKE protocol into the bPAKE-to-PAKE transformation allows us to recover
some well known results for some Diffie-Hellman-based PAKE protocols that
have appeared in the literature.

5.1 Simplified NIKE

We start from the notion of a simplified NIKE (sNIKE), as introduced in [24].
In contrast to the standard notion of NIKE, where party identities are an input
to the protocol, simplified NIKE has only public keys. This notion is well suited
to our goal of constructing PAKE protocols that are agnostic of party identities.

Definition 5. An sNIKE scheme is a collection of three efficient algorithms
sNIKE.Setup, sNIKE.Keygen, and sNIKE.ShKey, together with a shared key space
SK.1®

— sNIKE.Setup: On input the security parameter, this randomized algorithm out-
puts system parameters prm.

4 We do not carry out a security analysis against quantum adversaries because it is not
well understood, to the best of our knowledge, on how to deal with quantum adver-
saries in the ideal cipher model. Nevertheless, we note that the ideal cipher is only
relevant when protecting against active attacks, which means that passive security
(even with a posteriori password compromise) follows directly from the security of
the underlying NIKE. This means that our protocol is suitable for applications that
are concerned with preserving the confidentiality of data exchanged in the presence
of passive attackers today, which may log the data and have access to a quantum
computer in the future.

In practice, SK will be the set of bit strings of fixed length ¢ for some ¢ > k. We
consider the more general case to cover core protocols such as Diffie-Hellman, where
keys are elements of a group with order at least 2".

Bare PAKE: Universally Composable Key Exchange from Just Passwords 203

— sNIKE.Keygen: On input prm, this randomized algorithm outputs a key pair
(sk, pk).

— sNIKE.ShKey: On input a secret key sk and a public key pk, this algorithm
outputs either a shared key in SKC for the two keys, or a failure symbol L. This
algorithm is assumed to always output L if sk is the secret key corresponding
to pk.

We say an sNIKE is §-correct if

prm «—$ sNIKE.Setup(1”)
(sk1,pk,) <$ sNIKE.Keygen(prm) | >1—5(k).
(ska, pky) —$ sNIKE.Keygen(prm)

sNIKE.ShKey(sk1, pk,) =

Pr SNIKE.ShKey(sk, pk,)

An sNIKE scheme is perfectly correct if this holds for 6(k) = 0.

Security. Later in this section we will give a new generic construction of bare
PAKE from sNIKE and show that its security follows from the vanilla security
notion for sNIKE, which we recall here. Figure5 shows the security game for
sNIKE. The notion was originally introduced by Cash, Kiltz and Shoup [19] and
hence we call it (CKS). The same figure shows, in blue, additional restrictions
that define one-time CKS security (OT-CKS). This leads to a weaker version
of sNIKE security, which we will show is sufficient to construct one-time (non-
reusable) bare PAKE, and hence also PAKE. We will further show that this
weaker version of one-time sNIKE security can be achieved in the random oracle
model starting from a passive one-way secure sNIKE, of which a prominent case
is the textbook Diffie-Hellman protocol under the CDH assumption. A corollary
of these results is a modular restating of previous results showing that UC PAKE
can be constructed directly from CDH in the joint ideal-cipher and random oracle
model.

Definition 6. We say that sNIKE is (m,n)-CKS, or CKS-secure for m honest
keys and n corrupt keys if, for every ppt adversary A placing at most m queries
to RegHonest and n queries to RegCorrupt, the following advantage function is
negligible in the security parameter .

Adv ke (k) = | PrICKSR™E(1%, 1) = 1] — Pr[CKSHE(1%,0) = 1]

We say that sNIKE is (m, n)-OT-CKS, or one-time CKS-secure, form,n as above,
if this holds when the one-time restrictions are in place.

We also define a minimal security notion for sNIKE, namely a one-way (OW)
counterpart of (2,0)-CKS, where there are only two honest keys, there are no
corrupt keys, and the adversary must explicitly compute the session key agreed
between the two honest keys. We specify this security experiment in Fig. 6. Note
that in this experiment a secret key is used at most once, and so the one-time
restriction is redundant.

204 M. Barbosa et al.

Game CKS' E(1%,b) Oracle CorrReveal(pk,, pk,)
hoks, coks «— { } If pk, ¢ hoks V pk, ¢ coks Return L
shk[z] < L for all If pk, € otused Return L
otused «— { } otused «— otused U {pk, }
prm «r sNIKE.Setup(17) sk1 < hoks[pk,]
b —n A° (prm) Return sNIKE.ShKey(sk1, pk,)
Return &’
Oracle Test(pk,, pks)
Oracle RegHonest() If pk, ¢ hoks V pk, ¢ hoks Return L
(sk, pk) <—r sNIKE.Keygen(prm) If pk, € otused Return L
hoks|pk| < sk otused «— otused U {pk }
Return pk sk1 < hoks[pk,]
Ko «— sNIKE.ShKey(sk1, pk,)
Oracle RegCorrupt(pk) If {pky, pko}ord & shk
If pk ¢ hoks U coks shk[{pk, pks tora] <—r SK
coks « coks U {pk} Ky shk[{pky, pks }ord]
Return K

Fig. 5. CKS-style security game for an sNIKE scheme [19,24]. Oracle O provides adver-
sary A with access to oracles RegHonest, RegCorrupt(-), CorrReveal(, -), Test(-,). Vari-
ables hoks and coks represent the sets of respectively honest and corrupt keys, and shk
is a table of shared keys assigned to a pair of honest keys. Blue code enforces one-time-
use restrictions on secret keys, and it corresponds to a weaker notion of CKS security
which we call OT-CKS.

Definition 7. We say that sNIKE is OW, or one-way secure, if for every ppt
adversary A, the following advantage function is negligible in the security param-
eter K.

AdvQiuke(r) = PrlOWR"F(1%) = 1].

We now show that the above one-wayness notion implies general one-time
secure sNIKE in the Random Oracle Model. For any sNIKE scheme let H[sNIKE]
be the same scheme except the shared key output is “post-processed” using
a hash function H, i.e., H[sNIKE].ShKey(sk, pk) = H(sNIKE.ShKey(sk, pk)). In
what follows, we will call sNIKE.ShKey(sk, pk) a pre-key. The proof of the fol-
lowing theorem is given in the full version [6]. It is a direct reduction, where we
leverage the fact that one can correctly program the Random Oracle to justify a
single corrupt reveal query by guessing which point in the Random Oracle table
could allow the adversary to detect an inconsistent simulation.

Theorem 1 (OW = OT-CKS). Let sNIKE be a §-correct and OW-secure
simplified NIKE with shared key space SK. Then, if we model hash function
H: SK — {0,1}* as a random oracle, for every attacker A against the
(m,n)-OT-CKS security of H[sNIKE], making at most qu queries to H and plac-
ing at most qp queries to Test, there exists an attacker B in OW security game

Bare PAKE: Universally Composable Key Exchange from Just Passwords 205

Game OWSY'KE(17)

prm «—r sNIKE.Setup(17)

(sk1, pk,) <—r sNIKE.Keygen(prm)

(sk2, pky) <= SNIKE.Keygen(prm)

(iv Js K/) R .A(prm7 pkh pk2)

K « sNIKE.ShKey(ski, pk;)

Return 1 if K’ = K # 1 and 0 otherwise

Fig. 6. One-wayness game for an sNIKE scheme.

of sNIKE such that

m,n)-0T-CKS
Adv e (8) < gr - 8(k) +m? - (gu +1)% - AdvB e (r) ,
One-Time NIKE from CDH. We now consider the classical construction of a
NIKE known as hashed Diffie-Hellman (HDH):

— sNIKE.Setup: On input the security parameter, outputs prm = (G, g,q,H),
the description of a cyclic group G of prime order ¢ and generator g, along
with a hash function mapping G to {0, 1}".

— sNIKE.Keygen: On input prm, this randomized algorithm outputs a key pair
(9%, a), where a is generated as a «x Zg.

— sNIKE.ShKey: On input a public key pk; and a secret key sko = a, this
algorithm outputs H(pk?) if pk, # g* and L otherwise.

Corollary 2. Hashed Diffie-Hellman is a (m,n)-OT-CKS secure sNIKE under
the CDH assumption, when we model H as a random oracle. More precisely,
for every one-time sNIKE attacker A against HDH making at most qu queries
to H and qr queries to the Test oracle, there exists an algorithm B running in
essentially the same time as A such that

Advion (k) < m? - (g +1)* - AdVEE (k).

Proof. The corollary follows by observing that the classic unauthenticated Diffie-
Hellman protocol a perfectly correct SNIKE and its one-way security is exactly
the CDH problem. O

Remark 1. We present this corollary here because, combined with the results
that will follow in the rest of this section, it provides a clear and modular expla-
nation of why one can prove that EKE-HDH is a UC-secure PAKE assuming
only CDH (in the combined Ideal Cipher and Random Oracle Model). It also
opens the way for constructing PAKE from one-way secure lattice-based NIKE,
which may eliminate the need for costly NIZK computations and bandwidth.

Remark 2. In the particular case of HDH, it is well known that much tighter
reductions can be obtained using so-called strong DH assumptions. In particu-
lar, HDH is a tightly CKS-secure sNIKE assuming Gap DH: a direct reduction

206 M. Barbosa et al.

can be constructed that generates all honest key pairs by randomizing the Gap
DH challenge, and answers corrupt-reveal queries using the gap oracle. Note,
however, that the reduction in this case makes significantly more work than run-
ning the adversary and O(q%) queries to the gap oracle. This overhead in the
reduction can be reduced by including the public keys in the input to the key
derivation hash, in which case the number of gap oracle queries is linear in qg.

5.2 The EKE Construction

Figure 7 shows the canonical “non-interactive” (SSF) bare PAKE using the EKE
blueprint, generalized from Diffie-Hellman to any sNIKE. The protocol is defined
in the F.,s-hybrid model, where the common-reference-string distribution is
defined by the sNIKE global parameter generation algorithm sNIKE.Setup.'6
Throughout the discussion, for conciseness, we will keep F,s implicit and assume
that all parties have access to prm.

algorithm StartIni(prm, pw, id): algorithm EndIni(m/’, st):
(sk, pk) <—r sNIKE.Keygen(prm) Parse (sk, pw, m) <« st
¢« 1Cpu (pk) Parse (c’,id") «— m’
m « (c,id) pk’ —1C,5(c")
st «— (sk, pw, m) K « sNIKE.ShKey(pk’, sk)
Return (m, st) ssid «— {m, m' }ord
K + KDF(K, ssid)
Return (ssid, id’, K)

Fig. 7. Protocol EKE-NIKE: A bare password-encrypted key exchange (EKE) based on
sNIKE and an ideal cipher IC over the domain of NIKE public keys. The protocol is sin-
gle simultaneous flow (SSF). The setup algorithm run by F.,s is Setup = sNIKE.Setup.

Theorem 2 (Security of EKE-NIKE). Let m be the bPAKE protocol
that results from combining EKE-NIKE in Fig. 7 with wrapper code wsy (cf.
Section 3.3). Then m UC-emulates Fopake under static corruptions, assuming |C
is an ideal cipher on domain C = PK, sNIKE is CKS-secure, and the distribu-
tion of public keys produced by sNIKE.Keygen is computationally close to uniform
over PIC and has min-entropy at least k bits.

More precisely, the UC emulation bound is given by

rD;{beAKE,Sim}(K) <
-C n
Advgl,lscl{ﬁl}gl)f KS(’i) + K * €KDF + GIC * ENIKE.Keygen + 2 - Gt - (1/|PK| + 1/2%)

16 The F..-hybrid model assumes that all parties have access to a functionality that
publishes a common reference string (CRS) sampled from some distribution. In our
work this CRS does not need to be programmed by the simulator, and hence this
functionality can be global.

Bare PAKE: Universally Composable Key Exchange from Just Passwords 207

Messages from Fppake:

On (NewSession, sid, P, i, id, role):

— Ignore if record (P, ¢, *) exists or if role # L Ideal cipher calls:

— c—1Cs() —_—

— m — (¢, id) On ICs():

— st (L,L,m) —cer{d€C|()¢T}
— Store (P, i, st) — Append (L, L, 1,¢) toT

— Send (4, m) to A — Return ¢

Messages from A: On IC5*():
- — If (pw, [pk], [sk],c) € T, return (pk, sk)
On message (sid,i,m’) from A towards honest P:

— Ignore if record (P, 4, [st]) does not exist

(sk, pk) «—=r sNIKE.Keygen(prm)

— Parse (L, L,m) « st — Abort if (pw, pk,-,-) €T
= Parse (¢, id) —m — Append (pw, pk, sk,c) to T
— Parse (¢sid") —m' — Return (sk, pk)
— ssid — {m, m'}ord
— If record ([P'], [i'], (-,-,m)) exists: On 1Cpu (pk):

o Call (PassiveNewKey, sid, P, i, P', 4, ssid) — If (pw, pk, -, []) € T, return ¢
— If record ([P'], [i'], (-, -, (¢/,-))) exists: —cen{deC|(,,)¢ T}

o Call (ActiveNewKey, sid, P, i, L, L, ssid, id") — Append (pw, pk, L,c) to T
— If Lid] = L: = Lld] < (pw, pk)

o Call (ActiveNewKey, sid, P, i, L, L, ssid, id") — Return ¢
— (pw, pk') — L[Cl’] On IC; (e):
= (sk', pk) — ICs (pw,) — (sk, pk) — IC5' (pw,c)

— Return pk

— K « sNIKE.ShKey(sk’, pk’)
— K « KDF(K, ssid)
— Call (ActiveNewKey, sid, P, i, pw, K, ssid, id")

Fig. 8. Simulator for the proof of Theorem 2. The simulator runs sNIKE.Setup on start-
up and provides the resulting prm to the adversary as the output of F..s. These are
also used throughout the simulation.

where Dg’{f"PAKE’S'm}(H) is the distinguishing advantage of environment Z
between the real world execution of w and the simulation presented by Sim inter-
acting with Fopake, qic S an upper bound on the total number of IC' computa-
tions, qi is an upper bound on the number of session keys derived by honest par-
ties, ekpr 1S the maximum distinguishing advantage of ppt adversaries against the
PRF property of KDF, and €sNIKE.Keygen S the mazimum distinguishing advan-
tage of ppt adversaries in distinguishing public-keys produced by sNIKE.Keygen
from uniform values in PK.

Proof. (Sketch.) The full proof is given in the full version [6]. Here we give only
a sketch. We present the simulator that justifies our protocol in Fig.8. The
simulator generates random IC ciphertexts as the outgoing messages of honest
parties, so as not to commit to an input key-pair (it does not know under which
password to encrypt it). This is undetectable to the attacker unless it guesses one
of these public keys, which we exclude using the assumption that they are high-
entropy. The inverse operation of the ideal cipher is simulated by generating key
pairs, whenever the adversary tries to decrypt a fresh ciphertext—in particular

208 M. Barbosa et al.

the ones that honest parties produced—hence the assumption that public keys
look uniform. This will allow the simulator to a-posteriori recover the secret key
of an honest party, when it extracts a correct password guess from the adversary
(see below).

When an adversary delivers an encrypted key to an honest party, we have
two options: either 1) the ciphertext was honestly generated, or 2) it was mali-
ciously generated. If 1) occurred, then the adversary is launching a passive attack
(this may be only partially passive if the adversary alters the rest of the mes-
sage) and will not know the associated session key down to the security of
the underlying sNIKE scheme; in this case the simulator calls the functional-
ity on PassiveNewKey or ActiveNewKey without a password guess, depending
on whether the attack is passive, or partially passive. If 2) occurred, then the
simulator still needs to deal with two subcases: i) it can extract the password
associated with that ciphertext; or ii) it cannot extract the password. In the
first subcase the simulator constructs a plausible protocol execution for a possi-
ble correct password guess (as described above) and calls ActiveNewKey. In the
second subcase we show that the adversary simply has no control of the public
key that the honest party would recover from that ciphertext. In all cases where
the functionality chooses a random session key, we show that the attacker cannot
distinguish this from the real-world down to sNIKE security. In the cases that
the password is extracted and it is correct, the simulator perfectly mimics the
behavior of the honest party. O

Remark 3. Suppose EKE-sNIKE is used as a PAKE, i.e., each instance of the
protocol is used to process at most one incoming message. Then, the proof above
still works, but the reduction to sNIKE security is now a valid reduction to one-
time sNIKE security. Combined with the results on HDH sNIKE given in the
beginning of this section, this gives us an alternative proof that EKE-HDH is
a UC-secure PAKE down to CDH. Furthermore, it also allows us to plug-in a
passively secure lattice-based sNIKE such as the core of SWOOSH [25], which
may open the way for post-quantum secure PAKE from lattices without relying
on costly NIZK components.

We note that our proof applies when there exists domain such that 1) the
distribution (of some encoding) of NIKE public keys is indistinguishable from
uniform over said domain, and 2) there is an ideal cipher over domain said
domain. Therefore, if the NIKE public keys can be encoded as uniform elements
of some domain, the question remains how to instantiate the IC over this domain
in practice. The half-ideal cipher abstraction, which is an IC domain extender
for some algebraic domains, is one possible solution for instantiation but requires
indifferentiable hashing to the public-key space. It is an open question whether
isogeny-based NIKEs satisfy these properties.

Remark 4. These results (see also the discussion on adaptive corruptions in
Sect. 7) give strong evidence that reusable bPAKE is harder to construct than
standard PAKE. This does not stand in contention with the results we gave
in Sect.4 with respect to being able to construct PAKE from bare PAKE and

Bare PAKE: Universally Composable Key Exchange from Just Passwords 209

vice-versa. Indeed, although the construction of PAKE from bare PAKE is really
showing an implication, the construction of bare PAKE from PAKE is running
many independent instances of the PAKE protocol for the same password, rather
than reusing components previously computed by the party for the same pass-
word.

Tightness of Theorem 2. Note that the reduction of NIKE security to bPAKE
is tight. Nevertheless, the NIKE advantage may depend on ¢c, which may be
of the order of 2, and this maps to the number of NIKE public keys. This
means that the tightness of EKE-NIKE depends crucially on the security bound
for the underlying NIKE. In particular, if the NIKE bound does not depend
on this number, then neither does the EKE-NIKE bound. This is the case, for
example, for HDH NIKE that has a tight reduction to gap-CDH. Moreover,
if EKE-NIKE is used as a non-reusable bPAKE, security requires only a one-
time NIKE, which allows for NIKE instantiations with tighter reductions and/or
weaker assumptions.

6 Password-Only CPace

In Fig. 9 we cast the CPace PAKE protocol [3,28] as a bare PAKE. The differ-
ences to “basic CPace” (referred to as “CPace” in the below) of Abdalla et al.
[3] are as follows.

— Bare CPace derives the group generator only from pw, while CPace
derives the generator from pw and both party identifiers. If multiple keys
need to be exchanged, or more than two parties use the protocol, CPace
also needs to additionally make the generator computation dependent on the
session identifier sid [3].

— Bare CPace lets parties send their own name alongside their DH message,
while in CPace parties retrieved the counterparty name from the application
(i.e., as input).

— CPace computes the session key as a hash of the Diffie Hellman value and
the DH public keys. Bare CPace requires to additionally include the party
names into the final key derivation hash, to achieve the desired authen-
tication properties of the party names (matching output keys imply that
parties reliably received the name of their respective counterparty).

— Bare CPace lets a party output the counterparty’s name, while CPace
required it as input to derive the password as described above.

— Bare CPace lets parties output a subsession (key exchange) identifier
sstd which is composed of the two party names and messages, and which is
unique with overwhelming probability if output by an honest party. Basic
CPace required such a unique session identifier as input.

We now specify the algorithms for the body of bare CPace: Setupycpaces
StartInipcpace, EndInipcpace- Because CPace is a single-simultaneous flow proto-
col, we can omit the receiver algorithms StartRsp and EndRsp. The protocol is

210 M. Barbosa et al.

defined in the F.,s-hybrid model, where the common-reference-string distribu-
tion is defined by the parameter generation algorithm Setup,cp,ce-

— Setupycpace(17) takes as input the security parameter and produces public
parameters prm, containing a group G of order g and hash functions H :
{0,1}* — {0,1}", Hg : {0,1}* — G.

— StartInipcpace(prm, pw, id) takes as input prm, a password pw and a party
name 4d. It then computes g «— Hg(pw), samples a «x Zg, sets A «— g and
outputs my «— (A, id) and st; — (pw, id, g, a, A).

— EndInipcpace(str, ms) takes as input a state sty := (pw, id, g, a, A) and a mes-
sage my = (B, cpid). Tt then sets ssid «— {(Al|id), (B]|cpid)}ord, computes
K «— H(B*,{A, B}od) and outputs K, ssid, and cpid.

We denote with IT,cpace the structured protocol with the shell executing the
wrapper code mgp (cf. Section 3.3), calling the body’s algorithms Setupycpace,
StartInipcpace, EndInipcpace specified above. For clarity, we state ITycpace below,
marking in gray the protocol parts that run in the body. Because CPace is
single-simultaneous flow and hence does not have initiator and responder roles,
we assume wlog that parties retrieve inputs with role = L.

Structured protocol ITycpace

On creation, do:
o generate group G of order ¢
o pick functions H : {0,1}* — {0,1}", He : {0,1}* — G
o store prm — (G, q, H, Hg)

On (NewSession, sid, i, pw, id, L), do:
o ignore this query if record ([i],...) exists
o g« He(pw), sample a < Zg, set A — g*
o set st — (pw,id,g,a, A)
o store (1, st)
o send message (sid, i, (A, id)) to A

When A delivers message (sid, i, (B, cpid)), do:
o retrieve record ([i], (pw, id, g,a, A)), ignore message otherwise
o ssid — {(Al|id), (B||cpid) }ord, K «— H(B, ssid)
o output (sid, i, K, ssid, cpid)

Fig. 9. Bare CPace as structured protocol Ilycpace. Gray parts are run in body, the rest
is the wrapper code msu(Color figureonline) executed in the shell.

Theorem 3 (Security of bare CPace). Protocol Ilpcpace UC-emulates the
lazy-extraction version of the bare PAKE functionality, Fypaxge, shown in
Fig. 2, in the Fors-hybrid model, with Hg, H modeled as random oracles, if the

Bare PAKE: Universally Composable Key Exchange from Just Passwords 211

gapCDH and sim-gapCDH assumptions hold in G, and with respect to static
party corruption.

That is, for any efficient adversary A against Il,cpace there exists an efficient
stmulator Sim that interacts with Fyppkete and produces a view such that for all
efficient environments it holds that

ngCPace;{fprKELE ,Sim} (I{) <

<QH2G + C]var)2 + q?,s
2. 2F

C im—ganC
+ QVarQPWAdV(Ig}ap or + qaZGqPWAdVEm gapCOH

where ngCPm’{f"PAKELE’Slm}(/ﬁ) is the distinguishing advantage of environment Z
between the real world execution of Ilpcpace and the simulation presented by Sim
interacting with Fypagete, and where qyar is the overall number of passwords in
the system, quag 1S the number of Hg queries issued by A, ¢ns is the number
of NewSession queries issued by A, and gy is the mazimum number of parties
receiving the same password through a NewSession input.

Proof Sketch. The high level idea of the proof is as follows. Starting from the
real execution where environment Z interacts with parties running ITpcpace and
a dummy adversary A, we subsequently change the execution until we end up
with Z interacting with functionality Fpakete and a simulator Sim. The two
main challenges are as follows: the simulator needs to produce message indis-
tinguishable from real ones without knowing the passwords of honest parties,
and we have to randomize the output keys of parties. The simulation app-
roach is to use a common “simulation” generator gs;m to generate all group ele-
ments. The simulator maintains trapdoors r <y Z, from queries Hg(pw) = ¢,
for adversarial password hashes, and uses these trapdoors to identify password
guesses. In a bit more detail, output keys in CPace are computed from hash-
ing Diffie-Hellman keys, e.g., H(K, ssid), where K := Hg(pw)® and a and b
are the secret keys of Alice and Bob sharing the key. Since Sim does not know
He (pw) when simulating Alice’s message A := g&,, Sim does not explicitly know
Alice’s secret key a. Hence Sim cannot compute K = B® from Bob’s message
B. However, after learning Alice’s password pw, Sim’s knowledge of trapdoor r
with Hg(pw) = g&;,, lets Sim compute Alices “correct” secret key as s/r, since

A=g5m = (ggim)S/T = HG(P’LU)S/T~

Our proof proceeds as follows. First, we switch the simulation to the common
simulation base gsim and let Sim remember trapdoors for all group elements, i.e.,
‘Hg queries, and simulated messages of honest parties. Then, we randomize the
output keys of parties. For honest sessions, keys are pseudorandom under the
gapCDH assumption, since keys output by parties are hashed Diffie-Hellman
keys (requiring the environment to solve for these DH keys if it aims at detect-
ing the randomization). However, the reduction requires a DDH oracle (hence
the security of CPace relies on gap-type assumptions) to consistently simulate
other keys output by the parties. For attacked parties, the randomization of

212 M. Barbosa et al.

keys is more complex, because the simulator has to extract password guesses
from adversarial messages reaching the attacked party. Here, we can show that
if the sim-gapCDH assumption holds in G, the adversary cannot manufacture
adversarial messages that constitute a guess for two different passwords. Sim
can then extract the unique guess from the adversarial queries to Hg and H.
After randomizing all output keys, randomizing the protocol transcript can sim-
ply leverage the entropy of secret keys, since no other simulated values depend
on the password anymore. Because G is cyclic, Hg(pw) is a generator and the
(whp) uniqueness of secret keys is enough to argue a uniform distribution of
honest parties’ messages.

With outputs being determined by Fypakete and the transcript being sampled
at random from the group, the simulation does not depend on the passwords
anymore and the ideal execution is reached, concluding the proof. The detailed
proof is in the full version [6].

Tightness of Theorem 3. The proof of Theorem 3 established the security of
CPace in a multi-session setting, where sessions are allowed to be re-used and
can output multiple keys. Compared to the standard and non-reusable CPace [3],
we have an additional cost of a factor g, for sim-gapCDH and a factor approxi-
mately linear in the number of new sessions for gap-CDH. The latter is attributed
to the 1-to-n nature of reusable PAKE (i.e., every input password can result in
the output of n keys), while standard PAKE is 1-to-1. This also means that a
1-to-1 bare CPace, where a party only outputs one key per password, is almost as
tight as CPace with session identifiers [3]: If everybody uses a different password
(as in the PAKE built from bare CPace via the bPAKE-to-PAKE transform in
Fig.4) then gpw = 1 and the bounds of our proof and the proof of [3] would be
exactly equal.

7 Security Under Adaptive Corruptions

Adaptive corruptions refer to party corruptions that occur at a point in time
where that a party already executed some parts of the protocol honestly. Upon
corruption, the whole internal state produced up to this point is revealed to
the adversary, and from that point on, the adversary controls all actions of the
corrupted party.

Adaptive corruptions are a challenging but realistic attack scenario, and in
this section we argue that some of the protocols we consider in this work maintain
their guarantees even when adaptive corruptions are allowed. In a nutshell, the
challenge of simulating adaptive corruptions lies in manufacturing secret values
of the corrupted party that “explain” both its inputs and its sent messages up
to the point of corruption. Here, note that the messages were simulated without
knowledge of the secret inputs, i.e., the passwords (Fig. 10).

7.1 Adaptive Security of EKE-NIKE

We considered the possibility of proving security of EKE-NIKE under adaptive
corruptions assuming that the underlying sNIKE offers the standard notion of

Bare PAKE: Universally Composable Key Exchange from Just Passwords 213

On (AdaptiveCorruption, sid, P) from A:
— Initialize an empty array state
— For each record (P, [i, pw, id]):
e For each record (sesinf, P, 1, [ssid, id’, k]):
* set state[ssid] « (i, pw, id, id’, k)
— Send state to A

Fig. 10. Interface for adaptive corruptions in Fypake (or variants thereof).

key corruption where the game reveals the long term secret key of an honest
party, provided that no Test query has been made related to this key. However,
the proof fails because in the UC setting adaptive corruption means that the
internal state of a party may be revealed even if it has computed a key in the
past.

For the particular case of standard PAKE discussed above, the proof can be
extended for the adaptive corruption case, assuming that parties erase the secret
keys after use. (This is good practice in general to achieve forward security in
practice.) To see this, note that the reduction to one-time sNIKE would either
be 1) simulating an honest party before corruption, in which case it can use Test
and CorrReveal and it will never need to reveal the underlying secret key; 2) or
simulating the honest party after corruption, in which case it already obtained
the secret key from the sNIKE game.

7.2 Adaptive Security of CPace

We demonstrate that bare CPace is adaptively secure, i.e., Theorem 3 holds
with respect to adaptive party corruptions. In the real world, upon adaptively
corrupting a party, the shell hands the internal state consisting of all of the shell’s
records (i, (pw,id, g,a, A)) to the adversary, where Hg(pw) = g and A = ¢°
is the message produced upon input (NewSession, sid, i, pw, id, L) to the party
while it was not yet corrupted.

The simulation of adaptive corruptions is given in Fig. 11. In a nutshell, the
strategy of the simulator is to (1) adjust the secret keys of adaptively corrupted
party P to the passwords of all previous NewSession inputs, and to (2) adjust
the random oracle H() to the previous output keys of P. For (1), the simulator
leverages the Hg trapdoors as follows: let Hg(pw) = R denote the generator that
P should have computed upon input (NewSession, ..., pw, ...), and let S := ¢,
denote the simulated message of P upon that input. Note that, upon adaptive
corruption, it is possible that Sim already handed R to A, since A is allowed to
query Hg on arbitrary values. Sim now needs to figure out which secret key ;
“explains” the message S, i.e., for which y; it holds that Hg(pw)? = S. We have
He(pw)¥ = (g5,)Y = 9&., for y; = sr~ !, and hence Sim can claim sr™! to be
the secret key of P computed upon receiving pw as input. For (2), we then use
secret key y; to compute the Diffie-Hellman value £ = BY: computed by P upon
receiving message B.

214

M. Barbosa et al.

On (AdaptiveCorruption, sid, P) from A:
— Send (AdaptiveCorruption, sid, P) to Fopaxete and receive back state
— For each ssid in state:
e Parse state[ssid] as (4, pw, id, id’, k)
e Parse ssid := {(Al|id), (B||id")}ora, i-e., (sid, i, (B,id")) is the message
that led P to output &
e Retrieve record (P, 1, [s, S], id, [keys;])
e Do once for every i:
* If there is a record (Hg, pw, [r, R]) then set y; «— sr—*
* If there is no such record, sample r «g Zq, set y; < sr~ ', set R «
Jsim and store (Hg, pw,r, R)
e Record (H, BY%, ssid, k)
e Send ({4, (pw,id, R,y;, B))): € state to A

Fig. 11. Simulation of adaptive corruptions for ITycpace-

References

. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Jiayu, X.: Universally

composable relaxed password authenticated key exchange. In: Micciancio, D., Ris-
tenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 278-307. Springer,
Heidelberg (2020). https://doi.org/10.1007/978-3-030-56784-2_10

. Abdalla, M., Haase, B., Hesse, J.: CPace, a balanced composable PAKE. IRTF

CFRG draft (2020)

Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. In: Tibouchi, M.,
Wang, H. (eds.) ASIACRYPT 2021, Part IV. LNCS, vol. 13093, pp. 711-741.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92068-5-24

. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-

tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191-208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_14

Barbosa, M., Boldyreva, A., Chen, S., Warinschi, B.: Provable security analysis
of FIDO2. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol.
12827, pp. 125-156. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-
030-84252-9_5

Barbosa, M., Gellert, K., Hesse, J., Jarecki, S.: Bare Pake: universally composable
key exchange from just passwords. Cryptology ePrint Archive, Paper 2024/234
(2024). https://eprint.iacr.org/2024 /234

Beguinet, H., Chevalier, C., Pointcheval, D., Ricosset, T., Rossi, M.: Get a CAKE:
generic transformations from key encaspulation mechanisms to password authen-
ticated key exchanges. In: Tibouchi, M., Wang, X. (eds.) ACNS 2023, Part II.
LNCS, vol. 13906, pp. 516-538. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-33491-7_19

Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139-155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6-11

https://doi.org/10.1007/978-3-030-56784-2_10
https://doi.org/10.1007/978-3-030-92068-5_24
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/978-3-030-84252-9_5
https://doi.org/10.1007/978-3-030-84252-9_5
https://eprint.iacr.org/2024/234
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1007/978-3-031-33491-7_19
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

Bare PAKE: Universally Composable Key Exchange from Just Passwords 215

. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols

secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Pri-
vacy, pp. 72-84. IEEE Computer Society Press (1992)

Bender, J., Fischlin, M., Kiigler, D.: Security analysis of the PACE key-agreement
protocol. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009.
LNCS, vol. 5735, pp. 33-48. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04474-8_3

Bindel, N., Cremers, C., Zhao, M.: FIDO2, CTAP 2.1, and WebAuthn 2: Prov-
able security and post-quantum instantiation. Cryptology ePrint Archive, Report
2022/1029 (2022). https://eprint.iacr.org/2022/1029

Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: The quest to replace
passwords: a framework for comparative evaluation of web authentication schemes.
In: 2012 IEEE Symposium on Security and Privacy, pp. 553-567. IEEE Computer
Society Press, May 2012

Bradley, T., Jarecki, S., Xu, J.: Strong asymmetric PAKE based on trapdoor
CKEM. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS,
vol. 11694, pp. 798-825. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-26954-8_26

Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136-145. IEEE Computer Society Press (2001)
Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science — FOCS 2001,
pp. 136-145. IEEE (2001)

Canetti, R.: SIDS in UC-secure PAKE and KE. IRTF CFRG mail archive (2019)
Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404-421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639-24

Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D.
(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265-281. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4_16

Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127-145. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_8

CFRG. CFRG PAKE selection. IRTF website (2020)

Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644-654 (1976)

Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy
password-authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018, Part III. LNCS, vol. 10822, pp. 393—424. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78372-7_13

Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp.
254-271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-
717

Freire, E.S.V., Hofheinz, D., Kiltz, E., Paterson, K.G.: Non-interactive key
exchange. Cryptology ePrint Archive, Report 2012/732 (2012). https://eprint.iacr.
org/2012/732

Gajland, P., de Kock, B., Quaresma, M., Malavolta, G., Schwabe, P.: Swoosh:
practical lattice-based non-interactive key exchange. Cryptology ePrint Archive,
Report 2023/271 (2023). https://eprint.iacr.org/2023/271

https://doi.org/10.1007/978-3-642-04474-8_3
https://doi.org/10.1007/978-3-642-04474-8_3
https://eprint.iacr.org/2022/1029
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/978-3-030-26954-8_26
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1007/978-3-540-78967-3_8
https://doi.org/10.1007/978-3-319-78372-7_13
https://doi.org/10.1007/978-3-642-36362-7_17
https://doi.org/10.1007/978-3-642-36362-7_17
https://eprint.iacr.org/2012/732
https://eprint.iacr.org/2012/732
https://eprint.iacr.org/2023/271

216

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

M. Barbosa et al.

Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142-159. Springer, Heidelberg (2006). https://doi.org/10.
1007/11818175-9

Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: asymmetric PAKE from key-hiding
key exchange. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS,
vol. 12828, pp. 701-730. Springer, Cham (2021). https://doi.org/10.1007/978-3-
030-84259-8_24

Haase, B., Labrique, B.: Making password authenticated key exchange suitable for
resource-constrained industrial control devices. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 346-364. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66787-4_17

Hao, F., Shahandashti, S.F.: The SPEKE protocol revisited. Cryptology ePrint
Archive, Report 2014/585 (2014). https://eprint.iacr.org/2014/585

He, W., et al.: Rethinking access control and authentication for the home internet
of things (IoT). In: 27th USENIX Security Symposium (USENIX Security 18),
Baltimore, MD, August 2018, pp. 255-272. USENIX Association (2018)

Hesse, J.: Separating symmetric and asymmetric password-authenticated key
exchange. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp.
579-599. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6-29
Hesse, J., Jarecki, S., Krawczyk, H., Wood, C.: Password-authenticated TLS via
OPAQUE and post-handshake authentication. In: Hazay, C., Stam, M. (eds.)
EUROCRYPT 2023, Part V. LNCS, vol. 14008, pp. 98-127. Springer, Heidelberg
(2023). https://doi.org/10.1007/978-3-031-30589-4_4

Hwang, J.Y., Jarecki, S., Kwon, T., Lee, J., Shin, J.S., Xu, J.: Round-reduced mod-
ular construction of asymmetric password-authenticated key exchange. In: Cata-
lano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 485-504. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_26

Jablon, D.P.: Extended password key exchange protocols immune to dictionary
attacks. In: 6th IEEE International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE 1997), Cambridge, MA, USA,
June 18-20, 1997, pp. 248-255. IEEE Computer Society (1997)

Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456-486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7_15

Kiefer, F., Manulis, M.: Oblivious PAKE: efficient handling of password trials. In:
Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 191-208. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23318-5_11

Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400-425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4_24

Kiisters, R., Tuengerthal, M.: Composition theorems without pre-established ses-
sion identifiers. In: Chen, Y., Danezis, G., Shmatikov, V., (eds.) ACM CCS 2011,
pp- 41-50. ACM Press (2011)

MacKenzie, P.: On the security of the SPEKE password-authenticated key
exchange protocol. Cryptology ePrint Archive, Report 2001/057 (2001). https://
eprint.iacr.org/2001/057

https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/978-3-319-66787-4_17
https://doi.org/10.1007/978-3-319-66787-4_17
https://eprint.iacr.org/2014/585
https://doi.org/10.1007/978-3-030-57990-6_29
https://doi.org/10.1007/978-3-031-30589-4_4
https://doi.org/10.1007/978-3-319-98113-0_26
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-23318-5_11
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://eprint.iacr.org/2001/057
https://eprint.iacr.org/2001/057

40.

41.

42.

43.

44.

45.

Bare PAKE: Universally Composable Key Exchange from Just Passwords 217

Pointcheval, D., Wang, G.: VIBPEKE: verifier-based two-basis password expo-
nential key exchange. In: Karri, R., Sinanoglu, O., Sadeghi, A.-R., Yi, X. (eds.),
ASTACCS 17, pp. 301-312. ACM Press (2017)

Santos, B.F.D., Yanqi, G., Jarecki, S.: Randomized half-ideal cipher on groups with
applications to UC (a)PAKE. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023,
Part V. LNCS, vol. 14008, pp. 128-156. Springer, Heidelberg (2023). https://doi.
org/10.1007/978-3-031-30589-4_5

Santos, B.F.D., Gu, Y., Jarecki, S., Krawczyk, H.: Asymmetric PAKE with low
computation and communication. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp. 127-156. Springer, Heidel-
berg (2022). https://doi.org/10.1007/978-3-031-07085-3_5

Shoup, V.: Security analysis of spake2+. Cryptology ePrint Archive, Paper
2020/313 (2020)

W3C. Web authentication working group (2017). https://www.w3.org/groups/wg/
webauthn/

Wikpedia. Internet of things (2023). https://en.wikipedia.org/wiki/Internet_of_
things/

https://doi.org/10.1007/978-3-031-30589-4_5
https://doi.org/10.1007/978-3-031-30589-4_5
https://doi.org/10.1007/978-3-031-07085-3_5
https://www.w3.org/groups/wg/webauthn/
https://www.w3.org/groups/wg/webauthn/
https://en.wikipedia.org/wiki/Internet_of_things/
https://en.wikipedia.org/wiki/Internet_of_things/

	Bare PAKE: Universally Composable Key Exchange from Just Passwords
	1 Introduction
	2 Preliminaries
	2.1 Computational Assumptions

	3 Bare Password-Authenticated Key Exchage
	3.1 Previous UC PAKE Models
	3.2 The UC Bare PAKE Model
	3.3 Syntax of Bare PAKE and Structured Protocols

	4 Transformations Between PAKE and Bare PAKE
	5 Password-Only Encrypted Key Exchange
	5.1 Simplified NIKE
	5.2 The EKE Construction

	6 Password-Only CPace
	7 Security Under Adaptive Corruptions
	7.1 Adaptive Security of EKE-NIKE
	7.2 Adaptive Security of CPace

	References

