
Physiological-based comparison of deep learning 
models for pain level estimation 

Abstract— Chronic pain is an unpleasant and sensory 
experience that affects over 30% of the global population, posing 
a significant public health crisis. Traditional pain assessment 
relies heavily on self-report measures such as numerical rating 
scales, which are prone to biases and are not suitable for 
individuals unable to communicate their pain level effectively. 
This study aims to develop an automatic continuous pain level 
estimation model using physiological sensors and deep learning 
models. Twenty-nine participants performed a cold pain test while 
wearing physiological sensors including blood volume pulse 
(BVP), electromyography (EMG), electrodermal activity (EDA), 
and respiration (RR). We explored different sensor fusion 
architectures (data level and feature level fusion) and deep 
learning models (CNN-MLP, CNN-LSTM, and CNN-XGBoost) to 
assess their performance in pain level estimation. The result 
showed that feature level fusion outperforms data level fusion in 
pain level estimation, and among deep learning models, CNN-
XGBoost and CNN-LSTM demonstrated better performance than 
CNN-MLP. The result also suggests that models using fewer, 
specific sensors like EDA can nearly match the performance of 
more complex multi-modality sensor systems. Future work should 
focus on evaluating the computational efficiency and cost-
effectiveness of these models to enhance their applicability in real-
time and mobile settings, thereby potentially stemming opioid 
misuse and improving overall patient outcomes and quality of life. 

Keywords—pain assessment, physiological sensor, deep 
learning, sensor fusion, pain level 

I. INTRODUCTION 
Chronic pain is prevalent in the world and disproportionately 

impacts adults living in underserved regions and developing 
countries. It is an unpleasant, sensory, and emotional experience 
that affects more than 30% of people globally [1]. In the United 
States, it affects 51.6 million adults (20.9% of the population) 
with 17.1 million (6.9%) suffering from high-impact chronic 
pain [2], [3]. In China, over 30% of the population suffers from 
chronic pain, and increases 10-20 million cases annually [4].  

Chronic pain arises from a complex integration of sensory, 
emotional, cognitive, and behavioral components, influencing 
health outcomes, such as pain intensity level, emotional 
function, and physical activity [5], [6]. Currently, the gold 
standard for assessing pain relies primarily on self-reported 
measures, including the Numerical Rating Scale (NRS) [7], 
Visual Analogue Scale (VAS) [8], and Verbal rating scale 

(VRS). The NRS requires patients to rate their pain on a scale 
from 0 to 10, where 0 indicates ‘no pain’ and 10 signifies ‘severe 
pain’. The VRS employs verbal adjectives to categorize pain 
into four levels, including ‘no’, ‘mild’, ‘moderate’, and ‘severe’. 
However, self-reports are susceptible to biases from factors such 
as anxiety [9], [10], memories [11], current pain level, and 
physical function [12]. In addition, gold standards are inefficient 
for patients who are not able to self-report [13], such as stroke 
patients, patients with verbal impairments, and infants [14]. 
Therefore, developing validated instruments that objectively and 
continuously monitor pain, could significantly enhance chronic 
pain assessment and treatment, and potentially reduce the opioid 
crisis. 

Chronic nociceptive pain is caused by noxious stimuli that 
potentially damage the body, such as extreme temperatures, 
pressure, pinching, and chemical exposure [15], [16]. These 
stimuli activate sensory neurons, which transmit signals to the 
brain via the peripheral nervous system. The brain generates a 
pain sensation that prompts automatic responses, such as 
changes in heart rate, respiration, pupil dilation, and 
bioimpedance arousal [17], [18]. Physiological sensors have 
significantly advanced the objective assessment of human states 
and characteristics [19], [20]. Research has underscored the 
potential of these sensors for classifying pain intensity levels. 
For example, Guo et al. estimated three levels of cold pressor 
pain using facial expression by comparing three neural network 
models, and the personalized spatial-temporal framework using 
a convolutional long short-term memory model achieved the 
highest performance [21], [22]. Another study measured the 
pain level via features generated from the pupillometry data 
using a genetic algorithm with an artificial neural network 
classifier, and the best performance was obtained with an 
accuracy of 81% [23]. EEG studies have demonstrated statistical 
differences in central and occipital regions and were able to 
classify pain and no-pain states using multi-layer CNN 
frameworks [24], [25]. However, a single sensor may not 
provide complete information, necessitating the integration of 
data from multiple sensors to accurately determine pain levels. 
Multimodal physiological classification with decision-level 
fusion and feature-level fusion proved promising in pain level 
detection and classification [26]. 

This study conducted a comprehensive investigation of 
sensor fusion architectures to develop an automatic, continuous 
pain estimation framework. To achieve this aim, 29 subjects 
were recruited to perform a cold pain test while equipped with 
physiological sensors. Comparisons were made between deep 
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learning models (CNN-MLP, CNN-LSTM, and CNN-
XGBoost) and fusion methods (data level and feature level 
fusion). Individual sensors and multiple modalities were also 
compared. Performance was evaluated based on a pain intensity 
level regression problem, with mean squared error and root 
mean square error as the measurement metrics. 

II. METHODS 

A. Participants 
The experiment recruited 29 healthy participants (11 males 

and 18 females), all from Northeastern University, aged 
between 19 and 22. Before the experiment, investigators 
explained the apparatus and procedures to ensure participants 
were fully informed. Written informed consent was obtained 
from all participants. The study was conducted in accordance 
with the guidelines and regulations of the Northeastern 
University Institutional Review Board (IRB # 17-01-25). 

B. Apparatus 
The study utilized various sensors to monitor physiological 

responses during a cold pain test. These physiological sensors 
(FlexComp Infiniti, Thought Technology, Canada) included a 
blood volume pulse (BVP) sensor for heart rate tracking 
through the middle finger of the non-dominant hand, a chest-
mounted respiration rate sensor (RR), electromyography 
(EMG) sensor on the non-dominant forearm, and an 
electrodermal activity (EDA) sensor between the index and ring 
fingers of the non-dominant hand. Data collection and storage 
were facilitated using a Dell desktop computer.  

C. Experiment Procedure 
Upon arrival, participants were seated in a comfortable chair 

at a distance of one meter from a computer screen and instructed 
to follow on-screen prompts. The experiment commenced with 
a 5-minute baseline data recording, during which participants 
were asked to relax fully. The screen then signaled ‘GO’, 
prompting participants to immerse their right hand in iced water 
for 20 seconds, as it is shown in Figure 1. Subsequently, the 
screen displayed ‘P’, indicating the participants should report 
their pain intensity level on a scale from 0 (no pain) to 10 (severe 
pain). The investigator had three seconds to record the pain 
level. This 23-second procedure constituted one session, 
repeated until the participant opted to withdraw or reached 10 
sessions. Each participant provided up to 11 pain level ratings 
before concluding the experiment, with the option to terminate 
at any time. 

D. Data Preprocessing 
Physiological data (BVP, EMG, EDA, RR) were 

synchronized by resampling at 50Hz. The BVP signal was 
filtered using a fifth-order Butterworth band-pass filter with 
cutoff frequencies between 0.5 and 12 Hz. EDA was processed 
with a fifth-order 1 Hz low-pass Butterworth filter, and RR with 
a fifth-order Butterworth band-pass with [0.1, 1] Hz as cutoff 
frequencies. Outliers were removed using the Interquartile 
(IQR) range method, which identifies extremes by comparing 
data points to the 25th and 75th percentiles. Data points outside 
1.5 times of IQR from these percentiles were deemed outliers 
and were replaced via quantile-based flooring and capping.  

To address the issue of class imbalance in our dataset, we 
employed the Synthetic Minority Oversampling Technique 
(SMOTE) [27]. This method involves oversampling the 
minority class by generating synthetic examples, as opposed to 
resampling with replacement. Initially, SMOTE randomly 
selects a minority class instance and identifies its 𝑘𝑘  nearest 
neighbors within the same class. Subsequently, it randomly 
picks one of these neighbors and creates a line segment in the 
feature spacing connecting the two instances. Synthetic 
instances are then produced as a convex combination of these 
two selected instances. By using this data augmentation 
technique, we were able to generate a sufficient number of 
synthetic examples to balance the class distribution in our 
training dataset. 

E. Regression task 
Physiological sensor data were utilized as training inputs, 

while self-reported pain intensity levels served as training labels. 
We classified pain ratings into four levels: No pain (0), Mild 
pain (1-3), Moderate pain (4-6), and Severe pain (8-10). Data 
from each participant were segmented into 10-second time 
windows. For labeling, we assigned the mean pain rating of two 
consecutive windows (e.g., from 10s to 20s and 20s to 30s) to 
the training corresponding to the end of the second window 
(20s).  

To evaluate our models, we employed 5-fold stratified cross-
validation across all subjects. This method ensures each fold is 
representative of the overall dataset by maintaining a consistent 
proportion of each class, which is crucial in datasets with 
imbalanced class distributions. 

F. Deep Learning Models  
For automated pain level estimation from physiological 

signals, we implemented various deep learning algorithms 
alongside Extreme Gradient Boosting Regression (XGBoost) 
algorithms [28]. XGBoost was chosen for its computational 
efficiency and sensitivity in machine learning tasks involving 
human state recognition. For example, Pouromran et al. 
extracted features from ECG, EDA, and EMG signals and 
utilized XGBoost for predicting pain intensities, demonstrating 
superior performance compared to conventional methods such 

 
Fig. 1. Cold pressor pain experiment apparatus 
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as Naive Bayes, KNN and Random Forest [29]. Importantly, 
XGBoost does not require as extensive training data sets as 
many deep learning models, making it particularly suitable for 
our dataset.  

We developed an end-to-end model capable of processing 
raw data to estimate pain levels. For feature extraction, we used 
a 1D conventional neural network (CNN) layer, which is 
optimal for time series data due to its one-dimensional 
operational nature [30], [31]. The 1D CNN layer diagram is 
illustrated in Figure 2. The kernel, designated as 𝐾𝐾, shifts to the 
right by a stride of length 𝑆𝑆 after each extraction. This approach 
mimics the 2D CNN used in image classification but is adapted 
to the one-dimensional structure of time series data. 
Additionally, we developed two sensor fusion architectures: 
data level fusion, and feature level fusion. In both architectures, 
we employed 1D CNN for automatic feature extraction, 
followed by regressor models to estimate pain level. We choose 
multilayer perceptron (MLP), Long Short-Term Memory 
(LSTM), and XGBoost as the final regressor models. 

1) Data level fusion  
In the data level fusion approach, we integrated signals from 

four different physiological sensors – BVP, EMG, EDA, and RR 

– into a single input tensor for our deep learning model. The 
input tensor was structured with dimensions of 4x2560, where 
'4' represents the number of sensor modalities and '2560' 
corresponds to the data points collected over a 10-second 
window at a sampling rate of 256 Hz per second. This fusion 
approach is illustrated in Figure 3(a). Feature extraction from 
this integrated data was performed using a 1D CNN layer that 
processes all sensor data simultaneously, ensuring that temporal 
dynamics across different modalities are captured effectively. 
Our CNN configuration included a kernel size of 512 and a 
stride of 64, which was followed by a max pooling layer to 
reduce dimensionality and enhance the detection of dominant 
features. Subsequently, a dropout layer with a rate of 0.2 was 
implemented to prevent overfitting. The architecture was 
completed with a batch normalization layer to standardize inputs 
to the next layer, followed by a flatten layer to convert the multi-
dimensional output into a 1D array suitable for regression. 

2) Feature level fusion 
In the feature level fusion approach, features were first 

extracted individually from each of the four physiological 
sensors—BVP, EMG, EDA, and RR—using separate 1D CNN 
layers. This method ensures that the unique characteristics of 
each sensor's data are captured independently. Each sensor's 
data was processed as a 1x2560 input tensor, reflecting 2560 
data points over a 10-second window, similar to the data level 
fusion setup. Following the CNN layers, each sensor's output 
was subjected to a max pooling layer, followed by a dropout 
layer set at 0.2 to mitigate overfitting and batch normalization. 
After processing, each stream of data was transformed into a flat 
format using a flatten layer. The outputs from the individual 
flatten layers were then concatenated into a unified feature 
vector. The structure and process of feature level fusion are 
illustrated in Figure 3(b). 

G. Hyperparameter Tuning 
We used the Adaptive Moment estimation algorithm (Adam) 

as the optimizer for our model. Model parameters are updated 

 
Fig. 3 Diagram of (a) data level fusion and (b) feature level fusion 

 
Fig. 2. 1D CNN layer in data level fusion. The Kernel size 
denoted in 𝐾𝐾  moves along the 𝑥𝑥  axis (Time) and extracts 
temporal features. After extracting features, the kernel moves 
to the right with a stride of length 𝑆𝑆. 
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using the backpropagation algorithm and gradient descent 
method, where the error between the desired output and the 
actual output is quantified using a loss function. The 
hyperparameters were explored using grid search for each 
regression algorithm are presented in Table 1.  

To evaluate the performance of regressor models, we used 
Mean Absolute Errors (MSE) and Root Mean Square Errors 
(RMSE) as performance metrics, 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
∑ |𝑦𝑦 − 𝑦𝑦�|𝑛𝑛
𝑘𝑘=1

𝑛𝑛
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑦𝑦 − 𝑦𝑦�)2𝑛𝑛
𝑘𝑘=1

𝑛𝑛
 

Where 𝑦𝑦 is a true value, 𝑦𝑦� is the predicted value, and 𝑛𝑛 is the 
number of samples. 

III. RESULTS  
Given that pain levels are ordinal, it is more appropriate to 

assess pain intensity levels as a regression task rather than a 
classification task. This is because the consequences of 
misclassifying pain levels vary significantly; misclassifying 
mild pain as severe pain is more problematic than treating mild 
pain as moderate pain. The regression approach allows for more 
accurate pain level estimation, aligning better with effective pain 
assessment and management. 

A. Comparison between data level and feature level fusion 
Table 2 shows the comparison between data level and 

feature level fusion. We found that feature level fusion performs 
better than data level fusion in general. The best performance 
was achieved in CNN-LSTM and CNN-XGBoost in feature 
level fusion. The CNN-LSTM model achieved the lowest MAE 
of 0.843 and an average RMSE of 1.035 from 5-fold. The CNN-
XGBoost model achieved an average MAE of 0.857 and the 
lowest RMSE of 1.026. There is no significant difference 
between the two models.  

B. Comparison between individual sensor modalities 
Table 3 shows the comparison results between individual 

sensor modality. Each sensor, including BVP, EMG, EDA, and 
RR, went through the same deep learning architecture. We 
found that the best performance was achieved in EDA, while 
the worst performance was achieved in RR. In addition, there is 
no significant difference between the performance of EDA-
based CNN-LSTM and EDA-based CNN-XGBoost models. 
Prior research has achieved similar results to the current study, 
where authors proposed EDA is the most information-rich 
sensor for continuous pain level prediction [29]. 

Comparing the performance between multi-modality 
models and individual modality models, we found that the 
EDA-based deep learning model is quite close to the multi-
modality deep learning model. These remarkable results 
underscore the potential to estimate pain levels using fewer 
physiological sensors, achieving nearly the same accuracy as 
more complex multi-modality systems. 

IV. CONCLUSION 
In this work, we developed an automatic pain level 

estimation model using physiological sensors that can 
substitute patients’ self-report pain information. We 
investigated different fusion methods, sensor modalities, and 
deep learning models. The best performance was achieved in 
feature level fusion using all physiological signals. EDA is the 
best signal compared with BVP, EMG, and RR for continuous 
pain estimation. Future research should assess the 
computational efficiency and cost-effectiveness of deep 
learning models, as well as their adaptability and effectiveness 
across diverse population groups. These directions have the 
potential to make pain assessment products more applicable in 
scenarios requiring real-time data processing and immediate 
feedback, thus enhancing personalized pain management and 
improving patient outcomes and quality of life. 

 

Algorithm Parameter Values/Range 
MLP Hidden layers [1,2,3] 

Units [32,64,128] 
epochs  [10,20,30] 
Learning rate [0.001,0.01,0.1] 

LSTM Layers [32,64,128] 
Epochs [50,100,200] 
Learning rate [0.001,0.01,0.1] 

XGBoost Min child weight [1,5,10] 
Gamma [0.5,1,1.5,2,5] 
Subsample [0.6,0.8,1] 
Max depth [3,4,5] 

Table. 1 Hyperparameter tuning space for each algorithm 
 

Fusion Method Model MAE RMSE 
Data level 

fusion 
CNN-MLP 0.964 ± 0.04 1.224 ± 0.06 
CNN-LSTM 0.856 ± 0.02 1.043 ± 0.04 
CNN-XGBoost 0.864 ± 0.05 1.085 ± 0.06 

Feature level 
fusion 

CNN-MLP 0.915 ± 0.03 1.135 ± 0.03 
CNN-LSTM  0.843 ± 0.04 1.035 ± 0.07 
CNN-XGBoost 0.857 ± 0.02 1.026 ± 0.03 

Table. 2 Performance of different models under data level and 
feature level fusion methods. Values are given in Mean ± STD. 

 
Sensor Model MAE RMSE 
BVP CNN-MLP 1.145 ± 0.17 1.384 ± 0.21 

CNN-LSTM 1.059 ± 0.02 1.278 ± 0.01 
CNN-XGBoost 1.001 ± 0.04 1.226 ± 0.06 

EMG CNN-MLP 1.190 ± 0.17 1.363 ± 0.21 
CNN-LSTM  1.009 ± 0.02 1.263 ± 0.03 
CNN-XGBoost 0.993 ± 0.02 1.155 ± 0.04 

EDA CNN-MLP 0.930 ± 0.03 1.155 ± 0.06 
CNN-LSTM  0.858 ± 0.04 1.013 ± 0.04 
CNN-XGBoost 0.883 ± 0.02 1.080 ± 0.03 

RR CNN-MLP 1.283 ± 0.10 1.493 ± 0.09 
CNN-LSTM  0.949 ± 0.03 1.171 ± 0.04 
CNN-XGBoost 0.944 ± 0.03 1.169 ± 0.05 

Table. 3 Performance of different models for individual sensor 
modalities. Values are given in Mean ± STD. 
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