q

Check for
updates

Password-Protected Threshold Signatures

Stefan Dziembowski'2®) @, Stanislaw Jarecki®®, Pawel Kedzior

Hugo Krawczyk*®, Chan Nam Ngo®®, and Jiayu Xu®

! University of Warsaw, Warsaw, Poland

{p.kedzior,s.dziembowski}@mimuw.edu.pl
2 IDEAS NCBR, Warsaw, Poland
3 University of California Irvine, Irvine, USA
sjarecki@uci.com
4 Amazon Web Services, Seattle, USA
5 Privacy + Scaling Explorations, Ho Chi Minh City, Vietnam
namncc@pse.dev
5 Oregon State University, Corvallis, USA
xujiayQ@oregonstate.edu

Abstract. We witness an increase in applications like cryptocurrency
wallets, which involve users issuing signatures using private keys. To pro-
tect these keys from loss or compromise, users commonly outsource them
to a custodial server. This creates a new point of failure, because com-
promise of such a server leaks the user’s key, and if user authentication
is implemented with a password then this password becomes open to
an offline dictionary attack (ODA). A better solution is to secret-share
the key among a set of servers, possibly including user’s own device(s),
and implement password authentication and signature computation using
threshold cryptography.

We propose a notion of augmented password-protected threshold sig-
nature (aptSIG) scheme which captures the best possible security level
for this setting. Using standard threshold cryptography techniques, i.e.
threshold password authentication and threshold signatures, one can
guarantee that compromising up to ¢ out of n servers reveals no informa-
tion on either the key or the password. However, we extend this with a
novel property, that compromising even all n servers also does not leak
any information, except via an unavoidable ODA attack, which reveals
the key only if the attacker guesses the password.

We define aptSIG in the Universally Composable (UC) framework and
show that it can be constructed very efficiently, using a black-box compo-
sition of any UC threshold signature [13] and a UC augmented Password-
Protected Secret Sharing (aPPSS), which we define as an extension of prior
notion of PPSS [30]. As concrete instantiations we obtain secure aptSIG
schemes for ECDSA (in the case of ¢ = n — 1) and BLS signatures with
very small overhead over the respective threshold signature.

Finally, we note that both the notion and our generic solution for aug-
mented password-protected threshold signatures can be generalized to
password-protecting MPC for any keyed functions.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
K.-M. Chung and Y. Sasaki (Eds.): ASTACRYPT 2024, LNCS 15486, pp. 174-206, 2025.
https://doi.org/10.1007/978-981-96-0891-1_6

)

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0891-1_6&domain=pdf
http://orcid.org/0000-0002-6914-6425
http://orcid.org/0000-0002-5055-2407
http://orcid.org/0000-0003-2270-8694
http://orcid.org/0000-0003-3130-1888
http://orcid.org/0000-0001-9783-3911
http://orcid.org/0000-0002-0881-9980
https://doi.org/10.1007/978-981-96-0891-1_6

Password-Protected Threshold Signatures 175

1 Introduction

Threshold signatures have been studied for over 30 years [19]. Recently, their
practical applicability increased significantly due to the use of signatures in
blockchains and cryptocurrencies, especially for transaction authorization on
behalf of users. In particular, multiple schemes have been developed for threshold
ECDSA given the wide use of ECDSA in blockchains, e.g. [14,20,24,33]. Recall
that in a (¢,n)-threshold signature the private signing key is shared between a
set of n servers, and t + 1 of them must collaborate to produce a signature;
security requires that breaking into any ¢ servers does not allow an attacker to
forge signatures. Users that utilize a signature to authorize electronic transac-
tions, e.g., the transfer of monies between accounts, but want to protect their
keys from loss or compromise, can outsource signature generation to a trusted
service that implements a threshold signature scheme. Yet, this setting raises
the question of how a user can authorize the servers to sign on her behalf. An
attacker who impersonates the user in this authorization process can request
signatures on messages of its choice. On the other hand, if this authentication
requires a user-held cryptographic key then we have a chicken-and-egg problem:
we outsourced one user’s key but we still require the user to hold another.

We can break this loop if we consider a setting where the authorization
depends on a user’s password. However, this presents another conundrum: Asking
the user to pick an independent password for each server requires too much
memorization (without secure storage), but using the same password with each
server would create n points of failure, because an attacker who manages to
break any one of the n servers would be able to run an offline dictionary attack
against the user’s password, and then use the password to authorize all other
servers to sign any message.

Augmented Password-Protected Threshold Signatures. Our goal is a
threshold signature scheme where all the user needs to authorize messages to be
signed is a single password. The break of any t servers should leak no informa-
tion that allows to attack either the signature scheme or the password, and the
security should not rely on any secret or public keys stored or carried by the
user. We refer to this notion as Password-protected Threshold Signature (ptSIG).

But we want more: We want that even after the compromise of more than t
servers (and possibly all n servers), the only information the attacker can gain
requires finding the right password via an ezhaustive offline dictionary attack
(ODA). (Note that if a password triggers correct signature generation then an
ODA on all-servers compromise is unavoidable.) In other words, the password
should not only authenticate the user to the servers, but even if all servers are
compromised they cannot produce signatures unless the attacker guesses the
password. In particular, a solution that simply secret-shares the signing key
among the servers would not work. In summary, we seek solutions that offer the
following guarantees:

1. Each protocol execution, either by the user or by the servers, allows the
attacker an online password test for only one password guess.

176 S. Dziembowski et al.

2. Compromising up to t servers results in no security loss, i.e. the attacker
learns no information on either the signature key or the password.

3. Compromising ¢ + 1 or more servers (even all n) does not give the attacker
any information either, without the attacker first succeeding in an exhaustive
offline dictionary attack (ODA) against the user’s password.

Properties 1 and 2 can be achieved by a composition of threshold Password-
Authenticated Key Exchange (tPAKE) [35] and threshold signature scheme
(tSIG) [18]. However, property 3 is not implied by such composition, and indeed
does not seem easy to achieve using any tPAKE and tSIG schemes alone.

Support for Server-Side Security Mechanisms. We add one further
requirement, and we refer to a notion which satisfies all requirements 14 as
Augmented Password-protected Threshold Signatures (aptSIG):

4. An attacker who knows the password, can sign only one message per each
interaction with ¢ 4+ 1 servers, and only if these servers agree to sign it. In
particular, if the attacker compromised ¢ < ¢ servers, it can sign only one
message per each interaction with (¢ + 1) — ¢’ uncompromised servers.

Property 4 implies that the scheme cannot reveal the signing key to the user
even if they hold the right password, as this would allow an attacker who com-
promises the password to sign messages without further server involvement. In
contrast, an aptSIG scheme can limit such attacker by several mechanisms, such
as rate-limiting, i.e. allowing only a limited number of signatures per time inter-
val; implementing multi-factor authentication, which the attacker would need to
bypass even if it learns the password; and signing messages only if they are com-
pliant with an application policy, i.e. only messages with application-compliant
semantics (e.g. including the correct current date). Note that Property 4 also
protects the user in case of a break into the client machine: Such break might
leak the password, but it cannot leak the signing key.

Augmented Password-Protected Secret Sharing (aPPSS). We introduce
a protocol tool that plays an essential role in our aptSIG construction. Recall the
notion of Password-Protected Secret Sharing (PPSS) [5]. A (¢,n)-PPSS scheme
allows user U to share a secret s among n servers and “protect” this sharing by a
password pw, in the sense that PPSS reconstruction will recover s if and only if
the user interacts with ¢ + 1 servers using the same password pw. (No extra user
storage or authentication infrastructure such as PKI is assumed except during user
registration.) PPSS security requires that compromising any ¢ servers leaks no
information on either the secret s or the password pw. However, for the purpose of
building an aptSIG scheme, we need a stronger notion of PPSS with the following
additional property: a compromise of more than ¢ servers (even all n of them)
still does not leak s and pw immediately, but only allows the attacker to stage an
offline dictionary attack on the password, and this offline attack will leak s only
if the attacker finds pw. We formalize this notion in the Universally Composable
(UC) model [11] and refer to it as augmented PPSS (aPPSS), and we show that
an existing PPSS scheme of [30] sufficiently realizes this stronger notion.

Password-Protected Threshold Signatures 177

From aPPSS to aptSIG. Armed with the aPPSS tool, we build an aptSIG
as follows. We start with a threshold signature scheme (tSIG) which relies on
n servers and an additional entity U, called the user, where breaking the tSIG
scheme requires breaking into ¢+ 1 servers plus compromising U. A tSIG scheme
for this “l4threshold” access structure can be obtained from regular (t,n)-
threshold signature by e.g. providing multiple shares to the user, but many
threshold signatures can be adapted to this access structure more efficiently, as
we exemplify by the BLS-based construction of Sect. 2.1.

At a high level, our aptSIG scheme works as follows:

— At initialization, which we assume runs over authenticated channels, e.g. using
PKI for server authentication!, the tSIG scheme is initialized so that the
servers and the user get the information needed to later run the signing pro-
tocol. Let tsy denote the state that U needs to store to run tSIG signature
protocol (this would include the share of the signature key, but also possibly
the keys needed to authenticate/encrypt tSIG protocol messages). In addi-
tion, servers and U initialize an aPPSS instance under the user’s password
which produces a random secret sk learned by U. The user authenticates-and-
encrypts the state tsy under key sk to obtain an authenticated encryption
ciphertext aecy, and sends aecy to all servers who store it. U then erases all
information and only remembers its password.

— To sign message m, party U and the servers run aPPSS reconstruction by
which U, using its password, retrieves sk. The servers send aecy back to U
who authenticates-and-decrypts it under sk to learn its tSIG state tsy. Finally,
now that U holds its tSIG state, U and the servers run the tSIG scheme to
sign m.

Definitions, Generic Construction, Efficient aptSIG Instantiations.
Regarding the security of our construction, all of our constructions are defined in
the UC model, which is essential for security under arbitrary composition: First,
we frame the new notions of aPPSS and aptSIG as UC functionalities; second,
we generalize the UC tSIG notion of Canetti et al. [13], which was defined only
for the n-out-of-n setting, to arbitrary (¢,n)-threshold and 1+threshold access
structures.

Next, we show how to efficiently realize our UC aptSIG notion: the schematic
outline above provides a generic design of UC aptSIG scheme from any UC
aPPSS and UC tSIG that supports the 1+threshold access structure. In this
construction, the only overhead incurred while compiling a tSIG to an aptSIG
is the cost of the aPPSS scheme, which can be instantiated efficiently: our UC
aPPSS scheme, which is essentially identical to the PPSS of [30], is a generic
construction from any UC Oblivious PRF (OPRF), and using the 2HashDH
OPRF of [30] it requires only two communication flows and its computational
cost is 1 exponentiation for each server and t + 2 for the user.

1 Authenticated channels between user and servers are needed at initialization in order
for the user to identify the servers it is communicating with, but such channels, or
PKI, are not needed for later signature generation.

178 S. Dziembowski et al.

At first glance, it seems that this generic construction leads to a UC-secure
aptSIG implementation of ECDSA based on the UC ECDSA scheme of [13]
adapted to the 1+threshold access structure. However, that scheme was shown
secure only for the additive n-out-of-n sharing, so the result in [13] only implies
an aptSIG with ¢ = n — 1. In the general case, one would have to carefully
verify whether the generalization of ECDSA of [13] to the (¢,n)-threshold and
1+threshold settings realizes the UC tSIG functionality for these access struc-
tures. Moreover, that scheme requires several rounds of interaction.

For the general case, we instead present a concrete round-minimal and highly
practical aptSIG scheme (see Fig. 8 in Sect.5) based on a threshold BLS signa-
ture [7,8]. It requires only 2 communication flows in signing, 3 flows in initial-
ization, uses no server-to-server communication, and takes O(1) exponentiations
per server and O(n) exponentiations and bilinear maps for the user. We prove
that this BLS-based scheme realizes the UC tSIG functionality for the 1+thresh-
old access structure for any ¢ < n s.t. (?) is polynomial in the security parameter;
this probably can be extended to any parameters n,t using the results of Bacho
and Loss [4] and Das and Ren [16] (see Sect. 2.1).

Extensions to Password-Protected MPC. While this paper develops defi-
nitions and mechanisms specific to the case of aptSIG, our approach and tech-
niques can be generalized to provide “password-protection” of other crypto-
graphic functions. For example, in the case of encryption, a user may want to
decrypt encrypted data only in collaboration with a threshold of servers con-
ditioned on knowledge of a password, and with additional assurances similar
to those in our aptSIG treatment (e.g., enforcing a decryption policy by the
servers, allowing for rate limits, etc.). In another example, one can consider a
variant of aptSIG where the keyed function is a blind signature scheme, to keep
messages signed hidden from the servers. In general, one can use this approach to
password-protect multi-party computation of arbitrary functions, with security
guarantees as in items 1-4 above, but with signatures replaced by an arbitrary
keyed function. We leave such extensions and generalizations as subjects for
future work.

MPC for Obfuscated Point Function. Finally, observe that aPPSS can be
seen as a distributed computation of the point function

s if x = pw
Phow,s(v) = {L otherwise
The aPPSS protocol computes PFp, () in a distributed setting, by user U hold-
ing input and the servers holding the secret-sharing of the function description
(pw, s), with U computing the output y = PFp s(x). Moreover, the aPPSS prop-
erty that even a compromise of all servers allows for recovery of s (and pw) only
via an offline dictionary attack, implies that the server-held shares reconstruct
an obfuscated representation of point function PF,, s, i.e. a software black-box
which allows evaluation of PFp, (-) on any input (e.g. password guess), but it
leaks no information on (pw, s) unless one queries it on input « = pw. Thus, an

Password-Protected Threshold Signatures 179

efficient aPPSS scheme implies an efficient evaluation of a secret-shared obfus-
cated point function, and as such it can find other applications.?

Applications to Blockchain Wallets. Some very attractive applications for
threshold cryptography come from the blockchain domain. Recall that cryp-
tocurrency coins are signature keys, spending a coin is implemented as a signing
operation, and that storage of these signature keys is one of the most sensitive
parts of the entire blockchain ecosystem. This problem is addressed by the use
of so-called hardware wallets (see, e.g., [2]), threshold wallets (see, e.g., [15]),
or MPC wallets (see, e.g., [3]). Our solution provides a stronger, practical, and
flexible alternative to these methods. Our solution implements a threshold wal-
let, enabling storing cryptocurrencies in a threshold way, but it simultaneously
protects them with a password in two ways: One way, which is standard, is that
the user must use a correct password to access their cryptocurrency stored in
a threshold wallet. The second way, which is novel, is that the shares stored
by the threshold wallet parties are effectively encrypted under the password,
so even corruption of all the threshold wallets parties does not leak the cryp-
tocurrency keys in the clear. Instead, a corruption of all threshold wallet parties
reveals an obfuscated “output-a-key-only-if-input-is-a-correct-password” black-
box, which allows only offline dictionary attacks against a password, and leaks
the cryptocurrency keys only if the adversary finds the correct password.

1.1 Further Related Works

Threshold Signatures. Threshold signatures were formalized by Desmedt and
Frankel in [19] with precursors including [9,17,18]. Since then countless papers
have studied threshold signatures for a variety of signature schemes. More recent
work in the area has been motivated by cryptocurrency applications with par-
ticular focus on Threshold ECDSA, e.g. [14,20,24,33] as a prevalent signature
scheme used in these applications. Among these works, our paper adopts the
UC formalism for threshold signatures from Canetti et al. [13] who present a
threshold ECDSA scheme that realizes this formalism.

Server-Aided Signatures. Using passwords in the context of threshold signa-
tures has been studied in the setting of server-aided signatures and their variants
[10,23,27,34,39]. These papers address the case of a user with access to a ded-
icated device that stores a strong signing key but requires user’s password to
generate signatures. The password prevents an attacker that gets hold of the
device from producing signatures at will, but an attacker can run an offline
dictionary attack by entering password guesses to the device. To prevent such
dictionary attacks these works add a remote server with whom the device shares

2 McQuoid et al. [36] made a related observation, that a (non-threshold) OPRF imple-
ments secure 2PC for evaluating (non-secret-shared) obfuscated point functions, and
used it to costruct 2PC on obfuscated inputs for a larger class of functions.

180 S. Dziembowski et al.

the signing key and whose participation is required for producing signatures.
The user typically enters its password on the device, but the interaction with
the remote server limits the number of password attempts an adversary can try
once it controls the user’s device. Some of the schemes also support hiding the
message being signed from the remote server. Most schemes in the literature
consider a single remote server but e.g. the work of [39] includes distributing
the remote server into a group of servers using a threshold signature scheme.

However, in all these cases, the user depends on its own device for generating
signatures. In particular, the device stores strong cryptographic keys. Our setting
is different. We assume users that carry with them nothing but their memorized
passwords; they do not even carry high-entropy public values (such as servers’
public keys), let alone dedicated devices. In particular, in our solution, a user
can trigger signatures by logging in from an arbitrary device.

Password-Authenticated Threshold Signatures. A different line of work
that shares similarities with our paper, but targets a different application and
has different security properties, is [1,6]. These papers deal with a single sign-
on setting where an identity provider (e.g., Google) authenticates users using
passwords, and upon authentication provides users with signed tokens (which
authenticates a user to some 3rd-party service). These works distribute the iden-
tity provider operation over a set of servers and use threshold cryptography in
two ways: First, they use threshold password authentication (tPAKE) to authen-
ticate users to the servers that implement a distributed identity provider; second,
the servers use a threshold signature (tSIG) to sign the requested token.
However, in this application the signing key is the provider’s key, which is
used to sign messages for all users, and it can be reconstructed if ¢ + 1 servers
are compromised. By contrast, in our case each user shares its own private key
across a set of servers, and neither this key nor the user’s password is leaked,
except via offline dictionary attack, even if all servers collude. Indeed, none of
the above cited works models or claims the “augmented” property we introduce
in the aptSIG notion, namely that the break of the system requires not only
that the attacker breaks into a sufficient threshold of servers, but that it also
succeeds in subsequent exhaustive offline attack against the user’s password.

Augmented Threshold PAKE and Proactive Security. In a concurrent
work, Gu et al. [28] define the notion of augmented threshold PAKE (atPAKE),
where the term “augmented” denotes the same security property as in our aug-
mented PPSS and augmented Password-protected Threshold Signatures. As the
standard notion of tPAKE [35], a (¢,n)-threshold atPAKE allows the user to
authenticate using a password to a set of servers who secret-share password-
related information, and the scheme leaks nothing if up to ¢ out of n servers are
compromised. However, if t+1 or more servers are compromised, the password
still doesn’t leak in the clear unless the attacker succeeds in an offline dictionary

Password-Protected Threshold Signatures 181

attack (ODA). Intuitively, in atPAKE servers must secret-share a (salted) hash
of the user’s password, rather than the password itself.

Apart from the fact that the work of [28] tackles a similar augmented property
in the context of a different threshold cryptosystem (threshold PAKE rather than
threshold password-protected signatures), their work also defines and constructs
a UC threshold OPRF (tOPRF), and we believe that the tOPRF-to-PPSS com-
piler of [31] offers an alternative implementation of UC aPPSS. One reason this
alternative aPPSS implementation is interesting is that all building blocks here
can be made proactively secure: the tOPRF of [28] can be proactively secure,
which leads to a proactively secure aPPSS, which (combined with a practively
secure threshold signature) in turn would result in a proactively secure aptSIG.

Paper Organization. Section 2 defines UC threshold signature (tSIG) for arbi-
trary access structures, and exemplifies it with a threshold BLS signature scheme.
Section 3 defines Augmented Password-Protected Secret Sharing (aPPSS) and
shows that the PPSS scheme of [30] realizes this notion. Section 4 defines Aug-
mented Password-protected Threshold Signature (aptSIG), and shows a generic
construction of secure aptSIG from aPPSS and tSIG schemes. Finally, in Sect. 5
we exemplify this generic compiler with an efficient and practical scheme based
on threshold BLS.

Due to space constraints we defer some material to the full version of this
paper [21]. Specifically, in the full version we include the proof of security for
the threshold BLS scheme, we include the security proof for our aPPSS scheme,
we compare our UC aPPSS model with prior PPSS definitions, we include the
security proof for our aptSIG scheme, we introduce versions of our aptSIG model
and the aptSIG protocol that add the property of Perfect Forward Security (PFS)
to the basic model (here we sketch this extension in Sect.4.1), and we show a
concrete BLS-based instantiation of the PFS-aptSIG scheme.

2 Threshold Signatures

Figure 1 shows a generalization of the ideal functionality for threshold signature
Fisic of Canetti et al. [13] to an arbitrary access structure S. The UC threshold
signature model of [13] extends the formalization of standard (i.e. non-threshold)
signatures as a UC functionality [12] (for prior and related work on UC signa-
tures see references therein) to the distributed setting where the signing key is
secret-shared among n servers. However, the UC formalization of [13] defined
it solely for the case of an n-out-of-n secret-sharing, where the signature is
unforgeable if the adversary corrupts up to n—1 servers, but all servers have
to participate to issue a valid signature. Here we extend the definition of [13]
to arbitrary access structures, including the (¢, n)-threshold access structure the
specialized “1+threshold” access structure we use in our aptSIG application.

182 S. Dziembowski et al.

Notation: We assume sid = (..., P) where P is a list of parties, and we let Pgq
denote set P specified by string sid. Ss;q denotes an access structure S applied
to set Pgiq, i.e. signatures for sid can be created only by a set A of parties s.t.
A € Sgiq. The functionality interacts with a set of parties P and an adversary A*.
Corr is initialized to the initial set of corrupted parties.

Key Generation:

[[<.P] On (tsig.keygen, sid) from party P (or (tsig.keygen, sid,P) from A* if P €
Corr), record and send to A tuple (tsig.keygen, sid, P).

I[{.V] On (tsig.publickey, sid,V) from A", if (tsig.keygen, sid, P) is recorded for all
P € P4 then record (sid,V).

[[<.I'] On (tsig.keygencomplete, sid,P) from A*, if 3 record (sid,V) then send
(tsig.publickey, sid, V) to P.

Signing:

[S.P] On (tsig.sign, sid, m) from P (or (tsig.sign, sid, P, m) from A" if P € Corr), if
I record (sid, V) then record and send to A™ tuple (tsig.sign, sid, m, P).

[S.S] On (tsig.signature, sid,m, S, o) from A", if S € S,q and tuple (tsig.sign, sid,

m, P) is recorded for all P € S then do the following;:

S.1] If 3 record (sid, m,o,0) then ignore this message;

.5.2] Else, if V(m, o) = 1 then record tuple (sid, m,o,1);

5.5.3] If V(m, o) = 0 then ignore this message.

[S.F] On (tsig.signcomplete, sid, m,P) from A*, if 3 record (sid,m,o,1) then send
(tsig.signature, sid, m, o) to P.

Verification:

[V.V] On (tsig.verify, sid, m, o, V) from P, send (tsig.verify, sid, m,o,V) to A* and:
[V.1] If 3 records (sid,V) and (sid,m, o, ') then set 8 := f';
[V.2] Else, if 3 record (sid,V) but no record (sid,m,o’,1) for any o’ then set
B :=0;
[V.3] Else set 8:=V(m,o).
[V.F] Record (sid,m, o,) and send (tsig.verified, sid, m, o, 3) to P.

Party Compromise: (This query requires permission from the environment.)

[PC] On (tsig.compromise, sid, P) from A*, set Corr := Corr U {P}.

Fig. 1. Threshold signature functionality Fisic for arbitrary access structure S

The threshold signature functionality Fisig consists of three parts, Key Gen-
eration, Signing and Verification. In contrast to [13], our functionality omits Key-
Refresh, but both versions support adaptive party compromise. Following [13],
w.l.o.g. we identify a public key V with an arbitrary deterministic algorithm, i.e.

Password-Protected Threshold Signatures 183

signature o on message m is valid iff V(m, o) = 1. Also following [13], we assume
that if party P participates in key generation, then P runs on an instance iden-
tifier sid of a form o = (..., P) where P is a set of parties, including P, which P
intends to involve in this instance. We denote the unique set P specified by sid
as Pgiq.

We use S;;4 to denote access structure S instantiated over set P;4. For exam-
ple, if Pg;q = {P1,P2,P3} and S is a 1-out-of-3 threshold access structure then
Ssia = {{P1},{P2},{Ps}}. Our aptSIG scheme in Sect.4 relies on a threshold
signature for a specialized “l+threshold” access structure S, where Pg;q is a
sequence of n + 1 parties (Po, P, ...,P,), P has a special status, and S consists
of all subsets S C Py s.t. (1) Pop € S and (2) |[SN{Py,..,P,}| >t+ 1. In
other words, a valid subset S must contain the special party Py and at least ¢+ 1
of parties Py, ..., P,,. (Looking ahead, in our aptSIG implementation servers will
play the role of parties Py, ...,P,, and Py will be the user.)

Threshold Signature Functionality: Discussion. To simplify notation in
the key generation phase we assume that a signature scheme instance invoked
with identifier sid generates a public key V, and a sharing of the correspond-
ing private key, only if all parties in set Pg;4 participate in the key generation
using the same identifier sid. However, once the key generation succeeds, then
a signature valid under the generated public key can be issued as long as it is
requested by any subset S C Pg;q of parties s.t. S € Sgq4.

Functionality Fisic of Fig. 1 simplifies the one in [13] by omitting the option
that lets all parties agree on a unique misbehaving party in each protocol phase.
Supporting this option seems to require reliable authenticated broadcast, and
since other protocols we use neither support a corresponding feature nor require
reliable broadcast, we omit it here. Following [13], our functionality Fisiq does
not support ssid’s in the signing phase and uses the message as an index of a
signing protocol instance. Functionality Fisig can be extended so every signer
has additional input ssid, and signature is output only if for some subset S € S;;4
all signers P € S run on the same (ssid, m). However, a cost-minimal protocol
like the Threshold BLS scheme in Fig. 2 does not enforce such ssid-uniformity,
so we opt for a simplified version of a signature functionality which, like the
functionality of [13], doesn’t enforce that either.

2.1 Threshold BLS Signature

The UC threshold signature functionality Fisig can be implemented for BLS
signature using the well-known protocol of Boldyreva [7]. Recall that a BLS
signature [8] assumes a group G of prime order p with a bilinear map e :
GxG—Grp, and defines o as a signature on m under public key V = ¢° if
e(g,0) = e(V,H(m)), where g generates G and H is a hash onto G. BLS sig-
nature is CMA-unforgeable in ROM under the Gap DH assumption, i.e. if the
computational Diffie-Hellman is hard in G even on access to a DDH oracle [8].

184 S. Dziembowski et al.

Notation: G = (g) is a group of prime order p with a bilinear map e : GXG — Gr;
H: {0,1}* — G is an RO hash; S is a “l1+threshold” access structure for any
t < n.

Key Generation: (assuming honest Py and secure point-to-point channels)

1. Party Py on input (tsig.keygen, sid) s.t. Ps;q = (Po, P1,...Py), picks so 5 Zp,
picks random t-degree polynomial f over Zj, sets {s; := f(i) mod p}ti=1,.. n,
s:=s0+s modp, V:=g° {V;:=g¢%}iz0,. n, and V.= (Mo, ..., Vi)

Then, for each i = 1,...,n, party Py sends secPOHpi{(sidHi),si,V,\7} to P;.
Finally, Py saves (0, so, V, \7) and outputs (tsig.publickey, sid, V).

2. Party P; on input (tsig.keygen, sid) s.t. Ps;qa = (Po,P1,...P,) and ¢ > 0, waits
for message secp, p, {(sid||i), si,V,V} from Py, and once such message is re-
ceived then P; saves (i,si,V,\7) and outputs (tsig.publickey, sid, V).

Signing:

1. On input (tsig.sign, sid, m), party P; retrieves (4, si,V, (Vo, ..., V»)) and sends
(¢, 04) for o; := H(m)** to all other parties.

Once P; receives (j,0;) s.t. e(g,0;) = e(V;j,H(m)) from a set of parties whose

union with {P;} is S € Syq (i.e., P; can “complete” the set by adding itself
to it), party P; outputs (tsig.signature, sid, m, o) for

o:=o0p- H (Uj))\j

Pjes—

where ST = S\ {Po} and);’s are Lagrange interpolation coefficients corre-
sponding to set S™. (Note that if Ps;q = (Po,P1,...,Pn) and S € Ssiq4, then
S ={Po}US™ where S™ is some subset of ¢t + 1 parties in {P1,...,P»}.)

Verification:

1. On (tsig.verify, sid, m, o,V), party P; sets 8 := 1 if e(g,0) = e(V,H(m)) and
B := 0 otherwise, and outputs (tsig.verified, sid, m, o, 3).

Fig. 2. Threshold BLS scheme for the “l1+4threshold” access structure

Figure2 shows a threshold BLS signature scheme that realizes functional-
ity Fisig for the “l1+4threshold” access structure, for any threshold ¢ < n. We
support this access structure by combining a 2-out-of-2 sharing with a stan-
dard threshold sharing. Namely, sharing § = (sq, s1, ..., $»,) is formed by picking
S0 <5 Ly, setting (s1, ..., 8,) as a (t,n)-threshold secret-sharing of random s’ in
Z,, and setting the shared secret as s = sg + s’ mod p. This way for any set S

Password-Protected Threshold Signatures 185

consisting of Py and some ¢ + 1 parties in {Py,...,P,}, secret s can be recon-
structed as s = s + D _p.cg- Ais; mod p where ST = S\ {Po} and \;’s are
Lagrange interpolation coefficients corresponding to set S~ .

Standard Threshold Access Structure. Note that setting so = 0 and remov-
ing Py from signing transforms the protocol in Fig.2 to a tSIG scheme which
supports the standard (¢,n)-threshold access structure. Moving in the other
direction, we believe that most threshold signature schemes based on Shamir
secret-sharing which realize Figig for the (¢, n)-threshold access structure, can
be transformed to support the “l+threshold” access structure using the above
approach, but unfortunately it is not a black-box transformation and must be
verified case by case.

Distributed Key Generation. The protocol in Fig.2 realizes Figig in the
presence of secure point-to-point channels in the Key Generation phase, and
assuming that party Py in list Pgq = {Po, ..., P»} is honest in that phase. The
assumption on authenticated channels in key generation is unavoidable because
Fisia enforces that a shared key is generated only if all parties in Pg;q execute
(tsig.keygen, sid), and using arbitrary key exchange protocol allows the partici-
pants to upgrade authenticated channels to secure point-to-point channels. As
for the assumption on one honest party in key generation, this suffices for our
aptSIG application, but this assumption can be easily eliminated by using any
Distributed Key Generation (DKG) protocol for a discrete-log-based cryptosys-
tem, e.g. [25,38]. The analysis of the protocol in Fig.2, presented in the full
version of the paper [21], can be upgraded to this more general setting, e.g.,
by modeling the DKG subprotocol using the UC DKG functionality Fpkg of
Wikstrom [38], adapted to the 1+threshold access structure.

Theorem 1. If BLS signature is CMA-unforgeable then the threshold signature
scheme in Fig. 2 realizes functionality Fisic for the “I+threshold” access struc-
ture for parameterst,n s.t. (?) 1s polynomial in the security parameter, assuming
secure point-to-point channels and honest party Py in the Key Generation phase.

Proof of Theorem 1 is presented in the full version of the paper [21]:

Security for Arbitrary ¢,n Parameters. First, as sketched above, the scheme
of Fig.2 can be strengthened by replacing honest Py with a secure DKG pro-
tocol. Moreover, Theorem 1 can be extended to arbitrary (t,n) values if the
environment is restricted to static corruptions, i.e. all corruptions are made at
the outset. This can be easily verified by inspecting the proof of Theorem 1 in
the full version of the paper: the current reduction needs to guess a subset of
corrupted parties, causing it to fail except with 1/ (?) probability; however, in
the static corruption setting, the reduction no longer has to make such a guess.

Furthermore, Theorem 1 can be extended to arbitrary (¢,n) values while
allowing adaptive corruptions, following the analysis of threshold BLS by Bacho
and Loss [4] in the Algebraic Group Model (AGM) [22], under the One-More
Discrete Logarithm (OMDL) assumption. The analysis of [4] was done for the
standard (t,n)-threshold BLS but we believe that it can be extended to BLS

186 S. Dziembowski et al.

which supports the 1+threshold access structure. The result of [4] also applies
to several instantiations of a DKG protocol, including Pedersen’s JF-DKG [37]
and New-DKG by Gennaro et al. [25]. In a recent work Das and Ren [16]
showed a (t,n)-threshold BLS protocol which they show adaptively secure in
the standard model, without AGM, and this protocol can also be extended to
the 1+threshold setting. We note that the analysis of both [4] and [16] was
arguing tSIG security defined via a game-based notion, so one also has to verify
that they extend to the UC notion of tSIG captured by functionality Fisic.

3 Augmented Password-Protected Secret Sharing

Augmented Password-Protected Secret Sharing (aPPSS) is a main component
in our aptSIG scheme construction. Here we follow the informal description of
aPPSS in the introduction with a formalization of this notion in the UC model.
We then show how to instantiate this primitive with the PPSS construction of
[29]. The latter masks shares of a threshold secret-sharing with outputs of Obliv-
ious Pseudorandom Functions (OPRF) computed on the password. Since UC
OPREF can be realized very inexpensively with protocol 2HashDH, this OPRF-
based scheme leads to aPPSS with a retrieval cost of only 1 exponentiation per
server and t 4+ 2 exponentiations per user. Concrete instantiation of aPPSS is
shown in Fig. 8 as part of aptSIG protocol.

3.1 Modeling Augmented Password-Protected Secret Sharing

The augmented PPSS functionality F,ppss presented in Fig. 3 has four phases. In
the initialization phase, user U can use command ppss.uinit on input a password
pw ([I.U]), to initialize a PPSS instance with a set of n servers whose identities
Pgig = {P1,...,P,} are assumed to be encoded in the session identifier, i.e.
sid = (sid’,Psid). The servers in Pg;4 join this initialization using command
ppss.sinit for matching sid and U ([1.9]). Finally, command ppss.fininit from the
ideal adversary A* corresponds to successful initialization, which allows U to
output a secret random key sk which will be protected using this aPPSS instance
([I.F]). (Observe that this random key sk can be used to authenticate-and-encrypt
arbitrary data, and indeed this is how we use it in the aptSIG protocol of Sect. 4).

The reconstruction command ppss.urec represents a user U’ at a potentially
different network entity, attempting to recover the secret key sk using password
pw’, which may or may not be equal to pw used in initialization ([R.U]). The
reconstruction operation is directed to a set of ¢ + 1 servers S. We emphasize
that the user maintains no state between the initialization and the reconstruction
operations except for memorizing password pw and its username sid (although we
also model the user forgetting pw and causing a failure during reconstruction—
see below). In particular, the user might connect to a different set of servers
in initialization and in reconstruction. Hence, for example, if a user executes
the reconstruction protocol with a set of corrupted servers S, the F,ppss func-
tionality guarantees that even in this case, the adversary can only perform an
inevitable on-line guessing attack—which we explain below.

Password-Protected Threshold Signatures

187

Notation: We assume strings sid of form sid = (...,P) where where P =
(P1,...,Pn). Psiq denotes set P specified by string sid. The functionality interacts
with a set of parties and an adversary A". Let Corr be the initial set of corrupted
parties. Values t, n, A are parameters. Functionality initializes ppss.pwtested(pw) :=
0 for all pw, and tx(P;) := 0 for all P;.

(The functionality code handles only one instance, tagged by a unique string sid.)

Initialization:

[.LU] On (ppss.uinit, sid, pw,sk™) from party U s.t. |Psq| = mn: Send
(ppss.uinit, sid, U) to A*. If U is honest then set sk+<—s{0,1}", else set
sk := sk*. Save (ppss.uinit, sid, U, pw, sk). Ignore future ppss.uinit calls for same
sid.

[[.S] On (ppss.sinit, sid,i,U) from party S, or (ppss.sinit, sid,,S,U) from A* for
S € Corr, send (ppss.sinit, sid, i, S,U) to A", save (ppss.sinit, sid, U, S, 7).

[[LA] If 3 rec. (ppss.uinit, sid, U, pw,sk) and (ppss.sinit, sid, U,S,4) s.t. S=P;q[i],
mark S as ACTIVE.

[I.LF] On (ppss.fininit, sid) from A", if 3 rec. (ppss.uinit, sid, U, pw, sk) and all parties
in list P;q are marked ACTIVE, send (ppss.fininit, sid, sk) to U.

Server Compromise: (This query requires permission from the environment.)
[SC] On (ppss.compromise, sid, P) from A*, set Corr := Corr U {P}.
Reconstruction:

[R.U] On (ppss.urec, sid, ssid,S,pw’) from party U’ or from U = A* send
(ppss.urec, sid, ssid,U’;S) to A*. If 3 record (ppss.uinit,sid, U, pw,sk)
then create record (ppss.urec,sid,ssid, U’ pw,pw’,sk), else create record
(ppss.urec, sid, ssid, U’, L, pw’, 1). Ignore future ppss.urec calls for same ssid.

[R.S] On (ppss.srec, sid, ssid, U’) from party S or (ppss.srec, sid, ssid,S,U’) from A*
for S € Corr, send (ppss.srec, sid, ssid,S,U’) to A*. If S is marked ACTIVE
then increment tx(S) by 1.

[R.F] On (ppss.finrec, sid, ssid, C, flag, pw*,sk™) from A*, if 3 rec. (ppss.urec, sid,
ssid, U’ pw, pw’, sk) then erase it and send (ppss.finrec, sid, ssid, sk’) to U’ s.t.

[R.E1] if flag = 1, |C|] = t+ 1, and Vsec(tx(S) > 0) then set tx(S)-— for all
S € C, and if pw = pw’ then set sk’ := sk else set sk’ := 1;

[R.I.2] if flag = 2 and pw* = pw’ then set sk’ := sk*;

[R.17.3] otherwise set sk’ := L.

Password Test:

[PT] On (ppss.testpw, sid,S,pw*) from A*, retrieve (ppss.uinit,sid,U, pw,sk).
If tx(S)>0 then add S to set ppss.pwtested(pw”) and set tx(S)-—. If
|ppss.pwtested(pw™)| = t+1 then return sk to A™ if pw* = pw, else return L.

Fig. 3. Augmented PPSS functionality Fappss

188 S. Dziembowski et al.

Similar to the ppss.uinit and ppss.sinit commands in the initialization phase,
the ppss.urec and ppss.srec queries control resp. user and server entering into
the reconstruction subprotocol. The crucial rule enforced by F,ppss is that each
server S € Pg;4 which joined the initialization is associated with a ticket counter
tx(S), and this ticket counter is incremented only if S enters into the aPPSS
reconstruction instance. (Which in particular means that corrupt S can increase
these tickets at will, see below.) Since we do not assume authenticated links,
U’ session can be “routed” by the adversary to arbitrary servers; hence in the
ppss.finrec command, A* specifies a set C of servers of its choice for participation
in this reconstruction ([R.F]). The protocol finalization command ppss.fininit can
result in three possible outcomes:

— In a successful reconstruction session ([R.F.1]), U’ outputs key sk created
in the initialization, which can happen only if (I) pw’ = pw, i.e., U’ runs
on the correct password, (II) tx(S) > 0 for all S € C, i.e., an adversary
connected U’ to servers who participated in the initialization and these servers
engaged in PPSS reconstruction (note that each of these ticket is decremented
at ppss.fininit, hence each PPSS reconstruction can be “used” only once),
and (IIT) the adversary allowed all these reconstructions to proceed without
interference, which is modeled by setting flag=1.

— The adversary can connect U’ only to corrupt servers ([R.F.2]), which offers A4*
an ability to perform an on-line guessing attack on the user, because w.l.o.g.
the adversary could execute the reconstruction protocol on behalf of corrupt
servers on password pw* and secret sk* of its choice, and if pw* = pw this
would cause U’ to reconstruct the adversarially chosen value sk*. An on-line
guessing attack is modeled by A* setting flag = 2.

— In all other cases the reconstruction fails and U’ outputs L ([R.F.3]).

Adaptive Compromise and Password Tests. Command ppss.compromise
allows A* to adaptively compromise any party P ([SC]). The only effect this
has is if P = S for some S € Py, i.e. if A* compromises one of the servers
participating in the initialization. Moreover, the effect of such compromise is
not a leakage of any data (password pw or secret sk), but an ability for A4* to
create unlimited “tickets” for A*, i.e. to increment tx(A*) at will. Such tickets
can be used in the test password command ppss.testpw ([PT]): This query lets
A* specify a password guess pw* and a server S, and F,ppss adds S to the set of
servers for which A* tests pw*, but each such action “costs” one ticket because
Fappss decrements tx(S). If the adversary tests the same pw* on ¢ + 1 servers
then if pw* # pw, F,ppgs responds L, but if pw* = pw then F,ppss leaks the
aPPSS-protected secret sk. Note that the ticket-counting mechanism of F,ppss
enforces that any aPPSS instance completed by a server can be used either for a
single instance of the honest user reconstructing a secret, or for a single instance
of an adversary who uses ppss.testpw to attempt to reconstruct sk using a guessed
password pw*.

Password-Protected Threshold Signatures 189

On Authenticated Channels. Functionality F,ppss assumes authenticated
channels during initialization: When user U specifies, via command ppss.uinit,
a set Pg;q of servers to initialize a secret-sharing instance, the adversary can
only decide whether or not to allow this protocol to complete. This means that
the adversary can block any party from communicating with the user, but it
cannot divert this initialization to a different set of parties. In particular, only
the corruption of parties in Pg;4 may have an effect on the security of the protocol
with consequences as described above. To enforce these conditions, U needs the
means to authenticate each P € Pg;4 during initialization which is modeled via
the authenticated channel functionality FayTh. Importantly, we do not assume
authenticated channels in the reconstruction phase of F,ppss.

3.2 aPPSS Protocol

In Fig.4 we show a UC aPPSS scheme, denoted II,ppgs, based on the PPSS
scheme of Jarecki et al. [30]. Protocol IT,ppss uses UC OPRF, modeled by
functionality Foprr, and it assumes authenticated channels, modeled by func-
tionality FauTu, but it uses the latter only in the Initialization phase. At a high
level the protocol proceeds as follows:

Initialization: User U asks for an OPRF evaluation p from each server S’s
Foprr using its password pw, and uses those evaluations as encryption keys
for encrypting the threshold shares {s;} generated with the Shamir’s secret
sharing scheme from a random secret s. Together with the user’s password pw,
and the encrypted shares e = {e;}, U creates a cryptographic commitment
[C||sk] = H(pw, e, s) and uses sk as the secret key. The ciphertexts e = {e;}
and C are then sent via the authenticated channel (via Faurn) and kept at
the servers. The user keeps nothing besides remembering the password pw.

Reconstruction: To reconstruct, user U starts with asking for the OPRF eval-
uation p from each server S’s Foprr using its password pw along with the
ciphertexts e = {e;} and commitment C. The OPRF evaluations {p;} are
used to decrypt the ciphertexts to Shamir’s shares {s;} which can be used
to reconstruct the secret s via interpolation. Finally the user U can recreate
[C||sk] = H(pw, e, s) and obtain sk, after checking that C' matches the ones
sent by the servers.

Protocol IT,ppss in Fig.4 is, up to some small differences (e.g., using a global
OPRF functionality) the same as the PPSS of Jarecki et al. [30], except that we
replace generic non-malleable commitment used in [30] with a specific RO-based
implementation H. However, the novelty here with respect to the PPSS protocol
of [30] is its analysis as an augmented PPSS.

Theorem 2. IfH is a random oracle, then the protocol in Fig. 4 UC-realizes the
Fappss functionality assuming access to the OPRF functionality Foprr and the
message authentication functionality FauTH.

Proof of Theorem 2 is shown in the full version of the paper [21].

190 S. Dziembowski et al.

Public parameters: Security parameter A, threshold parameters t,n € N with ¢t <
n, field F := GF(2*), hash function H with range {0,1}**.

Initialization for user U:

1. On input (ppss.uinit, sid,pw) s.t. |Psiqa| = n, send (oprf.eval,[sid||i]|0],
pw, Psiqli]) to Foprr for each i € [n].

2. Wait for messages (oprf.eval, [sid]||i]|0], ps, tr;) from Foprr and (sent, [sid||||0],
Piali], U, tr) from Faurn, for all i € [n]. Abort if Ji € [n] s.t. tr} # tr;.

3. Pick s <3 F, set (s1,...,5n) as a (t,n) Shamir secret sharing of s over F.

4. Set e; := s; @ p; for i € [n], set e := (e1,...,en), set [C||sk] := H(pw, e, s) s.t.
|C| = |sk| = \. Set w := (e,C).

5. Send (send, [sid||i||1], Psa[i],w) to Favru for each i € [n] and output
(ppss.fininit, sid, sk).

Initialization for server S:

1. On input (ppss.sinit, sid, i, U), send (oprf.init, [S||sid]) and
(oprf.sndrcomplete, [S||sid], 0) to Foprr.

2. Given response (oprf.sndrtrans, [S||sid],0,trs) from Foprr, send
(send, [SidHZ‘HO], U,trs) to Faurna.-

3. On (sent, [sid||7||1],U, Ps,w) from Faurw, save (sid,i,w).

Reconstruction for user U:

1. On input (ppss.urec,sid, ssid,S,pw’) s.t. |S| = ¢+1, send (oprf.eval,
[sid||j||ssid], S[4], pw’) to Foprr for j € [t+1].

2. Wait for messages (oprf.eval, [sid||j||ssid], ¢;,tr;) from Foprr and messages

(ij,w;) from S[j], for all j € [t+1]. If 3 j1 # jo s.t. 45, = 45, Or wj; # Wy,

or 3 j st. i; & [n] (ie., if 4;’s are not all distinct, or w;’s are not all the

same, or some %, is out of range [n]), output (ppss.urec, sid, ssid, 1) and halt.

Otherwise set p;, := ¢; for j € [t+1] and I := {i; |j € [t+1]}.

Parse any w; as (e’,C"), parse €’ as (e, ...,e}), set s; := ¢; @ pj for all i € I.

Interpolate {(¢, s})}icr to recover secret s’ and shares {s}}igs.

Set [C"||sk'] := H(pw', €', s"). If C" # C" then reset sk’ := L.

Output (ppss.finrec, sid, ssid, sk’).

o Tk W

Reconstruction for server S:

1. On input (ppss.srec, sid, ssid, U), retrieve record (sid,i,w) (if no such record
then abort), send (oprf.sndrcomplete, [S||sid], ssid) to Foprr and (i,w) to U.

Fig. 4. Protocol IT,ppss which realizes Fappss in (Foprr, FauTa)-hybrid world

Password-Protected Threshold Signatures 191

4 Augmented Password-Protected Threshold Signature

We introduce our model for Augmented Password-protected Threshold Signa-
ture (aptSIG), and we show a secure construction of aptSIG scheme by generic
composition of aPPSS and a Threshold Signature (tSIG).

4.1 Modeling Augmented Password-Protected Threshold Signature

We model Augmented Password-protected Threshold Signature (aptSIG) using
an ideal functionality Fapisic, shown in Fig. 5 and Fig. 6. A (¢, n)-threshold apt-
SIG involves n + 1 parties, a user U and n server Sq,...,S,, and it supports
two distributed protocols, initialization and signing. An initialization protocol
generates a public key for a signature scheme and protects the corresponding
private key by secret-sharing it and protecting this sharing using user’s pass-
word pw s.t. the sharing can be reconstructed only using this password. The
signing protocol allows the user and the servers to sign any message m as long
as (a) the user and at least ¢ 4+ 1 of the servers agree to sign it, and (b) the user
provides a matching password pw’ = pw into the signing protocol. Therefore,
aptSIG scheme functions as an outsourced signature service for party U, where
U’s secret key is distributed and password-protected by the servers, but using the
right password lets U obtain signatures as long as t + 1 servers agree to sign.

Corruption of up to ¢t out of n servers gives no information to the attacker,
while corruption of ¢t + 1 or more servers allows the attacker to reconstruct only
password-protected data. In particular, the data collected from all servers allows
the attacker an offline dictionary attack against the password, but that is all that
it allows. If the attacker finds the password via this offline search then security is
gone, and in our scheme the attacker reconstructs the signature private key, but
if the password is chosen with high-enough entropy and the dictionary attack
fails then the attacker gets no information about the signature key even if it
corrupts all n servers. We stress that in a secure aptSIG scheme the signing
key can never be reconstructed in one place. In particular, if the password leaks
but the adversary compromises fewer than ¢ + 1 servers then signatures can
only be created via the on-line signing protocol. Consequently, servers S; can
function as rate limiters or policy limiters, i.e. they can apply whatever policy
the environment specifies regarding the messages they can sign.

Ideal Functionality F,ts1q. In what follows we explain the security properties
imposed by the ideal functionality Fapesiq of Fig. 5 and Fig. 6. Since we show
that our aptSIG protocol of Sect. 4.2 securely realizes this functionality, this will
in particular imply the security properties of that aptSIG scheme.

(1) Faptsic: Honest Party Operation. Query (ptsig.uinit, sid, pw) from U
models user U starting initialization on a password pw with n servers specified
in identifier sid. (Using the convention of aPPSS, we assume sid = (sid’, P;q)
for Pgiq = (S1,...,Sn).) Query (ptsig.uinit, sid,,U) from S € P;4 models server
S entering into an initialization protocol, as an i-th server in list Pg;q, with U
as an intended “owner” of this password-protected signature instance. Query

192 S. Dziembowski et al.

Notation: (This figure uses the same notation as in Fappss, see Figure 3)

Initialization:

[I.U] On (ptsig.uinit, sid, pw) from party U for sid = (..., Psiq) s.t. |Psia| = n, send
(ptsig.uinit, sid, U) to A", save (sid, U, Ps;q, pw) and set flag flag,,, = 0.
Ignore further ptsig.uinit calls for same sid.

[[.5] On (ptsig.sinit, sid, i, U) from party S, or (ptsig.sinit, sid,7,S,U) from A* for
S € Corr, send (ptsig.sinit, sid, i, S, U) to A", save (sid,U,S,1).

[LF] On (ptsig.uinit, sid,V) from A", if 3 record (sid,U,Pgiq,pw) and records
(sid,U,S, i) for each S € P4, then create record (sid, Psa, pw, V) and send
(ptsig.verificationkey, sid, V) to U.

Signing:

[S.U] On (ptsig.usign, sid, ssid,S,pw’,m) from party U or from U = A* send
(ptsig.usign, sid, ssid, U’,S,m) to A*. If 3 record (sid, Ps;a, pw,V) then save
(sid, ssid, U, P g;q, pw, pw’, V, m), else save (sid, ssid,U’, L, L, pw’, L, m).
Ignore further ptsig.usign calls for same ssid.

[S.5] On (ptsig.ssign, sid, ssid, U, m) from party S or (ptsig.ssign, sid, ssid,S,U’,
m,b) from A* for S € Corr, if 3 record (sid, Psiq,pw,V) s.t. S € Py;q then
send (ptsig.ssign, sid, ssid,S,U’, m) to A*, save (sid,m,S), set tx(S)++ if S is
honest or b = 1.

[S.P’] On (ptsig.pretest, sid, ssid, C, flag, pw*) from A*, if 3 rec = (sid, ssid, U’, Pg;a,
pw, pw’, -, -) not marked as pretested(c) for any ¢ then:

[S.P.1] if flag = 1, |C| = t+1, and Vsec(tx(S)>0), then set tx(S)-—for all S € C,
set b := (pw’ == pw), send b to A* and mark rec as pretested(b);
[S5.P.1%] moreover, if b =1 and U’ € Corr U {A*} set flag,,; = 1;
[5.P.2] if flag = 2 then set b := (pw’ == pw*), send b to A*, and if b =1
then mark rec as pretested(2) else mark rec as pretested(0);

[S.I'] On (ptsig.finsign, sid, ssid, C’, flag, 0*, m*) from A*, retrieve rec = (sid, ssid,
U, Psia, pw, pw’, V, m) and do:

[S.F.0] if m= L and U’ € Corr U {A*} reset m := m*;

[S.F.1] if flag,;y = 1, rec is marked pretested(0), and U’ € Corr U {A*}, then
change rec mark to pretested(1);

[S.F.1] send (ptsig.finsign, sid, ssid, m, o) to U’ s.t.

[S.F.1.1] if flag = 1, rec is marked pretested(1), |C’| = t+1, C’ C P;q, 3 record
(sid,m,S) for all S € C’, V(m,c*) = 1, and there is no saved record
(sid,m,o0",0), then save record (sid, m,c",1) and set o := o™

[S.F.F.2] if flag = 2 and rec is marked pretested(2) then set o := o*;

[S.F.17.3] if neither of the above two cases is met set o := L.

Verification:

On (ptsig.verify, sid, m, 0, V) from Q, send (ptsig.verify, sid, m, o, V) to A™ and do:
[V.1] if 3 records (sid, Psia, pw, V) and (sid, m,o, ') then set 8 := 3';
[V.2] else, if 3 record (sid, Psiq, pw, V) but no (sid, m, o, 1) for any o then set 5 := 0;
[V.3] else set B :=V(m,o).

[V.V] Record (sid, m, o, 3) and send (ptsig.verified, sid, m, o, 3) to Q.

Fig. 5. Faptsia: Ideal Functionality for Password-Protected Threshold Signature

Password-Protected Threshold Signatures 193

Notation: (This figure uses the same notation as in Fappss, see Figure 3)

Server Compromise: (This query requires permission from the environment.)
[SC] On (ptsig.corrupt, sid, P) from A*, set Corr := Corr U {P}.
Password Test:

[PT] On (ptsig.testpw, sid, S, pw*) from A*, retrieve record (sid, Pg;q, pw, V).
If tx(S) > 0 then add S to set ppss.pwtested(pw*) and set tx(S)—— If
|ppss.pwtested(pw*)| = ¢ + 1 then return bit b = (pw* == pw) to A*. If
b =1 set flagy;; = 1.

Fig. 6. Adversarial Interfaces of Faptsia

(ptsig.uinit, sid, V) from A* models the ideal-world adversary allowing an initial-
ization instance identified by sid to complete, and U to output the public key
V. Note that all parties input the identities of all participants into the protocol,
and Fapesia reacts to query ptsig.uinit only if all intended parties participate in
the initialization. This is realizable if U and each S; can authenticate each other,
and our aptSIG protocol indeed relies on authenticated channels in initialization.
The public key V is associated with initialization identifier sid in the sense that
sid serves as a handle to the password-protected secret-sharing (ppss) of a private
signing key corresponding to V. (Functionality F,pssiq does not ensure that this
sharing is successfully established when U outputs V, but F,yisiq allows U to
verify it, e.g. if U invokes the signing protocol on a test message.)

Once key V is created, query (ptsig.usign, sid, ssid, S, pw’, m) from U’ mod-
els user U’ (possibly using a different platform than U, hence a different
name tag U’) who holds password pw’ (which might or might not equal to
pw) starting a signing protocol instance on message m and a ppss-protected
key identified by sid. Identifier ssid is a handle of U’ on that instance,
and S is a subset of ¢ + 1 servers with whom U intends to communicate.
However, Faptsic doesn’t enforce authentication in signing, and the signing
instance record it creates, (sid, ssid, U, Pgq, pw, pw’, V, m) ignores field S. Query
(ptsig.ssign, sid, ssid, U’,m) from S models S agreeing to sign m using the ppss-
protected key identified by sid. Field U’ is a counterparty address, ssid is S’s
local instance handle, but they play no security roles and F,ptsic ignores them.
In particular, Fupisiq does not enforce equality of ssid or U’ tags used by the
participants in signing.

(2) Faptsig: Signature Completion. Signing protocol output is controlled
by two queries by an ideal-world adversary A*: ptsig.pretest and ptsig.finsign.
Faptsic associates servers S € Py with ticket counters tx(S), as in the
aPPSS functionality F,ppgs of Sect. 3, and each S can trigger F,pts1c to record
(sid, m,S) which stands for S agreeing to sign m, as in the tSIG functionality
Fisic of Sect.2. When S issues a query (ptsig.ssign,...,m) then F,psic incre-
ments tx(S) and records (sid,m,S) at the same time.

194 S. Dziembowski et al.

Queries ptsig.pretest and ptsig.finsign serve two purposes: The first one,
denoted by A* using flag=1, is a passive completion of the signing instance.
First, A* can use ptsig.pretest with flag=1 to “pre-complete” that instance and
learn if party U’ runs the protocol on the correct password pw’ = pw. This is
akin to TestAbort query in the UC aPAKE model [26]: A protocol can make it
detectable whether U’ runs on the correct password, e.g. because otherwise U’
aborts, in which case the adversary learns if pw’ = pw by observing the protocol.
In this test, A* must specify a subset C of ¢t + 1 servers with non-zero ticket
counters (which F,ps1¢ decrements), which enforces that U’ finalization requires
t+ 1 participating servers. Note that these servers can run on different messages
than U’, i.e. A* can mix and match S sessions in completing ptsig.pretest.

If pw’ = pw then A* can follow up the (ptsig.pretest, ..., flag=1, ...) query with
(ptsig.finsign, ..., C’ flag = 1,0, L), which corresponds to finalizing the signing
instance on message m with signature o*. Indeed, if U’ runs on the correct
password and the attacker is passive then U’ can output a signature. Fupisia
processes this query in the same way as the threshold signature functionality
Fisiaq of Sect. 2, i.e. it checks that ¢ + 1 servers in subset C’ agreed to sign m,
that o* was not previously recorded as a faulty signature, and that V(m,o*) =1,
and if all conditions are met then it outputs o* to U’ and declares o* as a valid
signature on m by recording a “signature” tuple (sid, m,o*,1). These tuples
control the outputs of a signature verification query ptsig.verify, and Faptsic
handles that exactly as Figic, i.e. if there is no recorded tuple (sid, m,c*,1)
then (ptsig.verify, ...,m,o* V) query should return 0.

We note that Fapisic does not enforce that C' = C, i.e. the adversary is
allowed to mix-and-match servers and use a different subset C of server instances
to “pre-complete” a signature session via the ptsig.pretest query, and a different
subset C’ to complete the session via the ptsig.finsign query. Moreover, the second
set of servers must be signing m, but the first one might not. We allow this
“disconnection” in F,ptsic to enable an efficient aptSIG protocol of Sect. 4.2,
which does not enforce C' = C. However, the practical import of adversary
replacing part of m-signing server session with parts taken from some m’-signing
server session seems innocuous, given that in the end a signature on m cannot
be created unless a pw-holding user and ¢ 4 1 servers all agree to it.

(8) Faptsic: Active Attacks. The first type of active attack is an on-line
password guessing attack against honest servers, where A* poses as a user, or
employs a corrupt user U’, and runs a signing protocol via interface ptsig.usign
on some password pw’ ([S.U]), followed by ptsig.pretest and ptsig.finsign with
flag=1 ([S.P.1]). The same logic as above will apply to this sequence, except
since the adversary contributed pw’ in ptsig.usign, the same interface will reveal
if pw’ = pw (in [S.P.1] the functionality sends this bit to the adversary). Moreover,
each ptSIG instance sid is associated with a flag flag,,;,; which switches from 0 to
1 if it ever happens that the adversary found password pw’ in this way ([S.P.1%])
(or via offline attacks, see below). The consequence of flag,,; = 1 is that any
adversarial signing instance, even one that starts with an incorrect password pw’,
and consequently its reconstruction record rec would be marked pretested(0) in

Password-Protected Threshold Signatures 195

ptsig.pretest, is effectively treated in ptsig.finsign as if it was marked pretested(1),
which means that the functionality will “sign” message m* in this signing session
(as long as t + 1 servers also agree to sign it) ([S.F.1]). In other words, if the
adversary guesses the right password on some ptSIG session, then we allow him
to “late switch” any incorrect password to the correct one on all his other signing
sessions.

The second type of active attack is an on-line password guessing attack
against an honest user. This is modeled via ptsig.pretest ([S.P.2]) and ptsig.finsign
queries with flag=2 ([S.I".F.2]). Here A* can set C = L, but must enter a pass-
word guess pw*, and in ptsig.pretest it will learn if pw’ = pw* where pw’ is a
password used by an honest user U’ ([S.P.2]). If not then U’ can subsequently
only abort, but if so then subsequent ptsig.finsign makes U’ output as signature
an arbitrary value o* chosen by A* ([S.F.F.2]). This reflects the fact that the
only security hedge which U’ enters into signing is its password pw’, so if an
online attacker guesses pw’, the attacker can wlog. run aptSIG initialization on
pw’ and then run the aptSIG signing on the resulting values, thus making U’
output e.g. a signature on m but issued by an adversarial key. However, this
attack does not imply signature forgery, because Fapisic does not add tuple
(sid,m,c*, 1) to its records. In particular, a user could run signature verification
(ptsig.verify, sid, m, c*,V) on its aptSIG output, and in case of the above attack
she would learn that ¢* is not a valid signature and that she was subject of an
active attack by someone who learned her password pw’.?

(4) Faptsic: Adaptive Server Corruptions and ODA. Adversary A* can
adaptively corrupt any server S ([SC]), which allows A* to (1) freely issue tickets
for S, using ptsig.ssign with b = 1, and (2) freely issue S’s “partial signatures”
on arbitrary messages m, using ptsig.ssign with m # L ([S.S]). The latter actions
can result in signatures if U using the correct password pw’ = pw wants to sign
the same m ([S.I".F.1]), or if the attacker learns pw and invokes user-side on that
pw and m. The former actions allow the attacker to test passwords via command
ptsig.testpw, which lets A* exchange ¢ + 1 tickets from some t + 1 servers for an
off-line test of one password guess pw* specified by A*. Note that corrupt S;’s
these tickets are “free” to A* so after corrupting ¢ + 1 servers these tests can be
done fully offline, but if A* needs to add the tickets from honest servers to this
mix then only one such ticket is created in each signing instance S; runs, i.e. if
adversary corrupts ¢’ < t + 1 servers then it can test ¢ passwords only by on-line
interactions with ¢ * (t + 1 — ¢') servers ([PT]).

Crucially, even if all servers are corrupted, attacker A* has no avenue to forge
message signatures unless A* finds out user’s password pw and runs ptsig.usign
(e.g. as corrupt U’) on pw. (Moreover, if fewer than ¢+ 1 servers are corrupt than
even knowing pw lets A* sign only messages which some uncorrupted servers
agree to sign.) Moreover, the only avenues to finding password pw ([PT]) consist
of (1) online guessing attacks against either the servers or the user as long as

3 Faptsia lets A™ set the user instance’s message m to arbitrary m* in the finalization of
the signing protocol, but only for adversarial user instances, i.e. we allow adversarial
signing instances to “late-commit” to their messages.

196 S. Dziembowski et al.

A* corrupts fewer than ¢t + 1 servers, and (2) (fully) offline dictionary attacks
(ODA), as explained above, enabled once A* corrupts ¢ + 1 servers.

User /Message Authentication and Perfect Forward Secrecy. In the apt-
SIG ideal model Faptsic, when servers sign they take input m from the envi-
ronment, and they do not know if their counterparty holds the right password,
and even if they do then whether they authorize signing this message. A model
which assures both properties extends the aptSIG model to capture perfect for-
ward security (PFS), because it would imply that if no password-holding entity
wants to sign some message at a given time, then the adversary who might cap-
ture the password in the future, cannot “redo” these signature instances, and
can only use the compromised password on new signature sessions.

The PFS property can be added in black-box way by running two instances
of aptSIG: Consider a modified signing protocol which executes two instances
of aptSIG, first one on the message m concatenated with nonce ssid, and only
if this one creates a valid signature on the m, ssid, then the proper aptSIG
instance would execute on just m. The first aptSIG instance accomplishes the
above requirements, because only a correct password could have caused this
aptSIG instance to issue a valid signature on the m, ssid pair.

In the full version of the paper we define a PFS version of the aptSIG ideal
model, denoted F,pisig—prs, and we show that the efficient aptSIG scheme
which we show in the next subsection, can be adapted more efficiently to imple-
ment the PFS property. The idea is very similar to the one above except that
the first instance of aptSIG is replaced by a standard signature made on pair
m, ssid by the user U. Indeed, efficiency-wise the PFS protocol variant shown
in the full version of the paper adds only the cost of issuing a single standard
signature for user U and a signature verification for each server S.

4.2 Generic AptSIG Protocol

In Fig.7 we show a generic construction of an augmented password-protected
threshold signature (aptSIG), using an augmented Password-Protected Secret
Sharing (aPPSS) and a Threshold Signature (tSIG). The protocol in addition
relies on functionality Faury but it is used only in initialization. The protocol
also relies on an Equivocable Authenticated Encryption scheme, denoted AE.

Threshold Signature Protocol Il;gi¢. In the description of protocol Ilisiq in
Fig. 7, we don’t use the threshold signature functionality Fisiq, but use the tSIG
protocol directly. We choose this way of describing the aptSIG scheme because
whereas the server parties P; € P can store secret state between tSIG initial-
ization and signature phases, the user party U is assumed to have no secure
storage (except for memorizing the password), hence it is in particular inca-
pable of locally storing the secret share generated in key generation of tSIG.
Indeed, we use the aPPSS scheme together with the authenticated encryption
AE to “securely transmit” this user’s tSIG state between initialization and sig-
nature phase, but since this secure transmission can fail, i.e., in case of successful

Password-Protected Threshold Signatures 197

Public parameters: Security parameter A, threshold parameters t,n s.t. t < n.
Let AE = (AuthEnc, AuthDec) be an Equivocable Authenticated Encryption, and
let tSIG = (IITkeyGen, IITsign, IITverity) be a Threshold Signature scheme realizing
functionality Fisic (see text). add(sid,U) parses sid = (sid’,Psiq) and outputs
sidt = (sid', Pt) s.t. if Pgia = (P1,..., Pn) then PJ,, = (U, P1,...,Py).

Initialization for user U:

1. On input (ptsig.uinit, sid, pw), send (ppss.uinit, sid, pw, L) to Fappss, and let
sk denote Fappss’s output.

2. Run tSIG.IItke,gen+ ON input sid™ = add(sid, U). Let (tsy, tcsy) and V be resp.
U’s local output and the generated public key.

3. Set aecy := AE.AuthEncg (U, tsy, tesy), send (send, sid, P;, aecy) to Faurn for
all P; € P4, output (ptsig.verificationkey, sid, V).

Initialization for server S:

1. On input (ptsig.sinit, sid,,U) send (ppss.sinit, sid,i,U) to Fappss and run
tSIG. 7geyGen+ ON sid™ = add(sid, U). Let (ts;,tcs;) be S’s local output.
2. On message (sent, sid, U, S, aecy) from Faurw, save (sid, sid",ts;, tcs;, aecy).

Signing for user U’

1. On input (ptsig.usign, sid, ssid,S,pw’,m) for |S| > t+1 from U’, send
(ppss.urec, sid, ssid, S, pw’) to Fappss, and wait to receive (ppss.urec, sid, ssid,
sk) from F.ppss and message (sid, aecy) from all S € S.

2. Output (ptsig.usign, sid, ssid, m, L) and abort if either (1) sk = L, or (2)
it is not the case that all S € S send the same message (sid,aecy), or (3)
AE.AuthDecg (aecy) returns L.

3. Otherwise, let (U,tsy,tcsy) = AE.AuthDecs(aecy), set sid™ = add(sid, U),
run protocol tSIG.IItgg,+ on input (sid™, tsu, tcsy, m), and when this protocol
outputs o, output (ptsig.finsign, sid, ssid, m, o).

Signing for server S

1. On input (ptsig.ssign, sid, ssid,U’,m) from S, retrieve stored tuple
(sid, sid ™, ts;, tcsi, aecy), send (ppss.srec, sid, ssid,U’) to Fappss, send
(sid,aecy) to U’, and run tSIG.II1g,+ on input (sid™,ts;, tcs;, m).

Verification for Q

1. On input (ptsig.verify, sid, m, o, V) from Q, runs 8 = tSIG.IItverity(V, m, o),
and output (ptsig.verified, sid, m, o, 3)

Fig. 7. Protocol IT,pisic which realizes Fapsic in (Fappss, FauTs)-hybrid world

198 S. Dziembowski et al.

password-guessing attack on aPPSS, an honest user may execute tSIG on adver-
sarially chosen inputs. In essence, our aptSIG protocol runs the real-world tSIG
protocol rather than an ideal functionality Fisia, because functionality Fisia
does not support a party running the signing protocol on the inputs which do
not correspond to the state created by the key generation for this party. Note
that this proof technique was used in the analysis of the OPAQUE protocol [32],
for the same reason that a UC-secure protocol tool, UC AKE in OPAQUE and
UC tSIG here, is used within a protocol on keys which might not match the ones
prescribed by the protocol.

tSIG Functionality and Communication Setting. We assume that the
tSIG scheme consists of (1) protocol IItkeyGen, Which implements Figig com-
mand (tsig.keygen, sid) for sid' = (sid,P*); (2) protocol IItsign, which imple-
ments Figie command (tsig.sign, sid, m); and (3) algorithm ITrveri (V, m, o)
which implements (tsig.verify, sid, m, o, V), which simply returns V(m, o). Note
that set PT is a list of n + 1 tSIG participants, and we form it by prepending
the user party identifier U to the list of server identifiers P = {Py,...,P,}.

We use ts; to denote the state created for player P; by the distributed key
generation protocol IItkeyGen, including ¢ = U. (In the following we will use Py
and U interchangeably.) However, many threshold signature schemes assume that
protocol parties have access to some additional secure communication channels,
in the very least secure point-to-point channels and often also a reliable authen-
ticated broadcast channel. (These are the communication assumptions of most
work on threshold cryptosystems, including e.g. the UC threshold ECDSA of
[13] and the threshold BLS scheme in Sect. 2, albeit the latter only in the ini-
tialization phase.) Whereas aptSIG servers can be connected by such channels,
we cannot assume this for the user. Indeed, in aptSIG initialization we assume
user U has only point-to-point authenticated channels with each server S;, and
in aptSIG signing we assume a plain network. If threshold signature protocols
ITtkeyGen and/or ITtsign make such communication assumptions, in the initial-
ization phase our aptSIG prepends protocol IltkeyGen With a subprotocol which
adds U to this assumed communication setting.

For the above communication setting, this subprotocol could work as fol-
lows: Since in aptSIG initialization U and each S; have pairwise authenticated
channels, these can be upgraded to secure channels using key exchange, e.g.
Diffie-Hellman, executed between U and each S;. As for authenticated broad-
cast, it is typically implemented using PKI (e.g. assuming partial synchrony and
reliable message delivery between uncorrupted parties), in which case U can gen-
erate a signing key, deliver it over authenticated channels to each S;, and S;’s
can agree on it using their authenticated broadcast channels. Likewise, each S;
can send the list of all servers’ public keys to U, and U can reject unless all
the lists are the same. We denote this extended IItkeyGen Protocol as IltkeyGent
and we use tcs; to denote the secure communication tokens each P; retains from
it in subsequent ITtkeyGen and IITsign executions. Whereas each server S; can
update its pre-existing communication tokens with tcs;’s output by ITtkeyGents
user U cannot retain state between executions. However, we solve this by adding

Password-Protected Threshold Signatures 199

the communication tokens tcsy to the threshold signature state tsy created by
II7KeyGen, and we encrypt both using the aPPSS-protected key.

Equivocable Authenticated Encryption. Protocol Il,pis1q uses symmet-
ric Authenticated Encryption scheme AE = (AuthEnc, AuthDec) to encrypt the
local state of U output by IItkeygen+- We denote this state as (U, tsy, tcsy), where
tsy, tesy are explained above, and identity U needs to be retained as well because
tSIG assumes that its identifier sid" includes the identities of all tSIG partic-
ipants, i.e. PT = (U,Py,...,P,,), and aptSIG should allow the user to retrieve
signatures using the password only, i.e. it should not rely on the user remember-
ing the identifier U used in the initialization.

We need the authenticated encryption to have ciphertext integrity under
a single chosen message attack. This is a relaxation of standard ciphertext
integrity security notion for authenticated encryption. We also require the
scheme AE to be equivocable, i.e. in the scenario where the adversary gets a
ciphertext followed by the key, there is a simulator that can create an indis-
tinguishable ciphertext with no information about the plaintext except for its
length, and then create the key to decrypt this ciphertext to any given plain-
text. Formally, we call an (authenticated) encryption AE equivocable if there
is an efficient simulator SIM s.t. for any efficient algorithm A4, the distinguish-
ing advantage AdvﬁQV’AE()\) = [p% — pY| is a negligible function of A, where
phy = Pr[l « A(st,aec,sk) | (sta,aec,sk) « Exp’], and

Exp® : (m,sty) « A(N),sk «s{0,1}*, aec « AuthEncg(m)
Exp' : (m,sta) < A()\), (aec,sts) «— SIM(|m|),sk « SIM(sts, m)

Note that equivocability implies standard semantic security of encryption. In the
following we will use the term FEquivocable Authenticated Encryption if encryp-
tion is (1) equivocable and (2) has ciphertext integrity. These properties are
easy to achieve in an idealized model like ROM [32], e.g. E(sk,m) = m & G(sk)
is equivocable if G is a random oracle. If an equivocable encryption is extended
to authenticated encryption, e.g. by computing a MAC on the ciphertext, this
achieves ciphertext integrity but does not effect equivocation because the authen-
tication mechanism is computed over the ciphertext.

4.3 Security of the AptSIG Protocol

Simulation Overview. We construct a simulator SIM which will show that no
environment Z can distinguish the ideal-world and real-world interactions. Since
protocol Il,p¢sic relies on the UC security of three components, aPPSS, tSIG,
and AUTH, we first overview how the real world and the ideal world interactions
involve the protocols, functionalities, or simulators of these components.* With-
out loss of generality we assume a “dummy” adversary A* that is an adversary

4 Due to space constraints we defer to the full version of the paper, which captures
the top-level view of these interactions in the real-world and ideal-world executions.

200 S. Dziembowski et al.

who merely passes all its messages and computations to the environment Z. Our
proof assumes that the real execution happens in the (F,ppss, FauTh)-hybrid
world, and below we omit the details of interactions with the adversary where in
the ideal world SIM will emulate F,ppss and Fayrnh, because that part of the
simulation is trivial: SIM gains all the information needed from A*’s interfaces
to these functionalities, and simply follows the code of F,ppss and Faurh-

Simulator SIM interacts with the ideal functionality Faptsig, which in turn
interacts with the environment Z via “dummy” honest parties playing the role
of either user U and server(s) S. The environment Z can also instruct A* to send
malicious inputs to SIM on behalf of corrupt or compromised parties, e.g. com-
promised servers. There are three types of SIM-A* interactions, corresponding
to three difference interfaces A* has in the real world. First, there is the net-
work interface, i.e. messages which protocol Il,,¢s1¢ sends over plain channels.
This interface is used solely for sending aecy in the signing protocol. Second,
A* can communicate with functionalities Faytyg and Fappss, which SIM will
emulate in the ideal-world. Third, since protocol Il,,tsig runs the real-world
protocol ITigie instead of using Fisig as a black-box (see also the explanation
above), A* expects to interact with ITisi instances. In the ideal-world, SIM will
not execute the real-world protocol Ilisia, and instead it will delegate this to a
simulator SIM;s;¢ (the simulator whose existence is implied by the assumption
that protocol ITisiq UC-realizes functionality Fisig), which SIM will execute
as a black-box. Simulator SIM;s;g can emulate execution of Il;g1q instances to
A* if SIMyg;¢ interacts with the ideal functionality Fisig. Therefore, SIM will
implement an “Figig” interface (just like the “Fayry” and “F,ppgs” interfaces
described above) on which it will talk not to A* but to SIM;s;c. Note that from
SIM’s perspective SIMys7g can be thought of as an extension of adversary A*
(indeed SIM treats SIM;g¢ as a black box, just like it treats A*), at which point
SIM’s goals is just to correctly emulate the “Figi¢” interface with SIMyg;q.

As discussed above, there is one further unusual aspect of the simulation: In
one special case, which corresponds to an honest party U recovering wrong tSIG
shares because of a successful online active attack against U’s password in the
aPPSS subprotocol, the real-world execution in this case involves U running the
tSIG signing subprotocol on adversarial inputs rather than the inputs prescribed
for U in the tSIG key generation. Such honest party’s execution is not supported
by functionality Fisiq, so the simulator cannot send any messages on the “Fig1g”
interface to SIMysra to emulate such tSIG signing protocol instances on behalf
of U. Instead, SIM will simply execute itself the tSIG instance on behalf of U
on such adversarial inputs. (Note that SIM learns from the “F,ppss” interface
the adversarial inputs which the real-world U would use, because the adversary
sends them to the real-world U via functionality F,ppss) This U instance can be
thought of as another extension of the adversary, and SIM will inform SIM;g;&
(and pass to A*) whatever this instance sends e.g. to honest tSIG servers, which
are emulated by SIM;s;q.

Theorem 3. If AE = (AuthEnc,AuthDec) is an FEquivocable Authenticated
Encryption, and tSIG = (II1keyGen, IITsign; I Tverify) is a Threshold Signature

Password-Protected Threshold Signatures 201

scheme which UC-realizes functionality Fisic, then protocol Il psic in Fig. 7
UC-realizes functionality Fapisic in Fig. 5 in the (Fappss,FauTu)-hybrid model.

Due to space constraints, we defer the detailed specification of the simulator
SIM, as well as the rest of the proof of Theorem 3, to the full version of the
paper [21].

5 Concrete Instantiation of the AptSIG Protocol

In Fig.8 we show a concrete instantiation of the generic Il,pts1c¢ protocol
from Fig. 7, called aptSIG-BLS. This instantiation uses tSIG implemented using
threshold BLS as shown in Fig.2 in Sect. 2.1, and the aPPSS shown in Fig. 4
in Sect. 3. Finally, the latter is instantiated with a specific OPRF protocol,
2HashDH [29], included in the full version of the paper. This concrete aptSIG
protocol relies on authenticated channels between user U and each server S; in
initialization, an assumption we take throughout the paper. In addition, the ini-
tialization relies on a secure channel for U-to-S; communication, but secure chan-
nels can be implemented on top of authenticated channels using key exchange.
Moreover, a typical application would use TLS to implement authenticated chan-
nels, which provides secure channels without any additional cost.

Notation and Parameters. Figure 8 assumes the following notation for public
parameters: Security parameter [, threshold parameters ¢, n, t < n, field F =
GF(2"), cyclic group G of prime order p, bilinear map group G of prime order p
and generator §; hash functions Hy, Hy, Hs, Hy with ranges G, {0,1}!, {0,1}%,
G. Let AE = (AuthEnc, AuthDec) be an Equivocable Authenticated Encryption.
authy . p{m} and secs_,p{m} stand for A sending message m to B via resp.
authenticated and secure A — B channel.

Performance. Our concrete aptSIG protocol is very practical: The initialization
protocol takes 3 flows (after receiving OPRF replies the user can send all the
remaining messages in one flow), and the signing protocol takes only 2 flows.
Each server performs 2 exponentiations in both initialization and signing (one
in a standard group, one in a group with a bilinear map), while the user performs
O(n) exponentiations and one bilinear map. The protocol involves no server-to-
server communication, and the bandwidth between user and each server is O(n),
but the only O(n)-sized message is a ciphertext vector e, which can be stored
more efficiently using error correction instead of replicating it on all servers,
which reduces bandwidth to O(1) for ¢ = O(n). In the full version of the paper
we show a simplified rendering of this protocol which highlights its simplicity
and efficiency.

Adding Robustness to aptSIG-BLS. In the protocol in Fig. 8, user U chooses
t 4+ 1 servers to interact with, and it aborts if any server misbehaves. Conse-
quently, there is no guarantee that the protocol outputs a correct signature. To
achieve guaranteed output, one needs to enhance the OPRF function with a ver-
ifiable OPRF [29], namely, where each server has a public OPRF verification key

202 S. Dziembowski et al.

Parameters: The notation and parameters are defined in text, on page 28.

Initialization for user U on input (sid, Si, ..., Sn, pw):
1. Pick a 45 Zy, set a = (H1(pw))®, and send ((sid||]|0),a) to S; for i € [n].
2. Receive auths_,y{a;, bi(= ak"‘)} for each S;, abort if (a; # a) for any i.
3. Pick s < IF, generate shares (s1, ..., s») as a (t, n)-secret-sharing of s over F.
Set p; = Ha(pw, b}/"‘) and e; = s; @ p; for all ¢ € [n].
4. Set e := (e1,...,en), (C||sk) := Hs(pw, e, s), and w := (e, C).
. Send authy_s, {(sid||i||1),w} for all i € [n].
6. Pick v',v9 <5 Zp, set v = vo + v' mod p, generate shares (v1,...,vn) as (t,n)-
sharing of v over Z;. Send secy_;s, {(sid||i), v} for all i € [n].
7. Set V=" and V = (V1,..., V) where V; = g% for every ¢ € [n].
Set aecy := AE.AuthEncsk(U,V,\ﬂ/7 vo), send authy_s,{(sid,aecy)} for all i €
[n]. Output (ptsig.verificationkey, sid, V).

(9}

Initialization for server S on input (sid, i, U):
1. Set k<5 7Z,, on ((sid||i]|0),a) from U, abort if a ¢ G, else send
authsﬁu{a,ak}.
2. On message authy_,s{((sid||i||1),w} from U, store (sid,i,w, k).
3. Receive secy_,s{(sid||i),v;}, abort if v; & Zp. Save (sid, v;).
4. On authy_,s{sid, aecy} save (sid, aecy).

Signing for user U on input (sid, ssid,S = {S1, ..., Si+1}, pw, m):

1. Pick a4 Zp, set a = (H1(pw))“, send ((sid, ssid, j),a) to S; € S.

2. Given ((sid, ssid, j), (bj,1j,w;)) and (sid,aecy;) from each Sj, set ¢; =
Ha (pw, b}/a) for j € [t + 1]. Abort if ¢;, = i;, or wj, # wj, for any j1 # ja.
Otherwise set p;; := ¢; for all j € [t + 1] and I := {i;[j € [t + 1]}.

. Parse any w; as (e,C) and e as (e, ..., en). Set s; := e; @ p; for each i € I.

. Recover s and the shares s; for i ¢ I by interpolating points (i, s;) for i € I.

. Parse Hs(pw, e, s) as (C'||sk). Abort if C" # C.

Abort if aecy;, # aecyj, for any ji,j2 € [t+1], else set aecy to any aecy ;. Abort

if AE.AuthDecq(aecy) = L, else parse AE.AuthDecy (aecy) as (U,V,\7,vo).

7. On messages (j,0;) from each S; € S if e(g,0;) # e(Vj,Ha(m)) for any
j € [t+1], output (ptsig.finsign, sid, ssid,m, L). Else compute o := oq -
(Hjes(ai)’\l)7 where 0o = Hs(m)"® and A;’s are Lagrange interpolation coef-
ficients corresponding to the set of indexes in S corresponding to S.

8. Output (ptsig.finsign, sid, ssid, m, o).

[S N

Signing for server S on input (sid, ssid, U, m):
1. Given ((sid, ssid, j),a) from U, abort if a ¢ G or S does not hold records
(sid,i,w, k), (sid,v;) and (sid,aecy) with the matching sid.
2. Otherwise set b := a* and send ((sid, ssid, j), (b, i,w)), (sid,aecy) to U.
3. Send (i,0) to U, where o := Hs(m)"".

Fig. 8. aptSIG-BLS: an aptSIG protocol instantiated with T-BLS and aPPSS of Fig. 4
with 2HashDH OPREF. The aPPSS sub-protocol is marked in gray .

Password-Protected Threshold Signatures 203

that is provided to the user at initialization and included in the vector w. In par-
ticular, the OPRF construction can be made verifiable (see [29]) by setting each
server’s public key to g¥ where k is the server’s OPRF key and where verification
is implemented via a non-interactive ZK proof of equality of dlog. In this case, U
can run the aPPSS protocol with any subset of £+ 1 or more servers that sent the
same w value. If reconstruction succeeds, the user has correct keying material,
including the public keys to verify individual BLS signatures by the servers (and
discard invalid signatures). If reconstruction fails, a new (disjoint) set of ¢ + 1 or
more servers with same value w is chosen by U and the process is repeated. It
is guaranteed that if U has undisturbed connectivity to ¢t + 1 honest servers, the
correct signature o on message m will be produced. The above process repeats
for at most |n/(t + 1)] times, hence it is efficient even with dishonest majority.

Adding PFS Security to aptSIG-BLS. In the protocol in Fig. 8, server S;
in step 3 of the signing phase sends its partial signature o; without a proof
that U knows the correct password pw and wants to sign m. This enables the
adversary to gather partial signatures on a message m without prior knowledge
of pw, and then complete these to the full signature if it compromises password
pw in the future. However, we can prevent this attack and guarantee Perfect
Forward Secrecy (PFS). This extension is sketched at the end of Sect. 4.1, and
is fully described in the full version of the paper. The PFS-version of the fully
instantiated protocol aptSIG-BLS is deferred to the full version of the paper.

Acknowledgments. Stefan Dziembowski, Pawel Kedzior, Chan Nam Ngo: This work
is part of a project that received funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (grants
PROCONTRA-885666). Stefan Dziembowski was also partly supported by the Pol-
ish NCN Grant 2019/35/B/ST6,/04138 and the Nicolaus Copernicus Polish-German
Research Award 2020 COP/01/2020. Stanislaw Jarecki: This work was supported by
NSF SaTC TTP award 2030575. Hugo Krawczyk: This work was done while the author
was at the Algorand Foundation. Chan Nam Ngo: The majority of this work was done
while the author was with the University of Warsaw, Poland.

References

1. Agrawal, S., Miao, P., Mohassel, P., Mukherjee, P.: PASTA: PASsword-based
threshold authentication. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.)
ACM CCS 2018. pp. 2042-2059. ACM Press (Oct 2018)

2. Arapinis, M., Gkaniatsou, A., Karakostas, D., Kiayias, A.: A formal treatment of
hardware wallets. In: Goldberg, 1., Moore, T. (eds.) Financial Cryptography and
Data Security - 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and
Nevis, February 18-22, 2019, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 11598, pp. 426-445. Springer (2019). https://doi.org/10.1007/978-3-
030-32101-7-26, https://doi.org/10.1007/978-3-030-32101-7_26

3. Aumasson, J., Hamelink, A., Shlomovits, O.: A survey of ECDSA threshold signing.
TIACR Cryptol. ePrint Arch. p. 1390 (2020), https://eprint.iacr.org/2020,/1390

https://doi.org/10.1007/978-3-030-32101-7_26
https://doi.org/10.1007/978-3-030-32101-7_26
https://doi.org/10.1007/978-3-030-32101-7_26
https://eprint.iacr.org/2020/1390

204

4.

11.

12.

13.

14.

15.

16.

17.

18.

19.

S. Dziembowski et al.

Bacho, R., Loss, J.: On the adaptive security of the threshold BLS signature
scheme. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) ACM CCS 2022.
pp. 193-207. ACM Press (Nov 2022). https://doi.org/10.1145/3548606.3560656
Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-protected secret sharing.
In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM CCS 2011. pp. 433-444. ACM
Press (Oct 2011)

Baum, C., Frederiksen, T., Hesse, J., Lehmann, A., Yanai, A.: Pesto: Proactively
secure distributed single sign-on, or how to trust a hacked server. In: 2020 IEEE
European Symposium on Security and Privacy (EuroSP). pp. 587-606 (2020)
Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on
the gap-diffie-hellman-group signature scheme. In: Desmedt, Y. (ed.) Public Key
Cryptography - PKC 2003, 6th International Workshop on Theory and Practice
in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings.
Lecture Notes in Computer Science, vol. 2567, pp. 31-46. Springer (2003). https://
doi.org/10.1007/3-540-36288-6_3, https://doi.org/10.1007/3-540-36288-6_3
Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryp-
tol. 17(4), 297-319 (2004). https://doi.org/10.1007/s00145-004-0314-9, https://
doi.org/10.1007/s00145-004-0314-9

Boyd, C.: Digital multisignatures. Cryptography and Coding (1986)

. Camenisch, J., Lehmann, A., Neven, G., Samelin, K.: Virtual smart cards: How

to sign with a password and a server. In: Zikas, V., De Prisco, R. (eds.) SCN 16.
LNCS, vol. 9841, pp. 353-371 (Aug / Sep 2016)

Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. pp. 136-145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888, https://
doi.org/10.1109/SFCS.2001.959888

Canetti, R.: Universally composable signatures, certification and authentication.
Cryptology ePrint Archive, Report 2003/239 (2003), https://eprint.iacr.org/2003/
239

Canetti, R., Gennaro, R., Goldfeder, S., Makriyannis, N.; Peled, U.: UC non-
interactive, proactive, threshold ECDSA with identifiable aborts. In: Ligatti, J.,
Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp. 1769-1787. ACM Press
(Nov 2020)

Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Bandwidth-
efficient threshold EC-DSA. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V.
(eds.) PKC 2020, Part II. LNCS, vol. 12111 (May 2020)

Das, P., Erwig, A., Faust, S., Loss, J., Riahi, S.: Bip32-compatible threshold wallets.
TACR Cryptol. ePrint Arch. p. 312 (2023), https://eprint.iacr.org/2023/312

Das, S., Ren, L.: Adaptively secure BLS threshold signatures from DDH and co-
CDH. In: Reyzin, L., Stebila, D. (eds.) CRYPTO 2024, Part VII. LNCS, vol. 14926,
pp- 251-284. Springer, Cham (Aug 2024)

Desmedst, Y.: Society and group oriented cryptography: A new concept. In: Pomer-
ance, C. (ed.) CRYPTO’87. LNCS, vol. 293 (Aug 1988)

Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO’89. LNCS, vol. 435 (Aug 1990)

Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures
(extended abstract). In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576 (Aug
1992)

https://doi.org/10.1145/3548606.3560656
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1109/SFCS.2001.959888
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2003/239
https://eprint.iacr.org/2023/312

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Password-Protected Threshold Signatures 205

Doerner, J., Kondi, Y., Lee, E., shelat, a.: Threshold ECDSA from ECDSA assump-
tions: The multiparty case. In: 2019 IEEE Symposium on Security and Privacy.
IEEE Computer Society Press (May 2019)

Dziembowski, S., Jarecki, S., Kedzior, P., Krawczyk, H., Ngo, C.N., Xu, J.:
Password-protected threshold signatures. Cryptology ePrint Archive, Paper num-
ber TBD (2024), TBD

Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992,
pp. 33-62 (Aug 2018). https://doi.org/10.1007/978-3-319-96881-0_2

Ganesan, R.: Yaksha: augmenting kerberos with public key cryptography. In: Pro-
ceedings of the Symposium on Network and Distributed System Security. pp. 132—
143 (1995)

Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018. ACM
Press (Oct 2018)

Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. J. Cryptol. 20(1), 51-83 (2007). https://
doi.org/10.1007/s00145-006-0347-3, https://doi.org/10.1007/s00145-006-0347-3
Gentry, C., MacKenzie, P.D., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) Advances in Cryp-
tology - CRYPTO 2006, 26th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 20-24, 2006, Proceedings. Lecture Notes in Com-
puter Science, vol. 4117, pp. 142-159. Springer (2006). https://doi.org/10.1007/
11818175.9, https://doi.org/10.1007/11818175-9

Gjosteen, K., Thuen, @.: Password-based signatures. In: Petkova-Nikova, S., Pasha-
lidis, A., Pernul, G. (eds.) Public Key Infrastructures, Services and Applications.
Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

Gu, Y., Jarecki, S., Kedzior, P., Nazarian, P., Xu, J.: Threshold PAKE with security
against compromise of all servers. In: Advances in Cryptology — ASIACRYPT 2024
(2024)

Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.)
Advances in Cryptology - ASTACRYPT 2014 - 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II. Lecture Notes in Com-
puter Science, vol. 8874, pp. 233-253. Springer (2014). https://doi.org/10.1007/
978-3-662-45608-8_13, https://doi.org/10.1007/978-3-662-45608-8_13

Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: How to protect your bitcoin wallet online).
In: 2016 IEEE European Symposium on Security and Privacy (EuroSP). pp. 276—
291 (2016). https://doi.org/10.1109/EuroSP.2016.30

Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. In: Gollmann, D.; Miyaji, A.,
Kikuchi, H. (eds.) Applied Cryptography and Network Security - 15th International
Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings. Lecture
Notes in Computer Science, vol. 10355, pp. 39-58. Springer (2017). https://doi.org/
10.1007/978-3-319-61204-1_3, https://doi.org/10.1007/978-3-319-61204-1_3
Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in
Cryptology - EUROCRYPT 2018 - 37th Annual International Conference on the

https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/11818175_9
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1007/978-3-662-45608-8_13
https://doi.org/10.1109/EuroSP.2016.30
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3
https://doi.org/10.1007/978-3-319-61204-1_3

206

33.

34.

35.

36.

37.

38.

39.

S. Dziembowski et al.

Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29
- May 3, 2018 Proceedings, Part III. Lecture Notes in Computer Science, vol.
10822, pp. 456-486. Springer (2018). https://doi.org/10.1007/978-3-319-78372-
715, https://doi.org/10.1007/978-3-319-78372-7_15

Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In: Lie, D., Mannan, M.,
Backes, M., Wang, X. (eds.) ACM CCS 2018. ACM Press (Oct 2018)

MacKenzie, P.D., Reiter, M.K.: Networked cryptographic devices resilient to cap-
ture. In: 2001 IEEE Symposium on Security and Privacy. pp. 12-25. IEEE Com-
puter Society Press (May 2001)

MacKenzie, P.D., Shrimpton, T., Jakobsson, M.: Threshold password-
authenticated key exchange. J. Cryptol. 19(1), 27-66 (2006). https://doi.org/10.
1007/s00145-005-0232-5, https://doi.org/10.1007/s00145-005-0232-5

McQuoid, I., Rosulek, M., Xu, J.: How to obfuscate MPC inputs. In: Kiltz, E.,
Vaikuntanathan, V. (eds.) TCC 2022, Part II. LNCS, vol. 13748, pp. 151-180.
Springer, Cham (Nov 2022)

Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 129-140 (Aug
1992)

Wikstrom, D.: Universally composable DKG with linear number of exponenti-
ations. In: Blundo, C., Cimato, S. (eds.) Security in Communication Networks,
4th International Conference, SCN 2004, Amalfi, Ttaly, September 8-10, 2004,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 3352, pp. 263—
277. Springer (2004). https://doi.org/10.1007/978-3-540-30598-9_19, https://doi.
org/10.1007/978-3-540-30598-9_19

Xu, S., Sandhu, R.S.: Two efficient and provably secure schemes for server-assisted
threshold signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 355—
372 (Apr 2003)

https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/s00145-005-0232-5
https://doi.org/10.1007/s00145-005-0232-5
https://doi.org/10.1007/s00145-005-0232-5
https://doi.org/10.1007/978-3-540-30598-9_19
https://doi.org/10.1007/978-3-540-30598-9_19
https://doi.org/10.1007/978-3-540-30598-9_19

	Password-Protected Threshold Signatures
	1 Introduction
	1.1 Further Related Works

	2 Threshold Signatures
	2.1 Threshold BLS Signature

	3 Augmented Password-Protected Secret Sharing
	3.1 Modeling Augmented Password-Protected Secret Sharing
	3.2 aPPSS Protocol

	4 Augmented Password-Protected Threshold Signature
	4.1 Modeling Augmented Password-Protected Threshold Signature
	4.2 Generic AptSIG Protocol
	4.3 Security of the AptSIG Protocol

	5 Concrete Instantiation of the AptSIG Protocol
	References

