
Short Concurrent Covert Authenticated
Key Exchange (Short cAKE)

Karim Eldefrawy1 , Nicholas Genise2 , and Stanislaw Jarecki3(B)

1 SRI International, Menlo Park, USA
karim.eldefrawy@sri.com

2 Duality Technologies, Hoboken, USA
ngenise@dualitytech.com

3 University of California, Irvine, Irvine, USA
sjarecki@uci.edu

Abstract. Von Ahn, Hopper and Langford introduced the notion of
steganographic a.k.a. covert computation, to capture distributed compu-
tation where the attackers must not be able to distinguish honest parties
from entities emitting random bitstrings. This indistinguishability should
hold for the duration of the computation except for what is revealed by
the intended outputs of the computed functionality. An important case
of covert computation is mutually authenticated key exchange, a.k.a.
mutual authentication. Mutual authentication is a fundamental primi-
tive often preceding more complex secure protocols used for distributed
computation. However, standard authentication implementations are not
covert, which allows a network adversary to target or block parties who
engage in authentication. Therefore, mutual authentication is one of the
premier use cases of covert computation and has numerous real-world
applications, e.g., for enabling authentication over steganographic chan-
nels in a network controlled by a discriminatory entity.

We improve on the state of the art in covert authentication by present-
ing a protocol that retains covertness and security under concurrent com-
position, has minimal message complexity, and reduces protocol band-
width by an order of magnitude compared to previous constructions. To
model the security of our scheme we develop a UC model which captures
standard features of secure mutual authentication but extends them to
covertness. We prove our construction secure in this UC model. We also
provide a proof-of-concept implementation of our scheme.

1 Introduction

Steganography in the context of secure computation deals with hiding executions
of secure computation protocols.1 Such hiding is only possible if the participat-
ing parties have access to (public) communication channels which are stegano-
graphic, i.e., which naturally exhibit some entropy. Cryptographic protocols over
1 The full version of this paper appears in [22].

N. Genise—This work was done while the second author was at SRI International.

c© International Association for Cryptologic Research 2023
J. Guo and R. Steinfeld (Eds.): ASIACRYPT 2023, LNCS 14445, pp. 75–109, 2023.
https://doi.org/10.1007/978-981-99-8742-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-8742-9_3&domain=pdf
http://orcid.org/0000-0002-4008-0047
http://orcid.org/0000-0001-8625-472X
http://orcid.org/0000-0002-5055-2407
https://doi.org/10.1007/978-981-99-8742-9_3

76 K. Eldefrawy et al.

such channels can be steganographic, a.k.a. covert, if all protocol messages the
protocol exchanges cannot be distinguished from (assumed) a priori random
behavior of the communication channels.

The study of covert secure computation was initiated by Hopper et al. [31]
for the two-party case, and by Chandran et al. [15] and Goyal and Jain [29]
for the multi-party case. Both [15,29,31] prove feasibility for covert compu-
tation of arbitrary circuits which tolerates passive and malicious adversaries,
respectively. Subsequently, Jarecki [33] showed that general maliciously-secure
two-party covert computation can be roughly as efficient as standard, i.e., non-
covert, secure computation.

A flagship covert computation application is covert authentication and covert
Authenticated Key Exchange (cAKE). In a cAKE protocol, two parties can
authenticate each other as holders of mutually accepted certificates, but an entity
who does not hold proper certificates, in addition to being unable to authenti-
cate, cannot even distinguish a party that executes a covert AKE from a random
beacon, i.e., from noise on the steganographic channel. In essence, cAKE allows
group members to authenticate one another, but their presence on any stegano-
graphic communication channel is entirely hidden, i.e., they are invisible.

The application of covert computation to covert AKE has been addressed
by Jarecki [32], but the state of the art in covert AKE is significantly lack-
ing in several aspects: large bandwidth, high round complexity, and (a lack
of) security under concurrent composition. Regarding security, the scheme of
[32] achieves only sequential security, and does not ensure independence of keys
across sessions, which is insufficient for full-fledged (covert) AKE.2 Regarding
round complexity and bandwidth, the cAKE protocol in [32] requires 6 mes-
sage flows and relies on a composite-order group (and a factoring assumption),
resulting in bandwidth which can be estimated as at least 3.6 kB. Recent works
on random encodings of elliptic curve points, e.g. [8,47], allow for potentially
dramatic bandwidth reduction if secure cAKE can be instantiated over a prime-
order group.

Covert vs. Standard Authentication. Covert Authenticated Key Exchange
(cAKE) can be formalized as a secure realization of functionality FcAKE[C] shown
in Fig. 1’s entirety, characterized by a given admission function C. Let us first
set the terms by explaining the standard, i.e. non-covert, AKE functionality
FAKE[C, L], characterized by C and a leakage function L, which is portrayed in
the same figure. Reading Fig. 1 with dashed text and without greyed text defines
FAKE[C, L], and with greyed text and without dashed text defines FcAKE.

In an AKE protocol, i.e. a protocol that realizes FAKE, parties P1 and P2 run
on inputs x1 and x2, which represent their authentication tokens, e.g. passwords,
certificates, keys, etc., and if these inputs match each other’s admission policy,
jointly represented by circuit C, then P1 and P2 establish a shared random session

2 In particular, [32] does not imply security against man in the middle attacks.

Short Concurrent Covert Authenticated Key Exchange 77

Fig. 1. Standard AKE functionality FAKE[C, L] includes dashed text & omits greyed
text; Covert AKE functionality FcAKE[C] includes greyed text & omits dashed text.

key K1 = K2, otherwise their outputs K1,K2 are independent.3 If L is a non-
trivial function, then the protocol leaks L(x) on P’s input x to P’s counterparty.

For example, Password Authenticated Key Exchange (PAKE) [5] can be
defined as (secure realization of) FAKE[Cpa] where Cpa is an equality test, i.e.,
Cpa(x1, x2) = 1 if and only if x1 = x2. In another example, a standard notion of
AKE, e.g. [21], which we will call here as a Fixed Public Key AKE (FPK-AKE)
to distinguish it from other AKE types, can be defined as FAKE[Cfpk, Lfpk] where
Cfpk(x1, x2) = 1 iff x1 = (sk1, pk2) and x2 = (sk2, pk1) s.t. pk1, pk2 are the public
keys corresponding to resp. sk1, sk2. Leakage Lfpk is typically omitted in the
works on FPK-AKE, e.g. [3,14], because it is assumed that public keys pk i of
each Pi are public inputs. However, the implicit leakage profile in these works is
Lfpk((skP, pkCP))= (pkP, pkCP) where pkP is a public key corresponding to skP.4

We say that protocol Auth UC-realizes a covert AKE functionality FcAKE if it
does so under a constraint that a real-world party P invoked on input x= ⊥ does
not follow protocol Auth but instead emulates a random beacon Auth$(κ) defined
as follows: In each round, if Auth participant sends an n(κ)-bit message then
Auth$(κ) sends out an n(κ)-bit random bitstring, where κ is a security parameter.
In more detail, a covert AKE functionality FcAKE[C] makes the following changes
to the standard AKE functionality FAKE[C, L]: First, FcAKE eliminates leakage
L(x), equivalently L(x)= ⊥ for all x. Second, FcAKE admits a special input x= ⊥
which designates P as a random beacon, i.e., it tells P to run Auth$(κ) instead
of Auth. Third, FcAKE adds the check that x1 �=⊥ and x2 �=⊥ to the condition
for setting K1 =K2. Fourth, the functionality ensures that if P’s input is ⊥, i.e.
P is a non-participant, then its output is ⊥.

Implications of Covert AKE. The first impact of covert AKE vs. the standard
AKE, is that if we disregard what P1 does with its output key K1, then a mali-

3 Note that Fig. 1 defines AKE as a key exchange without explicit entity authentica-
tion, but the latter can be added to any AKE by testing if parties output the same
key via any key confirmation protocol.

4 In a standard FPK-AKE protocol party P can reveal either key. E.g. Sigma [36] used
in TLS reveals P’s own key pkP, while SKEME [35] reveals key pkCP which party P
assumes for its counterparty, unless it employs key-private encryption [4].

78 K. Eldefrawy et al.

cious P∗
2 cannot distinguish an interaction with a real party P1 (where x1 �= ⊥)

and a random beacon (where x1 =⊥) because in either case FcAKE gives P∗
2 the

same output, a random key K2. Indeed, the only way P∗
2 can distinguish cAKE

participant P1 from a random beacon, is not the cAKE protocol itself, but an
application which P1 might run using cAKE’s output K1. There are three cases
of P1 from P∗

2’s point of view, where x∗
2 is P∗

2’s input to FcAKE:

(1) P1 = protocol party with x1 s.t. C(x1, x
∗
2) = 1, in which case P∗

2 learns K1;
(2) P1 = protocol party with x1 s.t. C(x1, x

∗
2) = 0, in which case K1 is hidden;

(3) P1 = random beacon, represented by x1 = ⊥, in which case K1 = ⊥.

The second property that cAKE adds to a standard AKE is that if the
upper-layer application Π which P1 runs on cAKE’s output K1 continues using
steganographic channels, and P1 encrypts Π’s messages on these channels under
key K1, then P∗

2 cannot distinguish cases (2) and (3). That is, P∗
2 cannot tell a

real-world P1 who ran cAKE on inputs that didn’t match x∗
2 and then runs Π

on cAKE output K1, from a random beacon.5 Detecting case (1) from a random
beacon depends on the upper-layer protocol Π: If Π is non-covert than P∗

2 will
confirm that P1 is a real-world party by running protocol Π on input K1 (which
P∗
2 learns if C(x1, x

∗
2) = 1). However, if protocol Π is itself covert then P1 will

continue to be indistinguishable from a random beacon even in case (1). In other
words, cAKE protocols are composable, e.g. running a covert PIN-authenticated
KE, encrypted by a key created by a covert PAKE, ensures covertness to anyone
except a party who holds both the correct password and the PIN.

Group Covert AKE (Group cAKE). In this work we target a “group”
variant of cAKE. Namely, P’s authentication token is a pair x= (gpk , cert) where
gpk is a public key identifying a group, cert is a certificate of membership in this
group, and the admission function CG(x1, x2) outputs 1 if and only if ∃ gpk
s.t. x1 = (gpk , cert1), x2 = (gpk , cert2), and Ver(gpk , cert1)=Ver(gpk , cert2) = 1,
where Ver stands for certificate verification. In other words, both parties must
assume the same group identified by gpk and each must hold a valid membership
certificate in this group. We assume that key gpk is generated by a trusted group
manager together with a master secret key msk which is used to issue valid
certificates, and that the certification scheme is unforgeable, i.e. that an adversary
which sees any number of valid certificates cert1, ..., certn cannot output cert∗

s.t. Ver(gpk , cert∗) = 1 and ∀ i cert∗ �= cert i.
The above setting of group cAKE is the same as that of group signatures [16],

except that membership certificates are used to authenticate, not to sign,6 and
the authentication is covert. However, note that a straightforward usage of group
signatures for authentication, e.g. where two parties sign a key exchange tran-
script using group signatures, can at best realize FAKE[CG, L] where leakage L

5 This requires encryption with ciphertexts indistinguishable from random bitstrings,
but this is achieved by standard block cipher modes, CBC, OFB, or RND-CTR.

6 Using group signatures for authentication is known as an Identity Escrow [34].

Short Concurrent Covert Authenticated Key Exchange 79

hides Pi’s certificate (and hence Pi’s identity) but reveals the group public key
gpk , because a group signature is verifiable under this key.7

In practice, a certification scheme must admit revocation, i.e. a group man-
ager must be able to revoke a certificate, e.g. by distributing revocation token
rt s.t. (1) there is an efficient procedure Link which links a certificate to this
token, i.e. if Ver(gpk , cert)= 1 then Link(cert , rt) = 1 for rt associated with cert ,
and (2) certificates remain unforgeable in the presence of revocation tokens.8

If Link(cert ,RTset) stands for a procedure which outputs 1 iff ∃ rt ∈ RTset s.t.
Link(cert , rt)= 1, then we define group covert AKE (with revocation), or simply
group cAKE, as FcAKE[CGwr] where CGwr(x1, x2) = 1 iff

1. ∃ gpk s.t. x1 = (gpk , cert1,RTset1) and x2 = (gpk , cert2,RTset2),
2. Ver(gpk , cert1)=Ver(gpk , cert2) = 1,
3. and Link(cert2,RTset1)= Link(cert1,RTset2) = 0.

In other words, parties establish a shared secret key if both assume the same
group public key, both hold valid certificates under this key, and neither certifi-
cate is revoked by the revocation information held by a counterparty.

Applications of Group cAKE. Authentication and key exchange are funda-
mental primitives that regularly precede secure protocols used for distributed
online computations. Identifying executions of such protocols is often used as a
first step when blocking communication [44] or targeting it for filtering or other
attacks [46,48]. Authentication is thus a natural primitive to be protected and
rendered covert to avoid such blocking or targeting. To the best of our knowl-
edge, there are currently no practical covert AKE protocols implemented, let
alone deployed in distributed systems. If they existed, such protocols could help
hide and protect communication required for authentication and key establish-
ment in such systems. Since our work demonstrates that covert authentication
can be realized with a (computation and communication) cost very close to
that required for existing non-covert anonymous authentication (e.g., anony-
mous credentials [11]) or indeed standard non-private authentication (e.g., TLS
handshake with certificate-based authentication), we argue that such protocols
could become an enabling tool in large-scale resilient anonymous communica-
tion systems. Such anonymous communication systems have been the focus of
the recent DARPA research program on developing a distributed system for
Resilient Anonymous communication for Everyone (RACE) [45]. The RACE
program objective was to develop “an anonymous, end-to-end mobile commu-
nication that would be attack-resilient and reside entirely within a contested
network environment,” and its targets included stenographic hiding of commu-
nication participants [45]. An efficient covert authentication could be play an
essential role in such a system.
7 Secret Handshake [2] flips this leakage, realizing FAKE[CG, L′] for L′ that hides gpk

but reveals a one-way function of Pi’s certificate. To complete comparisons, standard
PKI-based AKE realizes FAKE[CG, L′′] s.t. L′′ reveals both a root of trust gpk and a
one-way function of Pi’s certificate, namely Pi’s public key with gpk ’s signature.

8 Here we follow the verifier-local revocation model [10], but other models are possible,
e.g. using cryptographic accumulators [6,12].

80 K. Eldefrawy et al.

Other Variants of Covert AKE. There are other natural variants of covert
AKE which can be implemented using known techniques, but none of them
imply a practical group cAKE. Covert PAKE corresponds to FcAKE[Cpa], for
Cpa defined above. Several known efficient PAKE schemes, e.g. EKE [5] and
SPAKE2 [1], most likely realize FcAKE[Cpa] after simple implementation adjust-
ments, e.g. SPAKE2 should use an elliptic curve with a uniform encoding, which
maps a random curve point to a random fixed-length bitstring, see Sect. 2.1.
(We believe this is likely to hold because these PAKE protocols exchanges ran-
dom group elements, or ideal-cipher encryptions of such elements.) The covert
Fixed Public Key AKE (FPK-AKE) corresponds to FcAKE[Cfpk], for Cfpk defined
above. The work on key-hiding AKE [30] shows that several FPK-AKE protocols,
namely 3DH [40], HMQV [37], and SKEME [35] instantiated with key-private
and PCA-secure encryption, realize FAKE[Cfpk], i.e. FPK-AKE without leakage,
and after similar implementation adjustments as in the case of SPAKE2, these
protocols probably realize FcAKE[Cfpk]. (This is likely to hold for similar rea-
son, because these FPK-AKE protocols exchange random group elements and
ciphertexts.) Another variant is an identity based AKE (IB-AKE), where public
key pk is replaced by an identity and gpk is a public key of a Key Distribution
Center. Covert IB-AKE can be implemented using Identity-Based Encryption
(IBE) with covertly encodable ciphertexts, such as the Boneh-Franklin IBE [9]
given a bilinear map group with a covert encoding.

However, it is unclear how to efficiently implement group cAKE from covert
PAKE, FPK-AKE, or IB-AKE. Using any of these tools each group member
would have to hold a separate token for every other group member (be it a pass-
word, a public key, or an identity), and the authentication protocol would need
to involve n parallel instances of the covert PAKE/FPK-AKE/IB-AKE. Using
the multiplexing technique of [17,39] such parallel execution can be done covertly
at Õ(n) cost, but this would not scale well. Either of these Õ(n)-cost implemen-
tations can be seen as implementing a covert Broadcast Encryption (BE) with
O(n)-sized ciphertext. Indeed, any covert broadcast encryption implies cAKE.
However, even though there are broadcast encryption schemes with sublinear
ciphertexts, e.g. [23], to the best of our knowledge there are no sublinear BE
schemes which are key-private [4], let alone covert.

1.1 Our Contributions

We show the first practical covert group cAKE scheme, with support for certifi-
cate revocation, with the following features:

1. Universally composable (UC) covertness and security: We formalize a univer-
sally composable (UC) [13] functionality for group cAKE, and show a scheme
which realizes it. In particular, this implies that our group cAKE scheme
retains covertness and security under concurrent composition, and that each
session outputs an independent key, as expected of a secure AKE.

2. Practically efficient: Our group cAKE scheme is round minimal, using one
simultaneous flow from each party, and bandwidth efficient, with a message

Short Concurrent Covert Authenticated Key Exchange 81

size of four DDH group elements and two points in a type-3 bilinear curve,
resulting in bandwidth of 351B, factor of 10x improvement over state of the
art. Our group cAKE scheme also has a low computational overhead of 14
exponentiations and 4 + n bilinear maps per party, where n is the size of the
revocation list. Note that these parameters are a constant factor away from
non-covert Group AKE, or indeed any other (A)KE. (The most significant
slowdown compared to standard AKE comes from using bilinear maps.)

Furthermore, the above security and round improvements are enabled by security
improvements in a crucial tool used in covert computation, namely a covert Con-
ditional Key Encapsulation Mechanism (CKEM) [15,32],9 which we construct for
any language with so-called Sigma-protocol, i.e. a 3-round public-coin honest-
verifier zero-knowledge proof of knowledge [20]. Covert CKEM is a covert KEM
version of Witness Encryption [26]: It allows the sender to encrypt a key under
a statement x, where decryption requires knowledge of a witness w for member-
ship of statement x in a language L chosen at encryption. This KEM is covert if
the ciphertext is indistinguishable from a random string, and in particular can-
not be linked to either language L or statement x. The security improvements
in covert CKEM are of independent interest because covert CKEM is a covert
counterpart of a zero-knowledge proof, and as such it is a general-purpose tool
which can find applications in other protocols.

Technical Overview. The high-level idea of our group cAKE construction fol-
lows the blueprint used for group cAKE by Jarecki [32]. Namely, it constructs
group cAKE generically from a covert Identity Escrow (IE) scheme [34] and
a covert CKEM: Each party sends a (covert) commitment to its IE certifi-
cate to the counterparty, and each party runs a CKEM, once as the sender
(S) and once as the receiver (R), where the latter is proving ownership and
validity of the committed certificate. Each party runs the CKEM once as the
receiver and once as the sender, since the protocol covertly computes an AND
statement: given (gpk , cert) from P and (gpk ′, cert ′) from P′, it checks that
(cert ∈ LIE(gpk ′)) ∧ (cert ′ ∈ LIE(gpk)) where LIE(gpk) is the language of valid
IE certificates generated under gpk . Finally, each party checks the received com-
mitted certificate against their revocation list.10 If the revocation check passes,
each party uses the two CKEM outputs to derive a session key.

The main technical challenge is constructing provable secure group cAKE
which is universally composable. To achieve this we implement several significant
upgrades to the covert CKEM notion defined and constructed in [32] (for the
same general class of languages with Sigma-protocols):
(1) First, we combine strong soundness of [32] and simulation-soundness of [7] to
strong simulation-soundness. I.e., we require an efficient extractor that extracts
a witness from an attacker who distinguishes S’s output key from random on

9 Covert CKEM was called ZKSend in [15]. Variants of (covert or non-covert) CKEM
notion include Conditional OT [19], Witness Encryption [26], and Implicit ZK [7].

10 This requires a special-purpose commitment which is hiding only in the sense of
one-wayness, and which allows linking a revocation token to a committed certificate.

82 K. Eldefrawy et al.

instance x in the presence of a simulator which plays R role on any instance
x′ �= x. Strong simulation-soundness is needed in a concurrent group cAKE to
let the reduction extract a certificate forgery from an attacker who decrypts a
covert CKEM on a statement corresponding to a non-revoked certificate, while
the reduction simulates all CKEM’s on behalf of honest R’s.
(2) Second, we amend covert CKEM with a postponed-statement zero-knowledge
property, i.e. we require a postponed-statement simulator for simulating the
CKEM on behalf of a receiver R. Such simulator must compute the same key
an honest R would compute, and do so not only without knowing R’s witness
but also without knowing the statement used by R, until after all covert CKEM
messages are exchanged. A group cAKE scheme requires this property because
the simulator cannot know a priori the group to which a simulated party belongs,
and hence cannot know the “I am a member of group [...]” statement on which
this party runs as a CKEM receiver R. However, once the functionality reveals
e.g. that the simulated R is a member of the same group as the attacker, the
simulator must complete the R simulation on such adaptively revealed statement.
(3) The third change is that we cannot disambiguate between proof/CKEM
instances using labels, which were used to separate between honest and adver-
sarial CKEM instances in e.g. [33]. This change stems from the fact that whereas
in many contexts protocol instances can be tied to some public unique identifiers
of participating parties, we cannot use such public identifiers in the context of
covert authentication. We deal with this technical challenge by strengthening
the strong simulation-soundness property (1) above even further, and requiring
witness extractability from adversary A which decrypts in interaction with a
challenge S(x) instance, even if A has access to (simulated) R(x′) instances for
any x′ values, including x′ = x, with the only constraint that no A-R transcript
equals the A-S transcript. Note that the excluded case of such transcripts being
equal corresponds to a passive attack, i.e. A just transmitting messages between
challenge oracles S and R, a case with which we deal separately.

We construct a covert CKEM, for any Sigma-protocol language, which sat-
isfies this stronger covert CKEM notion, by using stronger building blocks com-
pared to the (Sigma-protocol)-to-(Covert-CKEM) compiler of [32]. First, we
rely on smooth projective hash functions (SPHF) with a property akin to PCA
(plaintext checking attack) security of encryption. Using Random Oracle hash in
derivation of SPHF outputs it is easy to assure this property for standard SPHF’s
of interest. Secondly, we use covert trapdoor commitments, with commitment
instances defined by a random oracle hash applied to CKEM statements, to
enable postponed-statement simulation required by property (2) above. (Intu-
itively, trapdoor commitments allow the simulator to open a message sent on
behalf of an honest party as a CKEM ciphertext corresponding to a group mem-
bership which the functionality reveals in response to a subsequent active attack
against this party.)

We achieve low bandwidth of the fully instantiated group cAKE by instanti-
ating the above with the Identity Escrow scheme implied by Pointcheval-Sanders
(PS) group signatures [42]. The resulting IE certificates involve only two elements

Short Concurrent Covert Authenticated Key Exchange 83

of a type-3 bilinear pairing curve [25], which can be covertly encoded using the
Elligator Squared encoding of Tibouchi [47], with a hash onto group due to
Wahby and Boneh [50]. The CKEM part (for the language of valid IE certifi-
cates) requires sending only 4 group elements (3 for R and 1 for S), and can be
implemented over a standard curve, which can be covertly encoded using e.g.
the Elligator-2 encoding of Bernstein et al. [8].

Restriction to Static Corruptions. We note that our group cAKE scheme
realizes the UC group cAKE model only for the case of static corruptions, i.e.
the adversary can compromise a certificate or reveal a corresponding revocation
token only if this certificate has never been used by an honest party. This is
because our group cAKE scheme has no forward privacy or covertness. In par-
ticular, all past sessions executed by a party on some certificate become identi-
fiable, and hence lose covertness (but only covertness, and not security), if this
certificate is compromised at any point in the future. This lack of forward privacy
comes from the verifier-local revocation mechanism. Enabling forward privacy in
the face of revocation, and doing so covertly, introduces new technical challenges.
For example, we can use our CKEM for a covert proof that a committed certifi-
cate is (or is not) included on a most recent (positive or negative) accumulator
(e.g. [41]) for a given group. However, it is not clear how two group members can
covertly deal with a possible skew between the most recent accumulator values
they assume. We leave solving such challenges to future work.

Related Works. Von Ahn, Hopper, and Langford [49] introduced the notion
of covert 2-party computation and achieved it by performing O(κ) repetitions of
Yao’s garbled circuit evaluations. The underlying circuit was also extended by a
hash function. This protocol guaranteed only secrecy against malicious partici-
pants and not output correctness. Chandran et al. [15] extended this to multiple
parties while achieving correctness, but their protocol was also non-constant-
round, and its efficiency was several orders of magnitude over known non-covert
MPC protocols since each party covertly proves it followed a GMW MPC proto-
col by casting it as an instance of the Hamiltonian Cycle problem. Further, that
proof internally used Yao’s garbled circuits for checking correctness of committed
values. Goyal and Jain [29] subsequently showed that non-constant-round pro-
tocols are necessary to achieve covert computation with black-box simulation
against malicious adversaries, at least in the plain MPC model, i.e., without
access to some trusted parameters. Hence, the former two constructions’ ineffi-
ciencies are necessary without a trusted setup. Jarecki [32] showed a constant-
round covert AKE with O(1) public key operations satisfying a game-based,
group-based covert AKE definition with a trusted setup. This protocol has a
somewhat large communication cost: three rounds and large bandwidth since
it uses composite-order groups. Recently, Kumar and Nguyen [38] gave the first
post-quantum covert group-based AKE with trusted setup by adopting Jarecki’s
construction [32] to a lattice-based construction (three rounds in the ROM).
Kumar and Nguyen do not provide bandwidth estimates, but we expect them
to be somewhat large compared to Jarecki’s original construction since they rely
on trapdoor lattices [27].

84 K. Eldefrawy et al.

None of the aforementioned works are proven secure in the UC framework
[13]. Cho, Dachman-Soled, and Jarecki [17] achieve UC security for covert MPC
of two specific functionalities, namely string equality and set intersection. The
work of Jarecki [33] achieves UC secure 2PC for any function, but its efficiency
is constant-round and sends O(κ|C|) symmetric ciphertexts and O(nκ) group
elements where C is a boolean circuit with n input bits for the function to be
computed. Implementing covert group-based authenticated key exchange using
such generic protocol would be exceedingly costly. An open question is if the
covert group-based AKE of [32] is secure as-is in the UC model despite [32]
using a weaker instantiation of a covert CKEM.

Organization. Section 2 provides preliminaries. Section 3 presents a universally
composable (UC) model of group covert authenticated key exchange (group
cAKE). Section 4 reviews the building blocks used in our construction, namely
covert trapdoor commitments, SPHF’s, and an Identity Escrow (IE). Section 5
uses the first two of these tools to construct a covert CKEM, a key modular com-
ponent of our group cAKE. The group cAKE scheme itself is shown in Sect. 6.
For space constraint reasons, all security proofs, and an overview of our proof of
concept implementation, are deferred to the full version of the paper [22].

2 Preliminaries

We reserve κ for the security parameter throughout the paper. The uniform
distribution on a finite set S is denoted as U(S). We write x ←R X for a random
variable sampled from distribution X , and we write x ←R S for x ←R U(S).

Standard Notation, Σ-Protocols. For lack of space, we defer the review of
standard notions of computational and statistical indistinguishability, notation
for groups with bilinear maps, and the review of Σ-protocols, a special form of
honest-verifier zero-knowledge proof of knowledge [20], to the full version of the
paper on eprint [22]. We note that in this work we assume a slightly strengthened
form of Σ-protocols than in [20], where (1) both the verifier and the simulator use
the same function to recompute the prover’s first message from the rest of the
transcript, (2) prover’s response is a deterministic function of prior messages,
and (3) the simulator samples that response from some uniformly encodable
domain (see [22] for more details).

2.1 Covert Encodings and Random Beacons

We recall the covert encoding and random beacon notions used in steganography.

Definition 2.1. Functions (EC,DC) form a covert encoding of domain D if
there is an l s.t. EC : D → {0, 1}l, DC : {0, 1}l → D is an inverse of EC, and
EC(U(D)) is statistically close to the uniform distribution on {0, 1}l. Function
EC can be randomized but DC must be deterministic. In case EC is randomized
we require EC(U(D); r) to be statistically close to uniform when EC’s randomness
r is a uniform random bitstring of fixed length.

Short Concurrent Covert Authenticated Key Exchange 85

Definition 2.2. We call a finite set S uniformly encodable if it has a covert
encoding. Further, a family of sets S := {S[π]}π∈I indexed by some indexing set
I is uniformly encodable if S[π] is uniformly encodable for each π ∈ I.

Uniformly Encodable Domains. We use the following two uniformly encod-
able sets throughout the paper: (1) an integer range [n] = {0, ..., n− 1}, and (2)
points on an elliptic curve. For the former, if n is near a power of two then we
can send an integer sampled in U([n]) as is. Otherwise, for any t we can encode
t-tuple (ai)i∈[t] sampled from U([n]t) as

∑t−1
i=0 ai · ni + r · nt for r ←R [m] where

m =
2log2(n)+κ/n�. (See e.g. Sect. 3.4 of [47] for a proof.) For uniform encodings
of elliptic curve points we require two sub-cases: (2a) a curve in Montgomery
form and (2b) a pairing friendly curve. In case (2a) we can use the Elligator-2
encoding [8], which takes a random point sampled from a subset S of group
G = E(Fp), where |S|/|G| ≈ 1/2, and injectively maps it to integer range
[(p − 1)/2]. This map is then composed with a uniform encoding of this integer
range. In the random oracle model, if H is an RO hash onto G, see e.g. [50], a
simple way to encode point P sampled from the whole group, i.e. P ←R U(G) as
opposed to P ←R U(S), is to sample r ←R {0, 1}κ until Q = H(r) + P is in S,
where G is a generator of G, and output z = Elligator-2(Q)||r (see [22]). In case
(2b) we can use Tibouchi’s Elligator Squared encoding [47], which represents
a random curve point as a pair of random elements of base field Fq. This ran-
domized map is then composed with a uniform encoding of [q]2, implemented as
above. In summary, Elligator-2 admits a more narrow class of curves than Elli-
gator Squared, but using the above methods, the former creates slightly shorter
encodings than the latter, resp. |p| + 2κ vs. 2|q| + κ bits.

Random Beacons. The term random beacon refers to a network node or party
which broadcasts random bitstrings. Such randomness sources are used for covert
communication and here we use it for covert authentication, and, more generally,
covert computation. We use B$(κ) where B is an interactive algorithm to denote a
random beacon equivalent of B. Namely, if B has a fixed number of rounds and ni

is a polynomial s.t. for each i, the i-th round message of B has (at most) ni(κ)
bits, then B$(κ) is an interactive “algorithm” which performs no computation
except for sending a random bitstring of length ni(κ) in round i.

3 Universally Composable Model for Group Covert AKE

As discussed in the introduction, we define group covert AKE (group cAKE)
as a covert group Authenticated Key Exchange, i.e. a scheme which allows two
parties certified by the same authority, a.k.a. a group manager, to covertly and
securely establish a session key. Covert AKE must be as secure as standard AKE,
i.e. an adversary who engages in sessions with honest parties and observes their
outputs cannot break the security of any session except by using a compromised
but non-revoked certificate. In addition, the protocol must be covert in the sense
that an attacker who does not hold a valid and non-revoked certificate not only

86 K. Eldefrawy et al.

cannot authenticate to an honest party but also cannot distinguish interaction
with that party from an interaction with a random beacon. If such protocol is
implemented over a steganographic channel [31] a party who does not have valid
authentication tokens not only cannot use it to authenticate but also cannot
detect if anyone else uses it to establish authenticated connections.

We define a group cAKE scheme as a tuple of algorithms (KG,CG,Auth) with
the following input/output behavior:

– KG is a key generation algorithm, used by the group manager, s.t. KG(1κ)
generates the group public key, gpk , and a master secret key, msk .

– CG is a certificate generation algorithm, used by the group manager, s.t.
CG(msk) generates a membership certificate cert with a revocation token rt .

– Auth is an interactive algorithm used by two group members to (covertly)
run an authenticated key exchange. Each party runs Auth on local input
(gpk , cert ,RTset), where RTset is a set of revocation tokens representing
revoked parties. Each party outputs (K , rt), where K ∈ {0, 1}κ ∪ {⊥} is a
session key (or ⊥ if no key is established) and rt ∈ RTset∪ {⊥} is a detected
revocation token in RTset, or ⊥ if Auth participant does not detect that a
counterparty uses a certificate corresponding to a revocation token in RTset.

Our notion of AKE does not include explicit entity authentication, i.e., a party
might output K �= ⊥ even though its counterparty is not a valid group member.
However, since key K is secure, the parties can use standard key confirmation
methods to explicitly authenticate a counterparty as a valid group member who
computed the same session key. Moreover, Auth can remain covert even after
adding key confirmation, e.g. if key confirmation messages are computed via
PRF using key K . Note that in the definition above a real-world party P can
output K = ⊥, which violates the (simplified) covert mutual authentication
model of Fig. 1 in Sect. 1. However, w.l.o.g. P is free to run any upper-layer
protocol Π that utilizes Auth output K by replacing K = ⊥ with a random key,
thus preserving its covertness if protocol Π is covert.

Universally Composable Group cAKE. We define security of group cAKE
via a universally composable functionality Fg-cAKE shown in Fig. 2, and we say
that scheme Π = (KG,CG,Auth) is a group cAKE if Π UC-realizes functionality
Fg-cAKE in the standard sense of universal composability [13]. However, we adapt
the UC framework [13] to the covert computation setting so that environment
Z can pass to party P executing an AKE protocol Auth a special input ⊥, which
causes party P to play a role of a random beacon. (The same convention was
adopted by Chandran et al. [15] with regards to one-shot secure computation.)
For simplicity of notation we assume that protocol Auth is symmetric, i.e., the
two participants act symmetrically in the protocol, and that it has a fixed number
of rounds. In this case, on input (NewSession, ssid,⊥) from Z, this party’s session
indexed by identifier ssid is replaced by a random beacon, i.e., it will run Auth$(κ)

instead of Auth, see Sect. 2.
In Definition 3.1 we use the notation of [13], where IdealFg-cAKE,A∗,Z(κ, z)

stands for the output of environment Z in the ideal-world execution defined

Short Concurrent Covert Authenticated Key Exchange 87

by the ideal-world adversary (a.k.a. simulator) algorithm A∗ and functionality
Fg-cAKE, for security parameter κ and Z’s auxiliary input z, and RealΠ,A,Z(κ, z)
stands for Z’s output in the real-world execution between a real-world adversary
A and honest parties acting according to scheme Π, extended as specified above
in case party P receives Z’s input (NewSession, ssid,⊥).

Definition 3.1. Protocol Π = (KG,CG,Auth) realizes a UC Covert Authenti-
cated Key Exchange if for any efficient adversary A there exists an efficient
ideal-world adversary A∗ such that for any efficient environment Z it holds that

{IdealFg-cAKE,A∗,Z(κ, z)}κ∈N,z∈{0,1}∗ ≈c {RealΠ,A,Z(κ, z)}κ∈N,z∈{0,1}∗

Group cAKE Functionality. We explain how functionality Fg-cAKE oper-
ates and how it differs from a standard AKE functionality, e.g. [14,37]. Note
that functionality Fg-cAKE in Fig. 2 is much more complex than functionality
FcAKE[CGwr] in Fig. 1 in Sect. 1. The first difference are environment commands
GInit and CertInit, which are used to initialize groups and generate membership
certificates, and commands CompCert and RevealRT, which model adversarial
compromise of resp. certificates and revocation tokens (which are not assumed
public by default). Command NewSession models party P engaging in group
cAKE on input x = (gpk , cert ,RTset), exactly as FcAKE[CGwr] of Fig. 1, except
that in Fg-cAKE these real-world inputs are replaced by ideal-world identifiers,
resp. gid, cid,RTcids. One aspect of functionality Fg-cAKE is that there can be
many number of such sessions present, and the adversary can “connect” any pair
of such sessions, by passing their messages. Secondly, the adversary can actively
attack any session using some compromised group certificate, and functionality
Fg-cAKE carefully delineates the effect of such attack based on whether the group
assumed by the attacker matched the one used by the attacker party, and if so
then whether the certificate used by the attacker was revoked by the attacked
party.

Below we explain how we model secure initialization and party interactions
with the group manager, and we briefly overview how we model compromise
of credentials and revealing of revocation tokens, and how Fg-cAKE models key
establishment and active (or passive) session attacks. For a more detailed walk
through functionality Fg-cAKE, see the eprint version of this paper [22].

Secure Initialization and Trusted Group Manager. A crucial difference
between Fg-cAKE and standard AKE is that in the latter each party can function
on its own, creating its (private, public) key pair, e.g. as in [30], maybe accessing a
global certificate functionality, e.g. as in [14]. By contrast, the Covert AKE model
Fg-cAKE must explicitly include a group manager party, denoted GM, initialized
via query (GInit, gid) which models generation of a group public key indexed by a
unique identifier gid. Consequently, the Fg-cAKE model assumes a trusted party,
secure channels at initialization, and secure distribution of revocation tokens. We
explain each of these assumptions in turn. Note that identifier gid in command
(GInit, gid) is associated with that group instance by each party P, which can
be realized if GM has a reliable authenticated connection to each party, which

88 K. Eldefrawy et al.

Fig. 2. Fg-cAKE: Group cAKE functionality, static corruptions enforced by boxed text

Short Concurrent Covert Authenticated Key Exchange 89

allows authenticated broadcast of gpk . GM is assumed trusted because the model
does not allow a compromise of GM or the master secret msk held by GM.
Furthermore, when Z’s command (CertInit, gid, cid) to party P, prompting it to
generate a membership certificate with identifier cid (assumed unique within
group gid), we assume that only P can later use it to authenticate. Looking
ahead, we will implement CertInit relying on a secure channel between P and
GM. Party GM will generate the certificate identified by cid, it will send it to P
on the secure channel, and GM will be trusted not to use the certificate itself.

The above assumptions pertain to initialization procedures, but the on-line
authentication will rely on the secure P-to-GM channels in one more aspect,
namely for secure delivery of revocation tokens. The environment tells P to run
the authentication protocol via query (NewSession, ssid, gid, cid,RTcids), which
models P starting an AKE session using its certificate identified by cid within
group gid, where RTcids is a set of identifiers of revoked certificates which P
will use on this session. Crucially, at this step an implementation must allow P
to translate this set of certificate identifiers RTcids into a set RTset of actual
revocation tokens corresponding to these certificates. This can be realized e.g. if
the trusted party GM stores the revocation tokens for all certificates it generates
and that the P-GM channel allows for secure and authenticated transmission of
the revocation tokens from GM to P whenever the environment requests it by
including them in set RTcids input to P in some NewSession query. Note that
the environment can set RTcids in an arbitrary way, which models e.g. parties
that do not receive the revocation tokens of all compromised parties.11

Static Compromise Model. Adversary can compromise any certificate, using
command (CompCert, gid,P, cid), and it can reveal the revocation information
corresponding to any certificate, using command (RevealRT, gid,P, cid). The first
command adds cid to the set CompCertgid of compromised certificate identifiers
in group gid, and both commands add cid to the set RevRTgid of certificate
identifiers whose revocation tokens are revealed to the adversary. A compromised
certificate cid allows the adversary to actively authenticate to other parties using
interface Impersonate, whereas a revealed revocation token implies that party P
which uses it to authenticate can be identified by the adversary, and hence no
longer covert (see the second clause in NewSession interface). Finally, we allow
only for static corruptions, which is implied by marked text fragments in Fig. 2,
which impose that an adversary can compromise a certificate and/or reveal a
revocation token only if this certificate was never used by an honest party. This
is because the group cAKE scheme we show in this work has no forward privacy,
i.e., all past sessions executed by a party on some certificate become identifiable,
and hence lose covertness, if this certificate is compromised at any point in the
future. Because it appears difficult to capture a notion of “revocable covertness”,
i.e., that protocol instances remain covert until a certificate they use is revealed,
we forego on trying to capture such property and limit the model by effectively

11 To see an example of how real-world parties can use scheme Π = (KG,CG,Auth) to
implement the environment’s queries to Fg-cAKE, please see Fig. 5 in Sect. 6.

90 K. Eldefrawy et al.

requiring that the adversary corrupts all certificates and reveals all revocation
tokens at the beginning of the interaction.

AKE Session Establishment and Attacks. Party P starts an AKE session
via command (NewSession, ssid, gid, cid,RTcids). Values gid, cid,RTcids can either
form an input to a real protocol party, or they can be ⊥, in which case this
command triggers an execution of a random beacon. Crucially, if cid is not in
RevRTgid, i.e. a party runs on a certificate whose revocation token is not revealed,
then A∗ gets the same view of the real-world protocol as its view of the random
beacon, i.e. A∗ gets (NewSession,P, ssid,⊥) in either case. Below we will use a
word “session” for both real sessions and random beacons. The adversary can
react to sessions in 3 ways: (1) it can interfere in them, using query Interfere,
which makes real sessions output random keys K on termination, modeled by
query NewKey (random beacon sessions always output K = ⊥, regardless of
adversarial behavior towards them); (2) it can passively connect them to another
session, using query Connect, which will make the two sessions establish a shared
key at termination if they assume same group gid and use certificates which are
not on each other’s revocation lists (otherwise they output independent random
keys); or (3) it can actively attack P’s session using a compromised certificate
cid∗ for some target group gid∗, as modeled by query Impersonate: If gid∗ matches
the gid used by P then Fg-cAKE marks P’s session compromised(cid∗), but when
this session terminates via NewKey then Fg-cAKE lets A∗ set its key to K ∗ only
if cid∗ is not in RTcids used by P. Otherwise P outputs K = ⊥ and cid∗ as the
identifier of a revoked party which P “caught” in this interaction.

(For a more detailed walk-through of the Fg-cAKE session attack and termi-
nation interfaces see the eprint version of the paper [22].)

Note on the Environment. An environment plays a role of an arbitrary appli-
cation utilizing the group cAKE scheme. The role of group cAKE is to make real
AKE sessions indistinguishable from random beacons, but the two send different
outputs to the environment: the former outputs keys, the latter do not. If the
environment leaks that output to the adversary then the benefit of covertness
will disappear. However, this is so in the real-world: If an adversary can tell
that two nodes use the established key to communicate with each other, they
will identify these parties on the application level and the covert property of the
AKE level was “for naught”, at least in that instance. However, if the upper-layer
communication stays successfully hidden in some steganographic channel, then
the adversary continues being unable to detect these parties. The versatility of
a universally composable definition is that it implies the maximum protection
whatever the strength of the upper-layer application: If the upper-layer allows
some sessions to be detected (or even leaks the keys they use), this information
does not help to detect other sessions, and it does not help distinguish anything
from the cryptographic session-establishment protocol instances. The same goes
for the revocation information the AKE sessions take as inputs: If the upper-
layer detects compromised certificates and delivers the revocation information
to all remaining players, the adversary will fail to authenticate to other group
members and it will fail to distinguish their session instances from random bea-

Short Concurrent Covert Authenticated Key Exchange 91

cons. If the revocation information does not propagate to some group member,
the adversary can detect that party using a compromised certificate, but this
inevitable outcome will not help the attacker on any other sessions.

4 Building Blocks: Commitment, SPHF, Identity Escrow

Our group cAKE construction consists of (1) each party sending out a blinded
covert Identity Escrow (IE) certificate, and (2) each party verifying the coun-
terparty’s value using a covert Conditional Key Encapsulation Mechanism
(CKEM). (This group cAKE construction is shown in Fig. 6 in Sect. 6.) The
covert CKEM construction in turn uses a covert Trapdoor Commitment and a
covert Smooth Projective Hash Function (SPHF) which must be secure against
a Plaintext Checking Attack (PCA). In this section we define and show effi-
cient instantiations for each of the three above building blocks, i.e. covert Trap-
door Commitments, in Subsect. 4.1, PCA-secure covert SPHF, in Subsect. 4.2,
and covert IE, in Subsect. 4.3. (The construction of covert CKEM using trap-
door commitments and PCA-secure SPHF is shown in Sect. 5.) To fit bandwidth
restrictions of steganographic channels we instantiate all tools with bandwidth-
efficient schemes, using standard prime-order elliptic curve group for the Trap-
door Commitment and SPHF, and type-3 curves with bilinear pairings for IE.

4.1 Covert Trapdoor Commitment

For the reasons we explain below, we modify the standard notion of a Trap-
door Commitment [24] by splitting the commitment parameter generation into
two phases. First algorithm GPG on input the security parameter κ samples
global commitment parameters π, and then algorithm PG on input π samples
instance-specific parameters π. The commitment and decommitment algorithms
then use pair (π, π) as inputs. The trapdoor parameter generation TPG runs on
the global parameters π output by GPG, but it generates instance parameters π
with the trapdoor tk . Then, the trapdoor commitment algorithm TCom on input
π generates commitment c with a trapdoor td , and the trapdoor decommitment
algorithm TDecom on input (π, π, c, tk , td ,m) generates decommitment d . Cru-
cially, the trapdoor commitment TCom takes only global parameters as inputs,
which allows a simulator to create trapdoor commitments independently from
the instance parameters π.

Definition 4.1. Algorithm tuple (GPG,PG,Com,Decom) forms a trapdoor
commitment scheme if there exists algorithms (TPG,TCom,TDecom) s.t.:

– GPG(1κ) samples global parameters π and defines message space M
– PG(π) samples instance parameters π
– Com(π, π,m) outputs commitment c and decommitment d
– Decom(π, π, c,m, d) outputs 1 or 0

– TPG(π) outputs instance parameters π with trapdoor tk

92 K. Eldefrawy et al.

– TCom(π) outputs commitment c with trapdoor td
– TDecom(π, π, c, tk , td ,m) outputs decommimtment d

The correctness requirement is that if π ← GPG(1κ), π ← PG(π), and (c, d) ←
Com(π, π,m) then Decom(π, π, c,m, d) = 1.

Definition 4.2. We say that a trapdoor commitment scheme forms a covert
perfectly-binding trapdoor commitment if it satisfies the following:

1. Trapdoored and non-trapdoored distributions indistinguishability: For any m
tuples (π, π, c, d) generated by the following two processes are computationally
indistinguishable: sample π ← GPG(1κ) and fix any m ∈ M,

P0 : π ← PG(π), (c, d) ← Com(π, π,m)
P1 : (π, tk) ← TPG(π), (c, td) ← TCom(π),

d ← TDecom(π, π, c, tk , td ,m)

2. Perfect binding: If π ← GPG(1κ) and π ← PG(π), then for any c,m,m ′, d , d ′

it holds except for negligible probability over the coins of GPG and PG, that if
Decom(π, π, c,m, d) = Decom(π, π, c,m ′, d ′) = 1 then m = m ′.

3. Covertness: There is a uniformly encodable set family S s.t. for any m, tuples
(π, π, c) and (π, π, c′) are computationally indistinguishable for π ← GPG(1κ),
π ← PG(π), c ← Com(π, π,m), c′ ←R U(S[π]).

Discussion. The first property is specialized for scenarios where each com-
mitment instance π is used only for a single commitment. This restriction is
not necessary for the implementation shown below, but we use it for simplicity
because it suffices in our CKEM application. Note that perfect binding prop-
erty holds on all non-trapdoored commitment instance parameters π, and it is
unaffected by the equivocability of commitments pertaining to any trapdoored
commitment instances π′. Observe also that the covertness property implies the
standard computational hiding property of the commitment. Finally, we note
that the above properties do not imply non-malleability, and we defer to Sect. 5
for the intuition why that suffices in the CKEM application.

Random Oracle Applications. In the Random Oracle Model (ROM) it can
be convenient to replace the instance generator algorithm PG with a random
oracle, but for that we need an additional property:

Definition 4.3. We say that a trapdoor commitment scheme has RO-
compatible instance parameters if each π output by GPG(1κ) defines set C[π] s.t.
(1) distribution {π}π←PG(π) is computationally indistinguishable from uniform
in C[π], and (2) there exists an RO-indifferentiable hash function H : {0, 1}∗ →
C[π].

The above property allows an application to set instance parameters as π :=
H(lbl), where string lbl can be thought of as a label of that commitment instance.
If a label can be uniquely assigned to a committing party then for all labels

Short Concurrent Covert Authenticated Key Exchange 93

corresponding to adversarial instances the simulator can set H(lbl) by sampling
PG(π), which makes all these instances perfectly binding, while for all labels
corresponding to honest parties the simulator can set H(lbl) by sampling TPG(π),
which makes all these instances equivocable.

In the CKEM application, Sect. 5, the label lbl is a statement x used in a given
CKEM instance. In this way the simulator can “cheat” in the CKEM’s on state-
ments of the simulated parties without affecting the soundness of the CKEM’s
executed by the adversarial parties.12 The same CKEM application also moti-
vates why it is useful for the trapdoor commitment TCom to be independent
of a commitment instance parameter π. Namely, this enables the “statement-
postponed zero-knowledge” property in the CKEM application, where the sim-
ulator at first does not know the statement x used by the CKEM sender on
the onset of simulation, but it can use TCom(π) to create an equivocable com-
mitment, which it can then open to an arbitrary message for any parameter
π = H(x) generated in the trapdoored way.

Instantiation. The trapdoor commitment scheme satisfying all properties of
Definitions 4.1, 4.2 and 4.3, can be implemented with a “Double Pedersen”
commitment in a DDH group G of order q with covert encoding and RO hash
onto the group: Global parameters are π = (g1, g2) ←R G

2, instance parameters
are π = (h1, h2) ←R G

2, and the commitment is c = (gd1 · hm
1 , gd2 · hm

2) where
d ←R Zq is a decommitment. Trapdoor generators TPG and TCom set resp.
(h1, h2) = (gtk1 , gtk2) for tk ←R Zq and c = (gtd1 , gtd2) for td ←R Zq , and trapdoor
decommitment to m opens d s.t. td = d + tk · m mod q . The security proofs for
this construction are deferred to the full version of the paper [22].

4.2 Covert SPHF with PCA-Security

A smooth projective hash function (SPHF) for an NP language L, introduced
by Cramer and Shoup [18], allows two parties to compute a hash on a statement
x ∈ L where one party computes the hash using a random hash key hk and the
statement x, and the other can recompute the same hash using a projection key
hp corresponding to hk and a witness w for x ∈ L. The smoothness property is
that if x �∈ L then the hash value computed using key hk on x is statistically
independent of the projection key hp. In other words, revealing the projection
key hp allows the party that holds witness w for x ∈ L to compute the hash
value, but it hides this value information-theoretically if x �∈ L. In this work we
require two additional properties of SPHF, namely covertness and One-Wayness
under Plaintext Checking Attack (OW-PCA) security, which we define below.

Definition 4.4. A covert smooth projective hash function (covert SPHF) for
NP language L parameterized by π, is a tuple of PPT algorithms (HKG, Hash,
PHash) and set family H indexed by π, where HKG(π) outputs (hk , hp), and
PHash(x,w, hp) and Hash(x, hk) both compute a hash value v s.t. v ∈ H[π].
Furthermore, this tuple must satisfy the following properties:
12 Except if an adversarial party copies a statement of the honest party, in which case

CKEM security comes from the PCA security of SPHF, see Sect. 4.2.

94 K. Eldefrawy et al.

– Correctness: For any (π, x, w) s.t. x ∈ L[π] and w is a witness for x, if
(hk , hp) ← HKG(π) then Hash(x, hk) = PHash(x,w, hp).

– Smoothness: For any π and x �∈ L[π], hash Hash(x, hk) is statistically close
to uniform over H[π] even given hp, i.e. tuples (hp, v) and (hp, v ′) are sta-
tistically close for (hk , hp) ← HKG(π), v ← Hash(x, hk), and v ′ ←R U(H[π]).
Moreover, space H[π] must be super-polynomial in the length of π.

– Covertness: There is a uniformly encodable set S s.t. for any π, distribution
{hp}(hk ,hp) ←R HKG(π) is statistically close to uniform over S[π].

One-Wayness under Plaintext-Checking Attack (OW-PCA) for
SPHF. We define OW-PCA security notion for SPHF in analogy with OW-PCA
security of Key Encapsulation Mechanism (KEM). OW-PCA security of KEM
[28,43] asks that for a random KEM public key pk and ciphertext c, an efficient
attacker cannot, except for negligible probability, output the key k encrypted
in c even given access to a Plaintext-Checking (PCA) oracle, which holds the
corresponding secret key sk and for any (ciphertext,key) query (c′, k′) outputs
1 if k′ = Dec(sk , c′) and 0 otherwise. An SPHF can implement a KEM if L is
hard on average, i.e. if on random x ∈ L it is hard to compute the corresponding
witness w, because statement x, witness w, projection key hp, and hash value v
could play the KEM roles of respectively pk , sk , c, and k. We define the OW-
PCA property of SPHF as requiring that such KEM scheme is OW-PCA secure,
i.e. that for a random (statement, witness) pair (x,w) in L and random HKG(π)
outputs (hk , hp), an efficient attacker cannot output v = Hash(x, hk) even given
access to a PCA oracle, which holds the witness w and for any query (hp′, v ′)
outputs 1 if v ′ = PHash(x,w, hp′) and 0 otherwise.

Following the above parallel to the OW-PCA property of KEM, statement
x, which acts like a public key, should be randomly sampled by the challenger.
However, in the CKEM applications of Sect. 5, we need OW-PCA SPHF for
statements chosen from a “mixed” distribution, where part the statement is
arbitrarily chosen by the adversary and only part is randomly sampled by the
challenger. Specifically, we will consider language LCom of valid commitments
in a covert perfectly-binding trapdoor commitment scheme, see Definition 4.2,
parameterized by global commitment parameters π:

LCom[π] = {(π,m, c) | ∃ d s.t. Decom(π, π, c,m, d) = 1} (1)

Further, we will need OW-PCA security to hold for statements x = (π,m, c)
where components (π,m) are chosen by the adversary on input π while compo-
nent c together with witness d is chosen at random by the OW-PCA challenger.

In general, let L be parameterized by strings π sampled by alg. PGsphf(1κ),
let Lpre[π] be a language of fixed-length prefixes of elements in L[π], and for any
π and xL ∈ Lpre[π], let

RL[π, xL] = {(xR, w) | s.t. (xL, xR) ∈ L[π] and w is its witness}.

Notably from in Eq. 1, xL = (π,m), xR = c, and the witness w is the decommit-
ment d . We define OW-PCA of SPHF for L as follows:

Short Concurrent Covert Authenticated Key Exchange 95

Definition 4.5. SPHF for language L with parameter generation algorithm
PGsphf and prefix language Lpre is One-Way under Plaintext Checking Attack
(OW-PCA) if for any efficient A the following probability is negligible:

Pr [v = Hash(x, hk) | v ← APCA(w,·)(π, x, hp, st)]

where π ← PGsphf(1κ), (xL, st) ← A(π) s.t. xL ∈ Lpre[π], (xR, w) ←R RL[π, xL],
x ← (xL, xR), (hk , hp) ← HKG(π), and oracle PCA(w, ·) on queries (hp′, v ′)
from A outputs 1 if v ′ = PHash(x,w, hp′) and 0 otherwise.

Instantiation. Language LCom[π] in Eq. 1 has a well-known SPHF which sat-
isfies all properties in Definitions 4.4 and 4.5 for the “Double Pedersen” com-
mitment described in Sect. 4.1: The hash key is hk = (hk1, hk2) ←R Z

2
q , the

projection key is hp = (g1)hk1(g2)hk2 , Hash on x = (π,m, c) for c = (c1, c2) sets
v ← (c1/hm

1)hk1(c2/hm
2)hk2 , and PHash on witness d for x sets v ← hpd . The

security proofs for this SPHF are deferred to the full version of the paper [22].

4.3 Covert Identity Escrow

We describe a Covert Identity Escrow (IE) scheme, an essential ingredient in our
group cAKE construction of Sect. 6.

IE Syntax. An Identity Escrow (IE) scheme [34] is an entity authentication
scheme with operational assumptions and privacy properties similar to a group
signature scheme [16]. Namely, a designated party called a group manager (GM)
uses a key generation algorithm KG to first generate a group public key gpk and
a master secret key msk . Then, using the master secret key and a certificate
generation algorithm CG, the group manager can issue each group member a
membership certificate cert together with membership validity witness v . This
pair allows a group member to authenticate herself as belonging to the group,
but this authentication is anonymous in that multiple authentication instances
conducted by the same party cannot be linked. In other words, the verifier is
convinced that it interacts with some group member, in possession of some valid
membership certificate, but it cannot tell which one. Following [10] we use the
Verifier-Local Revocation (VLR) model for IE/group signature, where algorithm
CG produces also a revocation token rt corresponding to certificate cert , and the
authentication between a prover holding (gpk , cert , v) and the verifier holding
gpk and a set of revocation tokens RTset is defined by a triple of algorithms
CertBlind, Ver, Link, as follows:

1. The prover uses a certificate blinding algorithm CertBlind to create a blinded
certificate bc from its certificate cert , and sends bc to the verifier.

2. The prover proves knowledge of witness v corresponding to the blinded cer-
tificate bc using a zero-knowledge proof of knowledge for relation

RIE = {((gpk , bc), v) s.t. Ver(gpk , bc, v) = 1} (2)

96 K. Eldefrawy et al.

3. The verifier accepts if and only if the above proof succeeds and the tracing
algorithm Link does not link the blinded certificate to any revocation token
in set RTset, i.e. if Link(gpk , bc, rt) = 0 for all rt ∈ RTset.

The IE syntax and correctness requirements are formally captured as follows:13

Definition 4.6. An identity escrow (IE) scheme is a tuple of efficient algo-
rithms (KG,CG,CertBlind,Ver, Link) with the following syntax:

– Key Generation alg. KG picks a public key pair, (msk , gpk) ← KG(1κ)
– Certificate Generation alg. CG generates a certificate cert, its validity witness

v, and revocation token rt, (cert , v , rt) ← CG(msk)
– Blinding alg. CertBlind outputs a blinded certificate, bc ← CertBlind(cert)
– Verification alg. Ver, s.t. if (msk , gpk) ← KG(1κ), (cert , v , rt) ← CG(msk),

and bc ← CertBlind(cert), then Ver(gpk , bc, v) = 1
– Tracing alg. Link, s.t. if (msk , gpk) ← KG(1κ), (cert , v , rt) ← CG(msk), and

bc ← CertBlind(cert), then Link(gpk , bc, rt) = 1

IE Security. Below we state the standard IE security properties [34], strength-
ened by covertness needed for our group cAKE construction.

The IE unforgeability property is that the adversary who receives some set
of certificates, cannot create pair (bc, v) which satisfies the verification equation,
i.e. Ver(gpk , bc, v) = 1, but which the tracing algorithm Link fails to link to
the revocation tokens corresponding to the certificates received by the adver-
sary. In the group cAKE application an adversary, in addition to holding some
set of compromised certificates, can also observe revocation tokens and blinded
certificates corresponding to non-compromised certificates. The definition below
captures this by giving the adversary an arbitrary number of revocation tokens
rt and certificates cert from which it can generate blinded certificates on its own:

Definition 4.7. We call an IE scheme unforgeable if for any efficient algorithm
A the probability that b = 1 in the following game is negligible in κ, for m,n
polynomial in κ s.t. m < n:

1. set b ← 0 and (msk , gpk) ← KG(1κ)
2. for i ∈ [1, n] set (cert i, vi, rt i) ← CG(msk)
3. (bc∗, v∗) ← A(gpk , {cert i, vi, rt i}i∈[1,m], {cert i, rt i}i∈[m+1,n])
4. b ← 1 if Ver(gpk , bc∗, v∗) = 1 and Link(gpk , bc∗, rt i) = 0 for all i ∈ [1,m]

(In the above game, tuples (cert i, vi, rt i) for i ∈ [1,m] represent compromised
certificates, set {rt i}i∈[m+1,n] contains all additional revocation tokens the adver-
sary learns, and set {cert i}i∈[m+1,n] can be used to derive all blinded certificates
the adversary receives from non-compromised parties.)

13 More generally, CertBlind should take witness v along with cert as input, and produce
output v ′ along with bc as output, where v ′ is a validity witness for the blinded
certificate bc. We use simpler syntax assuming that v ′ = v because it declutters
notation, and it suffices for IE instantiation from Pointcheval-Sanders signatures [42].

Short Concurrent Covert Authenticated Key Exchange 97

The IE covertness property strengthens the standard IE property of authenti-
cation anonymity [34]. Authentication anonymity asks that an adversary cannot
link blinded certificate bc and decide e.g. whether they are generated from the
same certificate or not. Covertness strengthens this by requiring that blinded
certificates are indistinguishable from random elements in a uniformly encod-
able domain (hence they can be covertly encoded, see Sect. 2.1). Since each
blinded certificate is indistinguishable from random domain element, it follows
in particular that they are unlinkable. Similarly as in the unforgeability property,
the adversary should be able to observe other certificates, hence in the defini-
tion below we hand the adversary the master secret key msk from which it can
generate certificates, blinded certificates, and revocation tokens.

Definition 4.8. We call an IE scheme covert if there is a uniformly encodable
domain D s.t. for any efficient algorithm A quantity |p0 − p1| is negligible in κ
for n,m polynomial in κ, where pb = Pr[b′ = 1] in the following game:

1. (msk , gpk) ← KG(1κ)
2. for i ∈ [1, n] set (cert i, vi, rt i) ← CG(msk)
3. for all (i, j) ∈ [1, n] × [1,m]:

if b = 1 then set bcij ← CertBlind(cert i) else pick bcij ←R D
4. b′ ← A(msk , gpk , {bcij}i∈[1,n],j∈[1,m])

We require that the zero-knowledge proof for relation RIE in Eq. (2) used is
(based on) a Σ-protocol. We need this property to build a covert CKEM for the
same relation using the Σ-to-CKEM compiler of Sect. 5.2.

Definition 4.9. We call an IE scheme Σ-protocol friendly if relation RIE,
Eq. (2), admits a Σ-protocol with a uniformly encodable response space Sz .

Finally, we require IE to satisfy that the same blinded certificate cannot,
except for negligible probability, correspond to two different honestly generated
revocation tokens created on behalf of two different groups. This property allows
the AKE scheme constructed in Sect. 6 to realize the group cAKE functionality
Fg-cAKE of Section 3, which assumes that if the real-world adversary attempts
to authenticate using some group certificate then this implies a unique choice of
a certificate, and hence also a group for which it was generated.

Definition 4.10. We call IE scheme unambiguous if:
(1) the probability that Link(gpk0, bc, rt0) = Link(gpk1, bc, rt1) = 1 is at most
negligible for any efficient A, where (msk b, gpk b) ← KG(1κ), (vb, certb, rtb) ←
CG(msk b) for b ∈ {0, 1}, and bc ← A(msk0, v0, cert0, rt0,msk1, v1, cert1, rt1);
(2) the same holds if the above experiment is adjusted by setting (msk , gpk) ←
KG(1κ) and (vb, certb, rtb) ← CG(msk) for b ∈ {0, 1}, and we measure the prob-
ability that Link(gpk , bc, rt0) = Link(gpk , bc, rt1) = 1.

Instantiation. An IE scheme which satisfies Definitions 4.7, 4.8, and 4.9, can be
implemented using the Pointcheval-Sanders group signature [42]. (We will refer
to this IE instantiation as PS-IE.) Sketching it briefly, if (p,G1,G2,GT , e) is a

98 K. Eldefrawy et al.

bilinear pairing of type-3 with g (ĝ) a generator of G1 (G2), then (1) KG picks
x, y ←R Zp and sets msk = (x, y) and gpk = (X̂, Ŷ) = (ĝx, ĝy), (2) CG(msk)
picks σ̃ ←R G1, v ←R Zp , sets ω̃ = σ̃x+y·v , and outputs certificate cert = (σ̃, ω̃),
validity witness v , and revocation token rt = Ŷ v , (3) CertBlind(cert) picks t ←R

Zp and outputs bc = (σ̃t, ω̃t), (4) Ver(gpk , bc = (σ, ω), v) = 1 iff e(σ, X̂ · Ŷ v) =
e(ω, ĝ), and (5) Link(gpk , bc = (σ, ω), rt) = 1 iff e(σ, X̂ · rt) = e(ω, ĝ). The full
details and security proofs are deferred to the full version of the paper [22].

5 Covert Strong Simulation-Sound Conditional KEM

Conditional Key Encapsulation Mechanism (CKEM) [32] is a KEM counterpart
of Witness Encryption (WE) [26] and Conditional Oblivious Transfer (COT)
[19]. A CKEM for an efficiently verifiable relation R (and a corresponding NP
language LR) is a protocol that allows sender S and receiver R, to establish,
on input a statement x, a secure key K if R holds a witness w s.t. (x,w) ∈ R.
Since CKEM is an encryption counterpart to a zero-knowledge proof, we follow
[7,32,33] and use ZKP terminology referring to CKEM properties, e.g. we call
CKEM sound if S’s output KS is pseudorandom if x �∈ LR, and we call it strong
sound [32] if w is extractable from any algorithm distinguishing KS from random.

Benhamouda et al. [7] strengthened the notion of CKEM (called Implicit
Zero-Knowledge therein) to include simulatability, i.e. that there exists an effi-
cient simulator which for any x ∈ LR computes R’s output KR without the
knowledge of witness w for x, and simulation-soundness, i.e. that adversar-
ial CKEM instances remain sound even in the presence of a simulator which
simulates CKEM instances performed on behalf of honest players. Jarecki [33]
extended simulation-sound CKEM of [7] to covertness, i.e. indistinguishability
of a simulation (and hence also the real receiver) from a random beacon.

Here we adopt the covert zero-knowledge and simulation-sound CKEM
notion which follows the above chain of works, but we modify it in several ways.
First, we combine strong soundness of [32] and simulation-soundness of [7] to
strong simulation-soundness, i.e. we require an efficient extractor that extracts
a witness from an attacker who distinguishes S’s output key from random on
instance x in the presence of a simulator which plays the receiver’s role on
any instance x′ �= x. This is motivated by the group cAKE application where a
reduction must extract a certificate forgery from an attacker who breaks sender’s
security of CKEM on a statement corresponding to a non-revoked certificate.

Our second change is introducing a postponed-statement zero-knowledge prop-
erty to CKEM, which asks that there exists a postponed-statement simulator
which simulates the CKEM on behalf of the receiver, i.e. recovers the same key
KR which an honest receiver would compute, not only without knowing the wit-
ness but also without knowing the statement used by the real-world receiver R,
except after all CKEM messages are exchanged, i.e. in the final key-computation
step of the receiver. This property is crucial in an application like group cAKE,
because in the ideal-world group cAKE scheme, see the group cAKE functional-
ity in Sect. 3, the simulator does not know the group to which a simulated party

Short Concurrent Covert Authenticated Key Exchange 99

belongs. Indeed, the simulator does not even know if a party whose execution
it simulates is a real party which executes the group cAKE for some group or
it is a random beacon. Therefore, the simulator will not know the statement
x on which the real-world party performs the CKEM, except in the final step
in the case that (1) the adversary performs a CKEM for some group, and (2)
the functionality confirms that the honest party involved in this execution is
a real-world receiver R (and not a random beacon) and R runs on the same
group the adversary does. At this point the simulator reconstructs the correct
statement x the real-world R would have used in that case, and passes x to the
postponed-statement CKEM simulator to compute R’s output KR.

The third change is that we cannot use proof labels, which were used to sep-
arate between honest and adversarial proof/CKEM instances in e.g. [33]. This
change stems from the fact that whereas in many applications protocol instances
can be tied to unique identifiers of participating parties, we cannot do so in the
case of covert authentication. Indeed, an adversary A interacting with a covert
authentication system could forward statement x from receiver R to sender S,
and forward S’s CKEM for x from S to R. If in the simulation-soundness game
A learns R’s output KR then A can trivially distinguish S’s output KS from
random, as KS and KR are equal. Since this attack scenario corresponds to the
case of AKE attacker who forwards protocol messages between R and S, we will
handle that case separately as eavesdropper security, while in the simulation-
soundness game we impose a restriction that the challenge A-S interaction tran-
script differs from all A-R transcripts. Note that both the relation RPS−IE for
which we need this CKEM, and the SPHF tool we use to construct the CKEM
scheme below, are malleable, e.g. if the adversary changes statement x = (σ, ω)
to x′ = (σδ, ωδ) then x′ ∈ RPS−IE if x ∈ RPS−IE. However, we obtain sufficient
separation between CKEM instances by deriving the CKEM key via a random
oracle (RO) hash on the SPHF-derived key and an interaction transcript.

In Sect. 5.1 below we define the covert zero-knowledge strong simulation-
sound CKEM, and then in Sect. 5.2 we show a CKEM construction which
achieves this covert CKEM notion in ROM for any relation R with a Σ-protocol.

5.1 Definition of Covert CKEM with Strong Simulation-Soundness

Definition 5.1. A conditional key encapsulation mechanism (CKEM) for rela-
tion R is an algorithms tuple (GPG,Snd,Rec) s.t. parameter generation GPG(1κ)
generates CRS parameter π, and the sender Snd and receiver Rec are interactive
algorithms which run on local respective inputs (π, x) and (π, x, w), where each
of them outputs a session key K as its local output. CKEM correctness requires
that for all (x,w) ∈ R and π ← GPG(1κ), if KS ,KR are respective outputs of
Snd(π, x) and Rec(π, x, w) interacting with each other, then KS = KR.

In the definition below we use the notation P&Out(x) for an interactive algo-
rithm P that runs on input x and attaches its local output to its last message.
(In our case this output will be a CKEM key KS or KR.) For notation P$(κ)

refer to Sect. 2.1.

100 K. Eldefrawy et al.

Definition 5.2. A CKEM for relation R is covert zero-knowledge and strong
simulation-sound if there exist efficient algorithms TGPG and psTGPG which on
input 1κ output parameters π together with trapdoor td, and interactive algo-
rithms TRec and psTRec which runs on input (π, x, td), which satisfy the follow-
ing properties:

1. Setup Indistinguishability: parameters π generated by GPG(1κ), TGPG(1κ),
and psTGPG(1κ), are computationally indistinguishable.

2. Zero-Knowledge: For any efficient A,

{ARecO(π,·)(π)} ≈c {ATRecO(π,td,·)(π)}

for (π, td) ← TGPG(1κ), where oracle RecO(π, ·) runs Rec&Out(π, x, w) and
TRecO(π, td , ·) runs TRec&Out(π, x, td), on any query (x,w) ∈ R sent by A.

3. Statement-Postponed Zero-Knowledge: The above property must hold for
(psTGPG, psTRec) replacing (TGPG,TRec) where psTRec computes all its net-
work messages given (π, td) and only uses x for its local output.

4. Receiver Covertness: For any efficient A, {ARec(π,x,w)(st)} ≈c {ARec$(κ)
(st)}

for π ← GPG(1κ) and (x,w, st) ← A(π) s.t. (x,w) ∈ R.

5. Sender Covertness: For any efficient A, {ASnd(π,x)(st)} ≈c {ASnd$(κ)
(st)} for

π ← GPG(1κ) and (st , x) ← A(π).

6. Passive Security: For any efficient A,

{A(π, st , tr,KS)} ≈c {A(π, st , tr,K ′)}

for π ← GPG(1κ), (x,w, st) ← A(π) s.t. (x,w) ∈ R, (tr,KS ,KR) ←
[Snd(π, x) ↔ Rec(π, x, w)], K ′ ← {0, 1}κ.

7. Strong Simulation-Soundness: There exists an efficient algorithm Ext s.t. for
any deterministic efficient algorithm A = (A1,A2), if ε = |p0 − p1| is non-
negligible, then so is ε′, for pb for b = 0, 1 and ε′ defined as follows:

pb = Pr [b′ = 1 : (π, td , x, st) ← Init[A1](1κ), b′ ← Expb[A2](π, td , x, st)]

ε′ = Pr [(x,w) ∈ R : (π, td , x, st) ← Init[A1](1κ), w ← ExtA2(st)(π, td , x, st)]

where
– Init[A1](1κ) sets (π, td) ← TGPG(1κ) and (x, st) ← ATRec&Out(π,·,td)

1 (π);
– Expb[A2](π, td , x, st) outputs b′ = ASndMod&Out(b,π,x),TRec&Out(π,·,td)

2 (st) s.t.
• SndMod&Out(1, π, x) runs Snd&Out(π, x);
• SndMod&Out(0, π, x) runs Snd(π, x) and then sends K ′

S ← {0, 1}κ;
Moreover, Expb rejects if A2 makes the transcript of an interaction with
SndMod(b, π, x) the same as that of any interaction with TRec(π, x, td).

Short Concurrent Covert Authenticated Key Exchange 101

Discussion. The most direct comparison to the above notion of covert CKEM
is a covert CKEM defined in [33]. Differences from [33] include (1) lack of labels,
(2) strengthening of simulation-soundness to strong simulation-soundness, and
(3) requirement that the CKEM facilitates statement-postponed simulation. Fur-
thermore, (4) we allow the adversary in the strong simulation-soundness game
to interact with the receiver even on the same statement x used in the challenge
sender interaction, with the only constraint of excluding the trivial attack when
the adversary passes all messages between S and R, i.e. when some A-R transcript
equals the A-S transcript. We compensate for the latter constraint with (5) a
passive security requirement, i.e. that if the adversary passes messages between
S and R then the security holds even if the attacker knows the authentication
tokens these parties use.

Fig. 3. Covert CKEM (in ROM) for any relation R with a Σ-protocol

102 K. Eldefrawy et al.

5.2 Compiler from Σ-Protocol to Covert CKEM in ROM

Our covert CKEM protocol, shown in Fig. 3, is a compiler which creates a covert
CKEM for relation R from any Σ-protocol for R. The two other tools this
protocol requires are a covert perfectly-binding trapdoor commitment scheme,
see Sect. 4.1, and a covert and OW-PCA secure SPHF for language LCom[π]
associated with this commitment scheme, see Sect. 4.2 and Eq. (1). In addition,
the compiler uses the ROM, and in particular it assumes that the commitment
scheme has RO-compatible instance parameters, see Sect. 4.1, and it instantiates
the instance parameter generation of the commitment with an RO hash HCom.
Usage of ROM is motivated by the goal of realizing all CKEM security properties
at low cost in computation, communication, and round complexity. In particular,
our CKEM has minimal round complexity: one simultaneous flow.

Comparison with [32]. Our CKEM construction is a modification of the Σ-to-
CKEM compiler of Jarecki [32], where (1) the commitment scheme Com which
R uses to compute c in step R.1 must be a trapdoor commitment, where the
commitment parameters are derived by an RO hash of the statement x, (2) the
covert SPHF has an additional property of OW-PCA security, see Definition 4.5
in Sect. 4.2, and (3) the CKEM key output is not the SPHF hash value itself,
but the RO hash of that value together with the language statement and the
protocol transcript. Intuitively, the first change allows the CKEM to achieve
statement-postponed zero-knowledge, since the trapdoor receiver can create a
commitment without knowing the instance parameter π. The second change
assures security against a passive attacker. The last change allows for a stronger
version of simulation-soundness, see Definition 5.2, which asks that the Sender
CKEM challenge is secure in the presence of Receiver CKEM oracle that can be

Fig. 4. Covert CKEM for Pointcheval-Sanders IE relation RPS−IE.

Short Concurrent Covert Authenticated Key Exchange 103

executed even on the same statement, and the only restriction is that the CKEM
transcripts of the adversary’s interactions with the Sender and the Receiver
cannot be the same. (The case of same transcripts is covered by the passive
security property.) The proof of the following theorem is deferred to the full
version of the paper [22]:

Theorem 5.1. CKEM for R shown in Fig. 3 is covert zero-knowledge and
strong simulation-sound in ROM, if R has a Σ-protocol with uniformly encodable
response space Sz , trapdoor commitment Com is perfectly binding and covert, H
is a CRH, and SPHF for LCom is covert, smooth, and OW-PCA secure.

Efficient Instantiation. In Fig. 4 we show an instantiation of the generic
CKEM from Fig. 3, for relation RPS−IE defined by the Covert IE based on
Pointcheval-Sanders signatures (i.e. PS-IE), see Sect. 4.3, the “Double Pedersen”
trapdoor commitment, see Sect. 4.1, and the associated SPHF, see Sect. 4.2.

6 Construction of Group Covert AKE Protocol

In Figs. 5 and 6 we show algorithms (KG,CG,Auth) which implement a generic
group cAKE construction from covert Identity Escrow (IE) and covert CKEM.
In Fig. 5 we show the group initialization algorithm KG and certificate generation
algorithm CG, which implement respectively the GInit and CertInit interfaces of
UC group cAKE, as defined in Sect. 3. Figure 5 also shows the “input-retrieval”
step in the implementation of the NewSession command, which triggers the online
authentication algorithm Auth. The algorithm Auth itself, executing between
two parties, is shown in Fig. 6. Note that if a party is called with command
(NewSession, ssid,⊥) then it executes as a random beacon, as noted in Fig. 5,
instead of following the Auth protocol of Fig. 6.

The authentication protocol Auth in Fig. 6 uses the same combination of IE
and CKEM as in the covert AKE of [32], i.e. each party commits to its IE cer-
tificate, and then performs a CKEM to (implicitly and covertly) prove that it
knows a valid secret key issued by the group manager, corresponding to this
committed certificate. (Also, similarly as in [32], since the IE supports verifier-
local revocation, each party uses algorithm Link to locally verify the committed
certificate against each revocation token on its revocation list.) In spite of reusing
the same construction paradigm, the novel aspects of this protocol are as fol-
lows: First, thanks to stronger CKEM properties we can show that this generic
protocol realizes UC group cAKE notion defined in Sect. 3. This implies that
the protocol remains covert and secure under concurrent composition, e.g. that
leakage of keys on any session does not endanger either covertness or security
of any other session. Secondly, the strong notion of CKEM allows for minimal
interaction, i.e. both receiver and sender can send only one message without
waiting for their counterparty. Consequently, the generic Auth protocol in Fig. 6
has a minimally-interactive instantiation shown in Fig. 7.

The security of the above group cAKE construction is captured in the fol-
lowing theorem, with a proof deferred to the full version of the paper [22]:

104 K. Eldefrawy et al.

Fig. 5. Generic group cAKE: Initialization and UC interface.

Fig. 6. Generic group cAKE: protocol Auth, using covert encodings for bc/bc′.

Short Concurrent Covert Authenticated Key Exchange 105

Fig. 7. Instantiation of Covert AKE, with IE of Sect. 4.3 and CKEM of Fig. 4

106 K. Eldefrawy et al.

Theorem 6.1. Protocol Π = (KG,CG,Auth) in Figs. 5, 6 realizes UC Covert
Authenticated Key Exchange if IE is secure, covert, and Σ-protocol friendly,
and CKEM is covert zero-knowledge and strong simulation-sound.

Efficient Instantiation. Figure 7 shows a concrete instantiation of the generic
group cAKE scheme shown in Figs. 5, 6. This instantiation uses the PS-IE scheme
based on Pointcheval-Sanders signatures, see Sect. 4.3, and the CKEM from
Sect. 5 instantiated as shown in Fig. 4. (See the full version [22] for a walk through
this instantiation and an explanation of its steps.) Note that the protocol has
minimal interaction, as each party sends a single message without waiting for
the counterparty, and it is quite practical: Its bandwidth is 6 group elements per
party (2 in a base group of a type-3 elliptic curve and 4 in a standard group),
and each party computes 10 fixed-base exp’s, 4 variable-base (multi-)exp’s, and
4 + n bilinear maps, where n is the size of the revocation list.

References

1. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 14

2. Balfanz, D., Durfee, G., Shankar, N., Smetters, D., Staddon, J., Wong, H.-C.:
Secret handshakes from pairing-based key agreements. In: IEEE Symposium on
Security and Privacy (S&P), pp. 180–196 (2003)

3. Bellare, M., Canetti, R., Krawczyk, H.: A modular approach to the design and
analysis of authentication and key exchange protocols (extended abstract). In:
Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing
(STOC), pp. 419–428 (1998)

4. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

5. Bellovin, S.M., Merritt, M.: Encrypted key-exchange: password-based protocols
secure against dictionary attacks. In: IEEE Computer Society Symposium on
Research in Security and Privacy, pp. 72–84 (1992)

6. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

7. Benhamouda, F., Couteau, G., Pointcheval, D., Wee, H.: Implicit zero-knowledge
arguments and applications to the malicious setting. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 107–129. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 6

8. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: CCS, pp. 967–980. ACM
(2013)

9. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

10. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Atluri,
V., Pfitzmann, B., McDaniel, P. (eds.) ACM CCS 2004, pp. 168–177. ACM Press,
October 2004

https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-662-48000-7_6
https://doi.org/10.1007/3-540-44647-8_13

Short Concurrent Covert Authenticated Key Exchange 107

11. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

12. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

13. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

14. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and
secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
337–351. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 22

15. Chandran, N., Goyal, V., Ostrovsky, R., Sahai, A.: Covert multi-party computa-
tion. In: FOCS, pp. 238–248. IEEE Computer Society (2007)

16. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

17. Cho, C., Dachman-Soled, D., Jarecki, S.: Efficient concurrent covert computation
of string equality and set intersection. In: Sako, K. (ed.) CT-RSA 2016. LNCS,
vol. 9610, pp. 164–179. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29485-8 10

18. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

19. Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious trans-
fer and timed-release encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 74–89. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48910-X 6

20. Damg̊ard, I.: On
∑

-protocols (2010). https://cs.au.dk/SIMivan/Sigma.pdf
21. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated

key exchanges. Des. Codes Crypt. 2, 107–125 (1992)
22. Eldefrawy, K., Genise, N., Jarecki, S.: Short concurrent covert authenticated

key exchange (short cAKE). Cryptology ePrint Archive, Paper 2023/xxx (2023).
https://eprint.iacr.org/2023/xxx

23. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 40

24. Fischlin, M.: Trapdoor commitment schemes and their applications. Ph.D. thesis,
Goethe University Frankfurt, Frankfurt am Main, Germany (2001)

25. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156(16), 3113–3121 (2008)

26. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Symposium on Theory of Computing Conference, STOC 2013, pp. 467–476.
ACM (2013)

27. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206. ACM (2008)

28. Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker
keeping secret all partial information. In: STOC, pp. 365–377. ACM (1982)

https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-46035-7_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/978-3-319-29485-8_10
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-48910-X_6
https://doi.org/10.1007/3-540-48910-X_6
https://cs.au.dk/~ivan/Sigma.pdf
https://eprint.iacr.org/2023/xxx
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40

108 K. Eldefrawy et al.

29. Goyal, V., Jain, A.: On the round complexity of covert computation. In: STOC,
pp. 191–200. ACM (2010)

30. Gu, Y., Jarecki, S., Krawczyk, H.: KHAPE: asymmetric PAKE from key-hiding key
exchange. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12828, pp.
701–730. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8 24

31. Hopper, N.J., Langford, J., von Ahn, L.: Provably secure steganography. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 77–92. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45708-9 6

32. Jarecki, S.: Practical covert authentication. In: Krawczyk, H. (ed.) PKC 2014.
LNCS, vol. 8383, pp. 611–629. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54631-0 35

33. Jarecki, S.: Efficient covert two-party computation. In: Abdalla, M., Dahab, R.
(eds.) PKC 2018. LNCS, vol. 10769, pp. 644–674. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-76578-5 22

34. Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055727

35. Krawczyk, H.: SKEME: a versatile secure key exchange mechanism for internet.
In: 1996 Internet Society Symposium on Network and Distributed System Security
(NDSS), pp. 114–127 (1996)

36. Krawczyk, H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

37. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

38. Kumar, R., Nguyen, K.: Covert authentication from lattices. In: Ateniese, G., Ven-
turi, D. (eds.) Applied Cryptography and Network Security. ACNS 2022. LNCS,
vol. 13269, pp. 480–500. Springer, Cham (2022). https://doi.org/10.1007/978-3-
031-09234-3 24

39. Manulis, M., Pinkas, B., Poettering, B.: Privacy-preserving group discovery with
linear complexity. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp.
420–437. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-
2 25

40. Marlinspike, M., Perrin, T.: The X3DH key agreement protocol (2016). https://
signal.org/docs/specifications/x3dh/

41. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

42. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

43. Rogaway, P.: Nonce-based symmetric encryption. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 348–358. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-25937-4 22

44. Appelbaum, J., Dingledine, R.: How governments have tried to block Tor. https://
oldsite.andreafortuna.org/security/files/TOR/slides-28c3.pdf

45. Sachdeva, A.: DARPA making an anonymous and hack-proof mobile communi-
cation system. FOSSBYTES Online Article (2019). https://fossbytes.com/darpa-
anonymous-hack-proof-mobile-communication-system/

https://doi.org/10.1007/978-3-030-84259-8_24
https://doi.org/10.1007/3-540-45708-9_6
https://doi.org/10.1007/978-3-642-54631-0_35
https://doi.org/10.1007/978-3-642-54631-0_35
https://doi.org/10.1007/978-3-319-76578-5_22
https://doi.org/10.1007/978-3-319-76578-5_22
https://doi.org/10.1007/BFb0055727
https://doi.org/10.1007/BFb0055727
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-031-09234-3_24
https://doi.org/10.1007/978-3-031-09234-3_24
https://doi.org/10.1007/978-3-642-13708-2_25
https://doi.org/10.1007/978-3-642-13708-2_25
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-540-25937-4_22
https://doi.org/10.1007/978-3-540-25937-4_22
https://oldsite.andreafortuna.org/security/files/TOR/slides-28c3.pdf
https://oldsite.andreafortuna.org/security/files/TOR/slides-28c3.pdf
https://fossbytes.com/darpa-anonymous-hack-proof-mobile-communication-system/
https://fossbytes.com/darpa-anonymous-hack-proof-mobile-communication-system/

Short Concurrent Covert Authenticated Key Exchange 109

46. Shbair, W.M., Cholez, T., Goichot, A., Chrisment, I.: Efficiently bypassing SNI-
based https filtering. In: 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp. 990–995 (2015)

47. Tibouchi, M.: Elligator squared: uniform points on elliptic curves of prime order as
uniform random strings. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS,
vol. 8437, pp. 139–156. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-45472-5 10

48. Vipin, N.S., Abdul Nizar, M.: Efficient on-line spam filtering for encrypted mes-
sages. In: 2015 IEEE International Conference on Signal Processing, Informatics,
Communication and Energy Systems (SPICES), pp. 1–5 (2015)

49. von Ahn, L., Hopper, N.J., Langford, J.: Covert two-party computation. In: STOC,
pp. 513–522. ACM (2005)

50. Wahby, R.S., Boneh, D.: Fast and simple constant-time hashing to the BLS12-
381 elliptic curve. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019(4), 154–179
(2019)

https://doi.org/10.1007/978-3-662-45472-5_10
https://doi.org/10.1007/978-3-662-45472-5_10

	Short Concurrent Covert Authenticated Key Exchange (Short cAKE)
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Covert Encodings and Random Beacons

	3 Universally Composable Model for Group Covert AKE
	4 Building Blocks: Commitment, SPHF, Identity Escrow
	4.1 Covert Trapdoor Commitment
	4.2 Covert SPHF with PCA-Security
	4.3 Covert Identity Escrow

	5 Covert Strong Simulation-Sound Conditional KEM
	5.1 Definition of Covert CKEM with Strong Simulation-Soundness
	5.2 Compiler from -Protocol to Covert CKEM in ROM

	6 Construction of Group Covert AKE Protocol
	References

