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Abstract— Chronic pain is an unpleasant and sensory
experience that affects over 30% of the global population, posing
a significant public health crisis. Traditional pain assessment
relies heavily on self-report measures such as numerical rating
scales, which are prone to biases and are not suitable for
individuals unable to communicate their pain level effectively.
This study aims to develop an automatic continuous pain level
estimation model using physiological sensors and deep learning
models. Twenty-nine participants performed a cold pain test while
wearing physiological sensors including blood volume pulse
(BVP), electromyography (EMG), electrodermal activity (EDA),
and respiration (RR). We explored different sensor fusion
architectures (data level and feature level fusion) and deep
learning models (CNN-MLP, CNN-LSTM, and CNN-XGBoost) to
assess their performance in pain level estimation. The result
showed that feature level fusion outperforms data level fusion in
pain level estimation, and among deep learning models, CNN-
XGBoost and CNN-LSTM demonstrated better performance than
CNN-MLP. The result also suggests that models using fewer,
specific sensors like EDA can nearly match the performance of
more complex multi-modality sensor systems. Future work should
focus on evaluating the computational efficiency and cost-
effectiveness of these models to enhance their applicability in real-
time and mobile settings, thereby potentially stemming opioid
misuse and improving overall patient outcomes and quality of life.

Keywords—pain assessment, physiological sensor, deep
learning, sensor fusion, pain level

I. INTRODUCTION

Chronic pain is prevalent in the world and disproportionately
impacts adults living in underserved regions and developing
countries. It is an unpleasant, sensory, and emotional experience
that affects more than 30% of people globally [1]. In the United
States, it affects 51.6 million adults (20.9% of the population)
with 17.1 million (6.9%) suffering from high-impact chronic
pain [2], [3]. In China, over 30% of the population suffers from
chronic pain, and increases 10-20 million cases annually [4].

Chronic pain arises from a complex integration of sensory,
emotional, cognitive, and behavioral components, influencing
health outcomes, such as pain intensity level, emotional
function, and physical activity [5], [6]. Currently, the gold
standard for assessing pain relies primarily on self-reported
measures, including the Numerical Rating Scale (NRS) [7],
Visual Analogue Scale (VAS) [8], and Verbal rating scale
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(VRS). The NRS requires patients to rate their pain on a scale
from 0 to 10, where 0 indicates ‘no pain’ and 10 signifies ‘severe
pain’. The VRS employs verbal adjectives to categorize pain
into four levels, including ‘no’, ‘mild’, ‘moderate’, and ‘severe’.
However, self-reports are susceptible to biases from factors such
as anxiety [9], [10], memories [11], current pain level, and
physical function [12]. In addition, gold standards are inefficient
for patients who are not able to self-report [13], such as stroke
patients, patients with verbal impairments, and infants [14].
Therefore, developing validated instruments that objectively and
continuously monitor pain, could significantly enhance chronic
pain assessment and treatment, and potentially reduce the opioid
crisis.

Chronic nociceptive pain is caused by noxious stimuli that
potentially damage the body, such as extreme temperatures,
pressure, pinching, and chemical exposure [15], [16]. These
stimuli activate sensory neurons, which transmit signals to the
brain via the peripheral nervous system. The brain generates a
pain sensation that prompts automatic responses, such as
changes in heart rate, respiration, pupil dilation, and
bioimpedance arousal [17], [18]. Physiological sensors have
significantly advanced the objective assessment of human states
and characteristics [19], [20]. Research has underscored the
potential of these sensors for classifying pain intensity levels.
For example, Guo et al. estimated three levels of cold pressor
pain using facial expression by comparing three neural network
models, and the personalized spatial-temporal framework using
a convolutional long short-term memory model achieved the
highest performance [21], [22]. Another study measured the
pain level via features generated from the pupillometry data
using a genetic algorithm with an artificial neural network
classifier, and the best performance was obtained with an
accuracy of 81% [23]. EEG studies have demonstrated statistical
differences in central and occipital regions and were able to
classify pain and no-pain states using multi-layer CNN
frameworks [24], [25]. However, a single sensor may not
provide complete information, necessitating the integration of
data from multiple sensors to accurately determine pain levels.
Multimodal physiological classification with decision-level
fusion and feature-level fusion proved promising in pain level
detection and classification [26].

This study conducted a comprehensive investigation of
sensor fusion architectures to develop an automatic, continuous
pain estimation framework. To achieve this aim, 29 subjects
were recruited to perform a cold pain test while equipped with
physiological sensors. Comparisons were made between deep

Authorized licensed use limited to: Northeastern University. Downloaded on July 18,2025 at 20:36:55 UTC from IEEE Xplore. Restrictions apply.



learning models (CNN-MLP, CNN-LSTM, and CNN-
XGBoost) and fusion methods (data level and feature level
fusion). Individual sensors and multiple modalities were also
compared. Performance was evaluated based on a pain intensity
level regression problem, with mean squared error and root
mean square error as the measurement metrics.

II. METHODS

A. Participants

The experiment recruited 29 healthy participants (11 males
and 18 females), all from Northeastern University, aged
between 19 and 22. Before the experiment, investigators
explained the apparatus and procedures to ensure participants
were fully informed. Written informed consent was obtained
from all participants. The study was conducted in accordance
with the guidelines and regulations of the Northeastern
University Institutional Review Board (IRB # 17-01-25).

B. Apparatus

The study utilized various sensors to monitor physiological
responses during a cold pain test. These physiological sensors
(FlexComp Infiniti, Thought Technology, Canada) included a
blood volume pulse (BVP) sensor for heart rate tracking
through the middle finger of the non-dominant hand, a chest-
mounted respiration rate sensor (RR), electromyography
(EMG) sensor on the non-dominant forearm, and an
electrodermal activity (EDA) sensor between the index and ring
fingers of the non-dominant hand. Data collection and storage
were facilitated using a Dell desktop computer.

C. Experiment Procedure

Upon arrival, participants were seated in a comfortable chair
at a distance of one meter from a computer screen and instructed
to follow on-screen prompts. The experiment commenced with
a 5-minute baseline data recording, during which participants
were asked to relax fully. The screen then signaled ‘GO’,
prompting participants to immerse their right hand in iced water
for 20 seconds, as it is shown in Figure 1. Subsequently, the
screen displayed ‘P’, indicating the participants should report
their pain intensity level on a scale from 0 (no pain) to 10 (severe
pain). The investigator had three seconds to record the pain
level. This 23-second procedure constituted one session,
repeated until the participant opted to withdraw or reached 10
sessions. Each participant provided up to 11 pain level ratings
before concluding the experiment, with the option to terminate
at any time.

D. Data Preprocessing

Physiological data (BVP, EMG, EDA, RR) were
synchronized by resampling at 50Hz. The BVP signal was
filtered using a fifth-order Butterworth band-pass filter with
cutoff frequencies between 0.5 and 12 Hz. EDA was processed
with a fifth-order 1 Hz low-pass Butterworth filter, and RR with
a fifth-order Butterworth band-pass with [0.1, 1] Hz as cutoff
frequencies. Outliers were removed using the Interquartile
(IQR) range method, which identifies extremes by comparing
data points to the 25" and 75" percentiles. Data points outside
1.5 times of IQR from these percentiles were deemed outliers
and were replaced via quantile-based flooring and capping.

Eye Tracker

Respiratory
Rate
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Fig. 1. Cold pressor pain experiment apparatus

To address the issue of class imbalance in our dataset, we
employed the Synthetic Minority Oversampling Technique
(SMOTE) [27]. This method involves oversampling the
minority class by generating synthetic examples, as opposed to
resampling with replacement. Initially, SMOTE randomly
selects a minority class instance and identifies its k nearest
neighbors within the same class. Subsequently, it randomly
picks one of these neighbors and creates a line segment in the
feature spacing connecting the two instances. Synthetic
instances are then produced as a convex combination of these
two selected instances. By using this data augmentation
technique, we were able to generate a sufficient number of
synthetic examples to balance the class distribution in our
training dataset.

E. Regression task

Physiological sensor data were utilized as training inputs,
while self-reported pain intensity levels served as training labels.
We classified pain ratings into four levels: No pain (0), Mild
pain (1-3), Moderate pain (4-6), and Severe pain (8-10). Data
from each participant were segmented into 10-second time
windows. For labeling, we assigned the mean pain rating of two
consecutive windows (e.g., from 10s to 20s and 20s to 30s) to
the training corresponding to the end of the second window
(20s).

To evaluate our models, we employed 5-fold stratified cross-
validation across all subjects. This method ensures each fold is
representative of the overall dataset by maintaining a consistent
proportion of each class, which is crucial in datasets with
imbalanced class distributions.

F. Deep Learning Models

For automated pain level estimation from physiological
signals, we implemented various deep learning algorithms
alongside Extreme Gradient Boosting Regression (XGBoost)
algorithms [28]. XGBoost was chosen for its computational
efficiency and sensitivity in machine learning tasks involving
human state recognition. For example, Pouromran et al.
extracted features from ECG, EDA, and EMG signals and
utilized XGBoost for predicting pain intensities, demonstrating
superior performance compared to conventional methods such
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Fig. 2. 1D CNN layer in data level fusion. The Kernel size
denoted in K moves along the x axis (Time) and extracts
temporal features. After extracting features, the kernel moves
to the right with a stride of length S.

as Naive Bayes, KNN and Random Forest [29]. Importantly,
XGBoost does not require as extensive training data sets as
many deep learning models, making it particularly suitable for
our dataset.

We developed an end-to-end model capable of processing
raw data to estimate pain levels. For feature extraction, we used
a 1D conventional neural network (CNN) layer, which is
optimal for time series data due to its one-dimensional
operational nature [30], [31]. The 1D CNN layer diagram is
illustrated in Figure 2. The kernel, designated as K, shifts to the
right by a stride of length S after each extraction. This approach
mimics the 2D CNN used in image classification but is adapted
to the one-dimensional structure of time series data.
Additionally, we developed two sensor fusion architectures:
data level fusion, and feature level fusion. In both architectures,
we employed 1D CNN for automatic feature extraction,
followed by regressor models to estimate pain level. We choose
multilayer perceptron (MLP), Long Short-Term Memory
(LSTM), and XGBoost as the final regressor models.

1) Data level fusion
In the data level fusion approach, we integrated signals from
four different physiological sensors — BVP, EMG, EDA, and RR
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Fig. 3 Diagram of (a) data level fusion and (b) feature level fusion

— into a single input tensor for our deep learning model. The
input tensor was structured with dimensions of 4x2560, where
'4' represents the number of sensor modalities and '2560'
corresponds to the data points collected over a 10-second
window at a sampling rate of 256 Hz per second. This fusion
approach is illustrated in Figure 3(a). Feature extraction from
this integrated data was performed using a 1D CNN layer that
processes all sensor data simultaneously, ensuring that temporal
dynamics across different modalities are captured effectively.
Our CNN configuration included a kernel size of 512 and a
stride of 64, which was followed by a max pooling layer to
reduce dimensionality and enhance the detection of dominant
features. Subsequently, a dropout layer with a rate of 0.2 was
implemented to prevent overfitting. The architecture was
completed with a batch normalization layer to standardize inputs
to the next layer, followed by a flatten layer to convert the multi-
dimensional output into a 1D array suitable for regression.

2) Feature level fusion

In the feature level fusion approach, features were first
extracted individually from each of the four physiological
sensors—BVP, EMG, EDA, and RR—using separate 1D CNN
layers. This method ensures that the unique characteristics of
each sensor's data are captured independently. Each sensor's
data was processed as a 1x2560 input tensor, reflecting 2560
data points over a 10-second window, similar to the data level
fusion setup. Following the CNN layers, each sensor's output
was subjected to a max pooling layer, followed by a dropout
layer set at 0.2 to mitigate overfitting and batch normalization.
After processing, each stream of data was transformed into a flat
format using a flatten layer. The outputs from the individual
flatten layers were then concatenated into a unified feature
vector. The structure and process of feature level fusion are
illustrated in Figure 3(b).

G. Hyperparameter Tuning

We used the Adaptive Moment estimation algorithm (Adam)
as the optimizer for our model. Model parameters are updated
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Algorithm Parameter Values/Range
MLP Hidden layers [1,2,3]
Units [32,64,128]
epochs [10,20,30]
Learning rate [0.001,0.01,0.1]
LSTM  Layers [32,64,128]
Epochs [50,100,200]
Learning rate [0.001,0.01,0.1]
XGBoost  Min child weight [1,5,10]
Gamma [0.5,1,1.5,2,5]
Subsample [0.6,0.8,1]
Max depth [3,4,5]
Table. 1 Hyperparameter tuning space for each algorithm
Fusion Method Model MAE RMSE
Data level CNN-MLP 0.964 +0.04 1.224+0.06
fusion CNN-LSTM 0.856+0.02 1.043+0.04
CNN-XGBoost ~ 0.864 +0.05 1.085 +0.06
Feature level CNN-MLP 0.915+0.03 1.135+0.03
fusion CNN-LSTM 0.843 +0.04 1.035+0.07
CNN-XGBoost  0.857 £0.02 1.026 +0.03

Table. 2 Performance of different models under data level and
feature level fusion methods. Values are given in Mean + STD.

Sensor Model MAE RMSE
BVP CNN-MLP 1.145+0.17 1.384+0.21
CNN-LSTM 1.059+£0.02 1.278 £0.01
CNN-XGBoost  1.001 +£0.04 1.226 +0.06
EMG CNN-MLP 1.190 £0.17 1.363+0.21
CNN-LSTM 1.009 £0.02 1.263+0.03
CNN-XGBoost  0.993+0.02 1.155+0.04
EDA CNN-MLP 0.930+0.03 1.155+0.06
CNN-LSTM 0.858 +0.04 1.013 +0.04
CNN-XGBoost  0.883 +0.02 1.080 + 0.03
RR CNN-MLP 1.283+0.10 1.493 +0.09
CNN-LSTM 0.949+0.03 1.171+0.04
CNN-XGBoost  0.944 +0.03 1.169+0.05

Table. 3 Performance of different models for individual sensor

modalities. Values are given in Mean = STD.

using the backpropagation algorithm and gradient descent
method, where the error between the desired output and the
actual output is quantified using a loss function. The
hyperparameters were explored using grid search for each

regression algorithm are presented in Table 1.

To evaluate the performance of regressor models, we used
Mean Absolute Errors (MSE) and Root Mean Square Errors
(RMSE) as performance metrics,

_ Yi=1ly — I

MAE

n

sy B0 = 92
n

Where y is a true value, ¥ is the predicted value, and n is the
number of samples.

III. RESULTS

Given that pain levels are ordinal, it is more appropriate to
assess pain intensity levels as a regression task rather than a
classification task. This is because the consequences of
misclassifying pain levels vary significantly; misclassifying
mild pain as severe pain is more problematic than treating mild
pain as moderate pain. The regression approach allows for more
accurate pain level estimation, aligning better with effective pain
assessment and management.

A. Comparison between data level and feature level fusion

Table 2 shows the comparison between data level and
feature level fusion. We found that feature level fusion performs
better than data level fusion in general. The best performance
was achieved in CNN-LSTM and CNN-XGBoost in feature
level fusion. The CNN-LSTM model achieved the lowest MAE
0f 0.843 and an average RMSE of 1.035 from 5-fold. The CNN-
XGBoost model achieved an average MAE of 0.857 and the
lowest RMSE of 1.026. There is no significant difference
between the two models.

B. Comparison between individual sensor modalities

Table 3 shows the comparison results between individual
sensor modality. Each sensor, including BVP, EMG, EDA, and
RR, went through the same deep learning architecture. We
found that the best performance was achieved in EDA, while
the worst performance was achieved in RR. In addition, there is
no significant difference between the performance of EDA-
based CNN-LSTM and EDA-based CNN-XGBoost models.
Prior research has achieved similar results to the current study,
where authors proposed EDA is the most information-rich
sensor for continuous pain level prediction [29].

Comparing the performance between multi-modality
models and individual modality models, we found that the
EDA-based deep learning model is quite close to the multi-
modality deep learning model. These remarkable results
underscore the potential to estimate pain levels using fewer
physiological sensors, achieving nearly the same accuracy as
more complex multi-modality systems.

IV. CONCLUSION

In this work, we developed an automatic pain level
estimation model using physiological sensors that can
substitute patients’ self-report pain information. We
investigated different fusion methods, sensor modalities, and
deep learning models. The best performance was achieved in
feature level fusion using all physiological signals. EDA is the
best signal compared with BVP, EMG, and RR for continuous
pain estimation. Future research should assess the
computational efficiency and cost-effectiveness of deep
learning models, as well as their adaptability and effectiveness
across diverse population groups. These directions have the
potential to make pain assessment products more applicable in
scenarios requiring real-time data processing and immediate
feedback, thus enhancing personalized pain management and
improving patient outcomes and quality of life.
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